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Abstract Many swimming cells rely on periodic deformations to achieve locomotion.
We introduce in this work a theoretical model and numerical simulations in order to
elucidate the impact of these cyclic strokes on the emergence of mesoscale structures
and collective motion in swimmer suspensions. The model extends previous kinetic
theories for populations of identical swimmers to the case of self-propelled particles
undergoing transitions between pusher and puller states, and is applied to quantify
how the unsteadiness of the hydrodynamic velocity field, to which each swimmer
population contributes, affects the onset and characteristics of spontaneous flows.
A linear stability analysis reveals that the sign of the population-averaged dipole
determines the stability of the uniform isotropic state, with suspensions dominated
by pushers being subject to growing nematic bend fluctuations. Stochastic transitions,
however, are also seen to provide an additional damping mechanism. To investigate the
population dynamics above the instability threshold, we also perform direct particle
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simulations based on a slender-body model, where the growth or decay of the active
power generated by the swimmers is found to be a robust measure of the structural
and dynamical instability.

Keywords Active suspensions · Collective motion · Kinetic theory ·
Hydrodynamic stability

Mathematics Subject Classification 92C05 · 92C17 · 76E99 · 76A05

1 Introduction

The emergence of collective motion and spontaneous flows is the hallmark of numerous
active matter systems (Saintillan and Shelley 2013, 2015; Marchetti et al. 2013; Koch
and Subramanian 2011) from bacterial suspensions (Dombrowski et al. 2004; Cis-
neros et al. 2011; Dunkel et al. 2013; Gachelin et al. 2014) to mixtures of biofilaments
and molecular motors (Schaller et al. 2010; Sanchez et al. 2012; Keber et al. 2014;
Gao et al. 2015) to populations of self-propelled colloids (Bricard et al. 2013, 2015)
and shaken grains (Deseigne et al. 2010; Kumar et al. 2014). In all of these systems,
interparticle interactions, whether hydrodynamic, electrostatic, or steric, tend to align
neighboring particles and can drive large-scale coherent flows if they overcome ran-
domizing processes such as thermal fluctuations or other sources of stochastic noise.
Much attention has focused on suspensions of self-propelled particles, such as swim-
ming microorganisms and autonomous catalytic micro-rods. In these suspensions, it
has been argued that far-field hydrodynamic interactions resulting from the force dipole
exerted by a self-propelled particle on its surroundings can drive long-wave instabil-
ities that cause local nematic alignment, leading ultimately to collective motion and
concentration fluctuations (Saintillan and Shelley 2008a, b; Subramanian and Koch
2009; Baskaran and Marchetti 2009). These theoretical models, which predict a crit-
ical concentration above which collective motion arises, are in qualitative agreement
with experimental observations (Cisneros et al. 2011) as well as direct particle simu-
lations based on various models (Saintillan and Shelley 2007; Hernandez-Ortiz et al.
2009; Saintillan and Shelley 2012) though it has been suggested that steric interactions
also likely play a role in dense systems (Baskaran and Marchetti 2010; Ezhilan et al.
2013).

The key ingredient of these hydrodynamic theories is the intrinsic force dipole
resulting from the swimming of an isolated particle. In the mean field, such dipoles
amount to an additional stress contribution in the equations for the fluid motion (Hat-
walne et al. 2004; Saintillan 2010), which modifies the effective viscosity of the
suspension and can have a destabilizing effect. It is now widely admitted that the
sign of the individual dipole strength σ determines the stability of homogeneous and
isotropic suspensions: Extensile particles with σ < 0, also known as pushers, decrease
the effective viscosity and are subject to instabilities, whereas contractile particles or
pullers for which σ > 0 are not. The signature for this dipole is indeed observed
in experiments, where flow fields around isolated swimming microorganisms were
measured using particle-image velocimetry (Drescher et al. 2010; Guasto et al. 2010;
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Drescher et al. 2011): In the case of neutrally buoyant microorganisms, the spatial
decay of the velocity disturbance by one swimmer is indeed observed to go as r−2 in
three dimensions, where r is the distance from the organism. Further, it was found that
σ < 0 in suspensions of bacteria (Drescher et al. 2011), whereas σ > 0 in suspensions
of swimming algae (Drescher et al. 2010; Guasto et al. 2010), thus supporting the theo-
retical predictions on suspension stability, as collective swirling motion in experiments
is only observed in suspensions of the former. Another evidence of these oppositely
signed dipoles is provided by rheological measurements, which indeed demonstrate
decreased viscosities in bacterial suspensions (Sokolov and Aranson 2009; Gachelin
et al. 2013) but enhanced viscosities in algae suspensions (Rafaï et al. 2010; Mussler
et al. 2013).

Perhaps, one limitation of these previous models is the assumption that the very
details of the swimming mechanisms at the individual level can be ignored. Instead, a
unique and well-defined dipole strength σ that is steady and identical for all swimmers
is suggested to fully dictate the large-scale structure and dynamics of the suspension.
While this may apply to synthetic swimmers whose fabrication is well controlled, the
situation is far from simple in biological suspensions. Indeed, biological swimmers are
subject to phenotypic variations and one should rather expect a distribution of dipole
strengths with a certain mean and variance: Is the stability in this case determined
by the mean dipole strength, or do variations play a more intricate role? Further-
more, the assumption of a steady dipole for each particle is also known to be flawed:
Time-resolved measurements on swimming algae (Guasto et al. 2010) indeed revealed
the oscillatory nature of the flow they create, with a period equal to the duration of
one swimming stroke (Goldstein 2015). Such oscillations are reflected in the dipole
strength, which also varies in time and in fact even changes sign over the course of
one stroke (Guasto et al. 2010). In other words, swimming algae periodically switch
behavior between pusher and puller, even though their time-averaged dipole classifies
them as pullers.

Such variations among swimming particles and cyclic dynamics of individual swim-
mers have not received much attention in the context of hydrodynamic theories and
are the subject of the present work. Recent theoretical models have considered the
impact of cyclic dynamics on phase synchronization in active suspensions (Fürthauer
and Ramaswamy 2013; Leoni and Liverpool 2014) and suggest that synchronization
may occur and drive new instabilities unobserved in phase-incoherent systems. Here,
we do not address the effects of such synchronization, but rather focus on the stability
of a suspension of swimmers whose cyclic dynamics are approximated as a Markov
process in which individual particles switch back and forth between two states char-
acterized by distinct swimming velocities and dipole strengths (e.g., pusher and puller
states). The switching frequencies can be related to the mean residence time in each
state and also determine the relative proportion of each population in the suspension.
In the limit where these frequencies tend to zero while maintaining a fixed ratio, the
model can also be applied to describe a mixture of two types of particles that do
not switch type. As mechanisms for synchronization are excluded, the only coupling
between the two populations of swimmers occurs through the hydrodynamic field they
generate, which depends on the dipole strengths of both populations. We first analyze
this system theoretically in Sect. 2 using a continuum model that extends previous
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works on single populations (Saintillan and Shelley 2008b), and show that the stabil-
ity in this system is simply determined by the concentration-weighted average of the
dipole strengths, though the stochastic transitions between swimmer types are seen
to provide an additional damping mechanism. These predictions are then tested in
more detail using direct particle simulations of hydrodynamically interacting slender
swimmers (Saintillan and Shelley 2012) in Sect. 3. We conclude in Sect. 4.

2 Theoretical Model

2.1 Fokker–Planck Description

We introduce two probability density functions �+(r,p, t) and �−(r,p, t) corre-
sponding to two distinct swimmer states, such as puller and pusher. Conservation of
probability is expressed by two coupled Fokker–Planck equations

∂t�
+ + ∇r · (ṙ+�+) + ∇p · (ṗ�+) = − f±�+ + f∓�−, (1)

∂t�
− + ∇r · (ṙ−�−) + ∇p · (ṗ�−) = − f∓�− + f±�+, (2)

where transitions between the two states (with rates f± and f∓) are modeled on the
right-hand side as a continuous-time Markov process. The average times spent by the
particles in each state are given by T± = f −1± and T∓ = f −1∓ , and a characteristic
timescale for relaxation of fluctuations due to stochastic transitions is provided by
〈T 〉 = ( f± + f∓)−1 = T±T∓/(T± + T∓), or half the harmonic mean of the average
residence times for each state. The two distribution functions are related to the mean
number density n as

1

V

∫
V

∫
�

[�+(r,p, t) + �−(r,p, t)] dp dr = n, (3)

where V is the volume of the system and � denotes the unit sphere of orientations. In
Eqs. (1)–(2), the translational flux velocities ṙ± are modeled as

ṙ± = U±
s p + u(r, t) − D ∇r ln �(r,p, t), (4)

which accounts for swimming in the direction of p at a constant velocity U±
s (which

need not be the same for both swimmer states), advection by the local flow field u(r, t),
and diffusion with isotropic and constant diffusivity D. The orientational velocity ṗ
is the same for both populations and captures rotation and alignment by the flow
according to Jeffery’s equation, as well as rotational diffusion:

ṗ = (I − pp) · T(r, t) · p − d ∇p ln �(r,p, t). (5)

Here, T = γE − W, where E = [∇ru + ∇ru†]/2 and W = [∇ru − ∇ru†]/2 are the
rate-of-strain and rate-of-rotation tensors, respectively, with † denoting transposition.
The Bretherton constant γ depends on the shape of the particle (Bretherton 1962),
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with γ = 0 for an isotropic particle such as a sphere and γ ≈ 1 for slender rod-like
particles such as bacteria and many self-propelled catalytic micro-rods. Both swimmer
types contribute to the fluid flow by exerting active stresses on their surroundings. The
velocity u(r, t) solves the Stokes equations

∇r · u = 0, −η∇2
r u + ∇rq = ∇r · �a(r, t), (6)

where η is the shear viscosity of the fluid and q the local pressure. The active stress
tensor �a driving the flow is expressed as (Hatwalne et al. 2004; Saintillan 2010)

�a(r, t) =
∫

�

(
pp − I

3

)
[σ+�+(r,p, t) + σ−�−(r,p, t)] dp, (7)

where σ+ > 0 and σ− < 0 are the dipole strengths of pullers and pushers, respectively.

2.2 Moment Equations

To make analytical progress, we assume that departures from isotropy are small and
approximate the distribution functions in terms of their first three moments (Baskaran
and Marchetti 2009):

�±(r,p, t) ≈ c±(r, t)
4π

[
1 + 3p · P±(r, t) + 15

2
pp : Q±(r, t)

]
. (8)

In this expression, c±,P±, andQ± denote the concentration, polarization, and nematic
order parameter tensor of each population:

c±(r, t) =
∫

�

�±(r,p, t) dp, (9)

P±(r, t) = 1

c±

∫
�

p�±(r,p, t) dp, (10)

Q±(r, t) = 1

c±

∫
�

(
pp − I

3

)
�±(r,p, t) dp. (11)

The truncation of the expansion in Eq. (8) implies a closure approximation for moments
of order three and higher, which are assumed to be zero; note, however, that other
closure relations yield qualitatively identical results. Using this approximation, one
can derive closed hydrodynamic equations for the moments. For the population of
pullers:

Dt c
+ = −U+

s ∇ · (c+P+) + D∇2c+ − f±c+ + f∓c−, (12)

Dt (c
+P+) = −U+

s

[
∇ · (c+Q+) + 1

3
∇c+

]
+ 4

5
c+T · P+ − 1

5
c+P+ · T

+D∇2(c+P+) − 2dc+P+ − f±c+P+ + f∓c−P−, (13)
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Dt (c
+Q+) = 1

5
U+
s

[
2

3
∇ · (c+P+)I − ∇(c+P+) − ∇(c+P+)†

]

+1

5
c+(T + T†) − 2

7
c+(T : Q+)I − 1

7
c+Q+ ·

(
2T − 5T†

)

−1

7
c+ (

2T − 5T†
)

· Q+ + D∇2(c+Q+) − 6dc+Q+

− f±c+Q+ + f∓c−Q−, (14)

where Dt ≡ ∂t + u · ∇ is the material derivative. In these equations and below, it is
implicit that ∇ denotes the gradient operator with respect to position r, as the moments
do not depend on p. Similar equations are easily written for the population of pushers.
The analytic expression for the tensor T follows from Eq. (6), where the active stress
tensor can be recast in terms of the two dipole strengths, concentrations, and nematic
order parameter tensors: �a = σ+c+Q+ + σ−c−Q−.

2.3 Linear Stability Analysis

In order to address the impact of conformational changes on the onset of spontaneous
flows, we analyze the linear stability of the quiescent uniform and isotropic state. The
concentration of each species in the base state is

c+
0 = f∓

f∓ + f±
n, c−

0 = f±
f∓ + f±

n, (15)

with zero polarization and nematic alignment, as well as zero flow. We introduce the
excess fraction 	φ of pullers with respect to pushers as

	φ = 1

n

(
c+

0 − c−
0

) = f∓ − f±
f∓ + f±

. (16)

Note that 	φ ∈ [−1, 1], with the two extreme values corresponding to suspensions
of all pushers or pullers, respectively. Equations (12)–(14) are easily linearized about
the base state, yielding the simpler system

∂tδc
+ = −U+

s c+
0 ∇ · δP+ + D∇2δc+ − f±δc+ + f∓δc−, (17)

∂t (c
+
0 δP+) = −U+

s

[
c+

0 ∇ · δQ+ + 1

3
∇δc+

]

+Dc+
0 ∇2δP+ − 2dc+

0 δP+ − f±c+
0 δP+ + f∓c−

0 δP−, (18)

∂t (c
+
0 δQ+) = U+

s c+
0

5

[
2

3
(∇ · δP+)I − ∇δP+ − (∇δP+)†

]
+ 1

5
c+

0 (T + T†)

+Dc+
0 ∇2δQ+ − 6dc+

0 δQ+ − f±c+
0 δQ+ + f∓c−

0 δQ−, (19)

where variables preceded by a δ denote perturbations with respect to the base state. In
an unbounded domain, one can consider plane-wave perturbations of the form
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{
δc±, δP±, δQ±} = {̃

c±, P̃±, Q̃±}
exp(ik · r + λt), (20)

and without loss of generality, we choose a coordinate system in which the wave vector
is aligned with the x-axis: k = kx̂. Inserting Eq. (20) into (17)–(19), we easily arrive
at an algebraic eigenvalue problem for the wave amplitudes:

λ̃c+ = −U+
s c+

0 ik P̃+
x − f±c̃+ + f∓c̃−, (21)

λP̃+
x = −U+

s ik

(
Q̃+

xx + 1

3

c̃+

c+
0

)
− (2d + f±)P̃+

x + f± P̃−
x , (22)

λP̃+
y = −U+

s ik Q̃+
xy − (2d + f±)P̃+

y + f± P̃−
y , (23)

λP̃+
z = −U+

s ik Q̃+
xz − (2d + f±)P̃+

z + f± P̃−
z , (24)

λQ̃+
xx = − 4

15
U+
s ik P̃+

x − (6d + f±)Q̃+
xx + f± Q̃−

xx , (25)

λQ̃+
yy = 2

15
U+
s ik P̃+

y − (6d + f±)Q̃+
yy + f± Q̃−

yy, (26)

λQ̃+
xy = −1

5
U+
s ik P̃+

y −
(

6d + f± + γ c+
0 σ+

5η

)
Q̃+

xy +
(
f± − γ c−

0 σ−

5η

)
Q̃−

xy,

(27)

λQ̃+
yz = −(6d + f±)Q̃+

yz + f± Q̃−
yz . (28)

For brevity, we have set D = 0, as the only effect of translational diffusion is to offset
the eigenvalues by −Dk2. Note that the equation for Q̃+

xz is identical to that for Q̃+
xy

and that equations for the remaining components of the nematic tensor need not be
specified as they can be inferred from the above using symmetry and tracelessness.
Similar equations for the population of pushers are also readily obtained. In deriving
Eq. (27), we have made use of the Fourier solution of the Stokes Eq. (6):

ũ = i

ηk
(I − x̂x̂) · (

σ+c+
0 Q̃

+ + σ−c−
0 Q̃

−) · x̂. (29)

The eigenvalue problem (21)–(28) can be solved for λ, the real part of which
determines the growth rate. Before solving the full system, we gain physical insight
by analyzing the long-wave limit of k → 0. In this case, couplings between variables
vanish and simple closed-form solutions can be obtained for the eigenvalues, which
come in pairs:

c̃ : λ = 0 ; −( f± + f∓), (30)

P̃x , P̃y, P̃z : λ = −2d ; −2d − ( f± + f∓), (31)

Q̃xx , Q̃yy, Q̃yz : λ = −6d ; −6d − ( f± + f∓), (32)

Q̃xy : λ = −6d − γ n

5η
〈σ 〉 ; −6d − ( f± + f∓). (33)
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These eigenvalues are all real in the long-wave limit and define the growth rates of
the corresponding eigenmodes. In particular, we find that all perturbation variables
are damped as a result of rotational diffusion (with diffusivity d) and of the stochastic
transitions between puller and pusher states, with relaxation time 〈T 〉 = ( f± + f∓)−1.
In the case of Q̃xy , which describes nematic bend modes in the system, an additional
eigenvalue arises due to hydrodynamic interactions and involves the population-
averaged dipole:

〈σ 〉 = 1

n

(
c+

0 σ+ + c−
0 σ−)

. (34)

Since σ+ and σ− have opposite signs, the average dipole can be either positive or
negative depending on the proportion of pushers vs pullers in the system. In the simple
case where σ+ = −σ− = |σ |, it is simply given by 〈σ 〉 = 	φ |σ |. From Eq. (33), we
see that this mode can become unstable if

〈σ 〉 ≤ σc = −30dη

γ n
, (35)

which implies a suspension dominated by pushers (	φ < 0). As anticipated, this insta-
bility competes against the randomizing effect of rotational diffusion. In the unstable
case, an estimate for the characteristic time τ for growth of the nematic bend modes
is provided by the inverse growth rate:

τ =
(

γ n

6η
|〈σ 〉| − 6d

)−1

=
(

γ n|σ |
6η

|	φ| − 6d

)−1

. (36)

In the limit of weak diffusion relevant to the simulations of Sect. 3, it defines a viscous
active timescale τa that is inversely proportional to the average magnitude of active
stresses in the suspension:

τ ≈ τa = 6η

γ n|σ | |	φ|−1. (37)

At finite wavelengths (k > 0), advection due to swimming leads to additional
couplings between modes through the terms involving self-propulsion, i.e., U±

s , in
Eqs. (21)–(28). The structure of this system suggests scaling times with the stochastic
timescale 〈T 〉. Dimensional analysis then reveals that the dimensionless growth rate
λ〈T 〉 (corrected for translational diffusion) is only a function of U±

s k〈T 〉, 	φ, d〈T 〉,
and τa/〈T 〉. Some of these dependences are probed more precisely in Fig. 1, showing
numerical solutions of the eigenvalue problem (21)–(28). The only effect of increas-
ing wavenumber is to reduce the magnitude of the maximum growth rate if all other
parameters are kept fixed. The maximum growth rate, however, asymptotes to a con-
stant positive value in the unstable regime as Usk〈T 〉 → ∞. This high-wavenumber
instability, which is in fact regularized by translational diffusion, is really an artifact
of the truncation of Eq. (8) after three moments; interactions between higher moments
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Fig. 1 Unstable eigenvalues in the numerical solution of the eigenvalue problem (21)–(28). Both plots
show the dimensionless growth rate λ〈T 〉 vs dimensionless wavenumber Usk〈T 〉: a effect of 	φ (in the
absence of rotational diffusion), and b effect of the rotational diffusivity d〈T 〉 (for 	φ = −0.6). In both
plots, we have assumed D = 0 (no translational diffusion) and that pushers and pullers swim at the same
speed Us

in models based on the full Fokker–Planck equations are known to cause stabilization
above a critical wavenumber kc (Saintillan and Shelley 2008b; Hohenegger and Shel-
ley 2010). The effect of 	φ is described in Fig. 1a, where instability is only found in
suspensions dominated by pushers (	φ < 0), and increasing 	φ towards 0 stabilizes
the system by decreasing the maximum growth rate according to (36). The stabiliz-
ing effect of rotational diffusion, also described by that equation, is shown in Fig. 1b
and affects all wavenumbers equally. Furthermore, our numerical results suggest that
differences in the swimming speeds U+

s and U−
s of pullers and pushers only have a

minor influence on the stability.
We conclude from this linearized hydrodynamic theory that a suspension of swim-

mers undergoing cyclic changes in their conformation obeys the same physics as a
mixture of pushers and pullers, with a proportion set by the transition rates between the
two states. Isotropic suspensions composed at all times of a larger fraction of pushers
are prone to a long-wavelength instability inducing orientational nematic ordering on
all scales.

3 Numerical Simulations

In order to test these theoretical predictions and gain insight into the nonlinear regime
where the bending instability is fully developed, we use direct particle simulations
based on the slender-body model of Saintillan and Shelley (2007, 2012). Briefly, the
model describes swimmers as slender rigid rods that propel themselves by exerting a
prescribed shear stress distribution over half of their length; the other half is subject to
the usual no-slip condition for viscous flow. By prescribing this stress on the anterior or
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posterior half of the swimmers, pullers and pushers can both be simulated. Hydrody-
namic interactions between swimmers are calculated in a periodic cubic domain using
an integral representation of the flow field based on Green’s functions and are evalu-
ated efficiently using a smooth particle-mesh Ewald algorithm (Saintillan et al. 2005).
Transitions between puller and pusher states are modeled using a discrete implementa-
tion of a continuous-time Markov chain, in which the duration each swimmer remains
in a given state is drawn from an exponential distribution with a mean equal to the
average residence time in that state. We do not account for translational or rotational
diffusion in the equations of motion, which are purely deterministic; the chaotic nature
of hydrodynamic interactions between swimmers, however, leads to diffusive random
walks at long times. Details on the numerical implementation are provided elsewhere
(Saintillan and Shelley 2012).

In this section, variables are made dimensionless based on the particle length �

and swimming speed Us , which are taken to be the same for pushers and pullers. In
all the simulations shown here, a total number of N = 8000 particles is present in
a cubic periodic domain of unit width 10. Pushers and pullers exert constant dipoles
of opposite magnitudes: σ− = −σ+, so that based on the theoretical predictions,
we expect the sign of 	φ to determine the stability and behavior of the suspension.
This is indeed the case in our simulations, as illustrated in Fig. 2 showing typical
particle distributions and velocity fields in two suspensions with 	φ = ±0.75. In
suspensions dominated by pullers in Fig. 2a, the particle configurations remain random
and isotropic on all scales, with no clear particle alignment or density fluctuations.
As a result, the correlation length of the velocity field is of the order of the particle
size and is simply the result of the superposition of single-particle flow fields. On the
other hand, a suspension dominated by pushers is shown in Fig. 2b and exhibits large
coherent dynamical structures with clear local nematic alignment, in agreement with
the prediction of Sect. 2 where the instability was found to pertain to the nematic order
parameter Q̃xy ; strong density fluctuations are also visible. Correspondingly, the flow
field in the suspensions is strong and correlated on the scale of the system, with the
presence of intense jets and vortices that fluctuate in time. Qualitatively, the dynamics
observed in Fig. 2 is very similar to that reported in suspensions of either pushers or
pullers in previous studies (Saintillan and Shelley 2007, 2012).

A quantitative measure of instability is provided by the active power P(t) generated
by the swimming particles. Within the continuum model, it is easily defined from a
mechanical energy balance where it is found to balance viscous dissipation in the fluid
(Saintillan and Shelley 2008b):

P(t) = −
∫
V
[E(r, t) : �a(r, t)] dr = 2η

∫
V
[E(r, t) : E(r, t)] dr. (38)

As discussed by Saintillan and Shelley (2015), this active power in the linear regime
is also a measure of the energy of the unstable nematic bend modes in the system
and is therefore an appropriate measure of instability: In a suspension dominated by
pushers, it is expected to show short-time exponential growth at a rate of 2λ ∝ |	φ|−1.
Conversely, it is expected to decay in suspensions dominated by pullers. In discrete
simulations, the total active power is calculated more directly as
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(a) 

(b) 

Δ
φ

=
+

0.
75

Δ
φ

=
−0

.7
5

Fig. 2 Left panel particle distributions in simulations of N = 8000 pushers and pullers at 〈T 〉 = 5, for
two different excess fractions: a 	φ = 0.75 (puller-dominated), and b 	φ = −0.75 (pusher-dominated).
Colors correspond to instantaneous swimmer type: red = puller, blue = pusher. Right panel corresponding
fluid velocity fields in a plane across the suspension

P(t) =
N∑
i=1

∫ �/2

−�/2
fi (si ) · u(si ) dsi , (39)

where fi is the linear force distribution along the centerline of particle i and con-
tains contributions from swimming as well as hydrodynamic interactions. Note that it
includes a constant single-particle contribution P0 that is not present in the continuum
definition of Eq. (38).

This discrete power was calculated numerically, and Fig. 3a shows the normalized
power P(t)/P0 −1 vs time for different values of 	φ ranging from −1.0 (all pushers)
to +1.0 (all pullers). The trends we observe are in agreement with the stability analysis:
The normalized power is positive and is found to grow in suspensions dominated by
pushers for which 	φ < 0; on the other hand, it is found to decrease below the single-
particle value in suspensions dominated by pullers. When 	φ = 0 (equal amounts
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Fig. 3 a Normalized active power P(t)/P0 − 1 in suspensions with different excess fractions 	φ plotted
vs (a) time t , and b rescaled time t |	φ|. All simulations were performed with the same total number of
particles N = 8000 and a mean residence time of 〈T 〉 = 5

Fig. 4 Normalized steady-state
power Pss/P0 − 1 vs excess
fraction of pullers 	φ in
suspensions of N = 8000
swimmers, for different values
of the mean residence time 〈T 〉.
The limit of 〈T 〉 → ∞ describes
a mixture of pushers and pullers
that do never switch type
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of pushers and pullers), the power remains nearly constant at a value close to the
single-particle contribution, suggesting a neutrally stable system. Regardless of the
value of 	φ, the power always asymptotes to a finite steady-state value Pss which is
largest in the most unstable suspensions. As discussed above, the timescale for growth
or decay of P(t) is expected to be 2λ, which is proportional to |	φ|−1 in the absence
of rotational diffusion. This prediction is tested more precisely in Fig. 3b, where the
data of Fig. 3a are now plotted vs a rescaled time t |	φ|: As expected, all the curves
collapse at short times onto either of two linear profiles depending on the sign of 	φ,
in agreement with the linear stability results.

The dependence of the normalized steady-state power on the excess fraction 	φ is
shown in Fig. 4 for different values of 〈T 〉. As expected, we find that the steady-state
power is positive in suspensions with 	φ < 0 and negative otherwise. A small negative
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value is observed when 	φ = 0, which indicates a weak damping of fluctuations (λ <

0) even when there are equal numbers of pushers and pullers: This trend is consistent
with the stabilizing influence of finite system size as predicted by the stability analysis
(Fig. 1). The steady-state power is seen to be only very weakly affected by the mean
residence time 〈T 〉, even in the limit of 〈T 〉 → ∞, which describes a mixture of
pushers and pullers that do never switch type. The weak variations observed (slightly
weaker steady-state power for lower values of 〈T 〉) again agree with the stability results
of (30)–(33), where λ = −〈T 〉 = −( f± + f∓)−1 was found to be a stable eigenvalue.

4 Conclusions

Using a simple kinetic model and particle simulations, we have analyzed the stability
and the onset of spontaneous flows in suspensions of self-propelled particles that
cyclically switch between two modes of locomotion. The main finding of this work is
that the stability of such suspensions is dictated primarily by the sign of the population-
averaged dipole 〈σ 〉 in the system, with suspensions dominated by pushers (〈σ 〉 < 0)
being subject to the growth of unstable nematic bend modes. In this sense, these
mixtures behave very much like suspensions of identical swimmers that do not switch
type but are characterized by an effective dipole strength given by 〈σ 〉. The only
other noticeable effect of the stochastic transitions is to provide a new mechanism for
damping of fluctuations, with a characteristic timescale given by the mean residence
time 〈T 〉; this additional damping, however, was observed to be weak in particle
simulations.

This study was motivated by the realization that biological swimmers are subject to
phenotypic variations and are also known to perform cyclic swimming strokes during
which their behavior as pushers or pullers changes periodically (Guasto et al. 2010).
In this respect, the validity of our model in which transitions between states follow a
Markov chain may be put in question, as the distribution of times spent in each state
is exponential in our model as opposed to being narrowly centered on the period of
oscillation of the swimming motions. However, the weak dependence of our simulation
results on 〈T 〉, which extends even to the limit of 〈T 〉 → ∞, suggests that the role
played by the population-average dipole would likely be the same even with a more
realistic description of the quasi-periodic motions. As a final comment, we recall that
mechanisms for hydrodynamic synchronization between swimmers were not included
in our model, though synchronization has been shown in other works (Fürthauer and
Ramaswamy 2013; Leoni and Liverpool 2014) to be a driver of additional instabilities.
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