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1 Introduction and Statement of the Main Results

One of the most interesting problems in the qualitative theory of planar differential
systems is the study of their limit cycles, see, for instance, the books Yan-Qian et al.
(1986), Zhang Zhifen et al. (1992). This problem restricted to the planar polynomial
differential equations is the famous second part of the 16th Hilbert problem (Hilbert
1900). Since Hilbert problem has up to now been intractable (see Ilyashenko 2002;
Li 2003), Smale in (1998) proposed to study it restricted to the polynomial Liénard
differential systems.

For smooth Liénard systems, there are many results on the nonexistence, existence
and uniqueness of limit cycles, see, for instance, Carletti and Villari (2005), Dumortier
and Li (1996), Dumortier and Rousseau (1990), Gasull et al. (2009), Khibnik et al.
(1998), Llibre et al. (2009), Llibre and Valls (2013), Xiao and Zhang (2003), Zhang
Zhifen et al. (1992). Going beyond the smooth case, a natural step is to allow non-
smoothness while keeping the continuity, as has been done in some recent work (Freire
et al. 2002; Hogan 2003; van Horssen 2005; Llibre et al. 2013). In a further step, other
authors have considered a line of discontinuity in the vector field defining the planar
system, see Giannakopoulos and Pliete (2001), Llibre and Ponce (2012), Zou et al.
(2006).

Planar piecewise linear differential systems appear naturally as the most accurate
mathematical models for a big amount of engineering devices exhibiting nonlinear
dynamics. The description of all possible nonlinear responses for this family of sys-
tems and their rigorous mathematical justification are, however, tasks only partially
undertaken. As a matter of fact, the lack of smoothness precludes the application of
the results coming from standard differentiable dynamics, and new specific results
are still needed even in the seemingly simpler cases. In particular, while the major-
ity of known results for piecewise linear differential systems deal with two zones or
three zones with symmetry, in this paper we focus the attention on non-symmetric
systems. We review some results for systems with only two linear zones, extending
some previous results, and give also new results for system with three zones. We
also show that combining such results, it can be proved the existence of cases with
two limit cycles surrounding the only equilibrium point, an outstanding result in the
field.

In this work, we will study the limit cycles of the Liénard piecewise linear differ-
ential systems

dx

dτ
= x ′ = F(x) − y,

dy

dτ
= y′ = g(x), (1)

where

F(x) =

⎧
⎪⎨

⎪⎩

TL(x + u) − TCu if x ≤ −u,

TCx if − u ≤ x ≤ v,

TR(x − v) + TCv if x ≥ v,

(2)
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and

g(x) =

⎧
⎪⎨

⎪⎩

�(x + u) − u if x ≤ −u,

x if − u ≤ x ≤ v,

r(x − v) + v if x ≥ v,

(3)

where the constants u and v are positive, so that the straight lines x = −u and x = v

split the phase plane in three linearity regions. In the case that these systems are
symmetric with respect the origin of coordinates, i.e.,

u = v, TL = TR, � = r.

the study of their limit cycles is done, see Carmona et al. (2002), Freire et al. (2002),
Freire et al. (1999), Freire et al. (1997), Llibre and Sotomayor (1996), and for a
complete analysis the book Llibre and Teruel (2013).

Remark 1 Systems (1)–(3) constitute an important family of piecewise linear systems
since under generic assumptions a big amount of systems in direct control and other
areas can be written in such a form, see, for instance, Llibre and Sotomayor (1996)
and Carmona et al. (2002). In fact, a piecewise linear characteristic function φ, given
by

φ(x) =

⎧
⎪⎨

⎪⎩

mL(x + u) − u for x ≤ −u,

x for − u ≤ x ≤ v,

mR(x − v) + v for x ≥ v,

is very common in control systems of the form

dx
ds

= ẋ = Ax + φ(k · x)b, (4)

see, for instance, Bernardo et al. (2008), Lefschetz (1965), Narendra and Taylor (1973)
and also Sect. 2, where A is a 2 × 2 real matrix and x, k and b are in R

2 and k · x
denotes the usual inner product between the vectors k and x. Remarkably enough,
the only required hypothesis to pass from (4) to the form (1)–(3) is D > 0, where
D = det B, and B = A + bkt .

In this paper, we shall study the limit cycles of systems (1) in the non-symmetric
case with respect to the origin of coordinates. Of course, as a particular case, we shall
get the symmetric case. The first main result in this direction is the following theorem
that characterizes the number of limit cycles when there are only two linearity zones.

We need the following definitions. Let

Yr± = ±v exp(±γ θ±)

√

(σ − μ±)2 + ω2,
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where provided that TC ∈ (−2, 2) and r < 0, we take

γ = TC
√

4 − T 2
C

, μ± =
TR ±

√

T 2
R − 4r

2r
, σ = TC

2
, ω =

√

4 − T 2
C

2
,

and

θ± = 2 arctan

(
ω

√
(σ − μ±)2 + ω2 ± (σ − μ±)

)

.

Moreover, let

Y �± = ±u exp(±γψ±)

√

(σ − δ±)2 + ω2,

where it is assumed � < 0, and we take

δ± =
TL ±

√

T 2
L − 4�

2�
and ψ± = 2 arctan

(
ω

√
(σ − δ±)2 + ω2 ± (σ − δ±)

)

.

Theorem 2 Consider the differential systems (1) with only two linearity zones, where
TL = TC and � = 1. Assume TC �= 0. Then, the following statements hold.

(a) Two necessary conditions for the existence of periodic orbits are |TC | < 2 and
TCTR < 0.

(b) Assume that |TC | < 2 and TCTR < 0. Then, system (1) has a periodic orbit
(b.1) when TC > 0 and r > 0 if and only if TC + TR/

√
r < 0;

(b.2) when TC < 0 and r > 0 if and only if TC + TR/
√
r > 0;

(b.3) when TC > 0 and r < 0 if and only if eπγ Yr+ + Yr− < 0;
(b.4) when TC < 0 and r < 0 if and only if eπγ Yr+ + Yr− > 0.
Moreover, in all cases that the origin is surrounded by a limit cycle this is unique,
stable if TC > 0 and unstable if TC < 0.

The proof of Theorem 2 is given in Sect. 5. Its dual result, whose proof is similar
and we will not provide it, is the following.

Theorem 3 Consider the differential systems (1) with only two linearity zones, where
TR = TC and r = 1. Assume TC �= 0. Then, the following statements hold.

(a) Two necessary conditions for the existence of periodic orbits are |TC | < 2 and
TLTC < 0.

(b) Assume that |TC | < 2 and TLTC < 0. Then, system (1) has a periodic orbit
(b.1) when TC > 0 and � > 0 if and only if TC + TL/

√
� < 0;

(b.2) when TC < 0 and � > 0 if and only if TC + TL/
√

� > 0;
(b.3) when TC > 0, and � < 0 if and only if eπγ Y �+ + Y �− < 0;
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(b.4) when TC < 0, and � < 0 if and only if eπγ Y �+ + Y �− > 0.
Moreover, in all cases that the origin is surrounded by a limit cycle, this is unique,
stable if TC > 0 and unstable if TC < 0.

Theorems 2 and 3 improve and extend cases studied in Freire et al. (1998). Here, we
give a shorter and clear proof using the techniques developed in Llibre et al. (2013).
In Llibre et al. (2013), the authors proved Theorem 2 with the additional hypothesis
that systems (1) have only one equilibrium point at the origin and with TC > 0. This
is equivalent to state that r ≥ 0 in the case TL = TC and � = 1 and that � ≥ 0 in the
case TR = TC and r = 1. Thus, we extend here Theorem 2 of Llibre et al. (2013) to
cover all cases.

Remark 4 We remark that if we consider, for instance, the case of Theorem 2 (b.1) and
we allow TC to vanish, thenwe have a center at the origin, its period annulus is bounded
by the line x = v. If we perturb this degenerate situation by taking TC > 0 and small,
then the necessary and sufficient condition of statement (b.1) is automatically fulfilled,
so that we conclude that such a perturbation implies a bifurcation of a limit cycle from
the period annulus. This bifurcation and the analogous for the other statements of
Theorems 2 and 3 are quantitatively studied in a more general setting in Ponce et al.
(2013).

In the case of three linearity zones, our main result is the following.

Theorem 5 Consider the differential systems (1) and assume TC > 0. Then, the
following statements hold.

(a) A necessary condition for the existence of periodic orbits is that the traces
TL , TC , TR have not the same sign.

(b) If TR, TL < 0, and r, � ≥ 0, then the origin is surrounded by a limit cycle, which
is unique and stable.

(c) If TR, TL ≤ 0, then the origin is surrounded by at most one limit cycle, that if it
exists is stable.

(d) If TL ≤ 0, TR > 0, and TR − TCr ≤ 0, then the origin is surrounded by at most
one limit cycle, that if it exists is stable.

(e) If TR ≤ 0, TL > 0, and TL − TC� ≤ 0, then the origin is surrounded by at most
one limit cycle, that if it exists is stable.

Theorem 5 is proved in Sect. 6. Its immediate dual result, which is given without
proof, is the following.

Theorem 6 Consider the differential systems (1) and assume TC < 0. Then, the
following statements hold.

(a) A necessary condition for the existence of periodic orbits is that the traces
TL , TC , TR have not the same sign.

(b) If TR, TL > 0, and r, � ≥ 0, then the origin is surrounded by a limit cycle, which
is unique and unstable.
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(c) If TR, TL ≥ 0, then the origin is surrounded by at most one limit cycle, that if it
exists is unstable.

(d) If TL ≥ 0, TR < 0, and TR − TCr ≥ 0, then the origin is surrounded by at most
one limit cycle, that if it exists is unstable.

(e) If TR ≥ 0, TL < 0, and TL − TC� ≥ 0, then the origin is surrounded by at most
one limit cycle, that if it exists is unstable.

Statement (b) of Theorem 5 is Theorem 1 of Llibre et al. (2013), where the case
of equal signs of TR and TL and different from the sign of TC , with the origin as the
unique equilibrium point of the system, i.e., r ≥ 0 and � ≥ 0, was previously studied.
The remaining statements are new and represent a relevant contribution in the study
of limit cycles of piecewise linear systems.

In Sect. 2, we show the usefulness of this kind of results in a relevant problem of
nonlinear electronics.

Finally, for planar systems with three linearity zones, we give for the first time
rigorous results assuring the existence of two limit cycles surrounding the same equi-
librium point under particular assumptions. The characterization of all possible cases
with two limit cycles is far from being completely solved, and it is left for future work.
Here, we exploit the fact that there are situations where, by moving only the parameter
TC , it is possible to pass from a system with two zones to a system with three zones.
Using this simple idea and combining adequately the previous results, we are able
to prove the existence of at least two limit cycles surrounding the equilibrium at the
origin. This is the aim of our last results.

Theorem 7 Consider the differential systems (1) and assume 0 < v < u, � > 0, r =
1, 0 < TR < 2 and TL < 0 and satisfying TR + TL/

√
� < 0. Then, the following

statements hold.

(a) If 0 < TC ≤ TR, then the origin is surrounded by a limit cycle, which is unique
and stable.

(b) If TC = 0, then the origin is surrounded by a bounded period annulus whose
most external periodic orbit, which is tangent to the line x = v, is unstable. There
exists also a stable limit cycle surrounding such period annulus.

(c) There exist ε > 0 such that if −ε < TC < 0, then the origin is surrounded by at
least two limit cycles, the smaller being unstable and the bigger stable.

Particular phase portraits illustrating the three statements of Theorem 7 are drawn
in Fig. 1 for 1 = v < u = 1.5, TL = 1.75, TR = 0.5 and � = r = 1. Regarding
the figure, in the left panel, we have TC = 0.5, so that the system has only two linear
zones and, according to Theorem 2, one stable limit cycle. For TC = 0, we draw
in the central panel the new stable limit cycle and the bounded center configuration
within the old, dashed limit cycle. Finally, in the right panel we magnify the region
bounded by the previous stable limit cycle, showing the two limit cycles that exist for
TC = −0.05. In any case, we also draw the piecewise linear graph of y = F(x).

For a proof of Theorem 7, see Sect. 7. After changes of variables, and also reversing
the time in some cases, we can write the following dual results for Theorem 7, whose
proofs are direct consequences of the one of Theorem 7 and they will not be provided.
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Fig. 1 Phase portraits corresponding to the three statements of Theorem 7 for 1 = v < u = 1.5, TL =
1.75, TR = 0.5 and � = r = 1

Theorem 8 Consider the differential systems (1) and assume 0 < u < v, r > 0, � =
1, 0 < TL < 2 and TR < 0 and satisfying TL + TR/

√
r < 0. Then, the following

statements hold

(a) If 0 < TC ≤ TL, then the origin is surrounded by a limit cycle, which is unique
and stable.

(b) If TC = 0, then the origin is surrounded by a bounded period annulus whose
most external periodic orbit, which is tangent to the line x = u, is unstable. There
exists also a stable limit cycle surrounding such period annulus.

(c) There exist ε > 0 such that if −ε < TC < 0, then the origin is surrounded by at
least two limit cycles, the smaller being unstable and the bigger stable.

Theorem 9 Consider the differential systems (1) and assume 0 < v < u, � > 0, r =
1, −2 < TR < 0 and TL > 0 and satisfying TR + TL/

√
� > 0. Then, the following

statements hold.

(a) If TR ≤ TC < 0, then the origin is surrounded by a limit cycle, which is unique
and unstable.

(b) If TC = 0, then the origin is surrounded by a bounded period annulus whose most
external periodic orbit, which is tangent to the line x = v, is stable. There exists
also an unstable limit cycle surrounding such period annulus.

(c) There exist ε > 0 such that if 0 < TC < ε, then the origin is surrounded by at
least two limit cycles, the smaller being stable and the bigger unstable.

Theorem 10 Consider the differential systems (1) and assume 0 < u < v, r > 0, � =
1, −2 < TL < 0 and TR > 0 and satisfying TL + TR/

√
r > 0. Then, the following

statements hold.

(a) If TL ≤ TC < 0, then the origin is surrounded by a limit cycle, which is unique
and unstable.

(b) If TC = 0, then the origin is surrounded by a bounded period annulus whose most
external periodic orbit, which is tangent to the line x = u, is stable. There exists
also an unstable limit cycle surrounding such period annulus.

(c) There exist ε > 0 such that if 0 < TC < ε, then the origin is surrounded by at
least two limit cycles, the smaller being stable and the bigger unstable.
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A different approach leading also to the existence of two nested limit cycles, using
boundary equilibrium bifurcations, is given in Ponce et al. (2015), where the only
equilibrium point surrounded by the limit cycles is no longer in the central zone.

2 Application to the Study of a Simple Oscillator with One Memristor

FollowingCorinto et al. (2011)memristors are two-terminal electronic passive devices
for which a nonlinear relationship links charge and flux Chua (1971). They seem to
be at the basis of future generation oscillatory associative and dynamic memories;
as another important feature, nanoscale memristors have potential to reproduce the
behavior of biological synapses. Here, we apply our previous results to the analysis of
an elementary oscillator endowed with one flux-controlled memristor, see Fig. 2 and
Itoh and Chua (2008). For the importance of memristors, see, for instance, Strukov
et al. (2008).

In the shown circuit, the values of L and C for the impedance and capacitance are
positive constants, while the resistor R has a negative value. This negative resistor is
typically realized by an auxiliary active device, responsible for the energy supplied to
the circuit, see Corinto et al. (2011). From Kirchoff’s laws, we see that

iR(τ ) − iL(τ ) = 0,

iL(τ ) − iC (τ ) − iM (τ ) = 0,

vR(τ ) + vL(τ ) + vC (τ ) = 0,

vC (τ ) − vM (τ ) = 0,

where v, i stand for the voltage and current, respectively, across the corresponding
element of the circuit.

Integrating with respect to time the above equations, and assuming as in Corinto
et al. (2011) that all the initial conditions are zero, we get

qR(τ ) − qL(τ ) = 0, (5)

qL(τ ) − qC (τ ) − qM (τ ) = 0, (6)

ϕR(τ ) + ϕL(τ ) + ϕC (τ ) = 0, (7)

ϕC (τ ) − ϕM (τ ) = 0, (8)

where q andϕ stand, respectively, for the charge and flux associatedwith each element.

Fig. 2 The simple oscillator
with one memristor analyzed in
this section. Note that the
negative value considered for R
makes it the only active element
in the circuit R

iR

L
iL

C

iC
iM
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We denote by fM the flux–charge characteristic of thememristor and, after recalling
the constitutive equations of the involved bipoles, namely

ϕR(τ ) = RqR(τ ),

ϕL(τ ) = L
d

dτ
qL(τ ),

qC (τ ) = C
d

dτ
ϕC (τ ),

qM (τ ) = fM (ϕM (τ )),

we arrive at the equations

d

dτ
ϕC (τ ) = 1

C
qC (τ ) = 1

C
[qL(τ ) − qM (τ )] ,

d

dτ
qL(τ ) = 1

L
ϕL(τ ) = 1

L
[−ϕC (τ ) − ϕR(τ )] .

We denote the state variables by x1 = ϕC (τ ) and x2 = qL(τ ), and using (5) and
(8), to write ϕR(τ ) = RqR(τ ) = RqL(τ ) and qM (τ ) = fM (ϕM (τ )) = fM (ϕC (τ )),
we have the differential system

dx1
dτ

= 1

C
[− fM (x1) + x2] , (9)

dx2
dτ

= 1

L
[−x1 − Rx2] . (10)

Instead of the symmetric piecewise linear function considered in Itoh and Chua
(2008) and Corinto et al. (2011), we adopt here a more general model for the nonlinear
flux–charge characteristic of the memristor, namely

fM (x) =

⎧
⎪⎨

⎪⎩

bL(x + u) − au for x ≤ −u,

ax for − u ≤ x ≤ v,

bR(x − v) + av for x ≥ v.

So we consider here both symmetric and non-symmetric oscillators. A rescaling of
the time by putting τ = Cs and the use of the positive parameters

G = − 1

R
> 0, ν = − RC

L
= C

GL
> 0.

brings the system to

dx1
ds

= − fM (x1) + x2,

dx2
ds

= −ν(Gx1 − x2),
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and by doing the change of variables x = x1, y = νx1 − x2, we get

dx

ds
= νx − fM (x) − y,

dy

ds
= ν[Gx − fM (x)].

A natural assumption is to take that the determinant in the central region is to be
positive, which requires a < G. We assume such condition in the sequel, and after
introducing for convenience a positive constant ω, we have

D = ν(G − a) = ω2 > 0.

Therefore, under the above assumption, using the change (x, y, s) �→ (X,Y, τ ) given
by

X = x, Y = y√
D

= y

ω
and τ = ω s,

we get that system (9)–(10) can be written as (1), satisfying (2)–(3) with

TL = ν − bL
ω

, TC = ν − a

ω
, TR = ν − bR

ω
,

and

� = Gν − bLν

Gν − aν
= G − bL

G − a
, r = Gν − bRν

Gν − aν
= G − bR

G − a
.

We are now able to apply in a convenient way our previous results; we do not
try to illustrate all the statements but only the most significant cases. We consider
first the case of non-symmetric memristors with three linear zones in the situation
corresponding to TC > 0, TL , TR < 0 with �, r ≥ 0, a case not considered in Corinto
et al. (2011). Such a situation leads, under our previous assumption a < G, to the
inequalities a < ν < bL ≤ G and a < ν < bR ≤ G, what implies in particular the
necessity of the inequality ν < G, that is the design condition R2C < L (we recall
that ν = −RC/L and G = −1/R > 0). A direct application of Theorem 5(b) gives
the following result.

Proposition 11 Consider the memristor-based oscillator under study with the
assumption of vanishing flux and charge initial conditions, as modeled by (9)–(10).
Under the design condition R2C < L, if the additional hypotheses a < ν, ν < bL ≤ G
and ν < bR ≤ G are fulfilled, then the circuit exhibits robust oscillations, correspond-
ing to a stable limit cycle in the phase plane state variables.

Let us now consider rather non-symmetric memristors, namely those with a char-
acteristic with only two zones, in the situation, for instance, where 0 < TL = TC <

2, TR < 0, � = 1 and r > 0. From Theorem 2(b.1), we can deduce the following
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result. Note that this case is also relevant when the system has indeed three zones,
but the lack of symmetry allows to discard one zone whenever we can reasonably
assume that the periodic orbit will only use two zones. Thus, we take bL = a so that
TL = TC and � = 1, and we require that 0 < TC < 2 (unstable focus at the origin) and
TR < 0, so to fulfill the necessary conditions for oscillation. The condition TC < 2
translates after some elementary algebra to (ν + a)2 < 4νG, and the necessary and
sufficient condition TC +TR/

√
r < 0, written in terms of the parameters of the circuit,

completes the statement.

Proposition 12 Consider the memristor-based oscillator under study with the
assumption of vanishing flux and charge initial conditions, as modeled by (9)-(10).
Under the design condition R2C < L, if the additional hypotheses bL = a < ν,
(ν + a)2 < 4νG and ν < bR < G are fulfilled, then the circuit exhibits stable
oscillations if and only if (2ν − a − bR)G < ν2 − abR.

These results complement the analysis done in Corinto et al. (2011), where the
symmetric situation bL = bR with u = v = 1 was considered, and only the case
�, r < 0 was analyzed.

3 Preliminary Results

Considering the more general case of three zones, which includes the particular case
of two zones, the piecewise linear functions F(x) and g(x) induce a partition of R2

into three open strips separated by two straight lines, as follows

SL = {
(x, y) : x < −u

}
, SC = {

(x, y) : −u < x < v
}
, SR = {

(x, y) : x > v
}
,

and the straight lines are �L = {
(x, y) : x = −u

}
, and �R = {

(x, y) : x = v
}
.

So system (1) is a piecewise linear differential system with three different linearity
regions separated by two parallel straight lines.

We note that systems (1) are analytic in R2 \ (�L ∪�R) but only of class C0 on R2.
Since they satisfy a Lipschitz condition in the whole R2, we can apply to systems (4)
the classical theorems on existence, uniqueness and continuity on initial conditions
and parameters. Note that their solutions are C1, but not C2.

Now, we classify the equilibria of system (1).

Proposition 13 The following statements hold for the piecewise linear differential
system (1).

(a) If � ≥ 0 and r ≥ 0, then the origin is the unique equilibrium, and it is hyperbolic.
(b) If � ≥ 0 and r < 0, then there are two equilibria, the origin and eR = (xR, yR) =

((r − 1)v/r, (TCr − TR)v/r) in SR, the origin is hyperbolic and eR is a saddle.
(c) If � < 0 and r ≥ 0, then there are two equilibria: the origin and eL = (xL , yL) =

((1 − �)u/�, (TL − TC�)u/�) in SL , the origin is hyperbolic and eL is a saddle.
(d) If � < 0 and r < 0, then there are three equilibria: the origin, eL in SL and eR in

SR, the origin is hyperbolic, and eL and eR are saddles.
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Proof The proof is straightforward, see, for instance, Theorem 2.15, or the hyperbolic
singular point theorem of Dumortier et al. (2006). ��

The next result will be useful when system (1) has more than one equilibrium point.

Lemma 14 Consider the Liénard differential system (1) with r < 0 or � < 0. If it has
a periodic orbit, then it is contained in the strip x2 < x < x1 where

x1 =
{
xR if r < 0,

+∞ if r ≥ 0
and x2 =

{
xL if � < 0,

−∞ if � ≥ 0.

Proof We first prove the case r < 0. Taking into account the behavior of the vector
field on the line x = xR , it follows that the periodic orbit is contained in the region
x < xR . Otherwise, since on the straight line x = xR , we have ẋ > 0 if y > yR and
ẋ < 0 if y < yR , and the point eR of Proposition 13 is in the interior of the bounded
region V limited by the periodic orbit, we have a contradiction because the sum of the
indices of the equilibrium points contained in V is not equal to 1, see, for instance,
page 148 of Zhang Zhifen et al. (1992).

The proof for the case � < 0 follows in an analogous way. ��

We note that system (1) is invariant under the following symmetry:

(x, y, t, TL , TR, �, r, u, v) �→ (−x,−y, t, TR, TL , r, �, v, u). (11)

This symmetry will be useful to split the analysis of the system with three zones into
different subcases with only two zones.

It is easy to check that the traces in the regions SL , SC and SR are given by TL ,
TC and TR , respectively. By the Bendixson theorem, see, for instance, Theorem 7.10
in Dumortier et al. (2006), these traces cannot have the same sign when limit cycles
exist.

Without loss of generality, we can also assume that TC > 0. Clearly we can change
the sign of TC doing the change of variables (x, y, τ ) �→ (x,−y,−τ). From now on
in the rest of the paper, we will assume that TC > 0. We remark that following the
proofs it becomes clear that when TC < 0 the stability of the limit cycle (if exists) is
unstable, because when TC > 0 it is stable.

We say that a vector field has the nonnegative rotation propertywhenever along any
half-ray starting from the origin the angle of the vector field measured with respect to
the positive direction of the x-axis does not decrease as long as one moves far from
the origin.

We will use the Massera’s method for uniqueness of limit cycles. To this end, we
recall that a period annulus is a region in the plane completely filled by non-isolated
periodic orbits. For a periodic orbit surrounding the origin, we say that it is star-
like with respect to the origin when any segment joining the origin and a point of the
periodic orbit has no other points in commonwith the periodic orbit, and consequently
such segments are in the interior of the periodic orbit.
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Theorem 15 (Massera’s method). Consider a Liénard differential system x ′ =
F(x) − y and y′ = g(x) defined in the open strip

S = {
(x, y) ∈ R

2 : x2 < x < x1
}

for some x2 < 0 < x1. Assume that xg(x) > 0 for x ∈ S, and that F(0) = 0, so that
the only equilibrium point in S is the origin. Assume also that the system in S has the
nonnegative rotation property and has no period annulus surrounding the origin. If
the system has a periodic orbit, then it is star-like with respect to the origin and it is
a limit cycle, which is unique and stable.

Proof Assumefirst that x1 = ∞, x2 = −∞, i.e., system x ′ = F(x)−y and y′ = g(x)
has the origin as the unique equilibrium point. Then, Theorem 15 is just Lemma 1 of
Llibre et al. (2013).

Now assume either x1 = xR or x2 = xL . It follows from Lemma 14 that any
periodic orbit must be contained in the strip x2 < x < x1. Now, we can apply the
arguments of the proof of Lemma 1 of Llibre et al. (2013) to the strip S and the theorem
follows. ��

4 Computation of the Points Y r
± and Y �

±

In this section, we consider the system with two linearity zones, i.e., with either
TL = TC and � = 1 (obtained by suppressing the left zone and extending the central
zone to the left), or TR = TC and r = 1 (obtained by suppressing the right zone and
extending the central zone to the right). Without loss of generality, we can consider
the case TL = TC and � = 1, because the other case can be studied in a similar way.
Hence, in this section, we will work with the system

x ′ = F(x) − y, and y′ = g(x), (12)

where

F(x) =
{
TCx if x < v,

TR(x − v) + TCv if x ≥ v,

and

g(x) =
{
x if x < v,

r(x − v) + v if x ≥ v.

Moreover, we will consider the focus-saddle case, i.e., the case in which TC ∈ (−2, 2)
and r < 0. To alleviate expressions, we can do a homogeneous rescaling by a factor
of v, which is equivalent to assume v = 1. At the end, it will suffice to multiply both
coordinates by v to undo the rescaling.
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We suppose for the focus at the origin the eigenvalues σ ± iω, where σ 2 +ω2 = 1,
and define the ratio γ between the real and imaginary parts of such eigenvalues, so
that

2σ = TC , ω =
√
1 − σ 2, γ = σ

ω
= TC

√

4 − T 2
C

.

With this notation, if (xi , yi ) is the starting point for an orbit using the focus dynamics
and we want to know the final point (x f , y f ) along the orbit after a time t , then we
can write the computations in terms of the phase angle θ = ωt as follows,

(
x f

y f

)

= exp(γ θ)

⎛

⎜
⎝

cos θ + γ sin θ − sin θ

ω
sin θ

ω
cos θ − γ sin θ

⎞

⎟
⎠

(
xi
yi

)

. (13)

We remark that the phase angle θ does not coincide in general with the geometrical
angle of the orbit as seen from the focus at the origin, with the exception of the cases
when θ = nπ with n ∈ Z.

Regarding the saddle point, their eigenvalues are denoted by λ− < 0 < λ+ where

λ± =
TR ±

√

T 2
R − 4r

2
,

so that

TR = λ+ + λ−, r = λ+ · λ−,

and we also introduce for convenience the notation

μ± = λ±
r

= 1

λ∓
=

TR ±
√

T 2
R − 4r

2r
.

Note that the saddle point, originally at (xR, yR) = (v − v/r, TCv − TRv/r), after the
introduced rescaling, becomes the point (1 − 1/r, TC − TR/r) = (1 − μ+μ−, 2σ −
μ+ − μ−). The λ±-eigenvectors of the matrix

(
TR −1

r 0

)

=
(

λ+ + λ− −1

λ+λ− 0

)

are (1, λ∓)T . The linearλ±-invariantmanifolds that emanate from the saddle following
the eigenvectors (1, λ∓)T intersect the line x = 1 at the points (1, y±) when

(
1 − μ+μ−

2σ − μ+ − μ−

)

+ α

(
1

λ∓

)

=
(
1
y±

)

,
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Fig. 3 Remarkable points for
r < 0, 0 < TC < 2 and TR < 0.
The graphs of functions F(x)
and g(x) are drawn in solid and
dashed, respectively. The
vertical lines x = v and x = xR
are also drawn

that is, for α = μ+μ− = 1/r . Thus

y± = 2σ − μ+ − μ− + μ+μ−λ∓ = 2σ − μ+ − μ− + μ∓ = 2σ − μ±.

To compute now the values Yr±, it suffices to solve the equation

(
0
Yr±

)

= v exp(γ θ)

⎛

⎜
⎝

cos θ + γ sin θ − sin θ

ω
sin θ

ω
cos θ − γ sin θ

⎞

⎟
⎠

(
1

2σ − μ±

)

, (14)

where we have added the factor v to undo the rescaling, and the phase angle must
satisfy 0 < ±θ < π , since we must integrate forward (backward) in time to get Yr+
(Yr−), see Fig. 3.

Assume first we want to compute Yr+. From the first coordinate, we get

cos θ + γ sin θ − (2σ − μ+)
sin θ

ω
= cos θ − γ sin θ + μ+

sin θ

ω
= 0. (15)

Equivalently, we write

ω cos θ = (σ − μ+) sin θ,

and so, from

tan θ = ω

σ − μ+
,

we obtain

cos θ = sign(σ − μ+)
1√

1 + tan2 θ
= σ − μ+

√
(σ − μ+)2 + ω2

= σ − μ+
√

1 − 2σμ+ + μ2+
,

and then

sin θ = ω
√

1 − 2σμ+ + μ2+
.
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To avoid problems with the determination of the arctan function, since it is not
difficult to build examples with θ > π/2, we use the trigonometric identity

tan
θ

2
= sin θ

1 + cos θ
,

leading to

θ = 2 arctan

⎛

⎝
ω

√

1 − 2σμ+ + μ2+ + σ − μ+

⎞

⎠ . (16)

Taking into account that, from (15), we know that

cos θ − γ sin θ = −μ+
sin θ

ω
,

we finally obtain from the second coordinate of (14) that

Yr+ = v exp(γ θ)
1 − μ+(2σ − μ+)
√

1 − 2σμ+ + μ2+
= v exp(γ θ)

√

1 − 2σμ+ + μ2+,

where θ is given in (16).
The computations for Yr− are identical if we change θ by −θ and μ+ by μ−. To

eliminate any ambiguity, however, and to use also a positive angle θ in (0, π), we start
from

(
0
Yr−

)

= v exp(−γ θ)

⎛

⎜
⎝

cos θ − γ sin θ
sin θ

ω

− sin θ

ω
cos θ + γ sin θ

⎞

⎟
⎠

(
1

2σ − μ−

)

, (17)

solving for

cos θ − γ sin θ + sin θ

ω
(2σ − μ−) = 0,

leading now to

ω cos θ = −(σ − μ−) sin θ, tan θ = − ω

σ − μ−
,

so that

cos θ = − σ − μ−
√

1 − 2σμ− + μ2−
,
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and

sin θ = ω
√

1 − 2σμ− + μ2−
.

Using now that

cos θ + γ sin θ = μ−
sin θ

ω
,

we see that

Yr− = −v exp(−γ θ)
1 − μ−(2σ − μ−)
√

1 − 2σμ− + μ2−
= −v exp(−γ θ)

√

1 − 2σμ− + μ2−,

where θ is given by

θ = 2 arctan

⎛

⎝
ω

√

1 − 2σμ− + μ2− − (σ − μ−)

⎞

⎠ . (18)

Therefore, the common expression for both ordinates is

Yr± = ±v exp(±γ θ±)

√

1 − 2σμ± + μ2±,

with

θ± = 2 arctan

⎛

⎝
ω

√

1 − 2σμ± + μ2± ± (σ − μ±)

⎞

⎠ .

In a similar way, we obtain Y �±.

5 Proof of Theorem 2

In this section, we consider system (12). Then, Theorem 2 can be stated as follows.

Theorem 16 Consider the differential system (12) with TC �= 0. Then, the following
statements hold.

(a) Two necessary conditions for the existence of periodic orbits are |TC | < 2 and
TRTC < 0.

(b) If |TC | < 2 and TRTC < 0, then the system has periodic orbits
(b.1) when TC > 0 and r > 0 if and only if TC + TR/

√
r < 0;

(b.2) when TC < 0 and r > 0 if and only if TC + TR/
√
r > 0;
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(b.3) when TC > 0 and r < 0 if and only if e
πTC/

√

4−T 2
C Y r+ + Yr− < 0;

(b.4) when TC < 0 and r < 0 if and only if e
πTC/

√

4−T 2
C Y r+ + Yr− > 0.

In all cases, the origin is surrounded by a limit cycle, which is unique, stable if
TC > 0 and unstable if TC < 0.

Now, we shall prove Theorem 16 when TC > 0. The case TC < 0 can be proved
in a similar way. Note that the traces in the regions SC , SR are given by TC and TR ,
respectively. By the Bendixson theorem, see, for instance, Theorem 7.10 in Dumortier
et al. (2006), they cannot have the same sign for the existence of limit cycles and thus
TRTC < 0. First we show that system (12) can be transformed in another system with
the nonnegative rotation property. This is the statement of the following proposition,
where we prove more things that we will use later on.

Proposition 17 Consider system (12) with TC > 0 for all x when r ≥ 0, or its
restriction to the region x < xR when r < 0. We assume that TR ≤ TC. Then, the
system can be transformed in another system having the nonnegative rotation property
if TR − TCr ≤ 0, or if TR − TCr > 0, r < 0 and TR ≤ 0.

Proof To show the nonnegative rotation property, we will compute the slope of the
vector field along half-rays of the form y = λx . Since it will appear F(x)−λx in some
denominators, we can disregard the points of vertical slope in which F(x) = λx .

Now, we transform the system by introducing a new first variable z = z(x), namely

z = sgn (x)
√
2G(x)whereG(x) =

∫ x

0
g(s) ds. (19)

Note that z = x for x ≤ v and that this change of variable is injective for x > v as
long as g(x) > 0, that is, for all x when r ≥ 0, or for x < xR when r < 0. Note that
z2(x) = 2G(x) and thus we have z(x)z′(x) = g(x) for all x , and so

dz

dx
= g(x)

z
. (20)

Therefore,

dz

dt
= dz

dx

dx

dt
= g(x)

z
(F(x) − y),

and in the new variables, the system is

dy

dz
= dy/dt

dz/dt
= z

F(x(z)) − y
,

which is equivalent to the system ż = F(x(z))− y, ẏ = z, where the dot now indicates
the derivative with respect to an implicitly defined, different time parameterization of
the orbits. Now, we study the slope of the vector field along the half-rays of the form
y = λz.
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Then, we can write

mλ(z) = dy

dz

∣
∣
∣
∣
y=λz

= z

F(x(z)) − λz
,

and to analyze the monotone character of this slope along the half-rays, we compute
its derivative with respect to z, namely

dmλ(z)

dz
= F(x(z)) − λz − z

[
F ′(x(z))x ′(z)) − λ

]

[F(x(z)) − λz]2
,

not to be considered at z = v, where this derivative has a jump discontinuity.
In the region x < v, since z = x , we have

dmλ(z)

dz
= F(x(z)) − zF ′(x(z))x ′(z)

[F(x(z)) − λz]2
= TCz − TCz

[F(x(z)) − λz]2
= 0.

So the slope of the vector field is constant along the half-rays.
For the region x > v, we get

dmλ(z)

dz
= (TC − TR)v − TR

[
zx ′(z) − x(z)

]

[F(x(z)) − λz]2
. (21)

Now, we study the value of zx ′(z) − x(z) for x > v. From (20) and the equality
z2 = 2G(x) = r(x − v)2 + 2vx − v2 for x > v, we have

zx ′(z) − x(z) = z2 − xg(x)

g(x)
= r(x − v)2 + 2vx − v2 − r x(x − v) − vx

g(x)

= (x − v)(r x − rv + v − r x)

g(x)
= v(1 − r)(x − v)

g(x)
.

Then, (21) can be rewritten as

dmλ(z)

dz
= v

(TC − TR)g(x) − TR(1 − r)(x − v)

g(x) [F(x(z)) − λz]2
, (22)

and the sign of the above expression, as long as g(x) > 0, is controlled by the sign of
the numerator, namely

(TC − TR)v + [(TC − TR)r − TR(1 − r)] (x − v)

= (TC − TR)v − (TR − TCr)(x − v),

an expression which is affine in x − v.
Since our hypothesis implies TC − TR ≥ 0, we see that the first constant term is

always nonnegative. If TR − TCr ≤ 0, then the second term is also nonnegative for
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x > v and we are done. The case TR −TCr > 0 leads always to a change in the sign of
the expression for z big enough, so that we cannot guarantee the monotone increasing
character of the slope along half-rays in the whole plane. When r < 0, however, we
only need to study what happens for x < xR , that is, for x − v < −v/r . Substituting
now x = xR in the above expression, we get

(TC − TR)v + (TR − TCr)
v

r
= −TRv + TR

v

r
= −TRv

(

1 − 1

r

)

,

which for TR ≤ 0 is nonnegative. Thus, we can also assure in such a case the required
monotonicity for x < xR , and the proposition follows. ��

Noticing that for TR ≤ 0 the hypothesis TC − TR ≥ 0 is strictly satisfied, we see
immediately that we can have TR − TCr ≤ 0 (and then Proposition 17 applies) or
TR − TCr > 0, that is, r < TR/TC ≤ 0, but then since TR ≤ 0 Proposition 17 also
applies. In short, we get the following result.

Corollary 18 Consider system (12)with TC > 0 for all x whenr ≥ 0, or its restriction
to the region x < xR when r < 0. If TR ≤ 0, then the system can be transformed in
another system having the nonnegative rotation property independently on the value
of r .

Now, we show that if system (12) has a periodic orbit, then it is unique.

Proposition 19 Assume that system (12) with TC > 0 has a periodic orbit. Then, the
periodic orbit surrounds the origin and it is a limit cycle, which is unique and stable.

Proof By Proposition 17, the system can be transformed into one, which has the
nonnegative rotation property. Therefore, by Theorem 15 such a periodic orbit is a
limit cycle which is unique. Applying Theorem 15, we get that the limit cycle of
system (12) is stable because we are assuming that TC > 0. ��

Toprove statement (b), we need to study the existence of periodic orbits surrounding
the origin. To do this, wewill use the positive and negative parts of the y-axis as domain
and range for defining two different half-return maps, namely a right half-return map
PR and a left half-return map PL .

We start by studying the left half-return map PL defined in the positive y-axis,
by taking the orbit starting at the point (0, y) with y > 0, and coming back to the
negative y-axis at the point (0,−PL(y)). Since the system becomes purely linear, it
is easy to see, see, for instance, Freire et al. (2012) that PL is a linear function given

by PL(y) = e
πTC/

√

4−T 2
C y.

Now, we study the qualitative properties of the right half-return map PR defined in
the negative y-axis, by taking the orbit starting at the point (0,−y) with y > 0, and
coming back to the positive y-axis at the point (0, PR(y)). The following lemma is
Lemma 3 of Llibre et al. (2013).

Lemma 20 Consider a Liénard differential system with a continuous vector field
given by ẋ = F(x) − y and ẏ = g(x). Assume that F(x) is positive and increasing
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for small positive values of x, it has a positive zero only at x = x̄ > 0, and it is
decreasing to −∞ as x → ∞ monotonically for x > x̄ . Assuming also that g(0) = 0
and g(x) > 0 for all x > 0, the following statements hold. The orbits starting at
the point (0,−y) with y > 0, enter the half-plane x > 0 and go around the origin
in a counterclockwise path, coming back to the y-axis at the point (0, PR(y)) with
PR(y)) > 0. The difference PR(y)− y is positive for small values of y, but eventually
becomes negative and tends to −∞ when y → ∞.

Themap PR when r < 0 is not defined for all positive values of y.We shall compute
now its domain of definition. Two separatrices of the saddle (xR, yR) intersect the line
x = v, the stable at the point (v, y−) and the unstable at the point (v, y+), where

y± =

(

2TCr − TR ∓
√

T 2
R − 4r

)

v

2r
,

see Sect. 4 and Fig. 3. The flow of system (12) in x < v starting at the point (v, y−)

in backward time intersects the negative y-axis at the point (0,Yr−).
The flow of system (12) in x < v starting at the point (v, y+) in forward time

intersects the positive y-axis at the point (0, PR(−Yr−)), where it is assumed

PR(−Yr−) = lim
y↗(−Yr−)

PR(y) = Yr+.

Hence, the map PR : (0,−Yr−) → (0,Yr+).

Corollary 21 Assume that system (12) has TC > 0. Then, the orbits starting at the
point (0,−y) with y > 0 enter the half-plane x > 0 and go around the origin
in a counterclockwise path, coming back to the y-axis at the point (0, PR(y)) with
PR(y)) > 0. The difference PR(y) − y is positive for small values of y, and

(a) it eventually becomes negative and tends to −∞ when y → ∞, if r > 0;
(b) tends to Y r+ + Yr− when y → −Yr−, if r < 0.

Proof Sincewe are assuming that TC > 0 and TR < 0, we get that F(x) is positive and
increasing for small positive values of x , and it has a positive zero only at x = v(1 −
TC/TR) > 0. It is decreasing to−∞ as x → ∞monotonically for x > v(1−TC/TR).
Note that g(0) = 0 and, when r > 0, g(x) > 0 for all x > 0. Now we are under the
assumptions of Lemma 20 and the statement (a) of the corollary follows from it.

The proof of statement (b) follows directly from the domain of definition of the
map PR and its image. ��

Now, we continue with the proof of Theorem 16 and we need to show that in fact,
we have a periodic orbit. Note that for system (12) the origin is a node when |TC | ≥ 2,
and a focus when |TC | < 2.Moreover, it cannot be a node because some of its invariant
manifolds are straight lines that should extend to the infinity, precluding the existence
of periodic orbits. Then, it must be a focus, and thus, |TC | < 2. This concludes the
proof of statement (a).
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Now,weprove statements (b.1) and (b.3). Statement (b.1) can be provedwith exactly
the same proof as in the proof of Theorem 2 in Llibre et al. (2013). In this case, i.e.,
when r > 0, we can show that a necessary and sufficient condition for the existence
of periodic orbits in this case is that

TC + TR√
r

< 0.

Now, we prove statement (b.3), i.e., we need to study the existence of periodic orbits
when r < 0. Note that as explained above, we have that

PL(y) = e
πTC/

√

4−T 2
C y, (23)

and in particular

PL(Yr+) = e
πTC/

√

4−T 2
C Y r+. (24)

If PL(Yr+) < −Yr−, as shown in Fig. 3, then it is easy to conclude the existence of
a trapping region that, since the focus at the origin is unstable, assures the existence
of a periodic orbit. Its uniqueness and stability come from Proposition 19.

Suppose that PL(Yr+) = −Yr−, then we have a homoclinic connection. We claim
that inside the region limited by the homoclinic loop there are no periodic solutions.
For proving the claim, we shall use the next result, see Theorem 1 in page 364 of Perko
(1991).

Theorem 22 Let p be a topological saddle of an analytic differential system in the
plane and let γ be a homoclinic loop at p. Then, the orbits near γ contained in the
region limited by γ tend to γ in forward (respectively backward) time if and only the
trace of the linear part of the system at p is negative (respectively positive).

Corollary 23 Let eR be a saddle of the Liénard piecewise linear differential system
(1) and assume that this saddle has a homoclinic loop γ . Then, the orbits near γ

contained in the region limited by γ tend to γ in forward (respectively backward) time
if and only the trace of the linear part of the system at p is negative (respectively
positive).

Proof Since the Liénard piecewise linear differential system (1) can be a limit of
analytic differential systems in the plane having homoclinic loops tending to the homo-
clinic loop γ of system (1), by Theorem 22 the corollary follows. ��

Now, we prove the claim. Since TR < 0, the trace of the saddle eR is negative. By
Corollary 23, the homoclinic loop surrounding the focus is stable. By Proposition 19
inside the region limited by the loop, there is at most one periodic solution surrounding
the focus and it is stable. But this is in contradiction with the fact that the homoclinic
loop is stable. Hence, the claim is proved.

If finally PL(Yr+) > −Yr−, then we have a trapping region in backward time. By
considering that the focus is stable when the time is reversed, the only possibilities for
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periodic orbits are a semi-stable periodic orbit, or two or more periodic orbits, again
in contradiction with Proposition 19. Statement (b.3) is shown, and this concludes the
proof of Theorem 16.

6 Proof of Theorem 5

To prove Theorem 5, we will state and prove several auxiliary results.
The next auxiliary result proves the uniqueness of the limit cycle (if it exists) in

Theorem 5.

Proposition 24 Assume that system (1) with TC > 0 has three linearity zones and
satisfies one of the following conditions.

(a) The sign of TR and TL are equal and different from the sign of TC , that is, TR, TL ≤
0;

(b) TL ≤ 0, TR > 0 and TR − TCr ≤ 0;
(c) TR ≤ 0, TL > 0 and TL − TC� ≤ 0.

If system (1) has a periodic orbit, then it surrounds the origin, and it is a limit cycle,
which is unique and stable.

Proof The proof of statement (c) is very similar to the proof of statement (b), so we
do not do it. First we consider system (1) restricted to x ≥ 0 that it can be considered
with only two linearity zones as system (12) restricted to x ≥ 0. We shall prove
simultaneously statements (a) and (b).

From Proposition 17 and Corollary 18, system (12) can be transformed into another
having the nonnegative rotation property for all the half-rays contained in x ≥ 0. By
using the symmetry given in (11), and applying again Proposition 17 and Corollary 18
, we can deduce that such systems can also be transformed into an equivalent system
having the nonnegative rotation property for all the half-rays contained in x ≤ 0. Note
that the change of variables (19) is the same in the whole plane, i.e., in x ≥ 0 and in
x ≤ 0. In other words, the change of variables (19) produce that simultaneously in
x ≤ 0 and x ≥ 0 the nonnegative rotation property holds. In short, system (1) with
three linearity zones can be transformed into a system with the nonnegative rotation
property for all the half-rays contained in S. Consequently, from Theorem 15, we
conclude that for a such system, if there exists a periodic orbit, then it surrounds the
origin and it is a limit cycle that is unique and stable. ��

To prove statement (b) of Theorem 5, we need to prove the existence of such a
periodic orbit surrounding the origin. To do this, again we will use the positive and
negative parts of the y-axis as domain and range for defining two different half-return
maps, namely a right half-return map PR and a left half-return map PL .

We start by studying the qualitative properties of the right half-return map PR

defined in the negative y-axis, by taking the orbit starting at the point (0,−y) with
y > 0, and coming back to the positive y-axis at the point (0, PR(y)). We have the
following result whose proof is exactly the same as Corollary 21.

123



884 J Nonlinear Sci (2015) 25:861–887

Corollary 25 Assume that system (1) has three linearity zones and that the signs of
TR and TL are equal and different from the sign of TC > 0. Then, the orbits starting
at the point (0,−y) with y > 0 enter the half-plane x > 0 and go around the origin
in a counterclockwise path, coming back to the y-axis at the point (0, PR(y)) with
PR(y)) > 0. The difference PR(y) − y is positive for small values of y, eventually
becomes negative and

(a) tends to −∞ when y → ∞ if r > 0,
(b) tends to Y r+ + Yr− when y ↗ (−Yr−), if r < 0.

Now,we can do a similar study for the left half-returnmap PL defined in the positive
y-axis, by taking the orbit starting at the point (0, y), with y > 0 and coming back to
the negative y-axis at the point (0,−PL(y)). More precisely, we have the following
result.

Corollary 26 Assume that system (1) has three linearity zones and that the signs of
TR and TL are equal and different from the sign of TC > 0. Then, the orbits starting
at the point (0, y), with y > 0 enter the half-plane x < 0 and go around the origin
in a counterclockwise path, coming back to the y-axis at the point (0,−PL(y)) with
PL(y) > 0. The difference PL(y) − y is positive for small values of y, eventually
becomes negative and

(a) tends to −∞ when y → ∞, if � > 0,
(b) tends to Y �+ + Y �− when y ↗ Y �+, if � < 0.

With these results, we can prove Theorem 5.

Proof of Theorem 5 Note that the traces in the regions SL , SC and SR are given by
TL , TC and TR , respectively. By the Bendixson theorem, see, for instance, Theorem
7.10 in Dumortier et al. (2006), they cannot have the same sign for the existence of
limit cycles. This proves statement (a) of the theorem.

Statements (c), (d) and (e) are immediate consequences of Proposition 24.
To prove statement (b), we first look for the existence of periodic orbits by showing

that system (1) has at least one periodic orbit. The existence of periodic orbits is
equivalent to the existence of two positive values yL and yR such that

PR(yR) = yL , yR = PL(yL).

Adding and subtracting the above equations, we get an equivalent system of sufficient
and necessary conditions for the existence of periodic orbits, namely

PR(yR) + yR = yL + PL(yL),

PR(yR) − yR = yL − PL(yL).
(25)

Furthermore, conditions (25) for the existence of periodic orbits translate now to the
existence of a value Y > 0 being solution of the single equation P̂R(Y ) = −P̂L(Y ),
that is, of

P̂R(Y ) + P̂L(Y ) = 0,
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where

P̂R(Y ) = PR(yR) − yR, P̂L(Y ) = PL(yL) − yL ,

being yR the unique solution of Y = PR(yR) + yR and yL the unique solution of
Y = PL(yL) + yL (we recall that PR and PL are monotone functions).

The function P̂R(Y ) + P̂L(Y ) is positive for small values Y > 0 and, when r > 0
and � > 0, such function is negative when Y → ∞ as a consequence of statement (a)
of Corollaries 25 and 26.

Now, we apply the mean value theorem to conclude the existence of at least a
solution, and so a periodic orbit of the system. The uniqueness and the stability of the
periodic orbit come from Proposition 24. This concludes the proof of statement (b)
and so Theorem 5 is completely shown. ��

7 Proof of Theorem 7

Proof of Theorem 7 Toshowstatement (a),webeginby considering the caseTC = TR .
Since r = 1, then we have a system with only two linearity zones, and we can apply
Theorem 3 (b.1) to conclude the existence of one stable limit cycle L surrounding the
origin. Clearly, the limit cycle L cannot be contained in the band x > −u where the
system is purely linear and so have points in the band x < −u. Inspired by Figueiredo
(1960), we take the closed curve defined byL as the boundary of a region in the plane,
and we claim that such a region remains positive invariant for the flow of the system
for every value of TC ∈ (0, TR). Effectively, moving the value of TC in such a range,
we do not alter the value of g(x) but only the value of F(x). Furthermore, from (2),
it is easy to conclude that

F(x)|TC∈(0,TR) < F(x)|TC=TR < 0

for all x > 0, while we have the opposite inequality for all x < 0. Thus, at any point
of the curve defined by L, for all TC ∈ (0, TR), the y-component of the vector field
is equal to the one when TC = TR and the x-component is modified in such a way
the new vector field points inward the interior of L, and our claim is shown. Since the
origin is unstable, the stable limit cycle persists and statement (a) is shown.

When TC = 0, recalling Remark 4 and since v < u, we have a circular period
annulus tangent to the line x = v and totally contained in the band x > −u. Since
TR > 0, the nearby orbits with points in x > v tend to go farther and the outermost
periodic orbit of the annulus is unstable. However, the reasoning of statement (a) is
also valid and the curveL still defines a trapping region, so that there exists at least one
stable limit cycle using the three linearity zones and surrounding the period annulus
of the origin. Statement (b) is shown.

For the proof of statement (c), it suffices to use Remark 4 again and the fact that
the stable limit cycle will persist under small perturbations in the value of TC . ��
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