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Abstract This work focuses on elucidating issues related to an increasingly common
technique of multi-model ensemble (MME) forecasting. The MME approach is aimed
at improving the statistical accuracy of imperfect time-dependent predictions by com-
bining information from a collection of reduced-order dynamical models. Despite
some operational evidence in support of the MME strategy for mitigating the pre-
diction error, the mathematical framework justifying this approach has been lacking.
Here, this problem is considered within a probabilistic/stochastic framework which
exploits tools from information theory to derive a set of criteria for improving prob-
abilistic MME predictions relative to single-model predictions. The emphasis is on
a systematic understanding of the benefits and limitations associated with the MME
approach, on uncertainty quantification, and on the development of practical design
principles for constructing an MME with improved predictive performance. The con-
ditions for prediction improvement via the MME approach stem from the convexity
of the relative entropy which is used here as a measure of the lack of information
in the imperfect models relative to the resolved characteristics of the truth dynamics.
It is also shown how practical guidelines for MME prediction improvement can be
implemented in the context of forced response predictions from equilibrium with the
help of the linear response theory utilizing the fluctuation–dissipation formulas at the
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unperturbed equilibrium. The general theoretical results are illustrated using exactly
solvable stochastic non-Gaussian test models.

Keywords Multi-model ensembles · Time-dependent prediction · Information
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1 Introduction

Dynamical prediction of complex multi-scale systems based on imperfect models
and spatiotemporally sparse observations of the truth dynamics is a notoriously diffi-
cult problem which is, nevertheless, essential in many applications such as climate-
atmosphere science (Emanuel et al. 2005; Randall 2007), materials science (Chatter-
jee and Vlachos 2007; Katsoulakis et al. 2003), neuroscience (Rangan et al. 2009), or
systems biology and biochemistry (Noé et al. 2009; Sriraman et al. 2005; Das et al.
2006; Hummer and Kevrekidis 2003). Due to the high-dimensional, multi-scale nature
of such time-dependent problems, it is challenging to obtain even statistically accu-
rate predictions of the coarse-grained characteristics of the truth dynamics. Advances
in computing power and new theoretical insights have spurred the development of a
plethora of reduced-order models (e.g., Epstein 1969; Emanuel et al. 2005; Neelin et al.
2006; Randall 2007; Sapsis and Majda 2013d; Chen et al. 2014a; Thual et al. 2014) and
data assimilation techniques (e.g., Anderson 2007; Houtekamer and Mitchell 2001;
Harlim and Majda 2010; Gershgorin et al. 2010a; Majda and Harlim 2012; Majda
et al. 2014; Grooms et al. 2014; Chen et al. 2014b). Various ways of minimizing
uncertainties in imperfect predictions and validating reduced-order models have been
developed in this context (e.g., Majda and Gershgorin 2010, 2011a, b; Branicki and
Majda 2012c, 2014; Majda and Branicki 2012c). Data assimilation aside, one of the
most important challenges in improving imperfect dynamical predictions concerns the
mitigation of model error. Recent developments provide new techniques for mitigat-
ing coarse-graining errors, and for counteracting errors due to neglecting nonlinear
interactions between the resolved and unresolved processes in reduced-order models;
these include the stochastic superparameterization (Grooms and Majda 2013, 2014;
Majda and Grooms 2014; Grooms et al. 2015; Slawinska et al. 2015) and reduced
subspace closure techniques (Sapsis and Majda 2013a, b, c).

This work focuses on elucidating issues related to an increasingly common tech-
nique ofmulti-model ensemble (MME) predictions which is complementary to improv-
ing individual imperfect models. The heuristic idea behind MME prediction is simple:
Given a collection of imperfect models, consider the prediction obtained through a
linear superposition of individual model forecasts in the hope of mitigating the overall
prediction error. While there is some evidence in support of the MME approach for
improving imperfect predictions, particularly in atmospheric sciences (e.g., Palmer
et al. 2005; Stephenson et al. 2005; Doblas-Reyes et al. 2005; Hagedorn et al. 2005;
Weigel et al. 2008; Weisheimer et al. 2009; van der Linden and Mitchell 2009; Olden-
borgh et al. 2012), a systematic framework justifying this approach has been lacking. In
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particular, it is not obvious which imperfect models, and with what weights, should be
included in the MME forecast in order to improve predictions within this framework.
Consequently, virtually all operational MME prediction systems for weather and cli-
mate are based on equal-weight ensembles (Hagedorn et al. 2005; Weigel et al. 2008;
van der Linden and Mitchell 2009; Weisheimer et al. 2009; Oldenborgh et al. 2012)
which are likely to be far from optimal (Doblas-Reyes et al. 2005) in the absence of
additional restrictions imposed on the ensemble members. Our main focus is on a sys-
tematic understanding of benefits and limitations associated with the MME approach
to improving imperfect predictions; important practical issues in this context are the
following:

(a) How to measure the skill (statistical accuracy) of dynamic MME predictions
relative to single-model predictions? (This setting should not be confused with a
purely statistical modeling in which the underlying dynamics is ignored.)

(b) Is there a condition guaranteeing an improvement in predictions via the MME
approach relative to single-model predictions?

We consider the MME prediction within a probabilistic/stochastic framework which
exploits tools from information theory in order to systematically understand the char-
acteristics of such an approach. This probabilistic framework can be utilized in two
different contexts: First, when dealing with deterministic imperfect models, one can
consider a time-dependent probability density function constructed by initializing the
models from a given distribution of initial conditions. Second, the probabilistic pre-
diction framework arises naturally when using stochastic reduced-order models in
imperfect predictions which is an increasingly common approach (e.g., Epstein 1969;
Lorenz 1968, 1969; Palmer 2001; Palmer et al. 2005; Majda et al. 2005; Majda and
Wang 2010; Sapsis and Majda 2013d; Chen et al. 2014a; Thual et al. 2014). In many
operational situations, dynamic predictions can be obtained through a weighted super-
position of forecasts obtained from a collection of imperfect models (e.g., Hagedorn
et al. 2005; Weigel et al. 2008; van der Linden and Mitchell 2009; Weisheimer et al.
2009; Oldenborgh et al. 2012). However, the individual imperfect models are usually
highly complex and not easily tuneable, and it is desirable to consider the possibility of
prediction improvement by adjusting only the ensemble weights. In order to shed light
on the issues (a)–(b) above, we set out an information-theoretic framework capable of

(i) Quantification of uncertainty and improving the imperfect predictions via the
MME approach;

(ii) Providing practical guidelines for improving dynamic MME predictions given a
small collection of available imperfect models.

Here, we derive a simple criterion for improving probabilistic predictions via the
MME approach. Moreover, we provide a simple justification of why the MME pre-
diction can have a better prediction skill than the best single model in the ensemble.
Finally, we derive systematic guidelines for constructing finite model ensembles which
are likely to have a superior predictive skill over any single model in the ensemble.
These results stem largely from the convexity of the relative entropy (e.g., Cover
and Thomas 2006) which is used here as a measure of the lack of information in
the imperfect models relative to the resolved characteristics of the truth dynamics.
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We show that the guidelines for MME prediction improvement in the context of a
forced perturbation from an equilibrium can be implemented with the help of the
linear response theory and the ‘fluctuation–dissipation’ approach for forced dissipa-
tive systems (Majda et al. 2005, 2010b, a; Leith 1975; Abramov and Majda 2007;
Gritsun et al. 2008; Majda and Gershgorin 2011b); this approach follows from the
earlier work on improving imperfect predictions in the presence of model error in the
single-model setup (see for example, Kleeman 2002; Majda et al. 2002; Kleeman et al.
2002; Majda and Gershgorin 2010, 2011a, b; Gershgorin and Majda 2012; Branicki
and Majda 2012c; Majda and Branicki 2012c). When considering prediction improve-
ment for the initial value problem, the practical implementation of the condition for
skill improvement through MME can be carried out in the hindcast/reanalysis mode
(e.g., Kim et al. 2012). Although we focus here on mitigating the prediction error via
the MME approach, it is worth stressing that the ultimate goal in imperfect reduced-
order prediction should involve a synergistic approach that combines the improvement
in reduced-order models with an MME framework for both data assimilation and pre-
diction.

This paper is structured as follows: First, in Sect. 2, we motivate the need for a sys-
tematic analysis of the MME prediction problem. In Sect. 3, we derive the information-
theoretic criterion for improving MME predictions relative to single-model predic-
tions. A set of particularly useful results is discussed in Sect. 3.2 where Gaussian
models are used in a MME; this approach provides a helpful intuition for dealing with
the general results of Sect. 3. Section 4 combines the analytical estimates of Sect. 3
with simple numerical tests which are based on statistically exactly solvable mod-
els described in Sect. 4.1. We conclude in Sect. 5 by summarizing the most important
results, and we discuss directions for further research in this area, including extensions
of the MME approach to improving imperfect data assimilation techniques. Technical
details associated with the analytical estimates derived in Sect. 3 are presented in the
appendices.

2 Motivating Examples

Consider the dynamics of a high-dimensional, nonlinear system where only a small
subset of its dynamical variables can be reasonably modeled or accessed through
empirical measurements. The resolved dynamics of the full system is affected by non-
linear, multi-scale interactions with unresolved processes which cannot be observed
or even correctly modeled (e.g., Majda and Wang 2006). Nevertheless, we are inter-
ested in a statistically accurate prediction of the resolved non-equilibrium dynamics
using a collection of imperfect reduced-order dynamical models which approximate
or neglect the interactions between the resolved and unresolved processes. To this
end, assume that the state vector of dynamical variables in the true high-dimensional
system decomposes as v = (uuu,vvv), where uuu ∈ RK , K < ∞, denotes the resolved vari-
ables and vvv ∈ RN denotes the unresolved variables; we tacitly assume that K � N
which is natural when dealing with complex multi-scale dynamics such as the turbu-
lent dynamics of geophysical flows (e.g., Majda and Wang 2006). The time-dependent
probability density associated with the MME of imperfect reduced-order models on
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the subspace of the resolved variables uuu is given by a convex superposition of the
model densities in the form

πmme
ααα,t (uuu) ≡

∑

i=1

αiπ
mi
t (uuu),

ˆ
duuu πmme

ααα,t (uuu) = 1,
∑

i=1

αi = 1, αi � 0, (1)

where π
mi
t represents probability densities associated with the imperfect models mi in

some class M. We are particularly interested in mitigating the MME prediction error
by adjusting the model weights αi in (1) with fixed characteristics of the individual
imperfect models mi ∈ M which is desirable from the practical viewpoint. The lack
of information at time t between the MME and the truth statistics on the resolved
subspace of variables is measured using the relative entropy (Kullback and Leibler
1951) given by

P(πt , π
mme
ααα,t ) =

ˆ
duuu πt ln

πt

πmme
ααα,t

. (2)

This nonnegative functional satisfying P(πt , π
mme
ααα,t ) = 0 only when πt = πmme

ααα,t is
not a proper metric. However, it possesses a number of desirable properties such as
convexity in the pair (π, πmme), and it satisfies a ‘triangle equality’ for a certain class of
densities discussed later (see also Majda et al. 2005; Branicki and Majda 2012c; Majda
and Branicki 2012c); moreover, the relative entropy is invariant under general changes
in variables (Majda et al. 2002; Majda and Wang 2006) [i.e., (2) can be written in a form
which is independent of the dominating measure which we skip here but see, e.g., Gibbs
and Su 2002]. We use the relative entropy (2) as an information-based measure of the
time-dependent error in the imperfect probabilistic predictions; additional measures
of predictive skill were introduced earlier in the context of uncertainty quantification
in the single-model context and are briefly discussed in Sect. 4.3.1 (see also Majda
and Gershgorin 2011a, b; Majda and Wang 2010; Branicki and Majda 2012c; Majda
and Branicki 2012c). Here, we show that the information-theoretic approach is very
useful when considering prediction improvement in the MME context. In particular,
this setting helps address the following general questions:

• What characteristics of the model ensemble lead to uncertainty reduction in MME
predictions relative to imperfect predictions with a single model?

In the subsequent sections, we derive a set of information criteria for improving
probabilistic dynamical predictions via the MME approach relative to the best single
imperfect model. However, before embarking on a detailed analysis, some motivating
examples are presented in Fig. 1 which shows that: (i) not every MME prediction is
superior to the single-model prediction and (ii) the structure of the optimal-weight
MME depends on both the truth dynamics and the imperfect models in the ensemble.
The top-row insets show the evolution of the prediction error in terms of the relative
entropy (2) in three different dynamical regimes of a non-Gaussian truth dynamics
(described later in Sect. 4.1.2). In all cases, the statistics of the initial conditions and
the marginal equilibrium for the resolved dynamics in the imperfect Gaussian models
mi coincide with those of the truth dynamics; in addition, the single-model predic-
tions are carried out with an imperfect model tuned to have the correct correlation
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Fig. 1 Dependence of the prediction error within the MME framework on the nature of the non-Gaussian
truth dynamics [given by (38) in Sect. 4.1.2]; here, the MME mixture density (1) contains Gaussian models
(26) with correct statistics of the initial conditions and correct marginal equilibrium for the resolved dynam-
ics. Top-row insets show the evolution of the error via the relative entropy (2) for predicting the resolved
truth dynamics with: (left) symmetric fat-tailed equilibrium density with initial statistical conditions in a
stable regime of the truth dynamics, (middle) symmetric fat-tailed equilibrium density with initial condi-
tions in an unstable regime of the truth, and (right) skewed equilibrium density with initial conditions in a
stable regime of the truth. The bottom insets show the weights αi in MME density (1); the optimal-weight
MME (9) minimizes the time-averaged relative entropy by adjusting the ensemble weights. Note that the
performance of MME prediction, as well as the structure of the optimal-weight MME, depends strongly on
the nature of the truth dynamics

time τ trth of the resolved dynamics at equilibrium. The bottom row in Fig. 1 shows
the weight structure of the MME with individual models in the ensemble labeled by
the correlation time τ of their equilibrium dynamics; the optimal-weight MME is
obtained in this case by minimizing the average relative entropy 1

T

´ T
0 P(πt , π

mme
t )dt

over the whole time interval considered. Note that the error of the MME prediction
relative to the single-model prediction varies significantly between the three config-
urations in Fig. 1a–c; moreover, the structure of the optimal-weight MME changes
drastically from an MME containing only models with τmi > τ trth in (a), to an MME
with τmi < τ trth in (b), to an MME containing a single imperfect model with the
shortest correlation time in the ensemble in (c). The difference between the config-
uration in (a) and (b) lies in the initial statistical conditions: In (a), the initial con-
ditions are such that the resolved dynamics is in a stable regime, while in (b), the
resolved dynamics is initially in a transient unstable phase. The configuration shown
in Fig. 1c corresponds to imperfect predictions of the resolved non-Gaussian dynamics
when the truth equilibrium statistics is significantly skewed. (See Sect. 4.3.2 for more
details.)

Clearly, the performance of the MME approach for improving imperfect predictions
depends on both the structure of the MME and the nature of the truth dynamics. The
above examples highlight the need for a more analytical insight which would allow to
understand when and why the MME approach leads to improved predictions. In the
next section, we focus solely on this topic and we obtain information-based criteria
for prediction improvement via the MME approach. The general theoretical results
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derived in Sect. 3 are discussed further in Sect. 4 based on two simple but revealing
test models described in Sect. 4.1.

3 Information-Theoretic Criteria for Improving MME Predictions

Here, we develop an information-theoretic framework for assessing the potential
improvement in imperfect predictions through the MME approach. First, in Sect. 3.1,
we derive a condition for improving the predictive skill within the MME frame-
work; this condition requires evaluating certain least-biased estimates of the truth
which are obtained by maximizing the Shannon entropy subject to a finite number
of moment constraints, making this approach amenable to applications. Implications
of this information-based criterion are discussed in Sect. 3.1.3 for both the initial
value problem and the forced response prediction. Further insight and intuition can be
gained by restricting the MME prediction problem to the Gaussian mixture configura-
tion which is discussed in Sect. 3.2. The results presented here exploit the convexity of
the relative entropy (2) between the truth and the MME density in (1) which measures
the lack of information in the MME density relative to the resolved truth statistics.
Further details, along with some simple proofs of the facts established below, are
relegated to “Appendix 1”.

3.1 Improving Predictions Through MME Framework

Consider imperfect probabilistic predictions of the truth dynamics on the subspace of
resolved variables uuu ∈ RK based on the MME with density πmme

ααα,t in (1). As in Sect. 2,
we assume that the truth dynamics has the probability density function denoted by
pt (uuu,vvv), vvv ∈RN , K� N , and the corresponding marginal density on the resolved
subspace is πt (uuu) = ´

pt (uuu,vvv)dvvv. Given some class M of reduced-order models for
the resolved dynamicsuuu(t), we define the best single modelm∗ for making predictions
at time t as the one with the smallest error in terms of the relative entropy

P(πt , π
m∗
t ) = min

m∈M
P(πt , π

m
t ), P(πt , π

m
t ) =

ˆ
duuu πt ln

πt

πm
t

, (3)

where πt is the truth density, πm
t represents the probability density associated with the

models m ∈ M, and the relative entropy P(πt , π
m
t ) measures the lack of information

in πm
t relative to the truth marginal density πt (see Majda and Gershgorin 2010,

2011a, b; Branicki and Majda 2012c; Majda and Branicki 2012c). Analogously, the
best single model m∗

I ∈ M for making predictions over the time interval I is given
by

PI
(
π, πm∗

I
)

= min
m∈M

PI
(
π, πm) , (4)

where PI(π, πm) := ffl
I P(πt , π

m
t )dt measures the average lack of information over

the time interval I. We introduce the following information measures to quantify the
performance of the MME prediction relative to the single-model prediction with model
m�
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(a) P
mme,m�
ααα,M,I =

 
I

(
P(πt , π

mme
ααα,t ) − P(πt , π

m�
t )
)

dt,

(b) P
l,mme,m�
ααα,M,I =

 
I

(
P(πl

t , πmme
ααα,t ) − P(πl

t , π
m�
t )
)

dt, (5)

where
ffl
I denotes the integral average over the time interval I, and πl in (5b) is

the least-biased estimate of the truth density which maximizes the Shannon entropy
subject to l moment constraints (see (14) below and Mead and Papanicolaou (1984);
Majda et al. (2005); Majda and Gershgorin (2011a, b); Branicki and Majda (2012c)).
Importantly, the two measures in (5) have a common upper bound

P
mme,m�
ααα,M,I , P

l,mme,m�
ααα,M,I �

∑

i

αiPI(π, πmi ) − PI(π, πm�)

=
∑

i

αiPI(πl, πmi ) − PI(πl, πm�), (6)

if ensemble models in M have the least-biased structure mi = ml′
i , l′ � l (see (14) in

§3.1.1); this fact stems from the convexity of the relative entropy (10) and the ‘triangle
equality’ (11) satisfied by PI which are discussed below. While the measure Pmme,m�

ααα,M,I
is the most appropriate one, it is unrealistic to expect that it can be evaluated in practice
since the exact truth density, π , is unlikely to be known. On the other hand, the use of
the least-biased estimate, πl, of the truth density represents a practically achievable
approach. Thus, we adopt the following:

Information Criterion I The MME prediction utilizing models m ∈ M with weights
ααα over the time interval I has a smaller error than the single model prediction with
m� if

P
l,mme,m�
ααα,M,I < 0. (7)

Note that the single model m� in (5) and (7) does not have to coincide with the best
imperfect model m∗

I in (4) which is unknown in practice. For example, one might
consider m� to be the best single model m∗

I,l relative to the least-biased truth estimate
which is defined as

PI
(
πl, π

m∗
I,l

)
= min

m∈M
PI
(
πl, πm

)
, (8)

and it clearly depends on the l moment constraints used to estimate the truth den-

sity. Note that even if PI(πl, π
m∗
I,l) = 0, there might exist an information barrier

PI(π, π
m∗
I,l) = PI(π, πl) in the imperfect predictions, which can be reduced if more

detailed truth estimates are considered (Majda and Gershgorin 2011a, b; Branicki and
Majda 2012c). We now have the following two useful facts:

Fact 1 Consider the best model m∗
I,l in (8) for predicting the resolved truth dynamics

uuu(t) over the time interval I. The prediction of the MME with {mi } ∈ M can be
superior to the prediction with m∗

I,l unless the density of m∗
I,l coincides with the
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least-biased marginal density πl; i.e., there might exist a set of models {mi } ∈ M and

the corresponding weights {αi } such that P
l,mme,m∗

I
ααα,M,I < 0 in (7). The same holds in a

more general but uncomputable setting for the best model m∗
I in (4), i.e., there might

exist a set of model weights ααα such that P
mme,m∗

I
ααα,M,I < 0.

Fact 2 Consider the optimal-weight MME for a given set of imperfect models {mi } ∈
M which is defined relative to the least-biased truth estimate πl as

PI
(
πl, πmme

ααα∗
I,l

)
= min

ααα
PI
(
πl, πmme

ααα

)
, (9)

where ααα is the vector of weights in the MME mixture density (1) containing dynamic
models {mi } ∈ M. For a fixed number of constraints l, the lack of information
PI(πl, πmme

ααα∗
I,l

) corresponds to an information barrier for MME predictions with models

{mi } ∈ M over the time intervalI. Moreover, if the predictive skill cannot be improved

via the MME approach, then πmme
α∗
I,l

= π
m∗
I,l , and the information barriers in the single-

model and the MME predictions coincide.

Simple justification of the above facts is illustrated in Fig. 2, and it follows imme-
diately from the convexity of the relative entropy in the second argument (e.g., Cover
and Thomas 2006)

PI
(
π,
∑

i

αiπ
mi
)

�
∑

i

αiPI
(
π, πmi

)
, αi � 0,

∑
αi = 1, (10)

and the ‘triangle equality’ satisfied by the relative entropyP (e.g., Majda et al. (2005)),
namely

PI
(
π, πm,l

)
= PI

(
π, πl

)
+ PI

(
πl, πm,l

)
, (11)

where πl and πm,l are, respectively, the least-biased densities associated with the
resolved truth and the model dynamics. Fact 1 becomes obvious upon considering the
fixed-time configuration sketched in Fig. 2a in the case when P(πt , π

m∗
t ) > 0 for

the best model m∗ (or P(πl
t , πm∗

t ) > 0 for m∗ = m∗
l) in the ensemble (extension of

these arguments to the whole time interval I is straightforward due to the linearity of

integration and the fact that P � 0). If PI(πl, π
m∗
I,l

t ) = 0 then πt = π
m∗
I,l

t by the
properties of the relative entropy. Fact 2 is established by considering the two possible
fixed-time configurations sketched in Fig. 2. In Fig. 2b, the MME information barrier
(9) at time t (red shaded) is the same as that of the single-model prediction and equal
to P(πl

t , π
m∗
t ), while the MME information barrier of MME in Fig. 2a is reduced

to P(πl
t , α∗πm∗

t +(1 − α∗)πm1
t ) < P(πl

t , πm∗
t ). Clearly, the choice of the imperfect

models in MME is important for its improved performance over the single model m�.
(Examples of prediction improvement via MME approach without reducing the single-
model information barrier are shown in different configurations in Figs. 3, 6, and 8
discussed in the subsequent sections).

The above general facts relate to important practical issues in prediction problems,
such as:
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P
(
πl
t , π

m
t

)

P
(
πl
t ,

1
2 (πm�

t + πm3
t )

)

P
(
πl
t ,

1
2 (πm�

t + πm2
t )

)

m∗m1 m2 m3 m4

(a)
M =

{ }

P
(
πl
t , π

m
t

) P
(
πl
t ,

1
2 (πm�

t + πm3
t )

)

P
(
πl
t ,

1
2 (πm�

t + πm2
t )

)

m∗m1 m2

m3 m4

(b) M =
{ }

P
(
πl
t ,

1
2 (πm�

t + πm3
t )

)
m∗m1 m2 m3 m4

Δ

(c) M =
{ }

Fig. 2 Consequences of the convexity of the relative entropyP in (10) which are exploited in considerations
of prediction improvement within the MME framework with probability density function πmme

t in (1). One-
dimensional (left column) and two-dimensional (right column) sketches are shown for a fixed time in order
to illustrate two distinct possibilities in MME prediction which depend on the class of available models M:
a MME can perform better than any individual model in the ensemble M (e.g., πmme = 1

2 (πm� + πm1 )

see Fact 1), b MME cannot outperform the best single model m∗ in M. In (a), the information barrier in
MME prediction is smaller than the barrier in the single-model prediction (see Fact 2). Note also that the
error of MME prediction cannot exceed that of the worst model in the ensemble. The configuration in (c)
illustrates the information criterion in (12) and the need for introducing the uncertainty parameter Δ � 0
when only the estimates on the prediction error P(πl, πmi ) of individual models mi ∈ M are known

(i) Assessment of prediction improvement for a given MME containing a finite col-
lection {mi } ∈ M of imperfect models based solely on the prediction errors
P(πl

t , π
mi
t ). Ideally, one would like to improve the MME prediction by optimiz-
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ing weights the αi to minimize P(πl
t ,
∑

i αiπ
mi
t ) in (7); however, this requires

repeated evaluations of P which might be not feasible for realistic problems.
(ii) Derivation of guidelines for constructing an MME from a given set of imperfect

models that would guarantee prediction improvement when only a partial infor-
mation given by the average fidelity of individual modelsP(πl

t , π
mi
t ) is available.

(This includes equal-weight MME’s which assign the same nonzero weights to a
subset of models mi ∈ M ⊂ M and neglect the remaining models in M\M).

It turns out that a significant insight into the above issues can be derived within the
information-theoretic framework by exploiting the condition (7) and the convexity
of the relative entropy in (10) which leads to the following simplified but a practical
criterion:

Information Criterion II Consider improving imperfect predictions via the MME
approach when only the fidelity PI(πl, πmi ) of individual ensemble members
mi ∈ M can be estimated. MME prediction with models {mi } and weights {αi } is
preferable to single model predictions with m� ∈ M if

PI(πl, πm�) + Δ >
∑

i 
=�
βi PI

(
πl, πmi

)
,

βi = αi (1 − α�)−1,
∑

i 
=�
βi = 1. (12)

where Δ � 0 is the uncertainty parameter and πl
t is the least-biased density maximiz-

ing the Shannon’s entropy given l constraints, as in (11).

Remarks

• If the ensemble M consists of models in the least-biased form, i.e., mi = ml′
i ,

l′ � l, considering the prediction errors PI in the condition (12) relative to the
least-biased truth estimate πl is equivalent to considering prediction errors relative
to the truth density π due to the identity (11).

• The uncertainty parameter Δ in (12) plays an important role in the above setup,
and it arises as a consequence of the assumption that only the fidelity PI(πl, πmi )

of individual ensemble members is known. For m�,mi ∈ M, the condition (12)
implies that 0 � PI(πl, πmme) � PI(πl, πm�)+Δ (see “Appendix 1”). For Δ =
0, the criterion in (12) provides a sufficient condition for prediction improvement
which is, however, too restrictive in light of Fact 1 since for m� = m∗

I,l no MME
would satisfy it (see Fig. 2c). For Δ 
= 0, the condition in (12) is no longer sufficient
for reducing the prediction error; however, it allows for a possible improvement
in the predictive performance via the MME approach at the risk of increasing the
prediction error by a controllable value Δ relative toPI(π, πm�) which is also true
when m� = m∗

I,l (compare the configurations πmme = απm∗ + (1 − α)πm1 with

πmme = απm∗ + (1 − α)πm2 when P(πl, πm1) = P(πl, πm2)). Guidelines for
generating the ensemble models and for probing the local geometry of PI(πl, ·)
are presented in Sect. 3.1.4.
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• Note that, in contrast to the non-simplified criterion (7), the criterion (12) only
indicates whether or not the MME prediction with given weights ααα is likely to
be better than the single-model prediction and it should not be used for weight
optimization [unlike the non-simplified criterion (7)].

• The formulation (12) is particularly useful when considering the improvement in
the forced response prediction from equilibrium πeq, since then πl

t in (12) can
be directly estimated based on the linear response theory and the fluctuation–
dissipation formulas which utilize the information from the unperturbed equilib-
rium (see Sect. 3.1.2 and Majda et al. 2005, 2010b, a; Abramov and Majda 2007;
Gritsun et al. 2008; Majda and Gershgorin 2011b). In the case of the initial value
problem with uncertain initial conditions, the criterion (12) can be evaluated based
on the truth estimates obtained in the hindmost/reanalysis mode (e.g., Kim et al.
2012).

3.1.1 Condition for Improving Imperfect Predictions Via the MME Approach Based
on the Least-Biased Density Representation

It turns out that a significant insight can be gained by representing the condition (12)
through the least-biased densities of the imperfect models in the MME density (1)
which we outline below. Given a probability density q over a domain �, its least-biased
approximation, ql, subject to a set of l statistical constraints belongs to the exponential
family of densities which maximizes the Shannon entropy S = − ´

�
q ln q subject to

(see, e.g., Mead and Papanicolaou (1984); Majda et al. (2005))

ˆ
�

ql(uuu)Ei (uuu)duuu =
ˆ

�

q(uuu)Ei (uuu)duuu, i = 1, . . . , l, (13)

where Ei are some functionals on the space of the resolved variables uuu; here we
assume these functionals to be i th tensor power of uuu, i.e., Ei (uuu) = uuu⊗ i , so that
their expectations yield the components of the first l statistical moments of π about
the origin. Consequently, the least-biased densities of the truth and of the imperfect
models are given by (see, e.g., Mead and Papanicolaou 1984; Abramov and Majda
2004; Majda et al. 2005; Majda and Gershgorin 2010)

(a) π
l1
t = C−1

t exp
(
−

l1∑

i=1

θi (t)Ei (uuu)
)
,

(b) π
m,l2
t = (

Cm
t

)−1 exp
(
−

l2∑

i=1

θmi (t)Ei (uuu)
)
, (14)

where the constraints (13) in (14)a,b are satisfied, respectively, for q = π and q = πm,

and the normalization factorsCt andCm
t are chosen so that

´
π
l1
t duuu = ´

π
m,l2
t duuu = 1,

with l1 � l2. While the Gaussian approximations of any density π can always be
obtained, existence of πl for l > 2 is not guaranteed (Mead and Papanicolaou 1984).

We denote the expected values of the functionals Ei in (14) with respect to π
l1
t as Ēi
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and with respect to π
m,l2
t as Ēm

i ; it is convenient to write these expectations in the
vector form as

(a) EEE = (
Ē1, . . . , Ēl1

)T
, (b) EEE

m = (
Ēm

1 , . . . , Ēm
l2

)T ; (15)

note that θθθ t = θθθ
(
ĒEEt
)

and θθθmt = θθθm
(
ĒEE
m
t

)
in (14) so that the normalization factors in

the least-biased densities are functions of the time-dependent statistical moments, i.e,
Ct = C

(
ĒEEt
)

and Cm
t = Cm

(
ĒEE
m
t

)
.

Based on the least-biased representations (14) of the truth and model probability
densities, the criterion (12) for improvement in imperfect predictions via the MME
approach can be written in a form which is particularly suited for further approxima-
tions (see “Appendix 1” for a simple proof):

Fact 3 The criterion (12) for improving imperfect predictions via the MME approach
with uncertainty Δ � 0 can be expressed in terms of the statistical moments EEE,

{
EEE
mi }

of the truth and models as

Aβββ,I
(
πl1 ,

{
πmi ,l2/πmi

})+ Bβββ,I
({

EEE
mi })+ Cβββ,I

(
EEE,
{
EEE
mi })+ Δ > 0, (16)

where

Aβββ,I =
 
I

dt
ˆ

duuu π
l1
t (uuu)M(uuu),

M(uuu) =
∑

i 
=�
βi

[
log

π
mi ,l2
t (uuu)

π
mi
t (uuu)

− log
πm�,l2(uuu)

π
m�
t (uuu)

]
, (17)

is nonzero only for those model densities which are not in the least-biased form, i.e.,

if π
mi ,l2
t 
= π

mi
t , and

Bβββ,I =
∑

i 
=�
βi

 
I

log
[
Cm�,l2

(
EEE
m�
t

)
/Cmi ,l2

t
(
EEE
mi
t

)]
dt,

Cβββ,I =
∑

i 
=�
βi

 
I

[(
θθθ
m�
t − θθθ

mi
t

)
· ĒEEt

]
dt,

where the weights βi are defined in (12) and the vectors of the Lagrange multipliers
are given by

θθθ
(
EEE
) = (θ1, . . . , θl1

)T, θθθm
(
EEE
m) = (θm1 , . . . , θml2

, 0, . . . , 0l1
)T, l1 � l2.

Remarks

• The second term, Bβββ,I , in (16) is independent of the truth density, and it involves
only the model densities, π

mi
t , in MME.
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• The last term, Cβββ,I , in (16) depends linearly on the expectations, EEEt , with respect

to the least-biased truth density π
l1
t ; these can be estimated in the hindcast mode

in the initial value problem context or from the ‘fluctuation–dissipation’ formulas
when considering improvement in forced response predictions, as discussed below
in Sect. 3.1.3.

• The expected value in Aβββ,I can be evaluated as long the least-biased approxima-

tion, πl1
t , of the truth πt is known. Moreover, Aβββ,I = 0 if the MME contains only

least-biased models.

We will exploit the consequences of the above result extensively in the following
sections; the main advantage of the above ‘least-biased’ representation of the condition
(12) lies in the fact that it depends explicitly and linearly on the statistical moments EEEt

of the truth which are, in principle, amenable to approximations and estimates through
the fluctuation–dissipation formulas when considering the forced response prediction
(see Majda et al. 2005, 2010b, a; Abramov and Majda 2007; Gritsun et al. 2008; Majda
and Gershgorin 2010, 2011a, b, as well as Sect. 3.1.3).

3.1.2 Predictive Skill of MME

Here, we represent the general criterion (12) for improving imperfect predictions via
the MME approach in the formulation suitable for various time asymptotic estimates
in the context of the initial value problem. This is obtained by using the represen-
tation (16) in terms of the least-biased densities (14) which provides a formulation
that is amenable to practical approximations especially when considering the forced
response predictions.

Consider the evolution of the marginal density πt associated with the truth dynamics
on the resolved subspace of variables in the form

πt (uuu) = π0(uuu) + δπ̃t (uuu), π̃0 = 0,

ˆ
π̃t (uuu)duuu = 0, (18)

which separates the initial statistical conditions from the subsequent evolution of
the marginal probability density for the resolved dynamics; the parameter δ in (18)
is arbitrary at this stage, but it plays the role of an ordering parameter in the time
asymptotic considerations discussed later in Sect. 3.2. The mixture density, πmme

t , in
(1) associated with a MME of imperfect models mi contained in a class M can be
written in the same form as (18) so that

πmme
t =

∑

i

αiπ
mi
t , π

mi
t (uuu) = π

mi
0 (uuu) + δπ̃

mi
t (uuu),

π̃
mi
0 = 0,

ˆ
π̃
mi
t (uuu)duuu = 0. (19)
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Based on decompositions (18) and (19), evolution of the statistical moments EEEt , EEE
mi
t

of the truth and the models can be written as

EEEt = EEE0 + δẼEEt , EEE
mi
t = EEE

mi
0 + δẼEE

mi

t , ẼEE0 = ẼEE
mi

0 = 0. (20)

Consequently, the condition (16) for improving the imperfect predictions via the MME
approach can be written in a form which is more amenable to practical estimates.

Fact 4 The condition (16) for improving imperfect predictions via the MME approach
with uncertainty Δ can be expressed as

Aβββ,I
(
πl1 , {πmi ,l2/πmi }

)
+ B̃βββ,I

({
EEE
mi }; EEE0

)
+ C̃βββ,I

({
EEE
mi }

, δ ˜̄EEE
)

+ Δ > 0,

(21)
where Aβββ,I is defined in (17) and

B̃βββ,I =
∑

i 
=�
βi

 
I

dt
[
P(π

l1
0 , π

m�,l2
t ) − P(π

l1
0 , π

mi ,l2
t )

]
,

C̃βββ,I =
∑

i 
=�
βi

 
I

dt
[(

θθθ
m�
t − θθθ

mi
t

)
· δẼEEt

]
,

where θθθ
m�
t = θθθ

m�
t
(
EEE
m�
t

)
, θθθ

mi
t = θθθ

mi
t
(
EEE
mi
t

)
, the weights βi are defined in (12), and the

least-biased truth and model densities are given in (14).

Remarks

• The evolution of EEE
mi
t andθθθ

mi
t can be computed directly from the imperfect models.

• When considering the forced response prediction to perturbations of the attractor

dynamics, the expected changes, δẼEEt , in the truth statistics can be estimated based
on the correlations on the unperturbed attractor using the fluctuation–dissipation
formulas (e.g., Majda and Gershgorin 2010, 2011a, b). In the context of the initial

value problem, δẼEEt can be estimated in the hindcast/reanalysis mode (e.g., Kim
et al. 2012).

3.1.3 Initial Value Problem Versus Forced Response

The framework introduced in Sect. 3.1 applies, in principle, to two seemingly distinct
cases: (i) improving imperfect predictions from given non-equilibrium statistical initial
conditions and (ii) improving predictions of the response of the truth equilibrium
dynamics to external perturbations. Given the decomposition in (20), the similarities
and differences between the initial value problem and the forced response prediction
can be summarized as follows:

• For the initial value problem, the initial marginal densities for the resolved dynam-
ics, π0 and π

mi
t , correspond to any smooth probability densities with the initial

statistics EEE0 and EEE
m
0 . However, in the case of the forced response prediction, the
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statistical initial conditions are restricted to the respective equilibrium states, i.e.,
π0 = πeq and π

mi
0 = π

mi
eq , and EEE0 = EEEeq and EEE

mi
0 = EEE

mi
eq .

• The fundamental difference between the initial value problem discussed in
Sect. 3.1.2 and the forced response prediction lies in the properties of the per-
turbation terms in the decomposition (18) and the existence of the decomposition
(20). In particular,
– The marginal probability density associated with the evolution of a non-

degenerate truth in the initial value problem can always be written in the form
(18) and (20). However, the time-dependent terms in (18) and (20) are generally
small only for sufficiently short times.

– In the case of estimating the truth response to external perturbations, the decom-
positions (18) and (20) apply to non-degenerate hypoelliptic noise (see Hairer
and Majda 2010). For sufficiently small external perturbations, the time-
dependent perturbations in (18) and (20) remain small for all time. This allows
for a practical assessment of the prediction improvement in the forced response
via MME through the general conditions (12), (16), or their subsidiaries dis-
cussed in Sects. 3.1.4 and 3.1.2 when combined with the linear response theory
exploiting the fluctuation–dissipation formulas at the unperturbed equilibrium
(see, e.g., Majda et al. 2005; Majda and Wang 2006 for more details).

3.1.4 Formal Guidelines for Constructing MME with Superior Predictive Skill
Relative to the Single-Model Predictions

Here, we consider a perturbative approach which provides practical guidelines for
constructing a useful MME from a single model m�. As discussed earlier (Fact 1 and
Fig. 2), the best single model for making predictions can be inferior to an ensem-
ble of imperfect models which appropriately ‘sample’ the relative entropy landscape
PI(πl, ·). Such information is inaccessible if only the estimatesPI(πl, πmi ) for indi-
vidual models mi ∈ M in the ensemble are available; in such cases the criteria (12)
or (16) provide the best possible guidance. However, additional MME improvements
can be achieved via testing the local geometry of PI(πl, ·) if there exists a possibility
of perturbing a parameterized family of models.

First, we note that if a globally parameterized family of imperfect models is avail-
able, then the same convexity arguments as those used in Facts 1–3 imply that the
MME with densities πm

ε� , {πm
εi

} satisfying

PI(πl, πm
ε�) � PI(πl, πm

εi
)

and

(
d

dε
PI(πl, πm

ε )

∣∣∣∣
ε=ε�

)(
d

dε
PI(πl, πm

ε )

∣∣∣∣
ε=εi

)
< 0, (22)

will have an improved prediction skill relative to the single-model density πm
ε� . The rea-

sons for not choosing the model with the smallest prediction error, min[PI(πl, πm
ε�),

PI(πl, πm
εi

)], are analogous to those used in Facts 1 and 3. If there is no global para-
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meterization in the imperfect model class, consider an MME with a mixture density
generated by perturbing a single-model density πm� so that for ε � 1

πmme
t =

∑

i

αiπ
mi ,ε
t , π

mi ,ε
t (uuu) = π

m�
t (uuu) + ε π̃

mi
t (uuu),

ˆ
π̃
mi
t (uuu)duuu = 0;

(23)

existence of such perturbed densities π
mi ,ε
t which are non-degenerate (smooth at ε =

0) was shown to exist under minimal assumptions on the model dynamics in (Hairer
and Majda 2010); the interested reader should consult (Majda and Gershgorin 2011a, b;
Majda and Wang 2010) for a related treatment of the predictive skill in the single-model
configuration.

Based on the decomposition in (23), the evolution of the statistical moments EEE
mi ,ε

t
for the ensemble members can be written as

(a) EEE
mi ,ε

t = EEE
m�
t + ε ẼEE

mi

t , (b) θθθ
mi ,ε
t = θθθ

m�
t + ε θ̃θθ

mi
t

(
EEE
m�
t

)+ O(ε2), (24)

where

θ̃θθ
mi
t =

(
EEE
m�
t ·∇θ

mi
1 |ε=0, EEE

m�
t ·∇θ

mi
2 |ε=0, . . . , EEE

m�
t ·∇θ

mi
l1

|ε=0

)T
.

The asymptotic expansions in (24) can be combined with the condition (16) to yield
the following:

Fact 5 Consider a MME generated by perturbing a single model m� so that the sta-
tistical moments EEE

mi ,ε

t and the coefficients θθθ
mi ,ε
t in the least-biased model densities

π
mi ,l2
t are given by (24). The criterion (16) for improving imperfect predictions via

the MME approach with uncertainty Δ ∼ ε can be expressed as

Aβββ,I
(
πl1 ,

{
πmi ,l2/πmi

})+ ε C̃βββ,I
(
EEE,
{
EEE
mi })+ Δ + O(ε2) > 0, (25)

where Aβββ,I is given by (17) and

C̃βββ,I =
∑

i 
=�
βi

 
I

[(
θ̃θθ
m�
t − θ̃θθ

mi
t

)
·
(
EEEt − EEE

m�
t

)]
dt,

where θ̃θθ
m�
t = θ̃θθ

m�
t

(
EEE
m�
t

)
, θ̃θθ

mi
t = θ̃θθ

mi
t

(
EEE
m�
t

)
, and the weights βi are defined in (12).

Remarks

• The perturbations θ̃θθ
mi
t can be computed directly from the imperfect models mi

in MME. The evolution of the truth moments EEEt can be estimated in the hind-
cast/reanalysis mode in the context of the initial value problem or via the linear
response theory and the fluctuation–dissipation formulas when considering the
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forced response predictions from equilibrium (e.g., Majda and Gershgorin 2010,
2011a, b).

• The condition (25) simplifies for Gaussian mixture MME discussed in Sect. 3.2
since then Aβββ,I = 0.

3.2 Improving Imperfect Predictions Via MME in the Gaussian Framework

The analysis presented in Sect. 3.1–3.1.3 is particularly revealing in the Gaussian
framework, i.e., when l1 = l2 = 2 in (16) or (21), due to the existence of an analytical
formula for the relative entropy between two Gaussian densities (e.g., Majda et al.
2005). In such a case, the probability density, πmme

t , in (1) of the MME is a Gaussian
mixture and Aααα = 0 in the conditions (16), (25), and (21). In order to achieve the
maximum simplification of the problem while retaining the crucial features of the
framework, we assume here that the reduced-order models on the subspace of the
resolved variables uuu ∈ RK for predicting the marginal statistics πt of the resolved
truth dynamics are given by the family of Gaussian Ito SDE’s (e.g., Øksendal 2010)
given by

duuum = (− γmuuum + Fm fff m(t)
)
dt + σm

u dWWWu(t), (26)

where γm, Fm, σm ∈ RK×K are diagonal matrices with γm
i i , σ

m
i i > 0, ‖ fff ‖∞ � 1,

and WWWu(t) is a vector-valued Wiener process with independent components, and the
mean dynamics and its covariance are given by the well-known formulas

μμμm
t = E

πm
t [uuu] = e−γm(t−t0)ūuu0 + Fm

ˆ t

t0
e−�m(t−s) fff m(s)ds, (27)

Rm
t = E

πm
t [uuu ⊗ uuu] − μμμm

t ⊗ μμμm
t = e−γm(t−t0)R0 e

−γm(t−t0)

+
ˆ t

t0
eγm(s−t)Q eγm(s−t)ds, (28)

where Q = σm ⊗ (σm)T . Consequently, the MME density, πmme
t , in (1) is a linear

superposition of Gaussian densities with the statistics evolving according to (27)–(28).
Consider now the time-dependent marginal density, πt (uuu), of the truth on the sub-

space of resolved variables uuu ∈ RK so that

πt = π0 + δπ̃t , π̃0 = 0,

ˆ
π̃t (uuu)duuu = 0. (29)

As discussed in Sect. 3.1.3, the interpretation of the decomposition in (29) depends
on the considered problem. In the context of the initial value problem, π0 corresponds
to the uncertainty in the initial conditions, and δ is an ordering parameter utilized
below in short-time asymptotic expansions. When considering the forced response
to small external perturbations of the truth equilibrium dynamics, π0 = πeq, and we
assume the perturbation in (29) is non-singular so that πt is smooth at δ = 0 which
holds under minimal assumptions outlined in Hairer and Majda 2010. In the Gaussian
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setting considered here, the decomposition (29) can be used to write the second-order
statistics of the truth as

μμμt = μμμ0 + δμ̃μμt , μ̃μμ0 = 0, Rt = R0 + δ R̃t , R̃0 = 0, (30)

with analogous expressions for the mean μμμ
mi
t and covariance Rmi

t of the imperfect
Gaussian models (26) in the multi-model ensemble.

The general condition (16) or (21) for improving MME predictions in the Gaussian
framework can be easily rewritten in terms of the centered moments,μμμt , Rt , μμμ

mi
t , Rmi

t ,
as discussed in “Appendix 1”. Here, we first highlight a simpler and more revealing
version of this condition in the context of the initial value problem which is valid only
at sufficiently short times. (The short-time constraint for the initial value problem
arises from the technical requirement that the time-dependent terms in the statistical
moments δμ̃μμt , δμ̃μμ

mi
t , δ R̃t , δ R̃

mi
t be small; see “Appendix 1”).

Fact 6 Consider the initial value problem and imperfect statistical predictions with
Gaussian modelsmi in (26) with correct initial statistics, i.e.,μμμmi

0 = μμμ0, Rmi
0 =R0, and

over a sufficiently short time interval I = [0 T ], T � 1 so that δμ̃μμt , δμ̃μμ
mi
t , δ R̃t , δ R̃

mi
t

remain small. The Gaussian mixture MME provides improved predictions relative to
the single-model predictions with m� over the interval I with uncertainty Δ when

Dβββ,I
(
{μ̃μμ − μ̃μμmi }

)
+ Eβββ,I

(
{R̃mi }

)
+ Fβββ,I

(
R̃, {R̃mi }

)
+ Δ + O(δ) > 0, (31)

where

Dβββ,I = 1
2

∑

i 
=�
βi

 
I

[
(μ̃μμt − μ̃μμ

m�
t )T (R0)

−1(μ̃μμt − μ̃μμ
m�
t )

− (μ̃μμt − μ̃μμ
mi
t )T (R0)

−1(μ̃μμt − μ̃μμ
mi
t )
]
dt,

Eβββ,I = 1
4

∑

i 
=�
βi

 
I

tr
[
(R̃m�

t − R̃mi
t )(R0)

−1
]
tr
[
(R̃m�

t + R̃mi
t )(R0)

−1
]
dt,

Fβββ,I = − 1
2

∑

i 
=�
βi

 
I

tr
[
R̃t (R0)

−1(R̃m�
t − R̃mi

t
)
(R0)

−1
]
dt,

with the weights βi defined in (12).

Remarks

• For an MME containing models (26), underdamped MME with γmi � γm� helps
improve the short-time imperfect predictions (EI > 0), but it is not sufficient
to guarantee the overall skill improvement. The interplays between the truth and
model response in DI and the truth and model response in the variance in FI are
both important. Moreover, when the truth response R̃t in the variance is sufficiently
negative, the short-term prediction skill is not improved through the underdamped
MME.
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• Even if the short-time condition (31) is satisfied, the medium-range predictive skill
of MME might not beat the single model (see Sect. 4.3 for examples).

It turns out that the sufficient condition for improving infinite-time forced response
predictions via a Gaussian mixture MME takes an even simpler form than (31) for the
initial value problem. This fact follows from invariance of the equilibrium covariance
with respect to forcing perturbations in linear Gaussian systems (26), i.e., R̃t = 0
in (30), and the fact that under minimal assumptions (Hairer and Majda 2010), the
perturbations in the mean, μ̃t , remain small for all time. Thus, we have the following
(see “Appendix 1” for details):

Fact 7 Consider the forced response prediction via a Gaussian mixture MME contain-
ing imperfect Gaussian models (26) with correct equilibrium mean and covariance, i.e.,
μμμ
mi
eq = μμμeq and Rmi

eq = Req. The sufficient condition for improving forced response
predictions to small external forcing perturbations via MME over the time interval
I = [t1 t1+T ] is independent of the truth covariance response, R̃t , and it is given by

Dβββ,I
(
{μ̃μμ − μ̃μμmi }

)
+ O(δ) > 0, (32)

where μ̃μμt and μ̃μμ
mi
t are, respectively, the perturbations of the truth and model mean

from their equilibrium values and Dt has the same form as in (31) but with R0 = Req.

Remarks

• The condition (32) for improving the infinite-time forced response can be written
as ∑

i 
=�
βi

 
I

[
‖μ̃μμt − μ̃μμ�

t ‖2
R−1

eq
− ‖μ̃μμt − μ̃μμi

t‖2
R−1

eq

]
dt + O(δ) > 0, (33)

where ‖μμμ‖2
R = μμμTRμμμ and the weights βi are defined in (12). The choice of MME

satisfying the above condition depends on the interplay between the truth and
model response in the mean, and it becomes difficult for μ̃μμt R

−1
eq μ̃μμi

t < 0; a detailed
illustration of this fact is presented in Sect. 4.2.

• The truth response in the mean μ̃μμt can be estimated from the unperturbed equi-
librium based on the linear response theory incorporating fluctuation–dissipation
formulas (Majda et al. 2005, 2010b, a; Abramov and Majda 2007; Gritsun et al.
2008; Majda and Gershgorin 2010, 2011a, b).

• An MME with superior skill for predicting the infinite-time forced response, so that
(32) is satisfied for t1 → ∞, T → 0, the short- or medium-range predictive skill
of the same MME might not beat the single model (see examples in Sect. 4.3.3).

• In a more general setting (see “Appendix 1”) when π
mi
eq 
= πeq so that μμμ

mi
eq 
= μμμeq

and Rmi
eq 
= Req, the interplay between the truth and model response in both the

mean and covariance is important (see Majda and Gershgorin 2010, 2011a, b for
related analysis in the single-model configuration).

The insights gained from the conditions highlighted in facts 8 and 9 and its generaliza-
tions presented in “Appendix 1” will be used when interpreting the numerical results
in Sect. 4.3.
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4 Tests of the Theory for MME Prediction

The goal of any reduced-order prediction technique is to achieve statistically accurate
estimates of the evolving truth on the resolved subspace of dynamical variables given
uncertain initial data and an imperfect model. MME prediction attempts to accomplish
this by combining a collection of reduced-order models, and conditions for the utility
of such an approach relative to single model predictions were derived in Sect. 3.
Here, in order to illustrate these analytical results, we exploit two classes of exactly
solvable stochastic models, described in Sect. 4.1, which are used to generate the
‘truth’ dynamics. In Sect. 4.2, we use these models to provide a cautionary analytical
example illustrating the limitations of ad hoc applications of the MME framework in
the presence of information barriers (Majda and Branicki 2012c). In Sect. 4.3, we test
the information-theoretic criteria derived in Sect. 3 for improving predictions via the
MME approach with the help of numerical simulations. While an exhaustive numerical
study based on complex numerical models is certainly desirable, it is complementary
to our goals and a subject for a separate publication.

4.1 Setup for Studying the Performance of MME Skill Using Exactly Solvable Test
Models

Here, we consider two classes of stochastic models which provide the simplest possible
setting for illustrating the consequences of interactions between the resolved and
unresolved dynamics on the prediction error of reduced-order models. The stochastic
dynamics in these models (one Gaussian and one non-Gaussian) may be regarded as
an idealization of nonlinear couplings with a ‘bath’ of unresolved degrees of freedom
in a much higher dimensional system (see, for example, Majda et al. 2003). The
first class of models, described in Sect. 4.1.1, is given by a parameterized family
of two-dimensional linear Gaussian systems (Majda and Yuan 2012; Majda 2012;
Majda and Branicki 2012c) which linearly couple the ‘resolved’ and ‘unresolved’
dynamics. This revealing setup provides the simplest non-trivial example in which
information barriers to improving imperfect dynamical predictions may arise due to
neglecting the couplings between the resolved and the unresolved processes (see Majda
2012; Majda and Gershgorin 2011a, b; Majda and Branicki 2012c); we discuss this
issue in detail in Sect. 4.2 and Sect. 4.3.3 in the context of MME predictions of the
forced response. The nonlinear, non-Gaussian test models, outlined in Sect. 4.1.2 and
introduced in (Gershgorin et al. 2010b), allow for incorporating a wealth of dynamical
phenomena which are induced by nonlinear multi-scale interactions; these include the
intermittent bursts of instability at the resolved scales which are typical of many
turbulent regimes in geophysical flows (e.g., Majda 2000; Majda and Lee 2014).

4.1.1 The Two-Dimensional Linear Gaussian System

In this linear Gaussian system with the state vector xxx = (u, v)T , the ‘resolved’
dynamics u(t) is linearly coupled to the ‘unresolved’ dynamics, v(t), according to
(see Majda and Yuan 2012; Majda 2012; Majda and Branicki 2012c)

123



510 J Nonlinear Sci (2015) 25:489–538

d

(
u
v

)
=
[
L

(
u
v

)
+
(
F(t)

0

)]
dt +

(
0
σ

)
dW (t), (34)

where W (t) is the scalar Wiener process, and the matrix L and its eigenvalues λ1,2 are

L =
(
a 1
q A

)
, λ1,2 = 1

2

(
a + A ±

√
(a − A)2 + 4q

)
, (35)

with a the damping in the resolved dynamics u(t), A the damping in the unresolved
dynamics v(t), and q the coupling parameter between u(t) and v(t). We assume that
the deterministic forcing F(t) acts only in the resolved subspace u and the stochastic
forcing affects directly only the unresolved dynamics v(t) which is linearly coupled to
the resolved dynamics for q 
= 0. Since the system (34) is linear with additive noise,
it can be easily shown that it has a Gaussian attractor provided that

a + A = λ1 + λ2 < 0, aA − q = λ1λ2 > 0, (36)

so that the stable the equilibrium mean μμμeq = (μu
eq, μv

eq) and covariance Req of (34)
are given by

μu
eq = − AF

λ1λ2
, μv

eq = qF

λ1λ2
,

Req =
(

1 −a
−a λ1λ2 + a2

) − σ 2

2(λ1 + λ2)λ1λ2
. (37)

The autocovariance of (34) at equilibrium depends only on the lag, τ , and it is given
by Ceq(τ ) = Req eL

Tτ (see Majda and Branicki 2012c for details). Extensions to the
non-autonomous case are trivially obtained if the stability conditions (36) are satisfied
so that there exists a Gaussian measure on the attractor (see, e.g., Arnold 1998; Majda
and Wang 2006) with the attractor mean, μμμatt(t) ≡ limt0→−∞μμμ(t, t0), and the same
autocovariance as in the autonomous case.

Despite the simplicity of the system (34), there exist distinct regimes of transient
dynamics with a stable Gaussian equilibrium satisfying (36); in particular, there exist
families in the {a, A, q, σ } parameter space with the same marginal statistics of the
resolved attractor dynamics (see Majda and Branicki 2012c). This feature of the toy
model (34) is important for our purposes since in many applications, the only reliable
information that can be extracted from empirical data is the low-order statistics of the
resolved dynamics at equilibrium which, in turn, can be often reproduced by many
imperfect models. These are exactly the issues considered in a general setting in Sect. 3,
and they will be illustrated using numerical tests in Sect. 4.3.

4.1.2 The Nonlinear, Non-Gaussian Model

The non-Gaussian dynamics of the second test model is given by the following non-
linear stochastic system (see Gershgorin et al. 2010b; Branicki et al. 2012; Branicki
and Majda 2012b, c; Majda and Branicki 2012c)
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(a) du(t) = [
(−γ (t) + iω)u(t) + F(t)

]
dt + σudWu(t),

(b) dγ (t) = −dγ (γ (t) − γ̂ )dt + σγ dWγ (t),
(38)

where Wu is a complex Wiener processes with independent components and Wγ is
a real Wiener process. The nonlinear system (38), introduced first in a more general
form in (Gershgorin et al. 2010b) for filtering multi-scale turbulent signals with hid-
den instabilities, has a number of desirable properties for testing the skill of MME
prediction with reduced-order models. First, it has a surprisingly rich dynamics mim-
icking signals in various regimes of the turbulent spectrum, including regimes with
intermittently positive finite-time Lyapunov exponents due to large-amplitude bursts
of instabilities in u(t) and fat-tailed probability densities for u(t) (Branicki et al. 2012;
Branicki and Majda 2012b, c; Majda and Lee 2014). The equilibrium probability den-
sities in the above regimes have nonzero skewness when F 
= 0 in (38a). Moreover,
exact path-wise solutions and exact second-order statistics of this non-Gaussian system
can be obtained analytically, as discussed in Gershgorin et al. (2010b).

We consider u(t) in (38) to be the ‘resolved’ variable which is nonlinearly cou-
pled with the ‘unresolved’ dynamics γ (t) which induces damping fluctuations in the
resolved dynamics; this nonlinear coupling is capable of generating a highly non-
Gaussian resolved dynamics u(t) which proved valuable for studying uncertainty
quantification and filtering of turbulent dynamical systems (Majda et al. 2010c; Bran-
icki et al. 2012; Branicki and Majda 2012c, b; Majda and Branicki 2012c). It is worth
stressing that the stochastic dynamics in (38) may be regarded as an idealization of
cumulative effects due to nonlinear couplings with a ‘bath’ of unresolved degrees of
freedom in a much higher dimensional system (e.g., Majda et al. 2003). In Sect. 4.3,
we will consider numerical tests employing an ensemble of reduced-order Gaussian
models for predicting the resolved dynamics u(t) of the non-Gaussian model (38) with
the hidden, unresolved dynamics of γ (t); these tests are used to illustrate the general
information-theoretic criteria derived in Sect. 3 and provide insight into additional
subtleties associated with MME prediction.

4.2 Information Barriers in MME Prediction

Prediction improvement within the MME framework is not always guaranteed, and
it depends on both the choice of the imperfect model ensemble and the nature of the
truth dynamics; this fact is apparent in the information criteria derived in Sect. 3.1. The
example discussed below represents the simplest non-trivial configuration in which
barriers to prediction improvement within the MME framework can arise, and it aug-
ments the previous considerations discussed in Majda and Gershgorin (2011a), Majda
(2012), Majda and Branicki (2012c) in the context of single-model predictions.

Consider a configuration where the truth dynamics (u(t), v(t)) is given by (34)
with a stable Gaussian attractor, and the imperfect models for the resolved dynamics
um(t) are given by the linear Gaussian models (26) with correct marginal equilibrium
statistics so that

Eeq[um] = Eeq[u] = μeq, and Vareq[um] = Vareq[u] ≡ Req, (39)
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where the equilibrium mean of the model dynamics (26) and of the resolved truth (34)
are given, respectively, in (27)–(28) and (37). The two constraints in (39) imposed
on the family of imperfect models (26) with parameters (γm, σm, Fm) leave a one-
parameter family of models with a correct marginal equilibrium statistics parameter-
ized by γm.

Consider now predictions of the infinite-time response of the truth dynamics to
forcing perturbations which change the forcing by δ F̃ so that the marginal statistics
at the new equilibrium of the truth (34) and the model (26) are given by

a) μδ∞ = μeq − A

λ1λ2
δ F̃, b) μm,δ∞ = μeq + 1

γm δ F̃, (40)

while the variance of u and um remains unchanged since the considered models are
linear and Gaussian. In this case, the condition (32) for improving the infinite-time
forced response prediction via the MME approach relative to singe model predictions
with m� becomes, at the leading order in δ F̃ ,

∑

i 
=�
βi

[( A

λ1λ2
+ 1

γm�

)2

−
(

A

λ1λ2
+ 1

γmi

)2 ]
> 0. (41)

The above condition implies the existence of two distinct configurations which, sim-
ilarly to the single-model predictions, are distinguished by the sign of the damping
parameter A in the unresolved truth dynamics in (34). These two scenarios were
already sketched in Fig. 2a,b, and we discuss their characteristics below:

(i) No information barrier in the single-model prediction [A < 0 in the unresolved
part of the truth (34)] In this case there exists an imperfect model m∗∞ in (26) with

γm∗∞ = 1/τm
∗∞ = −λ1λ2/A > 0, (42)

which is optimal for doing infinite-time forced response predictions so that

lim
t→∞P(πδ

t , π
m∗∞, δ
t ) = 0 while also satisfying the constraints (39) leading to

P(πeq, π
m∗
eq ) = 0. The following hold in this case:

– Ifm� 
= m∗∞, the MME approach can improve the infinite-time forced response
prediction based on the condition (41); see also Fig. 7 discussed later in
Sect. 4.3.3. In particular, the MME skill is improved for any overdamped
MME with γmi � γm� (τmi � τm� ). If, additionally, m∗∞ /∈ M, the informa-
tion barrier in MME can be reduced relative to the m� prediction (see also
Fig. 2a).

– If m� = m∗, the MME approach cannot improve the infinite-time forced
response prediction based on the condition (41), see Fig. 7. The information
barrier in MME cannot be reduced relative to the single-model prediction with
m∗ (cf., Fact 2 in Sect. 3.1).

(ii) Information barrier in the single-model prediction [A > 0 in the unresolved part
of the truth (34)] In this case, the infinite-time forced response prediction is
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improved (at least) for any MME containing models with γmi � γm� (τmi � τm� ).
The information barrier in MME prediction of the infinite-time forced response
cannot be reduced relative to the single-model prediction, and it is given by

P(πδ∞, πm∗,δ∞ ) = |δ F̃ |2
2Req

(
A

λ1λ2

)2

, (43)

which is achieved only when γm∗→ ∞; this situation represents one instance of
the configuration depicted schematically in Fig. 2b (see also Figs. 8, 7, 1c for
analogous situation in the context initial value problem). Recall that the informa-
tion barrier in MME prediction utilizing the class of models M corresponds to
model error of the optimal-weight MME (9).

This revealing example of the MME skill for forced response prediction and the asso-
ciated information barriers is examined further in Sect. 4.3.3 in the case of prediction
over a finite time interval, where it is shown that additional information barriers can
arise if MME consists of a finite number of models.

4.3 Numerical Examples

The goal of this section is twofold. First, we illustrate the general information-theoretic
criteria derived in Sect. 3 for improving imperfect predictions via the MME approach
with the help of numerical simulations based on the exactly solvable stochastic test
models introduced in Sect. 4.1. We stress again that while an exhaustive numerical
study based on complex models is desirable, it is complementary to our goals and a
subject for a separate publication. The second aim is to illustrate, in a controlled setting,
differences between the single-model prediction and the MME prediction under addi-
tional constraints which arise in applications. In practice, imperfect models are often
approximately tuned to the marginal equilibrium statistics of the resolved dynam-
ics which is often the only reliable source of information. However, such a tuning
procedure does not necessarily reduce the prediction error in the transient dynamics
or in the response to forced perturbations from equilibrium (e.g., Majda and Gersh-
gorin 2011a, b; Branicki and Majda 2012c; Majda and Branicki 2012c). The numerical
examples studied below highlight the differences between the MME structure provid-
ing improved short- and medium-range predictions (see also “Appendix 2”). Thus,
apart from validating the analytical estimates of Sect. 3, particular emphasis in this
section is on the following issues:

• How significant are the differences between the optimal-weight and equal-weight
MME prediction?

• Are MME’s with good short prediction skill likely to have good medium-range
prediction skill?

These themes appear recurrently throughout the remaining sections.
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4.3.1 Tuning Reduced-Order Models in the Multi-Model Ensemble

In the numerical examples discussed below, the MME density, πmme
t (1), is a Gaussian

mixture involving the imperfect model densities, π
mi
t , associated with the class M

of linear Gaussian models (34) with correct marginal equilibrium statistics for the
resolved dynamics. This setting reflects the fact that the marginal equilibrium mean
and covariance, 〈u〉eq, Vareq[u], of the resolved truth dynamics can be estimated from
measurements. The following result (see Majda and Branicki 2012c) provides the
basis for tuning the marginal equilibrium statistics of the imperfect models in a MME:

Proposition 1 Consider the linear Gaussian dynamics in (26) with coefficients{
γm, σm, Fm

}
and constant forcing. Provided that γm > 0, the equilibrium statistics

of (26) is controlled by two parameters

{
μm

eq = Fm

γm , Rm
eq = (σm)2

2γm

}
, (44)

which correspond, respectively, to the model mean and variance. There exists is a
one-parameter family of models (26) with correct marginal equilibrium statistics of
the resolved truth dynamics u(t) with

(σm)2 = −2γm Vareq[u], Fm = −γm
Eeq[u], (45)

where γm is a free parameter andEeq[u] andVareq[u] denote themarginal equilibrium
mean and variance of the resolved truth dynamics.

The class of imperfect models with correct marginal equilibrium statistics and correct
statistics of the initial conditions is given by

M :=
{
πm
t (u) = N (μ(t), R(t)

) : lim
t→∞P

(
πt , π

m
t

)
= 0, πm

t0 = πt0

}
, (46)

where P is the relative entropy (2). Given the constraints on the initial conditions and
the equilibrium model densities in the family M, there is one free parameter left in
the models (26) which we choose to be the correlation time τmi = 1/γmi . Therefore,
the mixture density (1) of the MME can be written as

πmme
t;ααα,[τ ](u) =

I∑

i=1

αiπ
mi
t;τi (u), αi � 0,

∑
αi = 1, (47)

which is parameterized by the weights ααα ≡ [α1, . . . , αI ] and the distribution of the
correlation times denoted by [τ ]; here, we assume that [τ ] is given by a vector of
correlation times evenly distributed between τmin and τmax

[τ ] =
{
τmin, τmin + Δτ, . . . , τmin + (N − 1)Δτ, τmax

}
,

Δτ = (τmax−τmin)/N , (48)
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and that τ trth ∈ [τ ] denotes the correct correlation time of the marginal dynamics u(t)
in (38). In general, the Gaussian Itô diffusions in (26) cannot reproduce the marginal
two-point equilibrium statistics of the true resolved dynamics (see Majda and Branicki
2012c for details). However, there exists a linear Gaussian model (26) with the correct
correlation time, τm = τ trth, where

1/τm ≡ (Rm
eq)

−1
ˆ ∞

0
〈um(t)um(t + τ)〉dτ,

1/τ trth ≡ Var−1
eq [u]

ˆ ∞

0
〈u(t)u(t + τ)〉dτ. (49)

In the analysis of Sects. 4.2 and 4.3, we will assume that the single-model predictions
are carried out using a model with correct correlation time for the resolved dynamics;
this setup is justified by the fact that the correlation time estimates are usually the next
easiest quantity to estimate from measurements, apart from the mean and covariance.
Finally, we adopt the following characterization of the ensemble structure:

• Balanced MMEBalanced MMEBalanced MME is given by imperfect models (26) with correlation
times τm = 1/γm {τmi }i∈I < τ trth < {τm j } j∈J , #I = #J and correct marginal
equilibrium statistics for the resolved dynamics,

• Underdamped MMEUnderdamped MMEUnderdamped MME is given by imperfect models (26) with correlation times
τmi � τ trth (so that γmi � 1/τ trth) and correct marginal equilibrium statistics for
the resolved dynamics,

• Overdamped MMEOverdamped MMEOverdamped MME is given by imperfect models (26) with correlation times
τmi � τ trth (so that γmi � 1/τ trth) and correct marginal equilibrium statistics for
the resolved dynamics.

(50)
The statistical accuracy of the imperfect dynamical predictions is assessed using two
information measures (Giannakis et al. 2012; Giannakis and Majda 2012a, b; Branicki
and Majda 2012c; Majda and Branicki 2012c) exploiting the relative entropy (2),
namely:

(i) the model error

E m
t = P (πt (u), πm

t (u)
)
, E mme

t = P (πt (u), πmme
t (u)

)
, (51)

(ii) the internal prediction skill

It = P (πt (u), πeq(u)
)
, I m

t = P
(
πm
t (u), πm

eq(u)
)

,

I mme
t = P (πmme

t (u), πmme
t (u)

)
, (52)

for the truth, a single model m, and an MME relative to their respective equilibria.
Note that the information criteria derived in Sect. 3.1 focus on the model error
part in the overall predictive skill which combines (i) and (ii) (Giannakis et al.
2012; Giannakis and Majda 2012a, b; Branicki and Majda 2012c; Majda and
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Branicki 2012c). When examining the mitigation of prediction error via the MME
approach, it is sufficient to consider the measure in (i) above. However, in the
following tests, we show the evolution of the internal prediction skill alongside
the model error in order to motivate future generalizations of this approach to
account for the overall prediction skill.

4.3.2 Tests of MME Prediction in the Context of Initial Value Problem

Here, we use the test models described in Sects. 4.1.1–4.1.2 in order to provide a more
complete picture of the MME prediction and augment the analytical results of Sect. 3
with simple numerical simulations. Particular focus is on the issues raised at the begin-
ning of Sect. 4.3 which are not easily tractable analytically; these include differences
between the equal-weight and optimal-weight ensembles, information barriers, and
the change in structure in the optimal-weight ensemble depending on the prediction
horizon.
Gaussian Truth & Gaussian Mixture MME We begin by considering the simplest
possible configuration in which both the truth dynamics and the imperfect models in
the MME are Gaussian. The truth dynamics is given by the two-dimensional Gaussian
model (34) described in Sect. 4.1.1 where the resolved dynamics is linearly coupled
to the unresolved dynamics with a stochastic forcing that mimics further unresolved
interactions. The MME density πmme

t;ααα,[τ ] is a finite Gaussian mixture associated with the
one-parameter class M (46) of linear Gaussian models (34) which is characterized by
the weights vector ααα and the distribution [τ ] (48) of correlation times in the imperfect
models (26); correct statistical initial conditions and correct marginal equilibrium
statistics for the resolved dynamics are imposed.

Figure 3 illustrates the dependence of MME prediction skill on the structure of the
ensemble [see (50)] for a fixed initial uncertainty Var0[u] in the resolved dynamics of
the Gaussian truth (34); in all cases, the performance of the equal-weight MME (50)
and the optimal-weight MME (4) is compared with predictions of a single model m� ∈
M which has a correct correlation time τ trth (49). The optimal-weight Gaussian MME
is obtained by minimizing the relative entropy between the MME density πmme

t;ααα,[τ ](u)

and the marginal truth density πt (u), as in (9); recall that the error of the optimal-
weight MME prediction corresponds to an information barrier in the MME predictions
(see Fact 2 in Sect. 3) which is useful for assessing the skill of the equal-weight MME.
The information criterion (12) for each of the considered cases is indicated in the
corresponding insets. Below, we summarize the most important points revealed by the
simulations:

• The equal-weight MME tends to outperform the single-model predictions with
correct correlation time τ trth provided that the MME is either underdamped or bal-
anced [see (50) and Fig. 3]; this is reminiscent of the short-time results summarized
in Fact 6 of Sect. 3.2.

• Information barriers of the MME prediction in this setting are reduced relative to
the single-model prediction for balanced or underdamped MME (50) and moder-
ate uncertainty Var0[u] in the initial conditions for the resolved dynamics in (34).
For Var0[u] � Vareq[u], the optimal-weight MME collapses onto the most under-
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Initial value problem with Gaussian truth and perfect statistical initial conditions

Fig. 3 (Color online) Initial value problem. Prediction skill of a nine-model MME with correct statistical
initial conditions for the resolved dynamics u(t) of the Gaussian model (34) for three different types of
ensemble structure [see (50)]. The MME is a mixture of Gaussian models (26) with correct equilibrium
statistics (46) and correlation times τmi sampled around the correct correlation time τ trth with the spread
[τ ] = 0.5τ trth [see (48)]; the optimal-weight MME (magenta) is obtained by minimizing the relative
entropy as in (9). Truth parameters in (34): A = −0.5, a = −5.5, λ1,2 = −1,−5; σ : 0.77, F0 : 1, E =
0.01, 〈u〉eq = 0.1, 〈v〉eq = 1.35. Initial conditions (both truth and MME): 〈u〉0 = 1.05〈u〉eq, 〈v〉0 =
1.1〈v〉eq, R0 = 0.2Req

damped model in the ensemble [see (50)]. For Var0[u] ∼ Vareq[u], the optimal-
weight MME collapses onto the most overdamped model in the ensemble, indi-
cating no gain in predictive performance vie the MME approach.

• Weight optimization in MME improves the prediction skill (Fig. 3), and it provides
a benchmark for assessing the performance of the equal-weight MME; however,
such an optimization is impractical since it requires an iterative computation of
the relative entropy P(πl,

∑
αiπ

mi ) for the whole MME instead of the relative
entropy of individual models P(πl, πmi ), as in the criterion (12).
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Non-Gaussian Truth & Gaussian Mixture MME Here, the non-Gaussian truth dynam-
ics is given by the exactly solvable stochastic model (38) where the resolved dynamics
is nonlinearly coupled with the unresolved dynamics which induces fluctuations in the
effective damping of the resolved component. This non-Gaussian case with fat-tailed
and skewed probability densities provides a very useful test bed for illustrating the
analytical criteria derived in Sect. 3 and for exploring further intricacies in the MME
prediction; in fact, one example exploiting this revealing model is already shown in
Fig. 1 of Sect. 2. As in the previous configuration, the imperfect models in MME are
in the class M (46) of linear Gaussian models (26) so that the MME density πmme

t;ααα,[τ ]
in (47) is given by a Gaussian mixture. The optimal-weight MME, whose predic-
tion error corresponds to an information barrier (Fact 2 in Sect. 3), is obtained by
minimizing the relative entropy between the marginal truth density on the resolved
variables and the MME density, as in (9). The single-model prediction is carried out
using m� ∈ M with correct correlation time τ trth (49) of the resolved equilibrium
dynamics u(t).

Figures 4, 5 and 6 illustrate the dependence of the predictive skill of the Gaussian
mixture MME (47) as a function of time for increasing variance Var0[u] of the initial
statistics for the resolved dynamics in the non-Gaussian truth (38). In the config-
uration examined in Fig. 4, the marginal equilibrium statistics πeq(u) of the truth
(38) is symmetric but highly non-Gaussian (see regime II in Branicki and Majda
2012c) and the dynamics is initiated from a stable regime, i.e, when π0(γ ) =
N (α〈γ 〉eq, βVareq[γ ]), α > 0, β � 1. In Fig. 5, the dynamics of (38) is initiated
from an unstable configuration, i.e., π0(γ ) = N (−α〈γ 〉eq, βVareq[γ ]), α > 0, β � 1
and the initial stage of the truth evolution is characterized by a rapid transient phase.
Finally, in Fig. 6, the marginal equilibrium density πeq(u) of the resolved truth dynam-
ics is fat-tailed with a positive skewness and π0(γ ) = πeq(γ ). The prediction skill of
the equal-weight MME over the time interval I = [0 T ] is shown for the ensemble
spread [τ ] in (48) with the best skill (solid blue) and for the spread [τ ] with the worst
skill (dotted blue) within the maximum spread of [τ ]max = 10 τ trth; these MME’s are
defined as:

• Best equal-weight MME corresponds to the ensemble with density πmme
t;ααα,[τ ] in (47)

with αi = const. and the smallest prediction error (51) within the examined spread
[τ ]max of correlation times of the models in MME.

• Worst equal-weightMME corresponds to the ensemble with density πmme
t;ααα,[τ ] in (47)

with αi = const. and the largest prediction error (51) within the examined spread
[τ ]max of correlation times of the models in MME.

Considering these two extreme cases helps judge the sensitivity of the equal-weight
MME to the spread of the correlation times in the ensemble; the information criterion
(12) for each of the considered cases is indicated in the corresponding insets. Based on
the examples illustrated in Figs. 4 and 6, we summarize the general features of MME
prediction in this setting as follows:

• Symmetric fat-tailed marginal attractor density πeq(u) of the truth: MME pre-
diction skill tends to be superior to that of the single model m� with the correct
correlation time τ trth for the resolved dynamics except when π0(γ ) is in unsta-
ble regime of the truth dynamics in (38); in all cases, the criterion (12) correctly
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Symmetric non-Gaussian truth, IVP with perfect initial statistics in the stable regime of the truth

Fig. 4 (Color online) Initial value problem. Prediction skill of a 17-model MME with correct statistical
initial conditions for the resolved dynamics u(t) of the non-Gaussian model (38) for different uncertainties
Var0[u]. The truth dynamics (38) is initiated in a statistically stable regime (the unresolved variable at t0
satisfies γ0 ∼ N (1.8〈γ 〉eq, 0.2Vareq[γ ]). The MME is a mixture of Gaussian models (26) with correct

equilibrium statistics (46) and correlation times τmi sampled around the correct correlation time τ trth

[see balanced MME in (50)] with the spread [τ ] in πmme
t;ααα,[τ ] defined in (48); the optimal-weight MME

(magenta) is obtained by minimizing the relative entropy as in (9). Truth parameters: γ̂ = 1.5, dγ =
2, σγ = 2, σu = 0.5, F = 0. Initial conditions (both truth and MME): 〈u〉0 = 0.4〈u〉eq, 〈γ 〉0 =
1.2〈γ 〉eq, Var0[γ ] = 0.2Vareq[γ ] and Var0[u] = 0.01Vareq[u] (top), Var0[u] = 0.25Vareq[u] (middle),
Var0[u] = 0.95Vareq[u] (bottom)

reflects the conclusions obtained from the numerical simulations. The following
trends in the structure of MME [see (50)] are observed:
– Underdamped equal-weight MME (50) performs similarly well to the optimal-

weight MME (4) for predicting the resolved dynamics, u(t), when the full
dynamics (u(t), γ (t)) of (38) is initiated from the stable regime (Fig. 4). This
behavior is reminiscent of the short-time estimate derived in Fact 6 of Sect. 3.2.
Similar conclusions apply to the balanced MME (50) when the dynamics is
initiated in the stable regime or when π0(γ ) = N (〈γ 〉eq, Vareq[γ ]). The infor-
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Symmetric non-Gaussian truth, IVP with initial statistics in the unstable regime of the truth

Fig. 5 (Color online) Initial value problem. Prediction skill of a 17-model MME with correct statistical
initial conditions for the resolved dynamics u(t) of the non-Gaussian model (38) for different uncertainties
Var0[u]. The truth dynamics (38) is initiated in a statistically stable regime (the unresolved variable at t0
satisfies γ0 ∼ N (− 1.2〈γ 〉eq, 0.2Vareq[γ ]). The MME is a mixture of Gaussian models (26) with correct

equilibrium statistics (46) and correlation times τmi sampled around the correct correlation time τ trth (see
balanced MME in (50)) with the spread [τ ] in πmme

t;ααα,[τ ] defined in (48); the optimal-weight MME (magenta)

is obtained by minimizing the relative entropy as in (9). Truth parameters: γ̂ = 1.5, dγ = 2, σγ = 2, σu =
0.5, F = 0. Initial conditions (both truth and MME): 〈u〉0 = 0.4〈u〉eq, 〈γ 〉0 = 1.2〈γ 〉eq, Var0[γ ] =
0.2Vareq[γ ] and Var0[u] = 0.01Vareq[u] (top), Var0[u] = 0.1Vareq[u] (middle), Var0[u] = 0.95Vareq[u]
(bottom)

mation barrier in MME prediction is reduced relative to the single-model pre-
diction for sufficiently small initial uncertainty Var0[u].

– When the dynamics (u(t), γ (t)) of (38) is initiated from an unstable regime
(Fig. 5), the MME prediction does not provide a significantly improved skill
over the single-model predictions utilizingm� with the correct correlation time
τ trth (49) for the resolved dynamics u(t).

– The sensitivity to the spread [τ ] of correlation times τmi = 1/γmi (49) in
the equal-weight Gaussian MME (47) with models (26) shadows that of the
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Skewed non-Gaussian truth, IVP with initial statistics in the stable regime of the truth

Fig. 6 (Color online) Initial value problem. Prediction skill of a 17-model MME with correct statistical
initial conditions for the resolved dynamics u(t) of the non-Gaussian model (38) for different uncertainties
Var0[u]. The truth dynamics (38) is initiated in a statistically stable regime with the unresolved variable
at t0 satisfying γ0 ∼ N (〈γ 〉eq, Vareq[γ ]). The MME is a mixture of Gaussian models (26) with correct

equilibrium statistics (46) and correlation times τmi sampled around the correct correlation time τ trth (see
balanced MME in (50)) with the spread [τ ] in πmme

t;ααα,[τ ] defined in (48); the optimal-weight MME (magenta)

is obtained by minimizing the relative entropy as in (9). Truth parameters: γ̂ = 1.5, dγ = 10, σγ = 2, σu =
2, F = 1. Initial conditions (both truth and MME): 〈u〉0 = 0.1〈u〉eq, 〈γ 〉0 = 〈γ 〉eq, Var0[γ ] = Vareq[γ ]
and Var0[u] = 0.01Vareq[u] (top), Var0[u] = 0.5Vareq[u] (middle), Var0[u] = 0.95Vareq[u] (bottom)

optimal-weight MME (9) and increases with decreasing uncertainty Var0[u] of
the resolved initial conditions (Figs. 4, 5). However, the optimal spread [τ ]opt
for predictions over the time interval I grows with the uncertainty Var0[u] (not
shown).

• For skewed marginal attractor density πeq(u) of the truth the following points are
worth noting:
– The information barrier for Gaussian MME predictions in this regime coincides

with the most overdamped single model mi in the ensemble. The single-model
predictions based on m� with correct correlation time τ trth differ little from the
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optimal single model (which in this case coincides with the optimal-weight
MME; see the MME weight structure in Fig. 6).

– Prediction skill of the equal-weight balanced MME [see (50)] over the time
interval I = [0 T ] is poor and comparable to that of the single model m� with
correct correlation time τ trth. Some improvement at short times T � 1 and
small uncertainty in the initial statistical conditions can be observed even for
balanced MME, which is improved further (not shown) for an underdamped
MME in line with the conclusions in Fact 6 of Sect. 3.2.

• Weight optimization in MME improves the prediction skill; however, such an opti-
mization is impractical since it requires an iterative computation of the relative
entropy P(πl,

∑
αiπ

mi ) for the whole MME instead of the relative entropy of
individual models P(πl, πmi ), as in the criterion (12). For sufficiently large ini-
tial uncertainty Var0(u), the optimal-weight MME collapses onto the best single
model in the ensemble [see Figs. 4, 5, 6 for Var0(u) = 0.95Vareq(u)]; in such
cases, the criterion (12) is still valid when examining the prediction error (51) but
the internal prediction skill (52) needs to be taken into account in order to assess
the overall prediction skill. A framework for improving the overall prediction skill
will be discussed in a separate publication.

4.3.3 MME Prediction of the Forced Response

In this section, we augment the analytical considerations of Sect. 3.2, and the asymp-
totic infinite-time example discussed in Sect. 4.2, with simple numerical tests of the
forced response estimation over a finite-time interval I through a Gaussian mixture
MME prediction. Similar to the analytical setup in 4.2, the truth dynamics is Gaussian
and given by the model (34) with hidden dynamics that induces stochastic fluctuations
in the resolved dynamics. The imperfect models in the MME are in the class M (46)
of reduced-order linear Gaussian models (26) so that the MME density πmme

t;ααα,[τ ] is given
by the Gaussian mixture (47) with the weights vector ααα and the distribution [τ ] (48)
of correlation times in the imperfect models (26). The qualitative understanding of the
results presented below can be obtained with the help of the schematic Fig. 2 discussed
in Sect. 3.

In contrast to the initial value problem considered in Sect. 4.3.2, the initial statistical
conditions in the tests of the forced response prediction coincide with the unperturbed
marginal equilibrium statistics of the truth. The response of the resolved truth dynamics
(34), of the imperfect models (26), and of the MME (47) is induced by ‘ramp’-type
perturbations in the forcing which changes linearly between F0 and F0+δ F̃ over a time
interval [tmin tmax]. Here, the truth response to the forcing perturbations is computed
directly from the test model but, as already pointed out in Sect. 3.1.3, for sufficiently
small perturbations δ F̃ , the truth response can be estimated via the linear response
theory and the fluctuation–dissipation formulas utilizing the unperturbed equilibrium
statistics (see Majda et al. 2005, 2010b, a; Leith 1975; Abramov and Majda 2007;
Gritsun et al. 2008; Majda and Gershgorin 2011b for additional information).

Figures 7 and 8 show two distinct examples of prediction for the forced response
of the resolved dynamics u(t). Figure 7 shows the skill of imperfect predictions of

123



J Nonlinear Sci (2015) 25:489–538 523

the forced response of the truth in (34) to small forcing perturbations when there is
no ‘infinite-time’ information barrier (see Sect. 4.2) in the class M (46) of imperfect
Gaussian models (26). In this case, we compare the predictive skill of three different
types of MME defined in (50) with two single-model predictions. The first model
m� has the correct correlation time τ trth (49) for the resolved equilibrium dynam-
ics u(t) which can be assessed from empirical data. The second model m∗∞ has the
correct infinite-time forced response, but it is unlikely to be known a priori. In this
configuration, the optimal-weight MME for predicting the infinite-time response col-
lapses onto the single model m∗∞ and there is no information barrier for the infinite-
time forced response within the class of imperfect models M (consider Fig. 2a with
P(πl∞, πm∗

∞ ) = 0). However, the prediction of the forced response over a finite time
interval I can be improved even relative to m∗∞, as evidenced by the non-trivial struc-
ture of the optimal-weight MME in Fig. 7. Figure 8 shows the skill of imperfect
predictions of the forced response of (34) to small forcing perturbations in the pres-
ence of an ‘infinite-time’ information barrier (see Sect. 4.2) in the class M (46) of
the imperfect Gaussian models (26). This configuration corresponds to that sketched
in Fig. 2b when the optimal-weight MME for predicting the infinite-time response
coincides with a single model m∗ ∈ M with the smallest prediction error. Thus, the
information barrier for doing infinite-time response predictions cannot be reduced
via the MME utilizing models from M. Nevertheless, both the finite- and infinite-
time predictive skills can be improved via the MME approach relative to the single
model m� 
= m∗ for any overdamped MME as summarized below. The information
criterion (12) for improving predictions relative to m� with correct correlation time
τ trth (49) for the resolved equilibrium dynamics u(t) is indicated in the corresponding
insets.

Below, we summarize the most important points illustrated in Figs. 7 and 8:

• Improvement in the infinite-time forced response prediction within the Gaussian
MME framework is controlled by the simplified criterion (33) in Fact 7 of Sect. 3.2
which in the present configuration becomes

∑

i 
=�
βi (γ

mi − γm�)
(
X 2
i − μ̃F̃

)
> 0, (53)

where μ∞ = μeq + δμ̃ is the perturbed truth mean in response to the perturbed
forcing F∞ = F0 + δ F̃ , and X 2

i = 1
2 F̃

2(γmi + γm�)(γmi γm�)−2 > 0. There
are two obvious cases when the forced response prediction is improved within the
MME framework:
(i) when X 2

i − μ̃F̃ > 0 an ‘overdamped’ MME with γmi � γm� in (26) yields
an improved prediction of the infinite-time forced response from equilib-
rium. In this case, increasing the spread [τ ] (48) of correlation times in an
overdamped MME with correct equilibrium and correct statistical initial con-
ditions improves the MME prediction skill of the forced response.

(ii) when X 2
i − μ̃F̃ < 0 the infinite-time forced response is improved by an

‘underdamped’ MME with γmi � γm� . In this case, increasing the spread [τ ]
(48) of correlation times in underdamped MME with correct equilibrium and
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Forced response prediction of Gaussian truth with no infinite-time inform. barrier in MME

Fig. 7 (Color online) Prediction skill of a forced response of the resolved truth dynamics (34) based on a
17-model MME with correct statistical initial conditions for the resolved Gaussian dynamics u(t) in (34)
and three different types of MME structure [see (50)]. The MME is a mixture of Gaussian models (26)
with correct equilibrium statistics (46) and correlation times τmi sampled to create a balanced MME (top),
overdamped MME (middle), and underdamped MME (bottom) in (50) with the spread [τ ] = 0.8τ trth in the
MME density πmme

t;ααα,[τ ] (48); the ensemble of initial conditions for the unresolved dynamics v(t) in (34) is

drawn from the unperturbed equilibrium v0 ∼ N (〈v〉eq, Vareq[v]). The optimal-weight MME (magenta)
is obtained by minimizing the relative entropy as in (9). The correlation time τopt for the single model with
perfect infinite-time response (green/circles) is given by (42) in Sect. 4.2. Truth parameters in (34): A =
−5.5, a = −5.5, λ1,2 = −1,−10; σ : 1.48, F0 : 0.18, E = 0.01, 〈u〉eq = 0.1, 〈v〉eq = 0.37. Forcing
(both truth and MME): F(t) = F0 for t � 0, F(t) = F0(1 + 0.05t) for 0 < t � 1, F(t) = F0(1 + 0.05)

for t > 1

correct statistical initial conditions improves the MME prediction skill of the
forced response.

The configuration shown in Figs. 7 and 8 corresponds to the setting (i) so that an
overdamped MME improves the forced response prediction in both cases. How-
ever, in the presence of the information barrier for the infinite-time response pre-
dictions (Fig. 8), we have μ̃F̃ < 0, and in the absence of such a barrier (Fig. 7), we
have 0 < μ̃F̃ < X 2

i . The expected change in the truth mean μ̃ can be estimated
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Forced response prediction of Gaussian truth with infinite-time inform. barrier in MME

Fig. 8 (Color online) Prediction skill of a forced response of the resolved truth dynamics (34) based on
a 17-model MME with correct statistical initial conditions for the resolved Gaussian dynamics u(t) in
(34) and three different types of MME structure [see (50)]. The MME is a mixture of Gaussian models
(26) with correct equilibrium statistics (46) and correlation times τmi sampled to create a balanced MME
(top), overdamped MME (middle), and underdamped MME (bottom) in (50)) with the spread [τ ] in the
MME density πmme

t;ααα,[τ ] (48); the ensemble of initial conditions for the unresolved dynamics v(t) in (34) is

drawn from the unperturbed equilibrium v0 ∼ N (〈v〉eq, Vareq[v]). The optimal-weight MME (magenta) is
obtained by minimizing the relative entropy as in (9). Truth parameters in (34): A = 0.5, a = −5.5, λ1,2 =
−1,−4; σ : 0.63, F0 : −0.8, E = 0.01, 〈u〉eq = 0.1, 〈v〉eq = 1.35. Forcing (both truth and MME):
F(t) = F0 for t � 0, F(t) = F0(1 + 0.05t) for 0 < t � 1, F(t) = F0(1 + 0.05) for t > 1

via the linear response theory and the fluctuation–dissipation formulas, while the
perturbation of the model means can be estimated directly from the models.

• Weight optimization in the MME provides a significant prediction skill improve-
ment over the equal-weight MME. While this type of optimization is impractical,
it helps reveal information barriers in the MME prediction (see Fact 2 of Sect. 3
and Fig. 2) and assess the skill of the equal-weight MME. The following cases are
worth noting:
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No information barrier in MME prediction [A < 0 in the unresolved part of the
truth (34) so that 0 < μ̃F̃ < X 2

i in (53)]. If m� 
= m∗∞m� 
= m∗∞m� 
= m∗∞ with the optimal damping
γm∗∞ in (26), the MME approach can improve the infinite-time forced response
prediction [see Fig. 7 and (53) above]. In particular, since this configuration falls
into the case (i) above, the MME skill is improved for any overdamped MME with
γmi � γm� where m� has the correct correlation time τ trth (49) which can be tuned
from measurements of the resolved truth equilibrium dynamics.
There is no information barrier for doing infinite-time response predictions of
the resolved dynamics in (34) within the class of models M containing m∗∞;
consequently, the optimal-weight MME for predicting the infinite-time response
collapses onto m∗∞. The forced response prediction over the whole time interval
I = [t0 t0 +T ] is different as evidenced by the nontrivial structure of the optimal-
weight MME in Fig. 7 which leads to a reduced information barrier for the MME
prediction (see Fact 2 in Sect. 3); in this case, the optimal-weight MME concen-
trates around two models: the model with the correlation time closest to that of
m∗∞ in the given ensemble and the most overdamped model which helps improve
the short-time prediction skill.
Information barrier in MME prediction (A > 0 in the truth mean (37) so that
μ̃F̃ < 0 in (53)). Despite the presence of an information barrier to infinite-time
forced response prediction (see Sect. 4.2), this configuration also falls into the case
(i) above since μ̃F̃ < 0; consequently, the equal-weight overdamped MME out-
performs the single-model predictions with correct correlation time τ trth (Fig. 8);
moreover, the balanced MME [see (50)] with sufficiently narrow spread of [τ ] of
correlation times also performs satisfactorily in such a case. The information bar-
rier in MME prediction of the forced response of (34) cannot be reduced relative
to the single-model prediction due to the structure of the ensemble M containing
models (26); this is depicted schematically in Fig. 2b and was discussed in Sect. 4.2.

• In all considered cases, the analytical criterion (12) correctly reflects the con-
clusions obtained from the numerical simulations. This is not surprising since
the criterion (12), which for Δ = 0 provides a sufficient condition for prediction
improvement via the MME approach, applies to any probabilistic MME prediction
and the simple ‘truth’ dynamics used here merely illustrates the general applica-
bility of this approach. A framework for improving the overall prediction skill
(i.e., a framework accounting for the prediction error (51) as well as the internal
prediction skill) will be discussed in a separate publication.

5 Conclusions

Here, we developed an information-theoretic framework for a systematic assessment
of the predictive performance of a MME approach which aims to improve reliability of
dynamical predictions by combining probabilistic forecasts obtained from a collection
of imperfect models. Despite the increasingly common use of the MME approach,
especially in the climate and atmospheric sciences (e.g., Palmer et al. 2005; Stephenson
et al. 2005; Doblas-Reyes et al. 2005; Weigel et al. 2008; Weisheimer et al. 2009;
van der Linden and Mitchell 2009; Oldenborgh et al. 2012), a justification of this
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approach was lacking. Here, we focused on uncertainty quantification and a systematic
understanding of benefits and limitations of the MME approach, as well as on the
development of practical design principles for constructing model ensembles with an
improved predictive skill. This setting should not be confused with a purely statistical
modeling in which the underlying dynamics is ignored. The main issues and results
presented were concerned with:

(I) Advantages/disadvantages of the MME approach relative to using single-model
predictions with an ensemble of initial conditions. In particular, we derived the
sufficient condition guaranteeing improvement in dynamic MME predictions rel-
ative to the single-model predictions in a dynamic time-dependent setting [see
(12) with Δ = 0 in Sect. 3].

(II) Sensitivity of MME prediction to the nature of the unresolved truth dynamics,
and guidelines for constructing model ensembles for best prediction skill at short,
medium and long time ranges (see Sect. 3, Sect. 4.3 and “Appendix 2”).

Based on information-theoretic considerations, we derived a simple criterion (7)
which guarantees improvement in probabilistic predictions within the MME frame-
work; this criterion uses the relative entropy (2) to measure the lack of information
in imperfect model predictions relative to the truth dynamics on the subspace of the
resolved observables. We showed for the first time why, and under what conditions,
combining imperfect models improves the predictive performance compared to the
best single imperfect model in the ensemble; systematic justification of the potential
advantages of the MME approach in probabilistic predictions relied on considering
the prediction problem in an information-theoretic framework and exploiting the con-
vexity of the relative entropy. Importantly, we showed that the condition (7) for MME
prediction improvement can be practically implemented in a relaxed form leading to
the information criteria (12) or (16) which require evaluation of the lack of infor-
mation in the individual ensemble members and the least-biased estimates of the
resolved truth dynamics, rather than determining the lack of information in the full
mixture density associated with the MME prediction. These criteria can be evaluated
with the help of the linear response theory and the ‘fluctuation–dissipation’ formu-
las (see, e.g., Majda et al. 2005, 2010b, a; Leith 1975; Abramov and Majda 2007;
Gritsun et al. 2008; Majda and Gershgorin 2011b; Gershgorin and Majda 2012; Bran-
icki and Majda 2012c; Majda and Branicki 2012c) in the context of forced response
prediction when the truth equilibrium dynamics is subjected to external perturbations
in forced dissipative systems. When considering the prediction improvement via the
MME approach for the initial value problem, the implementation of the information-
based criteria (12) or (16) can be carried out in the hindcast/reanalysis mode (e.g., Kim
et al. 2012); moreover, techniques similar to those discussed in Giannakis and Majda
(2012a, b), Giannakis et al. (2012) could be used to effectively assess the skill of a
given ensemble of imperfect models. A set of useful results was derived in Sect. 3.2
in a Gaussian framework which utilizes Gaussian models in the MME; this approach
provides a useful intuition and guidelines for dealing with more complex cases con-
sidered abstractly in Sect. 3. The general theoretical results and analytical estimates
of Sect. 3 were illustrated Sect. 4.3 with simple numerical tests based on statistically
exactly solvable Gaussian and non-Gaussian test models described in Sect. 4.1.
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Ultimately, reduced-order prediction should involve a synergistic approach that
combines MME forecasting, data assimilation (Gershgorin et al. 2010a; Majda and
Harlim 2012; Branicki and Majda 2012a, 2014), and improving individual models
through various stochastic superparameterization (Grooms and Majda 2013; Majda
and Grooms 2014), and reduced subspace closure techniques (Sapsis and Majda
2013a, b, c). We envisage generalizing the present framework to account for differ-
ences in the internal prediction skill (52) of the MME and the single imperfect model
in addition to the prediction error (51). Another important and natural extension of this
work involves combining the MME framework for improving imperfect predictions
with an MME approach to data assimilation/filtering in high-dimensional turbulent
systems based on imperfect models. Such a combined framework should provide
a valuable tool for improving real-time predictions in complex partially observed
dynamical systems.
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Appendix 1: Some Simple Proofs of General Results from Sect. 3

Here, we complement the discussion of Sect. 3 by providing simple derivations and
proofs of the facts established in that section.

Information Criterion II in (12) Derivation of this criterion relies on the convexity
properties (10) of the relative entropy (e.g., Cover and Thomas 2006), which leads to
the following upper bound on the lack of information in the MME mixture density
πmme
t (1) relative to the least-biased estimate of the marginal truth density πt

P(πl
t , πmme

t ) = P(πl
t ,
∑

i αiπ
mi
t ) �

∑
i αiP(πl

t , π
mi
t )

=
∑

i 
=�
αiP(πl

t , π
mi
t ) + α�P(πl

t , π
m�
t ). (54)

where αi � 0 and
∑

i αi = 1 so that

P
(
πl
t , πmme

t

)
− P

(
πl
t , π

m�
t

)
�
∑

i 
=�
αiP

(
πl
t , π

mi
t

)
+ (α� − 1)P

(
πl
t , π

m�
t

)
,

(55)

where we used the fact that P � 0. Clearly, the information criterion in (7) is always
satisfied when the right-hand side in (55) satisfies

∑

i 
=�
αi

 
I
P
(
πl
t , π

mi
t

)
dt + (α� − 1)

 
I
P
(
πl
t , π

m�
t

)
dt < 0, (56)

which, after rearranging terms, gives the sufficient condition in (12) with Δ = 0, i.e.,
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∑

i 
=�
βi PI(πl, πmi ) < PI(πl, πm�),

βi = αi (1 − α�)−1,
∑

i 
=�
βi = 1. (57)

This sufficient condition is too restrictive when m� coincides with the best imperfect
model m∗

I,l in (8) since there is no non-trivial MME satisfying (56). Based on the
basic convexity properties of the relative entropy illustrated in Fig. 2 and Fact 1, it

is clear that unless PI(πl, π
m∗
I,l) = 0, an MME with a smaller error does exist and

the condition (57) needs to be relaxed in order to be applicable in such cases. The
uncertainty parameter Δ in

∑

i 
=�
βi PI(πl, πmi ) < PI(πl, πm�) + Δ,

βi = αi (1 − α�)−1,
∑

i 
=�
βi = 1, (58)

allows for including models in the ensemble with error PI(πl, π
m∗
I,l) � PI(πl, πm)

< PI(πl, π
m∗
I,l) + Δ so that the MME prediction error is 0 � PI(πl, πmme)

� PI(πl, πm�) + Δ, as illustrated in Fig. 2c.

Proof of Fact 3 The proof is straightforward and follows by a direct calculation con-
sisting of two steps:

(1) We start by rewriting the condition (12) in terms of the least-biased densities
defined in (14) which leads to

P(π
l1
t , π

m�,l2
t ) + Δ >

∑

i 
=�
βi P(π

l1
t , π

mi ,l2
t )

+
∑

i 
=�
βi E

πl1
[

log
πmi ,l2

πmi
− log

πm�,l2

πm�

]
; (59)

note that this last term vanishes identically when πmi ,l2 = πmi and the MME
contains only least-biased models.

(2) Next, we notice that the relative entropy between two least-biased densities π
l1
t

and π
m,l2
t is given by

P(π
l1
t , π

m,l2
t ) = logCm

t + θθθmt · ĒEEt − (
logCt + θθθ t · ĒEEt

)

= log
Cm
t

Ct
+ (θθθmt − θθθ t ) · ĒEEt , (60)

where EEEt is the vector of expectations of the functionals Ei defined in (15) with
respect to the truth marginal density πt , and the Lagrange multipliers in (14),
θθθ t = θθθ

(
EEEt
)
, θθθmt = θθθm

(
EEE
m
t

)
, are defined as
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θθθ t = (θ1(t), . . . , θl1
(t))T, θθθmt = (θm1 (t), . . . , θml2

(t), 0, . . . , 0l1
)T, l1 � l2,

while the normalization constants in the least-biased densities are Ct = C
(
EEEt
)
,

Cm
t = Cm

(
EEE
m
t

)
.

The condition in (16) is obtained by combining (59) with (60).

Proof of Fact 4 The condition in (21) for improvement in the prediction skill via MME
in the context of initial value problem can be obtained as follows: Consider the repre-
sentation of the true expected values EEEt of the functionals Ei (uuu) with respect to the
truth marginal density πt (uuu) in the form

EEEt = EEE0 + δẼEEt , θθθ t = θθθ0 + δθ̃θθ t
(
EEEt
)
, ẼEEt=0 = θ̃θθ t=0 = 0, (61)

these are smooth at δ = 0 when the decomposition πt = π0 + δπ̃t is smooth at δ = 0
which holds under minimal hypothesis described in Hairer and Majda (2010) so that

Ct = C0
(
1 − δθ̃θθ t · EEE0

)+ O(δ2), (62)

The lack of information in (12) between the least-biased approximation of the truth

π
l1
t and the imperfect model density π

mi
t can be written as

P(π
l1
t , π

mi
t ) = P(π

l1
t , π

mi ,l2
t ) +

ˆ
duuu π

l1
t log

π
mi ,l2
t

π
mi
t

, (63)

similarly to the result leading to (59). The lack of information in the perturbed least-

biased density, πmi ,l2
t , of the imperfect model relative to the least-biased perturbation

of the truth, π
l1
t , can be expressed through (65)–(68) in the following form

P(π
l1
t , π

mi ,l2
t ) = P(π

l1
0 , π

mi ,l2
t ) + (θθθ

mi
t − θθθ0) · δẼEEt + O(δ2). (64)

Substituting (64) into (16) leads to the desired condition (21). ��

Proof of Fact 5 The condition in (25) for improvement in the prediction skill via MME
obtained by perturbing single-model predictions can be obtained as follows: Consider
the condition (16) in the case when the ensemble members mi ∈ M are obtained from
the single model m� ∈ M through perturbing some parameters of the single model;
we assume that the statistics of the model depend smoothly on these parameters and
that the perturbations are non-singular (which required minimal assumptions Hairer
and Majda 2010 of hypoelliptic noise in the truth dynamics) so that the evolution of
the statistical moments EEE

mi
t and their functions in the least-biased densities (60) of the

ensemble members can be written, for ε � 1, as
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(a) EEE
mi ,ε

t = EEE
m�
t + ε ẼEE

mi

t , (65)

(b) θθθ
mi ,ε
t = θθθ

m�
t + ε θ̃θθ

mi
t

(
EEE
mi
t

)+ O(ε2), (66)

(c) Cmi ,ε
t = Cm�

t
(
1 − ε θ̃θθ

mi
t · EEEm�

t

)+ O(ε2), (67)

where

θ̃θθ
mi
t =

(
EEE
m�
t ·∇θ

mi
1 |ε=0, EEE

m�
t ·∇θ

mi
2 |ε=0, . . . , EEE

m�
t ·∇θ

mi
l1

|ε=0

)T
. (68)

The lack of information in the perturbed least-biased density, π
mi ,l2
t , of the imperfect

model relative to the least-biased perturbation of the truth, π
l1
t , can be expressed

through (65)–(68) in the following form

P(π
l1
t , π

mi ,l2
t ) = log

(
Cmi
t /Ct

)+ (θθθ
mi
t −θθθ t ) · ĒEEt

= P(π
l1
t , π

m�
t ) + ε θ̃θθ

mi
t · (EEEt − EEE

m�
t ) + O(ε2), (69)

which is obtained by combining (65)–(67). Substituting (69) into the general condition
(16) leads to the desired condition (25). ��
Proof of Fact 6 The proof of the condition (31) is simple but tedious and follows from
the short-time asymptotic expansion of the relative entropy between the Gaussian truth
and the Gaussian models. Consider the state vectoruuu ∈ RK for resolved dynamics and
assume that short times the statistics of the Gaussian truth density πg

t = N (μμμt , Rt )

and of the Gaussian model density π
mi
t = N (μμμ

mi
t , Rmi

t ) are

μμμt = μμμ0 + δ μ̃μμt , Rt = R0 + δ R̃t , δμ̃μμ0 = δ R̃0 = 0, (70)

and

μμμ
mi
t = μμμ

mi
0 + δ μ̃μμ

mi
t , Rmi

t = Rmi
0 + δ R̃mi

t , δμ̃μμ
mi
0 = δ R̃mi

0 = 0. (71)

Then, the relative entropy between the Gaussian truth density πg
t and a Gaussian model

density π
mi
t

P(πg
t , π

mi
t ) = 1

2 (Δμμμi
t )
T (Rmi

t )−1Δμμμi
t+ 1

2

[
tr
[
Rt (R

mi
t )−1

]−ln det
[
Rt (R

mi
t )−1

]−K
]
,

(72)
with Δμμμi

t := μμμt − μμμ
mi
t can be expressed as

P(πg
t , π

mi
t ) = P(πg

0 , π
mi
0 ) + δ(Xμ + X R) + δ2(Yμ + Yμ,R + Y R,R) + O(δ3),

(73)

which is valid at times short enough so that the changes in moments δμ̃μμ, δ R̃, δμ̃μμmi ,

δ R̃mi are small; the respective coefficients in (73) are given by
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Xμ = 1
2

[
(Δμμμi

0)
T (Rmi

0 )−1Δμ̃μμi
t + (Δμ̃μμi

t )
T (Rmi

0 )−1Δμμμi
0

]
,

X R = − 1
2 (Δμμμi

0)
T (Rmi

0 )−1 R̃mi
t (Rmi

0 )−1Δμμμi
0+ 1

2 tr
[
(I − R0(R

mi
0 )−1)R̃mi

t (Rmi
0 )−1

]

+ 1
2 tr

[
R̃t (R

mi
0 )−1

]
,

Yμ,μ = 1
2 (Δμ̃μμi

t )
T (Rmi

0 )−1Δμ̃μμi
t ,

Yμ,R = 1
2

[
(Δμμμi

0)
T (Rmi

0 )−1 R̃mi
t (Rmi

0 )−1Δμ̃μμi
t + (Δμ̃μμi

t )
T (Rmi

0 )−1 R̃mi
t (Rmi

0 )−1Δμμμi
0

]
,

Y R,R = 1
2

[
(Δμμμi

0)
T (Rmi

0 )−1 R̃mi
t (Rmi

0 )−1 R̃mi
t (Rmi

0 )−1Δμμμi
0

− 1
2 tr

[
(I − R0(R

mi
0 )−1)(R̃mi

t (Rmi
0 )−1)2

]
− 1

2 tr
[
R̃t (R

mi
0 )−1 R̃mi

t (Rmi
0 )−1

]

+ 1
4

(
tr
[
R̃mi
t (Rmi

0 )−1
])2

.

For correct initial conditions, μμμmi
0 = μμμ0, Rmi

0 = R0, the above formulas simplify to

X R = 1
2 tr

[
R̃t (R0)

−1
]
, Yμ,μ = 1

2 (Δμ̃μμi
t )
T (R0)

−1Δμ̃μμi
t , (74)

Y R,R = − 1
2 tr
[
R̃t (R0)

−1 R̃mi
t (R0)

−1
]

+ 1
4

(
tr
[
R̃mi
t (R0)

−1
])2

, (75)

with the remaining coefficients identically zero. Substituting the relative entropy
between P(πg

t , π
mi
t ) in the form (73) with the coefficients (74)–(75) into the general

necessary condition (12) for improving the prediction via MME yields the condition
(31). ��
Proof of Fact 7 We assume that the perturbations of the equilibrium truth and model
densities are smooth in response to the forcing perturbations so that the perturbed
densities πδ

t = πeq + δπ̃t are differentiable at δ = 0; this holds under relatively mild
assumptions hypoelliptic noise as shown in (Hairer and Majda 2010). Thus, based
on the linear response theory combined with the fluctuation–dissipation formulas
(e.g., Majda et al. 2005), the density perturbations remain small for sufficiently small
external perturbations which also implies that the moment perturbations remain small
for all time. Derivation of the condition (78) relies on the smallness of the moment
perturbations which allows for an asymptotic expansion of the relative entropy as
in (73) but with μμμ0 = μμμeq = μμμ

mi
eq , R0 = Req = Rmi

eq which leads to expansion
coefficients in (73)

X R = 1
2 tr
[
R̃t (Req)

−1
]
, Yμ,μ = 1

2 (μ̃μμt − μ̃μμ
mi
t )T (Req)

−1(μ̃μμt − μ̃μμ
mi
t ), (76)

Y R,R = − 1
2 tr
[
R̃t (Req)

−1 R̃mi
t (Req)

−1
]

+ 1
4

(
tr
[
R̃mi
t (Req)

−1
])2

, (77)

with the remaining coefficients identically zero. The general condition for improve-
ment in forced response prediction via MME in the Gaussian framework is

Dβββ,I({μ̃μμ − μ̃μμmi }) + Eβββ,I({R̃mi }) + Fβββ,I(R̃, {R̃mi }) + Δ + O(δ) > 0, (78)
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where

Dβββ,I = 1
2

∑

i 
=�

αi

1 − α�

 
I

dt
[
(μ̃μμt − μ̃μμ

m�
t )T (Req)

−1(μ̃μμt − μ̃μμ
m�
t )

−(μ̃μμt − μ̃μμ
mi
t )T (Req)

−1(μ̃μμt − μ̃μμ
mi
t )
]

Eβββ,I = 1
4

∑

i 
=�

αi

1 − α�

 
I

dt tr
[
(R̃m�

t − R̃mi
t )(Req)

−1
]
tr
[
(R̃m�

t + R̃mi
t )(Req)

−1
]
.

Fβββ,I = − 1
2

∑

i 
=�

αi

1 − α�

 
I

dt tr
[
R̃t (Req)

−1(R̃m�
t − R̃mi

t )(Req)
−1
]
.

which is very similar to the condition in FACT 6 except that there is no short-time
constraint due to the fact that the moment perturbations remain small in time under the
above assumptions. Finally, the simplified result (32) in Fact 7 of Sect. 3.2 is obtained
by taking into account that the response is due to the forcing perturbations in linear
Gaussian systems (26) so that R̃mi

t = 0 so that X R = Y R,R = 0 in (76), (77) and only
Dβββ,I , which is independent of the truth response in the covariance, remains in (78).

��

Appendix 2: Further Details of Associated with the Sufficient Conditions for
Imperfect Prediction Improvement Via MME

In Sect. 3.1.1, we discussed the condition (12) for improving imperfect predictions
via MME in the least-biased density representation (16). Here, we discuss the same
condition in terms of general perturbations of probability densities which provides
additional insight into the essential features of MME with improved prediction skill.
In particular, we show that it is difficult to improve the short-term predictive skill via
MME containing models with incorrect statistical initial conditions.

The formulation presented below relies on relatively weak assumptions that the
truth and model densities can be written as

πl
t = πl

0 +δπ̃l
t , πm

t = πm
0 +δπ̃m

t , π̃l
0 = π̃m

0 = 0,

ˆ
π̃l
t duuu =

ˆ
π̃l
t duuu = 0,

(79)
The above decomposition is always possible for the non-singular initial value prob-
lem; in the case of the forced response prediction from equilibrium (i.e., when
πl

0 = πl
eq, πm

0 = πm
eq), such a decomposition exists for δ � 1 under the mini-

mal assumptions of hypoelliptic noise (Hairer and Majda 2010). The possibility of
estimating the evolution of statistical moments of the truth density πt in the case of
predicting the forced response within the framework of linear response theory com-
bined with the fluctuation–dissipation approach makes this framework particularly
important in this case (see Majda et al. 2005, 2010b, a; Abramov and Majda 2007;
Gritsun et al. 2008; Majda and Gershgorin 2010, 2011a, b)
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Fact Assume the decomposition (79) of the truth and model densities exists as dis-
cussed above. Then, the condition (12) for prediction improvement through MME has
the following form

Aβββ

(
πl

0 , {πmi
0 }
)

+ δBβββ,I
(
πl, {πmi }

)
+ δ2Cβββ,I

(
πl, {πmi }

)
+ Δ̃ > 0, (80)

where

Aβββ

(
πl

0 , {πmi
0 }
)

=
∑

i 
=�
βi

(
P(πl

0 , π
m�
0 ) − P(πl

0 , π
mi
0 )
)
,

Bβββ,I
(
πl, {πmi }

)
=
∑

i 
=�
βi

 
I

dt
ˆ

duuu

(
πl

0

[
π̃
mi
t

π
mi
0

− π̃
m�
t

π
m�
0

]
+ π̃l

t log
π
mi
0

π
m�
0

)
,

Cβββ,I
(
πl
t , {πmi

t }
)

= 1
2

∑

i 
=�
βi

 
I

dt
ˆ

duuu

⎛

⎝πl
0

⎡

⎣
(

π̃
m�
t

π
m�
0

)2

−
(

π̃
mi
t

π
mi
0

)2
⎤

⎦

−2π̃l
t

[
π̃
m�
t

π
m�
0

− π̃
mi
t

π
mi
0

])
,

with the weights βi defined in (12). The following particular cases of the condition
(80) for improving the predictions via the MME approach are worth noting in this
general representation:

• Initial (statistical) conditions in all models of MME are consistent with the least-
biased estimate of the truth; i.e., π

mi
0 = πl

0 . In such a case, we have Aβββ =
0, Bβββ,I = 0 and the condition (80) for improvement in prediction via MME
simplifies to

 
I

dt
ˆ

duuu
(π̃l

t − π̃
m�
t )2

πl
0

+ Δ̃ >
∑

i 
=�
βi

 
I

dt
ˆ

duuu
(π̃l

t − π̃
mi
t )2

πl
0

. (81)

In the case of forced response predictions, perturbation of the truth density π̃l
t

can be estimated from the statistics on the unperturbed equilibrium through the
linear response theory and fluctuation–dissipation formulas exploiting only the
unperturbed equilibrium information (Majda et al. 2005, 2010b, a; Abramov and
Majda 2007; Gritsun et al. 2008; Majda and Gershgorin 2010, 2011a, b).

• Initial model densities in MME perturbed relative to the least-biased estimate of
the truth; i.e., π

mi
0 = πl

0 + ε π̃
mi
0 , π

m�
0 = πl

0 . In such a case, all terms in (80) are
non-trivial but they can be written as

Aβββ

(
πl

0 , {πmi
0 }
)

= −ε2
∑

i 
=�
βi

ˆ
duuu

(π̃
mi
0 )2

2πl
0

+ O(ε3), (82)
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Bβββ,I
(
πl
t , {πmi

t }
)

= ε
∑

i 
=�
βi

 
I

dt
ˆ

duuu
(
π̃
mi
t B1 + π̃

m�
t B2 + π̃l

t B3

)
, (83)

Cβββ,I
(
πl
t , {πmi

t }
)

=
∑

i 
=�
βi

 
I

dt
ˆ

duuu

[
(π̃l

t − π̃
m�
t )2 − (π̃l

t − π̃
mi
t )2

πl
0

+ ε
(
π̃
mi
t C1 + π̃

m�
t C2 + π̃l

t C3

)]
, (84)

where {Bm}, {Cm}, m = 1, 2, 3 are functions of π̃
mi
0 , π̃

m�
0 , π̃l

0 and ε. Note that
unless ε = 0 (so that π

mi
0 = πl

0 ), it is difficult to improve the prediction skill at
short times within the MME framework since at t = 0, we have Bβββ,I = Cβββ,I = 0
and Aβββ < 0 in (80).
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