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Abstract This note is concerned with the optimal harvesting of a stochastic logistic
model with time delay. The classical optimal harvesting question of this type of model
is difficult because it is very difficult to obtain the explicit solution of the corresponding
delay Fokker–Planck equation. The main aim of this note was to find a new approach to
overcome this problem. In this note, using the ergodic method, sufficient and necessary
criteria for the existence of optimal harvesting policy of our model are obtained. At
the same time, the optimal harvesting effort and the maximum of harvesting yield are
given. This method provides a new approach to study the optimal harvesting problem
of stochastic population models, which can be also applied to investigate stochastic
multi-species models.
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1 Introduction

In recent years, optimal harvesting in managing natural resources has received much
attention. Because the growth of species in the natural world is inevitably affected by
environmental noises, many scholars have considered the optimal harvesting of sto-
chastic population systems. By solving the corresponding Fokker–Planck equation,
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Beddington and May (1977) established the optimal harvesting policy for a stochastic
logistic model. Using the same method, Li and Wang (2010) obtained the optimal
harvesting policy for a stochastic Gilpin–Ayala model. The optimal harvesting of sto-
chastic population models was also examined in Alvarez and Shepp (1998), Braumann
(2002), Lande et al. (1995), Liu and Bai (2014), Ludwig and Varah (1979), Lungu and
Øksendal (1997), Song et al. (2011) and Zou and Wang (2014).

On the other hand, all species in the natural world should exhibit time delay, for
example, they need time to mature (see e.g., Gopalsamy (1992)). Therefore, it is
important to consider the optimal harvesting of stochastic population models with
time delay. However, as far as we know, no result of this aspect has been reported. One
possible reason is that it is very difficult to get the explicit solution of the corresponding
delay Fokker–Planck equation.

In this note, we use the ergodic method to study this problem. One advantage of this
method is that it is unnecessary to solve the corresponding Fokker–Planck equation. We
obtain the sufficient and necessary conditions for the existence of optimal harvesting
policy. At the same time, the optimal harvest effort and the maximum of expectation
of sustainable yield are obtained. At the end of this note, it is shown that this method
can be also applied to investigate stochastic multi-species systems, and as an example,
we establish the optimal harvest effort and the maximum of expectation of sustainable
yield of a two-species stochastic delayed competitive system with harvesting.

2 Main Results

Consider the following stochastic delayed logistic model with harvesting

dN (t) = N (t)

(
r − h − aN (t) − bN (t − τ)

)
dt + σ N (t)dW (t) (1)

with initial condition N (θ) = φ(θ) ∈ C([−τ, 0]; R+), where N (t) is the population
size at time t ; r , h, a, and b are positive constants, h is the harvesting effort, τ > 0 is the
delay; W (t) is a standard Brownian motion defined on a complete probability space
(�, {Ft }t∈R+ , P) with a filtration {Ft }t∈R+ , σ 2 is the intensity of the environmental
noise, C([−τ, 0]; R+) represents the family of continuous functions from [−τ, 0] to
R+ := (0,+∞).

Our aim was to obtain the optimal harvesting effort h∗ such that the expectation
of sustained yield Y (h) = lim

t→+∞ E(hN (t)) is maximum. To this end, let us prepare

some lemmas.

Lemma 1 For any initial data φ(θ) ∈ C([−τ, 0]; R+), Eq. (1) has a unique global
positive solution N (t) almost surely (a.s.). Moreover, for any p > 0, there is K (p) > 0
such that

lim sup
t→+∞

E(N (t))p ≤ K (p). (2)
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Proof The proof is rather standard and hence is omitted (see e.g., Bahar and Mao
(2004)). ��
Lemma 2 (Liu and Wang (2013)) Let z(t) ∈ C(� × [0,+∞); R+).

(a) If there exist constants T > 0, λ ≥ 0, and λ0 > 0 such that

ln z(t) ≤ λt − λ0

∫ t

0
z(s)ds + σ W (t)

for all t ≥ T , then lim sup
t→+∞

t−1
∫ t

0 z(s)ds ≤ λ/λ0 a.s.

(b) If there exist three positive constants T, λ, and λ0 such that

ln z(t) ≥ λt − λ0

∫ t

0
z(s)ds + σ W (t)

for all t ≥ T , then lim inf
t→+∞ t−1

∫ t
0 z(s)ds ≥ λ/λ0 a.s.

Lemma 3 For Eq. (1),

(i) If h > r − 0.5σ 2, then lim
t→+∞ N (t) = 0, a.s.;

(ii) If h = r − 0.5σ 2, then lim
t→+∞ t−1

∫ t
0 N (s)ds = 0, a.s.;

(iii) If h < r − 0.5σ 2, then

lim
t→+∞ t−1

∫ t

0
N (s)ds = r − h − 0.5σ 2

a + b
, a.s. (3)

Proof The proof is similar to that of Liu and Wang (2013) but for the completeness of
the paper we will give it briefly. Consider the following stochastic logistic equation:

dX (t) = X (t)

(
r − h − aX (t)

)
dt + σ X (t)dW (t), X (θ) = φ(θ). (4)

By the work of Liu and Wang (2013),

⎧⎨
⎩

lim
t→+∞ t−1

∫ t
0 X (s)ds = r−h−0.5σ 2

a a.s., if h ≤ r − 0.5σ 2;
lim

t→+∞ X (t) = 0 a.s., if h > r − 0.5σ 2.

According to the comparison theorem for stochastic differential delay equations (Bao
and Yuan 2011),

N (t) ≤ X (t) a.s., t ≥ −τ. (5)

This completes the proof of (i) and (ii).
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Now let us prove (iii). If h < r − 0.5σ 2, then

lim
t→+∞ t−1

∫ t

t−τ

X (s)ds = lim
t→+∞

(
t−1

∫ t

0
X (s)ds − t−1

∫ t−τ

0
X (s)ds

)
= 0.

This, together with (5), means

lim
t→+∞ t−1

∫ t

t−τ

N (s)ds = 0. (6)

Applying Itô’s formula to (1) leads to

ln N (t)−ln N (0)=(r −0.5σ 2 − h)t − a
∫ t

0
N (s)ds − b

∫ t

0
N (s−τ)ds+σ W (t)

= (r − 0.5σ 2 − h)t − (a + b)
∫ t

0 N (s)ds

+ b

[ ∫ t

t−τ

N (s)ds −
∫ 0

−τ

N (s)ds

]
+ σ W (t).

(7)

In view of (6), for arbitrary ε > 0, there is T > 0 such that for t ≥ T ,

−ε ≤ t−1 ln N (0) + bt−1
[ ∫ t

t−τ

N (s)ds −
∫ 0

−τ

N (s)ds

]
≤ ε.

Substituting the above inequalities into (7) yields

ln N (t) ≤ (r − 0.5σ 2 − h + ε)t − (a + b)

∫ t

0
N (s)ds + σ W (t), (8)

ln N (t) ≥ (r − 0.5σ 2 − h − ε)t − (a + b)

∫ t

0
N (s)ds + σ W (t). (9)

Since r −0.5σ 2 > h, we can let ε be sufficiently small such that r −0.5σ 2 −h−ε > 0.
Applying (a) and (b) in Lemma 2 to (8) and (9), respectively, one can observe that

r − 0.5σ 2 − h − ε

a + b
≤ lim inf

t→+∞ t−1
∫ t

0
N (s)ds ≤ lim sup

t→+∞
t−1

∫ t

0
N (s)ds ≤ r − 0.5σ 2 − h + ε

a + b
.

Then the desired assertion follows from the arbitrariness of ε. ��
Lemma 4 If a > b, then Eq. (1) is asymptotically stable in distribution, i.e., there
is a probability measure ν(·) such that the transition probability p(t, φ, ·) of N (t)
converges weakly to ν(·) as t → +∞ for every φ ∈ C([−τ, 0]; R+).
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Proof The proof will be divided into three steps.
Step 1. By (2), there is a T > 0 such that for all t ≥ T, E(N (t))p ≤ 1.5K (p). On

the other hand, it follows from the continuity of E(N (t))p that we can find a L1(p) > 0
such that E(N (t))p ≤ L1(p) for t ≤ T . Let L2(p) = max{1.5K (p), L1(p)}, then

E(N (t))p ≤ L2(p), t ≥ −τ. (10)

Eq. (1) is equivalent to the following integral equation

N (t)= N (0)+
∫ t

0
N (s)

[
r −h−aN (s)−bN (s−τ)

]
ds+

∫ t

0
σ N (s)dW (s). (11)

Clearly,

E

∣∣∣∣N (t)

(
r − h − aN (t) − bN (t − τ)

)∣∣∣∣
p

= E

[
N p(t)

∣∣∣∣r − h − aN (t) − bN (t − τ)

∣∣∣∣
p]

≤ 0.5E(N (t))2p + 0.5E

∣∣∣∣r − h − aN (t) − bN (t − τ)

∣∣∣∣
2p

≤ 0.5L2(2p) + 42p
(

(r + h)2p + a2p
E(N (t))2p + b2p

E(N (t − τ))2p
)

= 0.5L2(2p) + 42p
(

(r + h)2p + (a2p + b2p)L2(2p)

)
=: L3(p).

(12)

At the same time, in view of the moment inequality for stochastic integrals (see e.g.,
Mao and Yuan (2006), p. 69), one can see that for 0 ≤ t1 ≤ t2 and p > 2,

E

∣∣∣∣
∫ t2

t1
σ N (s)dW (s)

∣∣∣∣
p

≤ σ 2p
[

p(p − 1)

2

]p/2

(t2 − t1)
(p−2)/2

∫ t2

t1
E(N (s))pds

≤ σ 2p
[

p(p − 1)

2

]p/2

(t2 − t1)
p/2 L2(p).

Substituting the above inequality and (12) into (11), we can obtain that for 0 < t1 <

t2 < ∞, t2 − t1 ≤ 1,

E

(
|N (t2) − N (t1)|p

)

= E

∣∣∣∣
∫ t2

t1
N (s)

[
r −h−aN (s)−bN (s−τ)

]
ds+

∫ t2

t1
σ N (s)dW (s)

∣∣∣∣
p

≤ 2p−1
E

∣∣∣∣
∫ t2

t1
N (s)

[
r −h−aN (s)−bN (s−τ)

]
ds

∣∣∣∣
p

+2p−1
E

∣∣∣∣
∫ t2

t1
σ N (s)dW (s)

∣∣∣∣
p

≤ 2p−1(t2 − t1)
p−1

∫ t2

t1
E

∣∣∣∣N (s)

[
r − h − aN (s) − bN (s − τ)

]∣∣∣∣
p

ds
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+2p−1σ 2p
[

p(p − 1)

2

]p/2

(t2 − t1)
p/2 L2(p)

= 2p−1(t2 − t1)
p L3(p) + 2p−1σ 2p

[
p(p − 1)

2

]p/2

(t2 − t1)
p/2 L2(p)

≤ 2p−1(t2 − t1)
p/2

[
(t2 − t1)

p/2 +
(

p(p − 1)

2

)p/2]
L4(p)

≤ 2p−1(t2 − t1)
p/2

[
1 +

(
p(p − 1)

2

)p/2]
L4(p),

where L4(p) = max{L3(p), σ
2p
1 L2(p)}. Then it follows from the Kolmogorov con-

tinuity criterion (see e.g., Karatzas and Shreve (1991)) that almost every sample path
of N (t) is uniformly continuous on t ≥ −τ.

Step 2. let Nφ(t) and Nϕ(t) be two solutions of Eq. (1) with initial conditions
φ(θ) ∈ C([−τ, 0]; R+) and ϕ(θ) ∈ C([−τ, 0]; R+), respectively. Define V1(t) =
| ln Nφ(t) − ln Nϕ(t)|. By Itô’s formula, we have

d+V1(t) = sgn

(
Nφ(t) − Nϕ(t)

)
d

(
ln Nφ(t) − ln Nϕ(t)

)

= sgn

(
Nφ(t) − Nϕ(t)

)[
− a

(
Nφ(t) − Nϕ(t)

)

− b

(
Nφ(t − τ) − Nϕ(t − τ)

)]
dt

≤ −a|Nφ(t) − Nϕ(t)|dt + b

∣∣∣∣Nφ(t − τ) − Nϕ(t − τ)

∣∣∣∣dt.

Define V2(t) = b
∫ t

t−τ

∣∣∣∣Nφ(s) − Nϕ(s)

∣∣∣∣ds. Then

d+(V1(t) + V2(t)) ≤ −a

∣∣∣∣Nφ(t) − Nϕ(t)

∣∣∣∣dt + b

∣∣∣∣Nφ(t − τ) − Nϕ(t − τ)

∣∣∣∣dt

+ b

∣∣∣∣Nφ(t) − Nϕ(t)

∣∣∣∣dt − b

∣∣∣∣Nφ(t − τ) − Nϕ(t − τ)

∣∣∣∣dt

= −(a − b)

∣∣∣∣Nφ(t) − Nϕ(t)

∣∣∣∣dt.

Therefore,

V1(t) + V2(t) ≤ V1(0) + V2(0) − (a − b)

∫ t

0
|Nφ(s) − Nϕ(s)|ds.

That is to say

(a − b)

∫ t

0
|Nφ(s) − Nϕ(s)|ds ≤ V1(0) + V2(0) < ∞.
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Therefore, |Nφ(t) − Nϕ(t)| ∈ L1[0,∞). It then follows from the uniform continuity
of N (t) and Barbalat’s conclusion (Barbalat 1959) that

lim
t→+∞ |Nφ(t) − Nϕ(t)| = 0, a.s. (13)

Step 3. This step of proof is a modification of that in Bao et al. (2009) and Mao
and Yuan (2006), and hence we only give the outline. Let p(t, φ, dy) be the transi-
tion probability of the process N (t), and let P(t, φ, A) stand for the probability of
event N (t) ∈ A given the initial data N (θ) = φ(θ). It follows from (2) and Cheby-
shev’s inequality that the family of transition probability p(t, φ, dy) is tight. Now let
P(C([−τ, 0]; R+)) be all the probability measures defined on C([−τ, 0]; R+). For
any two measures P1, P2 ∈ P define the metric

dL(P1, P2) = sup
f ∈L

∣∣∣∣
∫

R+
f (x)P1(dx) −

∫
R+

f (x)P2(dx)

∣∣∣∣,

where

L =
{

f : C([−τ, 0]; R+) → R

∣∣∣∣| f (x) − f (y)| ≤ ||x − y||, | f (·)| ≤ 1

}
.

Since the family of transition probability p(t, φ, dy) is tight, then by (13) and
a standard procedure in Bao et al. (2009) (Lemmas 3.4 and 3.5) or Mao and
Yuan (2006) (pp. 213–215), we can prove that sequence {p(t, φ, ·) : t ≥ 0} is
Cauchy in metric space P(C([−τ, 0]; R+)), and for any compact subset K ∈ R+,

lim
t→+∞ dL(p1(t, φ, ·), p2(t, ϕ, ·)) = 0 uniformly in φ, ϕ ∈ K. To complete the proof,

it suffices to prove that there is a probability measure ν(·) ∈ P(C([−τ, 0]; R+)) such
that p(t, φ, ·) converges weakly to ν(·). The proof is similar to that of Theorem 3.1 in
Bao et al. (2009) and hence is omitted. ��

Now we are in the position to give our main result.

Theorem 1 For model (1), let a > b.

(I) If h > r − 0.5σ 2, then lim
t→+∞ N (t) = 0, a.s.;

(II) If h = r − 0.5σ 2, then lim
t→+∞ t−1

∫ t
0 N (s)ds = 0, a.s.;

(III) If h < r − 0.5σ 2, then the optimal harvesting effort h∗ is

h∗ = 0.5(r − 0.5σ 2),

the maximum of expectation of sustainable yield is

Y ∗ = (r − 0.5σ 2)2

4(a + b)
.
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Proof From Lemma 3, it suffices to show (III). By Lemma 4, model (1) is asymptot-
ically stable in distribution, then it has a unique invariant probability measure ν(·) by
Kolmogorov–Chapman equation (see e.g., Mao and Yuan (2006)), and this invariant
measure is ergodic (Prato and Zabczyk (1996), Theorem 3.2.6). That is to say, if g is
an integrable function with respect to ν, then

lim
t→+∞ t−1

∫ t

0
E[g(N (s))]ds =

∫ +∞

0
g(N )dν(N ). (14)

On the other hand, since Eq. (1) is asymptotically stable in distribution, then measure
ν(·) is strong mixing (Prato and Zabczyk (1996), Corollary 3.4.3), i.e., the solution
N (t, ω) of (1) converges to a random variable Z(ω) in distribution, and ν(·) is the
measure induced by Z(ω). In other words,

lim
t→+∞ E[g(N (t))] = E[g(Z)] =

∫
�

g(Z(ω))dP(ω) =
∫ +∞

0
g(N )dν(N ). (15)

We are now in the position to show that g(N ) = N is integrable with respect to
measure ν(·). In fact, for any integer L > 0, N ∧ L is integrable with respect to
measure ν(·). In view of (2) and the dominated convergence theorem as well as the
ergodic property of ν(·),

K (1) ∧ L = lim
t→+∞

1

t

∫ t

0
(K (1) ∧ L)ds ≥ lim

t→+∞
1

t

∫ t

0
E[N (s) ∧ L]ds

=
∫ +∞

0
[N ∧ L]ν(dN ).

Letting L → +∞, we can obtain that g(N ) = N is integrable with respect to measure
ν(·). This, together with (15), (14), and (3), implies

Y (h) = lim
t→+∞ E(hN (t)) = lim

t→+∞ hE(N (t))

= h
∫ +∞

0
Ndν(N ) = h lim

t→+∞ t−1
∫ t

0
E[N (s)]ds

= h(r − h − σ 2/2)

a + b
.

Clearly, Y (h) has a unique extreme value at h∗ = (r − σ 2/2)/2, and the maximum

of expectation of sustainable yield is Y ∗ = (r−σ 2/2)2

4(a+b)
. ��

Remark 5 Consider the following stochastic logistic population model with harvest-
ing:

dN (t) = N (t)(r − h − aN (t))dt + σ NdW (t). (16)
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It follows from Theorem 1 that the optimal harvesting policy exists if and only if

h < r − σ 2/2, and h∗ = (r − σ 2/2)/2, Y ∗ = (r−σ 2/2)2

4a . These results coincide with
the classical conclusions established by Beddington and May (1977).

Remark 6 In Theorem 1, the delay τ does not appear in the optimal criterion because
there is a requirement that the parameters satisfy a > b. This result is similar to the
Hopf bifurcation criterion of the corresponding deterministic differential delay model.
Setting σ = 0, Eq. (1) reduces to the deterministic differential delay model

dN (t) = N (t)

(
r − h − aN (t) − bN (t − τ)

)
dt, r > h,

for which it is well known (Ruan (2006), Theorem 2) that

(i) if a ≥ b, then the steady state N∗ = r−h
a+b is asymptotically stable for all delay

τ ≥ 0;
(ii) If a < b, then there is a critical value τ0 given by

τ0 = a + b

(r − h)
√

b2 − a2
arcsin

√
b2 − a2

b

such that N∗ is stable when τ ∈ [0, τ0) and unstable when τ > τ0. A Hopf
bifurcation occurs at N∗ when τ passes through τ0.

Similar result for stochastic delay differential equation was established by Maekey and
Neehaeva (1994). Consider the following linear stochastic delay differential equation

dx(t) = [−Ax(t) − Bx(t − τ)]dt + σdW (t), A > 0, B > 0

for which it has been shown (Maekey and Neehaeva (1994)) that if A > B, then its
trivial solution is stochastically stable for all delay τ ≥ 0.

Remark 7 In Theorem 1, we used Y (h) = lim
t→+∞ E(hN (t)) as the yield function and

obtained its maximum. However, if one chooses other functions as the yield functions,
then the maximal yields may be different. For example, let ρ(x) be the stationary
probability density of (1), and we choose Ỹ (h) = h max

x
ρ(x) as the yield function.

In general,

max
h

{
h max

x
ρ(x)

}
�= max

h

{∫ +∞

0
hxρ(x)dx

}
= max

h

{
lim

t→+∞ E(hN (t))

}
.

That is to say, max
h

{
Y (h)

} �= max
h

{
Ỹ (h)

}
. At the same time, our ergodic method

cannot be applied to investigate the maximum of Ỹ (h).
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Fig. 1 Expectation of sustainable yield of (1) for r = 0.5, a = 0.2 > b = 0.05, τ = 5, σ 2 = 0.2,
φ(θ) = 0.2 + 0.1 sin θ, θ ∈ [−5, 0], step size 
t = 0.1. Red line is with h = h∗ = 0.2, green line is with
h = 0.3, and blue line is with h = 0.07 (Color figure online)

3 Numerical Simulations

Now let us use the Monte Carlo method (see e.g., Bruti-Liberati and Platen (2010)) to
illustrate the theoretical results. In Fig. 1, we let r = 0.5, a = 0.2 > b = 0.05, τ =
5, σ 2 = 0.2, initial condition φ(θ) = 0.2+0.1 sin θ, θ ∈ [−5, 0]. The only difference
between conditions of red line, green line, and blue line is that the value of h is
different. Red line is with h = h∗ = (r − σ 2/2)/2 = 0.2, green line is with h = 0.3
(Y (h) = 0.12), and blue line is with h = 0.07 (Y (h) = 0.0924). Figure 1 indicates
that if h = h∗ = 0.2 (red line), then the expectation of sustainable yield is maximum

and Y ∗ = (r−σ 2/2)2

4(a+b)
= 0.16. To see these more clearly, we let the mean asymptotic

value Y (h) = lim
t→+∞ E(hN (t)) take an approximate value E(hN (20000)) and plot it

as a function of h in Fig. 2. The values of parameters in Fig. 2 are the same with that in
Fig. 1. Figure 2 also shows that Y (h) takes the maximum value at 0.2 and Y ∗ = 0.16.

4 Concluding Remarks

This note considers the optimal harvesting of a stochastic delay logistic population
model. Using the ergodic method, sufficient and necessary conditions for the existence
of optimal harvesting strategy are established, and the optimal harvesting effort and
the maximum of expectation of sustainable yield are also obtained. The results reveal
that time delay has no impact on the optimal harvesting strategy in some cases. As far
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Fig. 2 Mean asymptotic value Y (h) of (1) for r = 0.5, a = 0.2, b = 0.05, τ = 5, σ 2 = 0.2, φ(θ) =
0.2 + 0.1 sin θ, θ ∈ [−5, 0], step size 
h = 0.005

as we know, this note is the first attempt to investigate the optimal harvesting problem
of stochastic population models with delay. The traditional method is difficult to use,
because it is difficult to obtain the explicit solution of the corresponding delay Fokker–
Planck equation. One advantage of our method is that it is not necessary to solve the
corresponding Fokker–Planck equation.

It is useful to mention that the ergodic method can be applied to cover multi-
species models with/without time delay. For instance, consider the following stochastic
delayed competitive system with harvesting

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dN1(t) = N1(t)

[
r1 − h1 − a11 N1(t) − a12 N2(t − τ1)

]
dt + σ1 N1(t)dW1(t),

dN2(t) = N2(t)

[
r2 − h2 − a21 N1(t − τ2) − a22 N2(t)

]
dt + σ2 N2(t)dW2(t),

(17)

with initial conditions

Ni (θ) = φi (θ) ∈ C([−τ, 0]; R+), τ = max{τ1, τ2}, i = 1, 2,

where ri > 0, ai j > 0, τi ≥ 0. The aim was to obtain the optimal harvesting effort
h∗ = (h∗

1, h∗
2) such that

(i) the expectation of sustained yield Y (h) = lim
t→+∞ E(h1 N1(t) + h2 N2(t)) is max-

imum;
(ii) Both N1 and N2 will not go to extinction.
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Similar to the study of (1), we use the following algorithm:

Step 1. To show that for any p > 0, there is K (p) such that

lim sup
t→+∞

E(Ni (t))
p ≤ K (p), i = 1, 2. (18)

Step 2. Using (18) to prove

lim
t→+∞ |Nφi

i (t) − N
ϕi
i (t)| = 0, a.s., i = 1, 2, (19)

where (Nφ1
1 (t), Nφ2

2 (t)) and (Nϕ1
1 (t), Nϕ2

2 (t)) are two solutions of Eq. (17) with initial
conditions φi (θ) ∈ C([−τ, 0]; R+) and ϕi (θ) ∈ C([−τ, 0]; R+), respectively, i =
1, 2.
Step 3. Applying (18) and (19) to show that Eq. (17) is asymptotically stable in
distribution.
Step 4. Using Lemma 3 and the comparison theorem to prove that

lim
t→+∞ t−1

∫ t

0
Ni (s)ds = a positive constant, a.s., i = 1, 2,

Step 5. According to the conclusions in Steps 3 and 4, one can obtain the optimal
harvest effort and the maximum of expectation of sustainable yield.

Making use of the steps given above, we have

Theorem 2 For Eq. (17), set bi = ri − 0.5σ 2
i , i = 1, 2, let a11 > a21 and a22 > a12.

If

(b1 − h1)a22 > (b2 − h2)a12, (b2 − h2)a11 > (b1 − h1)a21,

then

lim
t→+∞ t−1

∫ t

0
N1(s)ds = (b1 − h1)a22 − (b2 − h2)a12

a11a22 − a12a21
,

lim
t→+∞ t−1

∫ t

0
N2(s)ds = (b2 − h2)a11 − (b1 − h1)a21

a11a22 − a12a21
,

and the optimal harvesting effort (h∗
1, h∗

2) is the solution of the equations

{
(a12 + a21)h2 − 2h1a22 + b1a22 − b2a12 = 0,

(a12 + a21)h1 − 2h2a11 + b2a11 − b1a21 = 0,

moreover, the expectation of sustainable yield is

Y ∗ = h∗
1

(
(b1 − h∗

1)a22 − (b2 − h∗
2)a12

a11a22 − a12a21

)
+ h∗

2

(
(b2 − h∗

2)a11 − (b1 − h∗
1)a21

a11a22 − a12a21

)
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