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Abstract In the mathematical framework of a restricted, slightly dissipative spin–
orbit model, we prove the existence of periodic orbits for astronomical parameter
values corresponding to all satellites of the Solar System observed in exact spin–orbit
resonance.
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1 Introduction and Results

1.1 Satellites in Spin–Orbit Resonance

One of the many fascinating features of the Solar System is the presence of moons
moving in a “synchronous” way around their planet, as experienced, for example,
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by earthlings looking always on the same, familiar face of their satellite. Indeed,
18 moons of our Solar System move in so-called 1:1 spin–orbit resonance: while
performing a complete revolution on an (approximately) Keplerian ellipse around
their principal body, they also complete a rotation around their spin axis (which is—
again, approximately—perpendicular to the revolution plane); in this way, these moons
always show the same side to their host planet.

The list of these 18 moons is as follows: Moon (Earth); Io, Europa, Ganymede,
Callisto (Jupiter); Mimas, Enceladus, Tethys, Dione, Rhea, Titan, Iapetus (Saturn);
Ariel, Umbriel, Titania, Oberon, Miranda (Uranus); Charon (Pluto); minor bodies
with mean radius smaller than 100 km are not considered (see, however, Appendix 3).

There is only one more occurrence of spin–orbit resonance in the Solar System:
the strange case of the 3:2 resonance of Mercury around the Sun (i.e., Mercury rotates
three times on its spin axis, while making two orbital revolutions around the Sun).

In this paper we discuss a mathematical theory which is consistent with the existence
of all spin–orbit resonances of the Solar System; in other words, we prove a theorem,
in a framework of a well-known simple “restricted spin–orbit model,” establishing the
existence of periodic orbits for parameter values corresponding to all the satellites
(or Mercury) in our Solar System observed in spin–orbit resonance.

We remark that, in dealing with mathematical models trying to describe physical
phenomena, one may be able to rigorously prove theorems only for parameter values,
typically, somewhat smaller than the physical ones; on the other hand, for the true
physical values, typically, one only obtains numerical evidence. In the present case,
thanks to sharp estimates, we are able to fill such a gap and prove rigorous results for
the real parameter values. Moreover, such results might also be an indication that the
mathematical model adopted is quite effective in describing the physics.

1.2 The Mathematical Model

We consider a simple—albeit nontrivial—model in which the center of mass of the
satellite moves on a given two-body Keplerian orbit focused on a massive point (pri-
mary body) exerting gravitational attraction on the body of the satellite modeled by
a triaxial ellipsoid with equatorial axes a ≥ b > 0 and polar axis c; the spin polar
axis is assumed to be perpendicular to the Keplerian orbit plane;1 finally, we include
also small dissipative effects (due to the possible internal nonrigid structure of the
satellite), according to the “viscous-tidal model, with a linear dependence on the tidal
frequency” (Correia and Laskar 2004): essentially, the dissipative term is given by the
average over one revolution period of the so-called MacDonald’s torque (MacDonald
1964); compare (Peale 2005).

For a discussion of this model, see (Celletti 1990); for further references, see (Danby
1962; Goldreich and Peale 1967; Wisdom 1987; Celletti 2010); for a different [partial
differential equation (PDE)] model, see (Bambusi and Haus 2012).

1 The largest relative inclination (of the spin axis to the orbital plane) is that of Iapetus (8.298◦) followed
by Mercury (7◦), Moon (5.145◦), and Miranda (4.338◦); all the other moons have inclination on the order
of 1◦ or less.
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The differential equation governing the motion of the satellite is then given by

ẍ + η(ẋ − ν) + ε fx (x, t) = 0, (1)

where:

(a) x is the angle (mod 2π ) formed by the direction of (say) the major equatorial axis
of the satellite with the direction of the semi-major axis of the Keplerian ellipse
plane; “dot” represents derivative with respect to t , where t (also defined mod 2π )
is the mean anomaly (i.e., the ellipse area between the semi-major axis and the
orbital radius ρe divided by the total area times 2π ) and e is the eccentricity of
the ellipse;

(b) The dissipation parameters η = K�e and ν = νe are real-analytic functions of the
eccentricity e: K ≥ 0 is a physical constant depending on the internal (nonrigid)
structure of the satellite, and2

�e :=
(

1 + 3e2 + 3

8
e4

)
1(

1 − e2
)9/2 ,

Ne :=
(

1 + 15

2
e2 + 45

8
e4 + 5

16
e6

)
1(

1 − e2
)6 ,

νe := Ne

�e
. (2)

(c) The constant ε measures the oblateness (or “equatorial ellipticity”) of the satellite
and is defined as ε = 3

2
B−A

C , where A ≤ B and C are the principal moments of
inertia of the satellite (C being referred to the polar axis);

(d) The function f is the (“dimensionless”) Newtonian potential given by

f (x, t) := − 1

2ρe(t)3 cos(2x − 2fe(t)), (3)

where ρe(t) and fe(t) are, respectively, the (normalized) orbital radius

ρe(t) := 1 − e cos(ue(t)) (4)

and the polar angle (see3 Fig. 1); the eccentric anomaly u = ue(t) is defined
implicitly by the Kepler equation4

t = u − e sin(u). (5)

2 In Correia and Laskar (2004) (see Eq. 2) �e and Ne are denoted, respectively, by �(e) and N (e), while,
in Peale (2005), they are denoted, respectively, by f1(e) and f2(e).
3 The analytic expression of the true anomaly in terms of the eccentric anomaly is given by fe(t) =
2 arctan

(√
1+e
1−e tan

(
ue(t)

2

))
.

4 As is well known (see Wintner 1941), e → ue(t) is, for every t ∈ R, holomorphic for |e| < r�, with
r� := max

y∈R

y
cosh(y)

= y�
cosh(y�)

= 0.6627434 . . . and y� = 1.1996786 . . ..
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Fig. 1 Triaxial satellite revolving on a rescaled Keplerian ellipse (equatorial section)

Notice that the Newtonian potential f (x, t) is a doubly periodic function of x and
t , with periods 2π .

Remarks (i) The principal moments of an ellipsoid of mass m and with axes a, b,
and c are given by

A = 1

5
m

(
b2 + c2

)
, B = 1

5
m

(
a2 + c2

)
, C = 1

5
m

(
a2 + b2

)
.

The oblateness ε is then given by

ε = 3

2

B − A

C
= 3

2

a2 − b2

a2 + b2 . (6)

(ii) There is no universally accepted determination of the internal rigidity constant K
for most satellites of the Solar System.5 For the Moon and Mercury an accepted
value is ∼10−8; see, e.g., (Celletti 1990). However, for our analysis to hold it will
be enough that η ≤ 0.008 for the moons and η ≤ 0.001 for Mercury.

The known physical parameter values of the 18 moons of the Solar System needed
for our analysis are reported in Table 1.6

The corresponding data for Mercury are presented in Table 2.

5 See, however, Iess et al. (2012), Hussmann et al. (2012), Lainey et al. (2012), and Castillo-Rogez et al.
(2011).
6 a ≥ b denote the maximal and minimal observed equatorial radii, which, in our model, are assumed to
be the axes of the ellipse modeling the equatorial section of the satellite. The dimensions of the polar radius
are not relevant in our model; however, for all the cases considered in this paper it turns out to be always
smaller than or equal to the smallest equatorial radius.
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Table 1 Physical data of the moons in 1:1 spin–orbit resonance (http://ssd.jpl.nasa.gov/?sat_phys_par and
http://ssd.jpl.nasa.gov/?sat_elem)

Principal body Satellite Eccentricity e a (km) b (km) Oblateness ε = 3
2

a2−b2

a2+b2 ν

Earth Moona 0.0549 1740.19 1737.31 0.00248454179 1.018088056
Jupiter Iob 0.0041 1829.7 1819.2 0.00863266715 1.00010086

Europa 0.0094 1561.3 1560.3 0.00096104552 1.000530163

Ganymede 0.0011 2632.9 2629.5 0.0019382783 1.00000726

Callisto 0.0074 2411.8 2408.8 0.00186698679 1.000328561

Saturn Mimasc 0.0193 208.3 196.2 0.08966019091 1.002234993

Enceladusc 0.0047 257.2 251.2 0.03540026218 1.00013254

Tethysc 0.0001 538.7 527.0 0.03293212897 1.00000006

Dionec 0.0022 564.0 560.8 0.00853478156 1.00002904

Rheac 0.001 766.8 761.8 0.0098127957 1.000006

Titand 0.0288 2575.239 2574.932 0.00017882901 1.00497691

Iapetusc 0.0283 748.9 743.1 0.011662022156 1.004805592

Uranus Ariele 0.0012 582.0 577.3 0.012162311957 1.00000864

Umbriele 0.0039 587.5 581.9 0.01436601227 1.00009126

Titaniae 0.0011 790.7 787.1 0.00684493838 1.00000726

Oberone 0.0014 764.0 758.8 0.01024416739 1.00001176

Mirandae 0.0013 241.0 233.3 0.04869051956 1.00001014

Pluto Charonf 0.0022 605.0 602.2 0.00695821306 1.00002904

a Runcorn and Hofmann (1972)
b Thomas et al. (1998)
c Dougherty et al. (2009)
d Iess et al. (2010)
e Thomas (1988)
f Sicardy et al. (2006)

Table 2 Physical data for Mercury in 3:2 spin–orbit resonance (http://nssdc.gsfc.nasa.gov/planetary/
factsheet/mercuryfact.html and http://solarsystem.nasa.gov/planets/charchart.cfm)

Principal body Satellite Eccentricity e a (km) b (km) Oblateness ε = 3
2

a2−b2

a2+b2 ν

Sun Mercury 0.2056 2440.7 2439.7 0.00061470369 1.255835458

1.3 Existence Theorem for Solar System Spin–Orbit Resonances

In this framework, a p:q spin–orbit resonance (with p and q co-prime nonvanishing
integers) is, by definition, a solution t ∈ R → x(t) ∈ R of (1) such that

x(t + 2πq) = x(t) + 2πp; (7)
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indeed, for such orbits, after q revolutions of the orbital radius, x has made p complete
rotations.7

Our main result can, now, be stated as follows:

Theorem (Moons) The differential equation (1) (a)÷(d) admits spin–orbit resonances
(7) with p = q = 1 provided e, ν, and ε are as in Table 1 and 0 ≤ η ≤ 0.008.

(Mercury) The differential equation (1) (a)÷(d) admits spin–orbit resonances (7)
with p = 3 and q = 2 provided e, ν, and ε are as in Table 2 and 0 ≤ η ≤ 0.001.

In Biasco and Chierchia (2009) (compare Theorem 1.2), existence of spin–orbit
resonances with q = 1, 2, 4 and any p (co-prime with q) is proved,8 while in Celletti
and Chierchia (2009), quasi-periodic solutions corresponding to p/q irrational are
studied in the same model. In Biasco and Chierchia (2009), no explicit computations
of constants (size of admissible ε, size of admissible η, etc.) were carried out.

The main point of this paper is to compute all constants explicitly in order to get
nearly optimal estimates and include all cases of physical interest.

2 Proof of the Theorem

2.1 Step 1: Reformulation of the Problem of Finding Spin–Orbit Resonances

Let x(t) be a p:q spin–orbit resonance and let u(t) := x(qt) − pt − ξ . Then, by (7)
and choosing ξ suitably, one sees immediately that u is 2π -periodic and satisfies the
differential equation

u′′(t) + η̂
(
u′(t) − ν̂

) + ε̂ fx (ξ + pt + u(t), qt) = 0 , 〈u〉 = 0, (8)

where 〈·〉 denotes the average over the period9 and

η̂ := qη, ν̂ := qν − p, ε̂ := q2ε. (9)

Separating the linear part from the nonlinear one, we can rewrite (8) as follows: let

{
Lu := u′′ + η̂ u′[

ξ(u)

]
(t) := η̂ ν̂ − ε̂ fx (ξ + pt + u(t), qt)

(10)

then, the differential equation in (8) is equivalent to

Lu = 
ξ(u). (11)

7 Of course, in physical space, x and t , being angles, are defined modulus 2π , but to keep track of the
topology (windings and rotations) one needs to consider them in the universal cover R of R/(2πZ).
8 The procedure consists in reducing the problem to a fixed point problem containing parameters: The
question is then solved by a Lyapunov–Schmidt or “range-bifurcation” decomposition. The “range equation”
is solved by standard contraction mapping methods, but in order for the fixed point to correspond to a true
solution of the original problem, a compatibility (zero-mean) condition has to be satisfied (“the bifurcation
equation”), and this is done by exploiting a free parameter by means of a topological argument.
9 The parameter ξ is given by (1/2π)

∫ 2π
0 (x(qt) − pt) dt and will be our “bifurcation parameter.”
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2.2 Step 2: The Green Operator G = L−1

Let Ck
per be the Banach space of 2π -periodic Ck(R) functions endowed with the Ck-

norm;10 let Ck
per,0 be the closed subspace of Ck

per formed by functions with vanishing

average over [0, 2π ]; finally, denote by B := C0
per,0 the Banach space of 2π -periodic

continuous functions with zero average (endowed with the sup-norm).
The linear operator L defined in (10) maps injectively C2

per,0 onto B; the inverse

operator (the “Green operator”) G = L−1 is a bounded linear isomorphism. Indeed,
the following elementary lemma holds:

Lemma 2.1 Let η̂ < 2/π . Then11

‖G‖L(B,B) ≤
(

1 + η̂
π

2

(
1 − η̂

π

2

)−1
)

π2

8
.

In particular, assuming

η̂ ≤ π

5

(
10

π2 − 1

)
, i.e., η ≤

⎧⎨
⎩

π
5

(
10
π2 − 1

)
= 0.0083 . . . , if (p, q) = (1, 1)

π
10

(
10
π2 − 1

)
= 0.0041 . . . , if (p, q) = (3, 2)

(12)

one gets

‖G‖L(B,B) ≤ 5

4
. (13)

The proof of the above lemma is based on the following elementary result, whose
proof is given in12 Appendix 1:

Lemma 2.2

v ∈ C1
per,0 �⇒ ‖v‖C0 ≤ π

2
‖v′‖C0 (14)

v ∈ C2
per,0 �⇒ ‖v‖C0 ≤ π2

8
‖v′′‖C0 (15)

Proof of Lemma 2.1 Given g ∈ B with ‖g‖C0 = 1 we have to prove that, if u ∈ C2
per,0

is the unique solution of u′′ + η̂ u′ = g with 〈u〉 = 0, then

‖u‖C0 ≤
(

1 + η̂
π

2

(
1 − η̂

π

2

)−1
)

π2

8
. (16)

10 ‖v‖Ck := sup
0≤ j≤k

sup
t∈R

|D j v(t)|.
11 ‖G‖L(B,B) = sup

u:‖u‖C0 =1
‖G(u)‖C0 .

12 It is easy to see that the estimates in Lemma 2.2 are sharp.
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We note that, setting v := u′, we have that v ∈ B and v′ = −η̂ v + g. Then, we get

‖v‖C0
(14)≤ π

2
‖ − η̂ v + g‖C0 ≤ π

2

(
η̂ ‖v‖C0 + 1

)
,

which implies

‖u′‖C0 = ‖v‖C0 ≤
(

1 − π

2
η̂

)−1 π

2
. (17)

Since u′′ = −η̂ u′ + g, we have

‖u‖C0
(15)≤ π2

8
‖ − η̂ u′ + g‖C0 ≤ π2

8

(
1 + η̂ ‖u′‖C0

)
,

and (16) follows by (17). ��

2.3 Step 3: Lyapunov–Schmidt Decomposition

Solutions of (11) are recognized as fixed points of the operator G ◦ 
ξ :

u = G ◦ 
ξ(u) , (18)

where ξ appears as a parameter.
To solve Eq. (18), we shall perform a Lyapunov–Schmidt decomposition. Let us

denote by 
̂ξ : C0
per → B = C0

per,0 the operator


̂ξ (u) := 1

ε̂

[

ξ(u) − 〈
ξ(u)〉] (19)

:= − fx (ξ + pt + u(t), qt) + φu(ξ),

where

φu(ξ) := 1

2π

2π∫
0

fx (ξ + pt + u(t; ξ), qt) dt . (20)

Then, Eq. (18) can be split into a “range equation”

u = ε̂ G ◦ 
̂ξ (u) (21)

[where u = u(·; ξ)] and a “bifurcation (or kernel) equation”

φu(ξ) = η̂ ν̂

ε̂
⇐⇒ 〈


ξ (u(·; ξ)
〉 = 0. (22)
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Remark 2.3 (i) If (u, ξ) ∈ B × [0, 2π ] solves (21) and (22), then x(t) solves (1).
(ii) ∀ξ ∈ [0, 2π ], 
̂ξ ∈ C1(B, B); indeed, ∀(u, ξ) ∈ B × [0, 2π ],

‖
̂ξ (u)‖C0 ≤ 2 sup
T2

| fx |, ‖Du
̂ξ‖L(B,B) ≤ 2 sup
T2

| fxx |. (23)

The usual way to proceed to solve (21) and (22) is the following:

1. For any ξ ∈ [0, 2π ], find u = u(·; ξ) solving (21);
2. Insert u = u(·, ξ) into the kernel equation (22) and determine ξ ∈ [0, 2π ] so that

(22) holds.

2.4 Step 4: Solving the Range Equation (Contracting Map Method)

For ε̂ small the range equation is easily solved by standard contraction arguments.
Let R := 5

2 ε̂ supT2 | fx | and let

{
BR := {

v ∈ B : ‖v‖C0 ≤ R
}

ϕ : v ∈ BR → ϕ(v) := ε̂ G ◦ 
̂ξ (v).
(24)

Proposition 2.4 Assume that η̂ satisfies (12) and that

5

2
ε̂ sup

T2
| fxx | < 1. (25)

Then, for every ξ ∈ [0, 2π ], there exists a unique u := u(·; ξ) ∈ BR such that
ϕ(u) = u.

Proof By (12) and (23) the map ϕ in (24) maps BR into itself and is a contraction
with Lipschitz constant smaller than 1 by (25). The proof follows by the standard fixed
point theorem. ��

Recalling (3), (4), and (9), the “range condition” (25) writes

ε <

⎧⎪⎨
⎪⎩

(1−e)3

5 , if (p, q) = (1, 1),

(1−e)3

20 , if (p, q) = (3, 2).

(26)

2.5 Step 5: Solving the Bifurcation Eq. (22)

The function φu(ξ) in (20) can be written as

φ(ξ) = φ(0)(ξ) + ε̂ φ̃(1)
u (ξ ; ε̂ ) (27)
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with

φ(0)(ξ) := 1

2π

2π∫
0

fx (ξ + pt, qt)dt. (28)

By (24), for ε satisfying (26),

sup
ξ∈[0,2π ]

|φ̃(1)
u | ≤ sup

T2
| fxx | R

ε̂
≤ 5

2

(
sup
T2

| fx |
)(

sup
T2

| fxx |
)

. (29)

By (3), (4), for ε satisfying (26), one finds immediately that

sup
ξ∈[0,2π ]

|φ̃(1)
u | ≤ M1 := 5

(1 − e)6 . (30)

Let us, now, have a closer look at the zero-order part φ(0). The Newtonian potential f
has the Fourier expansion

f (x, t) =
∑

j∈Z, j �=0

α j cos(2x − j t), (31)

where the Fourier coefficients α j = α j (e) coincide with the Fourier coefficients of

Ge(t) := − e2ife(t)

2ρe(t)3 =
∑

j∈Z, j �=0

α j exp(i j t) (32)

(see Appendix 2). Thus,

fx (ξ + pt, qt) = −2
∑

j∈Z, j �=0

α j sin(2ξ + (2p − jq)t),

and one finds

φ(0)(ξ) =
{

−2α2 sin(2ξ), if (p, q) = (1, 1),

−2α3 sin(2ξ), if (p, q) = (3, 2).
(33)

Define

apq :=
{

2|α2| − ε̂M1, if (p, q) = (1, 1),

2|α3| − ε̂M1, if (p, q) = (3, 2).
(34)

Then, from (27), (30), (33), and (34), it follows that φ([0, 2π ]) contains the interval
[−apq , apq ], which is not empty provided [recall (9) and (30)]
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ε <

⎧⎪⎪⎨
⎪⎪⎩

2(1 − e)6

5
|α2(e)|, if (p, q) = (1, 1),

(1 − e)6

10
|α3(e)|, if (p, q) = (3, 2).

(35)

Therefore, we can conclude that the bifurcation equation (22) is solved if one assumes
that | η̂ ν̂

ε̂
| ≤ apq , i.e. (recall again (9), (30), and (34)), if

η <

⎧⎪⎪⎨
⎪⎪⎩

ε

|ν − 1|
(

2|α2(e)| − 5ε

(1 − e)6

)
, if (p, q) = (1, 1),

2ε

|2ν − 3|
(

2|α3(e)| − 20ε

(1 − e)6

)
, if (p, q) = (3, 2).

(36)

We have proven the following:

Proposition 1 Let (p, q) = (1, 1) or (p, q) = (3, 2) and assume (12), (26), (35), and
(36). Then, (1) admits p:q spin–orbit resonances x(t) as in (7).

2.6 Step 6: Lower Bounds on |α2(e)| and |α3(e)|

In order to complete the proof of the theorem, by checking the conditions of Propo-
sition 1 for the resonant satellites of the Solar System, we need to give lower bounds
on the absolute values of the Fourier coefficients α2(e) and α3(e). To do this we will
simply use a Taylor formula to develop α j (e) in powers of e up to suitably large order13

α j (e) =
h∑

k=0

α
(k)
j ek + R(h)

j (e) (37)

and use the analyticity property of Ge to get an upper bound on R(h)
j by means of

standard Cauchy estimates for holomorphic functions. To use Cauchy estimates, we
need an upper bound of Ge in a complex eccentricity region. The following simple
result will be enough:

Lemma 2 Fix 0 < b < 1. The solution ue(t) of the Kepler equation (5) is, for every
t ∈ R, holomorphic with respect to e in the complex disk

|e| < e∗ := b

cosh b
(38)

and satisfies

sup
t∈R

|ue(t) − t | ≤ b. (39)

13 We shall choose h = 4 for the 1:1 resonances and h = 21 for the 3:2 case of Mercury.
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Moreover, ρe(t) = 1 − e cos(ue(t)) satisfies

|ρe(t)| ≥ 1 − b, ∀ t ∈ R, |e| < e∗ (40)

and Ge(t) (defined in (32)) satisfies

|Ge(t)| ≤ 2

(1 − b)5 (|1 − e|(1 + cosh b) + 1 − b)2 , ∀ t ∈ R, |e| < e∗. (41)

Proof Using that

sup
| Im z|<b

| sin z| = sup
| Im z|<b

| cos z| = cosh b, (42)

one sees that for |e| < e∗ the map v �→ χe(v) with [χe(v)] (t) := e sin (v(t) + t)
is a contraction in the closed ball of radius b in the space of continuous functions
endowed with the sup-norm. Moreover, since χe(v) is holomorphic in e, the same
holds for the fixed point ve(t) of χe. The estimate in (39) follows by observing that
ue(t) = ve(t) + t . Since by (39) we get

| Im (ue(t))| ≤ b, ∀ t ∈ R, |e| < e∗, (43)

estimate (40) follows by

|ρe(t)| ≥ 1 − |e|| cos(ue(t))|
(42)≥ 1 − e∗ cosh b = 1 − b.

Next, let we(t) :=
√

1+e
1−e tan

(
ue(t)

2

)
so that fe = 2 arctan we. Then,14

|e2ife(t)| = |w − i |4
|w2 + 1|2 ≤

(
4

|w2 + 1| + 2

)2

= 4

( |1 − e||1 + cos ue|
|1 − e cos ue| + 1

)2

.

Then, (41) follows by (40), (42), and (43).

Lemma 3 Let R(h)
j (e) be as in (37), 0 < b < 1, and 0 < e < b/ cosh b. Then,

|R(h)
j (e)| ≤ R(h)(e; b)

with

R(h)(e; b) := 2

(1 − b)5

×
((

1 + b

cosh b
− e

)
(1 + cosh b) + 1 − b

)2 eh+1

( b
cosh b − e

)h+1 .

14 Use e2i z = i−w
w+i = − (w−i)2

w2+1
and tan2(α/2) = (1 − cos α)/(1 + cos α).
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Proof For e, ρ > 0 we set

[0, e]ρ := { z ∈ C, s.t. z = z1 + z2, z1 ∈ [0, e], |z2| < ρ }.

Lemma 2 and standard (complex) Cauchy estimates imply, for 0 ≤ s ≤ 1,

|Dh+1α j (se)| ≤ (h + 1)!
(e∗ − e)h+1 sup

[0,e]e∗−e

|α j |

and, therefore,

|R(h)
j (e)| ≤ eh+1

(e∗ − e)h+1 sup
[0,e]e∗−e

|α j | .

By (41) we obtain

sup
[0,e]e∗−e

|α j | ≤ 2

(1 − b)5
((1 + e∗ − e)(1 + cosh b) + 1 − b)2

from which, recalling (38), the lemma follows.

Now, in order to check the conditions of Proposition 1, we will expand α2 in powers
of e up to order h = 4 and α3 up to order h = 21. Using the representation formula
(53) for the α j given in Appendix 2, we find

α2(e) = −1

2
+ 5

4
e2 − 13

32
e4 + R(4)

2 (e) ,

α3(e) = −7

4
e + 123

32
e3 − 489

256
e5 + 1763

4096
e7 − 13527

327680
e9 + 180369

13107200
e11

+ 5986093

734003200
e13 + 24606987

3355443200
e15 + 33790034193

5261334937600
e17

+ 1193558821627

210453397504000
e19 + 467145991400853

92599494901760000
e21 + R(21)

3 (e).

In view of Lemma 3, we choose, respectively, b = 0.462678 and15 b = 0.768368 to
get lower bounds:

|α2(e)| ≥
∣∣∣∣1

2
− 5

4
e2 + 13

32
e4

∣∣∣∣ − |R(4)(e; 0.462678)| (44)

|α3(e)| ≥
∣∣∣∣∣

21∑
k=1

α
(k)
3 ek

∣∣∣∣∣ − |R(21)(e; 0.768368)|. (45)

15 The values for b are rather arbitrary (as long as 0 < b < 1); our choice is made for optimizing the
estimates.
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Table 3 Check of the hypotheses of Proposition 1 for the satellites in spin–orbit resonance

Satellite Lower bound on |αq | r.h.s.–l.h.s. of Eq. (26) r.h.s.–l.h.s. of Eq. (35) r.h.s. of Eq. (36)

Moon 0.45475265 0.1663508 0.127144 0.1225335

Io 0.49997893 0.1889174 0.186489 81.800325

Europa 0.49988598 0.1934518 0.187978 1.8031043

Ganymede 0.49999849 0.1974024 0.196745 264.3751

Callisto 0.49993049 0.1937258 0.189389 5.6260606

Mimas 0.49938883 0.0989819 0.088051 19.852395

Enceladus 0.49997228 0.161793 0.159015 218.44519

Tethys 0.49999999 0.1670079 0.166948 458437.46

Dione 0.49999395 0.1901481 0.188837 281.18521

Rhea 0.49999875 0.1895878 0.18899 1554.7362

Titan 0.49776167 0.1830341 0.166905 0.0357326

Iapetus 0.49790449 0.171834 0.155986 2.2484865

Ariel 0.4999982 0.1871186 0.186401 1321.448

Umbriel 0.499998095 0.1833031 0.180992 145.83674

Titania 0.49999849 0.1924958 0.191838 910.34423

Oberon 0.49999755 0.188917 0.188081 826.10305

Miranda 0.49999789 0.1505305 0.149754 3623.6286

Charon 0.49999395 0.1917247 0.190414 231.15781

Mercury 0.27 0.0244515 0.006171 0.0012363

2.7 Step 7: Check of the Conditions and Conclusion of the Proof

We are now ready to check all conditions of Proposition 1 with the parameters of the
satellites in spin–orbit resonance given in Tables 1 and 2.

In Table 3 we report:

In column 2: the lower bounds on |αq(e)| as obtained in step 6 using (44) and (45)
(with the eccentricities listed in Tables 1 and 2)
In column 3: the difference between the right-hand side and the left-hand side of
the inequality16 (26)
In column 4: the difference between the right-hand side and the left-hand side of
the inequality (35)
In column 5: the right-hand side of the inequality (36), which is an upper bound
for the admissible values of the dissipative parameter η

The positive values reported in the third and fourth column mean that the range
condition (26) and the topological condition (35) are satisfied for all the moons in 1:1
resonance and for Mercury; the bifurcation condition (36) yields an upper bound on
the admissible value for η (fifth column). Thus, η has to be smaller than the minimum

16 Thus, the inequality is satisfied if the numerical value in the column is positive; the same applies to the
fifth column.
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between the value in the fifth column of Table 3 and the value in the right-hand side
of Eq. (12) (needed to give a bound on the Green operator): this minimum value is
0.008 for the moons in 1:1 resonance and 0.001 for Mercury.

The proof of the theorem is complete.

Acknowledgments We thank J. Castillo-Rogez, A. Celletti, M. Efroimsky, and F. Nimmo for useful
discussions. Partially supported by the MIUR grant “Critical Point Theory and Perturbative Methods for
Nonlinear Differential Equations” (PRIN2009).

Appendix 1: Proof of Lemma 2.2

Proof We first prove (14). Up to a rescaling we can prove (14) assuming ‖v′‖C0 = 1.
Assume by contradiction that

‖v‖C0 =: c > π/2.

Note that it is obvious that c ≤ π , since v has zero average and, therefore, must vanish
at some point. Since |v| is a continuous periodic function it attains a maximum at some
point; up to a translation we can assume that |v| attains its maximum in −c. In that
case, multiplying by −1, we can also assume that −c is a minimum, namely

‖v‖C0 = c = −v(−c).

Since ‖v′‖C0 = 1, we get

v(t) ≤ −c + |t + c|, ∀t ∈ [−2c, 0]

and, therefore,

v(0) ≤ 0, v(−2c) ≤ 0,

0∫
−2c

v ≤ −c2. (46)

Since ‖v′‖C0 = 1, we also get

v(t) ≤ π − c − |t − π + c|, ∀ t ∈ [0, 2π − 2c].

Then,

2π−2c∫
0

v ≤ (π − c)2.

Combining with the last inequality in (46), we get

123



488 J Nonlinear Sci (2014) 24:473–492

2π−2c∫
−2c

v ≤ (π − c)2 − c2 = π(π − 2c) < 0,

which contradicts the fact that v has zero average, proving (14).
We now prove (15). Up to a rescaling we can prove (15) assuming ‖v′′‖C0 = 1.

Assume by contradiction that

‖v‖C0 =: c > π2/8. (47)

Up to a translation we can assume that |v| attains maximum at 0. In that case, multi-
plying by −1, we can also assume that −c is a minimum, namely

‖v‖C0 = c = −v(0).

Since ‖v′′‖C0 = 1, we get

v(t) ≤ −c + t2/2, ∀t ∈ R.

Since v has zero average must exist t1 < 0 < t2

s.t.v(t1) = v(t2) = 0, v(t) < 0 ∀ t ∈ (t1, t2), (48)

Moreover,

and t1 ≤ −√
2c, t2 ≥ √

2c, t2 − t1 < 2π.

Since v has zero average and is 2π -periodic,

2π+t1∫
t2

v = −
t2∫

t1

v ≥ 2

3
(2c)3/2. (49)

Set

a := π + (t1 − t2)/2

and note that

0 < a ≤ π − √
2c < π/2, a2 < 2c (50)

by (48) and (47). Set

u(t) := v (t + π + (t1 + t2)/2) .
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Note that u ∈ B ∩ C2 and, by (48),

‖u‖C0 = c, ‖u′′‖C0 = 1, u(−a) = u(a) = 0,

a∫
−a

u =
2π+t1∫
t2

v
(49)≥ 2

3
(2c)3/2.

Consider now the even function

w(t) := 1

2
(u(t) + u(−t)).

Note that w ∈ B ∩ C2 and

‖w‖C0 ≤ c, ‖w′′‖C0 ≤ 1, w(−a) = 0,

0∫
−a

w = 1

2

a∫
−a

u ≥ 1

3
(2c)3/2. (51)

Set

z(t) := c − c

a2 t2.

We claim that

z(t) ≥ w(t), ∀ − a ≤ t ≤ 0. (52)

Then,

0∫
−a

w ≤
0∫

−a

z = 2

3
ca

(50)
<

1

3
(2c)3/2 (51)≤

0∫
−a

w,

which is a contradiction.
Let us prove the claim in (52). Note that z(−a) = w(−a) = 0. Assume by contra-

diction that there exists t̄ ∈ [−a, 0) such that

z(t̄) = w(t̄), z(t) ≥ w(t), ∀ t ∈ [−a, t̄], z′(t̄) ≤ w′(t̄).

Then, since ‖w′′‖C0 ≤ 1,

w(t) ≥ w(t̄) + w′(t̄)(t − t̄) − 1

2
(t − t̄)2

(50)
> z(t̄) + z′(t̄)(t − t̄) − c

a2 (t − t̄)2 = z(t), ∀ t ∈ (t̄, 0].

Then,
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w(0) > z(0) = c,

which contradicts the first inequality in (51). This completes the proof of (15). ��

Appendix 2: Fourier Coefficients of the Newtonian Potential

Properties of the Fourier coefficients α j of the Newtonian potential f , including Eq.
(32), have been discussed, e.g., in Appendix 1 of17 Biasco and Chierchia (2009).

Here we provide a simple formula for the Fourier coefficients α j of the Newtonian
potential f in (3) [compare (d) of §1, and (31)–(32)]; namely we prove that

α j = − 1

4π

2π∫
0

1

ρ2(w2 + 1)2

[
(w4 − 6w2 + 1)c j (u) − 4w(w2 − 1)s j (u)

]
du, (53)

where w = w(u; e) :=
√

1+e
1−e tan u

2 , ρ = 1 − e cos u, and

c j (u) := cos( ju − je sin u), s j (u) := sin( ju − je sin u).

Proof If z = arctan w, then

e2i z = i − w

w + i
= − (w − i)2

w2 + 1
, (54)

so that if we(t) := w(ue(t), e) one has fe = 2 arctan we and

Ge = − 1

2ρ3
e

(we − i)2

(we + i)2 = − 1

2ρ3
e

(we − i)4

(w2
e + 1)2 (55)

= − 1

2ρ3
e

1

(w2
e + 1)2

(
w4

e − 6w2
e + 1 − 4iwe(w

2
e − 1)

)
.

By parity properties, it is easy to see that the G j ’s are real, namely G j = Ḡ j , so that

α j = G j = 1

2π

2π∫
0

G(t)e−i j t dt = − 1

4π

2π∫
0

ei2 fe(t)−i j t

ρe(t)3 dt

= − 1

4π

2π∫
0

1

ρ3
e (w2

e + 1)2

[
(w4

e − 6w2
e + 1) cos( j t) − 4we(w

2
e − 1) sin( j t)

]
dt.

17 A factor −1/2 is missing in the definition of G(t) given in Biasco and Chierchia (2009), (iii) p. 4366
and, consequently, it has to be included at p. 4367 in line 6 (from above, counting also lines with formulas)
in front of “Re”; in line 12, 17, and 18 the factor 1/(2π) has to be replaced by −1/(4π).
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Making the change of variable given by the Kepler equation (5), i.e., integrating from
t to u = ue and setting ue(t)′ = 1

ρe(t)
, one gets (53). ��

Appendix 3: Small Bodies

In the Solar System, besides the 18 moons listed in Table 1 and Mercury, there are five
other minor bodies with mean radius smaller than 100 km observed in 1:1 spin–orbit
resonance around their planet: Phobos and Deimos (Mars), Amalthea (Jupiter), and
Janus and Epimetheus (Saturn), as listed in Table 4.

Besides being small, such bodies have also a quite irregular shape and only Janus
and Epimetheus have good equatorial symmetry.18 Indeed, for these two small moons
(and only for them among the minor bodies), our theorem holds as shown by the data
reported in Table 5.19

Table 4 Physical data of minor bodies in 1:1 spin–orbit resonance

Principal body Satellite Eccentricity e a (km) b (km) Oblateness ε = 3
2

a2−b2

a2+b2 ν

Mars Phobosa,b 0.0151 13.4 11.2 0.26616393443 1.00136808

Deimosa,b 0.0002 7.5 6.1 0.30558527712 1.00000024

Jupiter Amaltheaa 0.0031 125 73 0.73704304667 1.00005766

Saturn Janusc 0.0073 97.4 96.9 0.00771996946 1.000319741

Epimetheusc 0.0205 58.7 58.0 0.01799421119 1.002521568

a Thomas et al. (1998)
b Thomas (1989) and http://solarsystem.nasa.gov/planets/profile.cfm?Object=Mars\&Display=Sats
c Porco et al. (2007)

Table 5 Check of the hypotheses of Proposition 1 for the small satellites in spin–orbit resonance

Satellite Lower bound on |αq | r.h.s.–l.h.s. of Eq. (26) r.h.s.–l.h.s. of Eq. (35) r.h.s. of Eq. (36)

Janus 0.4999324 0.1879319 0.183652 23.167321

Epimetheus 0.49927518 0.1699562 0.158377 6.3987689

18 For pictures, see: http://photojournal.jpl.nasa.gov/catalog/PIA10369 (Phobos), http://photojournal.
jpl.nasa.gov/catalog/PIA11826 (Deimos), http://photojournal.jpl.nasa.gov/catalog/PIA02532 (Amalthea),
http://photojournal.jpl.nasa.gov/catalog/PIA12714 (Janus), http://photojournal.jpl.nasa.gov/catalog/PIA12
700 (Epimetheus).
19 Positive values in the third and fourth column and values less than 0.008 in the fifth column imply that
the assumptions of Proposition 1 hold.
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