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Abstract Turbulent dynamical systems are characterized by persistent instabilities
which are balanced by nonlinear dynamics that continuously transfer energy to the
stable modes. To model this complex statistical equilibrium in the context of un-
certainty quantification all dynamical components (unstable modes, nonlinear en-
ergy transfers, and stable modes) are equally crucial. Thus, order-reduction methods
present important limitations. On the other hand uncertainty quantification methods
based on the tuning of the non-linear energy fluxes using steady-state information
(such as the modified quasilinear Gaussian (MQG) closure) may present discrepan-
cies in extreme excitation scenarios. In this paper we derive a blended framework that
links inexpensive second-order uncertainty quantification schemes that model the full
space (such as MQG) with high order statistical models in specific reduced-order sub-
spaces. The coupling occurs in the energy transfer level by (i) correcting the nonlinear
energy fluxes in the full space using reduced subspace statistics, and (ii) by modify-
ing the reduced-order equations in the subspace using information from the full space
model. The results are illustrated in two strongly unstable systems under extreme ex-
citations. The blended method allows for the correct prediction of the second-order
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statistics in the full space and also the correct modeling of the higher-order statistics
in reduced-order subspaces.

Keywords Blended stochastic methods · Modified quasilinear Gaussian closure ·
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1 Introduction

The most fundamental property of turbulent dynamical systems, which distinguish
them from all other problems of applied mathematics, is the presence of persistent
instabilities over a large number of modes. From the dynamics point of view these
instabilities are always balanced by a nonlinear energy transfer mechanism which
acts both as a stabilizing factor for the unstable modes (of the linearized dynamics)
but also as a supplier of energy for the stable modes (Sapsis and Majda 2013b), lead-
ing to broad energy spectra. From the modeling or uncertainty quantification (UQ)
point of view the presence of internal instabilities naturally leads to growth of any
uncertainties present in the modeling equations, initial conditions, or external forc-
ing. Moreover, this synergistic activity of unstable modes, nonlinear energy transfer
mechanisms, and stable modes presents important modeling difficulties since all the
above components are equally crucial for a correct description of the turbulent dy-
namics.

Therefore, by the very nature of turbulent dynamical systems it is hard to cap-
ture this elegant balance through a reduced-set of modes. Nevertheless there are a
large number of applications where the dynamics ‘live’ in a low-dimensional space
(e.g. flows with a laminar character having a very small number of instabilities) and
for these systems it is efficient to perform order reduction. Schemes based on this
approach are essentially relying on the projection of the original system into a ‘suit-
able’ set of modes. These are chosen according to empirical criteria such as energy-
based proper orthogonal decomposition (POD) (see for example Sirovich 1987;
Holmes et al. 1996), linear-operator-theoretic model reduction methods, such as the
balanced POD (Lall et al. 2002; Ma et al. 2010), and more recently dynamically or-
thogonal (DO) field equations that follow from the original system equation (Sapsis
and Lermusiaux 2009; Sapsis 2013).

The effect of the projection on the linearized dynamics may not allow for the cor-
rect modeling of all the instabilities involved in the case where the modes are not suf-
ficient in number or appropriately chosen. The same limitations hold for the modeling
of intrinsically irreducible linearized dynamics (such as non-normal dynamics—see
Sect. 4.1 in Sapsis and Majda 2013a) or even dynamical components, which despite
the fact that they do not interact with other modes, their energy is important for the
correct modeling (see Sect. 4.2.1—case II in Sapsis and Majda 2013a). A blended
approach based on the quasilinear Gaussian (QG) closure and DO equations was de-
veloped in Sapsis and Majda (2013a) to resolve the misleading modeling of the linear
dynamics due to the order reduction. In this case a reduced-order DO approach was
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used just for the modeling of the nonlinear fluxes while the linear dynamics where
modeled completely. The developed QG-DO method performed very well in systems
with stable mean and important nonlinear energy fluxes where the system energy (or
the attractors finite size) was caused mainly due to the external stochastic forcing.

It turns out however, that a reduced-order modeling approach even at the level of
nonlinear energy fluxes is not sufficient to approximate adequately the synergistic
activity of unstable, stable, and nonlinear dynamics in a turbulent system. A first
step towards this direction was the development of the modified quasilinear Gaussian
closure (MQG) scheme (Sapsis and Majda 2013b). Through a second-order statistical
framework the collective effect of the non-Gaussian statistics or nonlinear dynamics
is quantified in the energy transfer level using second-order steady-state information.
Subsequently this nonlinear energy transfer mechanism is represented and coupled
to the original linear dynamics. In contrast to other second-order schemes (e.g. mean
square models (DelSole 2004; Majda and Harlim 2012)) MQG not only recovers the
correct steady-state statistics but it does this by correctly modeling the energy flow
between different dynamical components (or different locations of the spectrum).
This leads to very good performance of the UQ scheme even in transient regimes
where the energy and number of instabilities are much different than the statistical
steady state used to diagnose the energy fluxes.

Despite its very good performance MQG is ‘tied’ to the steady-state statistics for
which it is tuned. Therefore in extremely different excitation scenarios with spatially
non-homogeneous or even localized action some discrepancies may occur. This is
because, even though the MQG nonlinear energy fluxes are complete or full-order
(i.e. they model the energy transfers over the full set of a complete basis rather than
a reduced one), they may not be able to model a specific dynamical scenario which
is not present in the dynamics used to diagnose the nonlinear fluxes. Such a scenario
can be, for example, injection of energy in high wavenumbers causing reverse flow
of energy to large scale modes. In addition MQG can provide only second-order
statistical information.

The goal of the present work is the improvement of the MQG scheme in extreme
excitation scenarios that ‘push’ the system into very different dynamical regimes
from those for which the MQG nonlinear fluxes have been tuned. To achieve this
goal we will develop a blended framework of inexpensive, full-space, second-order
UQ schemes (such as MQG) with high-order statistical models (such as the Fokker–
Planck equation or Monte-Carlo simulation) in reduced-order subspaces (in the
present work these will be DO subspaces). This is a particularly challenging task
given the contradictory character of the two ingredient methods (MQG and DO).
The coupling will be performed at the level of the energy fluxes by correcting the
MQG fluxes using higher-order statistical information from a DO reduced-order sub-
space for which the nonlinear dynamics are modeled explicitly. On the other hand
we will use the inexpensive second-order statistical model to maintain the correct
energy content inside the DO subspace by modifying the reduced-order equation so
that it implicitly takes into account the interactions of the subspace dynamics with the
dynamics lying outside of it. We will prove that this two-way coupling integrates nat-
urally the two methods resulting in pure improvement relative to the MQG method.

The structure of the paper is as follows. In Sect. 2 we present and analyze the
dynamics of two paradigm systems with persistently unstable dynamics: the unstable
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triad and the Lorenz-96 system. We illustrate how the nonlinear energy fluxes are
connected with non-Gaussian statistics and based on this connection we explain why
order-reduction techniques will not be able to describe the correct dynamics (see Sap-
sis and Majda 2013a for more discussion). In Sect. 3 we illustrate the limitations of
blended methods that perform reduction at the level of energy fluxes such as QG-DO
method. In Sect. 4 we present the MQG-DO method and we show how the coupling
approach results in a natural blending of the two methodologies that leads to mono-
tonic improvement with respect to the number of modes for which the full statistics
are resolved. Finally, in Sect. 5 we illustrate the advantages of the new blended ap-
proach in a variety of time-dependent and time-independent examples exhibiting a
strongly unstable character.

2 Dynamical Systems with Unstable Mean

We will focus on the development of blended UQ techniques in order to describe the
stochastic attractor (i.e. the set of all feasible states of a given system under given
initial conditions and/or stochastic excitation) of systems with persistently unstable
mean. These are systems whose linearized dynamics are associated with an impor-
tant number of positive Lyapunov exponents and therefore the careful and precise
consideration of the nonlinear terms is crucial in order to avoid blowup or severe un-
derestimation of energy in the UQ scheme (Sapsis and Majda 2013b). By blended
UQ techniques we refer to coupled schemes that model a large set of modes through
second-order statistics and a selected set of modes through higher-order statistics.

This is a particularly challenging task given that our analysis will rely on the blend-
ing of two methodologies with completely opposing natures: one relying on the ex-
pensive statistical modeling of the dynamics in a low-dimensional subspace, and the
other on the second-order (i.e. inexpensive) statistical modeling of the dynamics in
the full space.

The generic system formulation on which our analysis and illustrations will be
based is given by the quadratic system

du
dt

= [L + D]u + B(u,u) + F(t) + Ẇk(t;ω)σk(t) (1)

acting on u ∈ R
N . In the above equation and for what follows repeated indices will

indicate summation. In some cases the limits of summation will be given explicitly
to emphasize the range of the index.

In the above equation we have:

• L, being a skew-symmetric linear operator representing the β-effect of Earth’s
curvature, topology etc. and satisfying,

L∗ = −L.

• D being a negative definite symmetric operator,

D∗ = D,

representing dissipative processes such as surface drag, radiative damping, viscos-
ity, etc.
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The quadratic operator B(u,u) conserves the energy by itself so that it satisfies

B(u,u) · u = 0.

Finally, F(t) + Ẇk(t;ω)σk(t) represents the effect of external forcing, which we will
assume that it can be split into a mean component F(t) and a stochastic component
with white noise characteristics. In what follows we give the basic set-up for the exact
statistical formulas which will be used in this paper.

We use a finite-dimensional representation of the stochastic field consisting of a
fixed-in-time, N -dimensional, orthonormal basis

u(t) = ū(t) + Zi(t;ω)vi ,

where ū(t) = 〈u(t)〉 represents the ensemble average of the response, i.e. the mean
field, and Zi(t;ω) are stochastic processes. Note that the ensemble average is taken
over the random argument ω which represents randomness in the initial conditions,
and/or the stochastic excitation.

The mean field equation is given by

dū
dt

= [L + D]ū + B(ū, ū) + RijB(vi ,vj ) + F, (2)

where R = 〈ZZ∗〉 is the covariance matrix. Moreover the random component of the
solution, u′ = Zi(t;ω)vi satisfies

du′

dt
= [L+D]u′ +B

(
ū,u′)+B

(
u′, ū

)+B
(
u′,u′)−RjkB(vj ,vk)+ Ẇk(t;ω)σk(t).

(3)
By projecting the above equation to each basis element vi we obtain

dZi

dt
= Zj

([L + D]vj + B(ū,vj ) + B(vj , ū)
) · vi + (

B
(
u′,u′) − RjkB(vj ,vk)

) · vi

+ Ẇkσk · vi .

From the last equation we directly obtain the evolution of the covariance matrix R

dR

dt
= LvR + RL∗

v + QF + Qσ , (4)

where we have:
(i) the linear dynamics operator expressing energy transfers between the mean

field and the stochastic modes (effect due to B), as well as energy dissipation (effect
due to D) and non-normal dynamics (effect due to L)

{Lv}ij = ([L + D]vj + B(ū,vj ) + B(vj , ū)
) · vi; (5)

(ii) the positive definite operator expressing energy transfer due to the external
stochastic forcing

{Qσ }ij = (vi · σk)(σk · vj ); (6)
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(iii) as well as the energy flux between different modes due to non-Gaussian statis-
tics (or nonlinear terms) modeled through third-order moments

QF = ZmZnZjB(vm,vn) · vi + ZmZnZiB(vm,vn) · vj . (7)

The last term involves higher-order statistics and therefore suitable closure assump-
tions need to be made in order to set up a UQ scheme. The modeling of the nonlinear
energy fluxes QF based on a blended MQG and DO approach will be the main focus
of this work.

We note that the energy conservation property of the quadratic operator B is in-
herited by the matrix QF since

Tr[QF ] = 2ZmZnZiB(vm,vn) · vi = 2B
(
u′,u′) · u′ = 0. (8)

The above exact statistical equations will be the starting point for the approxi-
mation schemes that we will present and develop below. To illustrate and validate
the developed UQ scheme we will consider two specific systems that belong to the
general formulation (1) and mimic various mechanisms of turbulent dynamics. These
will be the triad system in an unstable configuration, and the Lorenz-96 system under
extreme time-space dependent excitation. In what follows we will give a detailed de-
scription of those examples as well as an analysis of the statistics and the associated
energy transfers.

2.1 Unstable Triad System

The first example that we consider is a simple but nevertheless instructive model,
namely the triad system. This is a three-dimensional system with a quadratic part that
is both divergence free and energy preserving. In the standard formulation the linear
part consists of a dissipative operator that is negative-definite and a skew-symmetric
operator. The nonlinear coupling in triad systems is generic of nonlinear coupling
between any three modes in larger systems with quadratic nonlinearities (Majda et al.
1999, 2001, 2002). We can think of this ‘toy’ problem as a ‘poor-mans’ approach to
a full fluid system where the nonlinear terms, dissipation, and skew-symmetric part
represent, respectively, the advection terms, the viscous dissipation, and the Corio-
lis effect while the stochastic noise represents the nonlinear interactions with other
modes in a crude fashion.

In this standard formulation the mean is stable and the finite size of the stochas-
tic attractor is by the external stochastic forcing. In this context the performance of
the blended reduced-subspace algorithm based on the quasilinear Gaussian closure
combined with dynamically orthogonal subspace reduction (QG-DO UQ scheme)
has been proven to be very satisfactory (Sapsis and Majda 2013a). However, in a
turbulent system a fundamental factor is the internal system instabilities that make
the mean unstable over various directions in phase space as is typical for anisotropic
fully turbulent systems.

To examine this case we will modify the standard triad system configuration by
imposing negative damping to one of the degrees of freedom creating a strong, per-
sistent instability that makes the role of the external stochastic excitation to be of sec-
ondary importance. In particular the system that we consider is a three-dimensional
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special case of the generic quadratic system (1) given by

du1 = (−γ1u1 + λ12u2 + λ13u3 + β1u3u2 + F1)dt + σ1 dW1, (9a)

du2 = (−γ2u2 − λ12u1 + λ23u3 + β2u1u3 + F2)dt + σ2 dW2, (9b)

du3 = (−γ3u3 − λ13u1 − λ23u2 + β3u2u1 + F3)dt + σ3 dW3, (9c)

with β1 + β2 + β3 = 0. To obtain an unstable configuration in the steady state we
choose negative damping for u1 (the unstable mode) and positive for u2 and u3:
γ1 = −0.4, γ2 = γ3 = 2. We choose strong nonlinear coupling β1 = 2, β2 = β3 = −1,
and weak external noise σ1 = 0.25, σ2 = σ3 = 0.79 since the energy of the system
comes primarily from the instability of the first mode. The nonlinear coefficients
are chosen to rapidly transfer energy from u1 to u2, u3 with β1 having the opposite
sign of β2, β3 (Majda et al. 1999, 2001, 2002). We also choose constant external
forcing for the second and third degree of freedom, F2 = −1, F3 = 1, to achieve
non-zero steady-state values for u2 and u3. This is essential for these modes to be
active causing energy to flow towards them from u1 so that the system will achieve
a finite-energy steady state and u1 will not blow up. The linear instability is always
dominant for u1 so we set F1 = 0. Finally, we also add a skew symmetric component:
λ12 = 0.03, λ13 = 0.06, and λ23 = −0.09.

To study the dynamical properties of this system we perform a Monte-Carlo sim-
ulation with 105 ensemble members which is sufficiently large to guarantee conver-
gence of the third-order statistics (this parameter will be used for all the Monte-Carlo
simulations that follow and involve the triad system). The statistical equilibrium of
this system relies exclusively on the strong energy transfer (due to nonlinear mech-
anisms) from the unstable modes to the stable ones. In Fig. 1 (subplots a and d) we
present the time series for the mean and variance for the three degrees of freedom
showing clearly that u1 is the dominant one. The time series for the third-order cen-
tral moments responsible for nonlinear energy transfer,

Mijk = 〈
(ui − ūi )(uj − ūj )(uk − ūk)

〉
,

where 〈·〉 denotes averaging over the probability measure, are presented in subplot b
for the first mode. These plots clearly indicate that there is a continuous energy trans-
fer from the first mode that balances its unstable character. The latter is expressed
through the eigenvalues of the linearized dynamics operator Lv given by (5) and
shown in subplot c. The strong third-order moments (causing the strong nonlinear
energy transfers) are in full agreement with the deformed shape of the stochastic at-
tractor illustrated in subplots e (through a low-value contour of the probability density
function that contains most of the probability) and f (through two-dimensional scatter
diagrams).

Despite its low dimensionality the unstable triad example is a challenging case to
validate and assess the performance of a blended UQ algorithm since the equilibrium
relies on a very sensitive balance of nonlinear energy transfers (or equivalently third-
order moments) and unstable dynamics. This connection has to be modeled very
carefully in the UQ scheme in order to obtain meaningful results.
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Fig. 1 Triad system with one unstable direction: (a) time series for the mean of u; (b) time-series for
the third-order central moments of u involving the unstable mode; (c) real part of the linearized dynamics
Lv(ū) eigenvalues; (d) time series for the variance of the three DOF and the trace of the covariance matrix;
(e) a low-probability contour of the full pdf ({u|fu(u) = 10−6}) in steady state. This surface bounds the
major part of the probability measure; (f) 2D scatter plots in steady state

2.2 Lorenz-96 System

The second system that we study is the Lorenz-96 system (L-96), which is the
simplest paradigm of a complex turbulent dynamical systems possessing properties
found in realistic turbulent systems such as a linearly unstable mean state, important
energy spanning the whole spectrum, a large number of persistent instabilities, and
strong nonlinear energy transfers between modes. It is widely used as a test model
for algorithms for prediction, filtering, and low-frequency climate response (Lorenz
1996; Lorenz and Emanuel 1998; Majda et al. 2005, 2010; Majda and Harlim 2012)
Therefore, L-96 is a perfect candidate both to illustrate the limitations of existing UQ
schemes but also to validate the derived UQ model (Sapsis and Majda 2013b).

The L-96 model is a discrete periodic system described by the equations

dui

dt
= ui−1(ui+1 − ui−2) − ui + Fi, i = 0, . . . , J − 1, (10)

with J = 40 and with Fi the deterministic forcing. We can easily observe that the
energy conservation property for the quadratic part is satisfied (i.e. B(u,u) · u = 0)
and the negative definite part has the diagonal form D = −I.

The model is designed to mimic baroclinic turbulence in the midlatitude atmo-
sphere with the effects of energy conserving nonlinear advection and dissipation rep-
resented by the first two terms in (10). For sufficiently strong forcing values such as
F = 6,8 or 16 the L-96 is a prototype turbulent dynamical system which exhibits
features of weakly chaotic dynamics (Fi = 6), strong chaotic dynamics (Fi = 8), and
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turbulent dynamics (Fi = 16) (cf. Fig. 2—first row). Similarly with the triad system
we will first study the dynamical properties of this system by performing Monte-
Carlo simulations. We use 5 × 104 ensemble members which is sufficiently large to
guarantee convergence of the third-order statistics (this parameter will be used for all
the Monte-Carlo simulations that follow and involve the Lorenz-96 system).

In the L-96 system the external noise is zero, and therefore we have no such contri-
bution in Eq. (4), i.e. Qσ = 0. Thus, uncertainty can only build-up from the unstable
modes of the linearized dynamics—described by Lv(ū). Moreover, by observing the
statistical steady-state spectrum of the response (Fig. 2—second row) we notice that
energy spans all the wavenumbers, both stable and unstable; a clear indication that
energy is continuously transferred through the nonlinear fluxes QF caused by impor-
tant third-order moments.

To obtain a more intuitive picture of the energy transfers between different dy-
namical components we project the statistical steady-state solution (obtained through
Monte-Carlo simulation) to the empirical orthogonal function (EOF or POD) basis
consisting of Fourier modes in the translation invariant system (Majda et al. 2005).
In particular let u∞ denote the statistical steady-state solution in physical space for
the L-96. We choose as a base vi the EOF modes that satisfy

Cuuvj = σ 2
j vj , j = 1, . . . , J,

where Cuu = 〈(u∞ − ū∞)(u∞ − ū∞)∗〉 is the covariance matrix in physical space.
We arrange the EOF modes, in descending order with respect to their energy, i.e.
σ 2

1 ≥ σ 2
2 ≥ · · · ≥ σ 2

J and we represent the steady-state solution as

u∞ = ū∞ + Z∞i (ω)vi .

After projecting the statistical steady-state solution to the EOF base we consider the
third-order statistics

Mijk = 〈Z∞iZ∞jZ∞k〉.
This 3-tensor provides information about the energy exchanges between different dy-
namical components (that represent different energy part of the spectrum) occurring
in the form of triad interactions. In Fig. 2—third row we present contours that in-
clude moments which are, in magnitude, 15 % or larger than the maximum Mijk . In
other words for each forcing value we present the contour |Mijk| = 0.15 maxijk Mijk .
The coloring is according to the value of the contained moments i.e. red for negative
moments and blue for positive moments.

Even for the smallest value of F from those that we consider, we can clearly
observe that the dominant nonlinear interactions occur in the form of triad energy ex-
changes involving very high energy modes and very low energy modes. This property
reveals the challenge behind the precise modeling of the nonlinear fluxes QF since
any attempt to ignore very low-energy dynamical components will have a dramatic
impact on the energy transfer properties. This property is more pronounced as we go
to more intense forcing.
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Fig. 2 The three different dynamical regimes for the Lorenz-96 system. Spatiotemporal patterns (first
row); steady-state spectrum (second row). Third-order central moments between principal modes. Only
the significant moments are plotted (i.e. larger than 15 % of the maximum) and are colored according to
their magnitude and sign (third row). Captured percentage of the total nonlinear fluxes QF using the s

most energetic modes (blue solid curve), captured percentage of energy using s modes (red solid curve),
and the normalized energy of each mode with respect to the maximum energy (red dashed curve) (Color
figure online)

The above property is also confirmed if we consider directly the nonlinear energy
fluxes computed using only a few high-energy modes. In particular we saw that the
nonlinear energy fluxes are given in terms of the third-order moments through Eq. (7).
The partially modeled nonlinear energy fluxes (based only on the first s ≤ J modes)
will be given by
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QF,s =
s∑

n=1

s∑

m=1

(
MmnjB(vm,vn) · vi + MmniB(vm,vn) · vj

)
. (11)

In Fig. 2—fourth row we present what percentage of the nonlinear energy transfer
terms is captured when we consider the s-most energetic modes. In particular for
each s we present the ratio q(s) = maxi,j QF,s

maxi,j QF
(blue solid curve) together with the

normalized energy of the modes (red dashed curve) and their cumulative energy (red
solid curve). We observe that retaining the 14 most energetic modes (corresponding
to more than 50 % of the system energy) will not allow capturing more than 1–2 %
of the total nonlinear energy fluxes. Even, if we consider more modes this percentage
increases very slowly.

Our recent MQG scheme (Sapsis and Majda 2013b) is able to alleviate this prob-
lematic behavior by directly modeling the fluxes QF in the second-order level using
a given statistical steady state (over which it is tuned). However, the scope of the
present work is to model the strong variations of the nonlinear energy fluxes (using
third-order statistics) caused by strong modifications of the conditions under which
the MQG scheme has been tuned, i.e. to develop a UQ scheme that will be able to
perform satisfactory in extreme conditions very far away from the tuned MQG spec-
trum.

3 Limitations of Existing UQ Methodologies for Turbulent Systems

In this section we will provide an overview of existing UQ algorithms emphasizing
their advantages and limitations for turbulent systems. In particular we will study the
performance of UQ methods in turbulent systems with strong energy variations (over
time) based

(i) on the reduced-order modeling of the nonlinear fluxes QF using dynamical
orthogonality subspaces (QG-DO method Sapsis and Majda 2013a), and

(ii) on the modified quasilinear Gaussian (MQG) closure method (Sapsis and Ma-
jda 2013b) tuned over a specific energy level (i.e. a specific statistical steady state).

3.1 Reduced-Order Modeling of the Dynamics of the Nonlinear Fluxes (QG-DO
Method)

Order-reduction techniques for UQ are based on the assumption that the modes that
carry small amounts of energy do not have important influence on the global dy-
namics of the stochastic system. Based on this assumption order reduction may be
performed either on the complete dynamics (e.g. DO or POD equations) or just on
the computation of the nonlinear fluxes QF (QG-DO method). The advantages of the
latter method over standard reduction techniques have analyzed in detail in Sapsis
and Majda (2013a) and they are primarily related with the adequate modeling of

(i) non-normal dynamics which otherwise may be ignored, and
(ii) linear processes that contribute to the state covariance that plays an important

role to the computation of the mean (Eq. (2)).
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Although in some systems this may indeed be the case, there are situations where
this assumption does not hold, such as the systems presented in the previous sec-
tion, where many low-energy modes act as nonlinear channels of energy that either
transfer or dissipate important amounts of energy and therefore their effect has to be
considered in the UQ scheme. Here we illustrate these limitations by applying the
QG-DO methodology to the unstable triad and the L-96 system.

We proceed by recalling the QG-DO UQ scheme (see Sapsis and Majda 2013a
for details). As mentioned previously, it is based on the reduced-order modeling of
the nonlinear fluxes using statistical information from a low-dimensional subspace
(called the DO subspace). The solution inside this s-dimensional subspace is repre-
sented as

u(t) = ū(t) +
s∑

i=1

Yi(t;ω)ei (t),

where ei (t), i = 1, . . . , s, are time-dependent modes and s 
 N is the reduction or-
der. The modes and the stochastic coefficients evolve according to the DO condition
(Sapsis and Lermusiaux 2009). In particular the equations for the QG-DO scheme are
as follows.

• Equation for the mean
The equation for the mean is obtained by averaging the original system equation

(i.e. Eq. (2))

dū
dt

= [L + D]ū + B(ū, ū)+RijB(vi ,vj ) + F. (12)

• Equation for the stochastic coefficients and the modes
Both the stochastic coefficients and the modes evolve according to the DO equa-

tions. The coefficients equations are obtained by a direct Galerkin projection and
the DO condition

dYi

dt
= Ym

([L + D]em + B(ū, em) + B(em, ū)
) · ei

+ (YmYn − Cmn)B(em, en) · ei + Ẇkσk · ei . (13)

Moreover, the modes evolve according to the equation obtained by stochastic pro-
jection of the original equation to the DO coefficients

∂ei

∂t
= [L + D]ei + B(ū, ei ) + B(ei , ū) + B(em, en)〈YkYmYn〉C−1

ik

− ej

([L + D]ei + B(ū, ei ) + B(ei , ū) + B(em, en)〈YkYmYn〉C−1
ik

) · ej .

(14)

• Equation for the covariance
The equation for the covariance will be the exact equation (4) with approxi-

mated nonlinear fluxes

dR

dt
= LvR + RL∗

v + QF,s + Qσ ,
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where the nonlinear fluxes are computed using reduced-order information from the
DO subspace

QF,s = 〈YmYnYk〉
(
B(em, en) · vi

)
(vj · ek) + 〈YmYnYk〉

(
B(em, en) · vj

)
(vi · ek).

(15)
The last expression is obtained by computing the nonlinear fluxes inside the sub-
space and project those back to the full N -dimensional space.

The QG-DO UQ method provides dramatic improvement compared with the stan-
dard Galerkin order-reduction methods (Sapsis and Majda 2013a). However, in sys-
tems with large number of instabilities, if s is not large enough to capture the com-
plete nonlinear energy fluxes, the QG-DO scheme will not be able to equilibrate to
the correct amount of energy leading to (i) either severe underestimation of energy
to sufficiently low levels where the modeled part of the fluxes can balance the cor-
responding (for this energy level) number of instabilities, or (ii) to blowup of the
solution due to instabilities which are not balanced by negative nonlinear fluxes. The
above two scenarios have been analyzed previously in the context of completely ab-
sent modeling of the nonlinear fluxes QF = 0 (quasilinear Gaussian closure) (Sapsis
and Majda 2013b).

In Fig. 5 (upper plots) we compare the performance of the QG-DO algorithm (us-
ing s = 2) with direct Monte-Carlo simulation in the unstable triad system presented
in the previous section. As we described previously, the two low-energy modes act
as energy channels and therefore by ignoring one of them we do not allow the UQ
scheme to reach a statistical equilibrium creating important discrepancies both to the
mean and the variance.

For L-96 the problems are even more important since in this case we know a pri-
ori (using the results of Fig. 2) that for s ≤ 14 the captured portion of the nonlinear
fluxes is close to zero and thus the QG-DO scheme behaves essentially like the QG
closure with poor behavior documented and explained in Sapsis and Majda (2013b).
To this end we increase the number of modes to s = 26, corresponding (according to
Fig. 2) to a captured portion of the nonlinear fluxes greater than 50 % and to a cap-
tured portion of total energy by the subspace that is greater than 80 % (for F = 8).
The results are presented in Fig. 3 for constant forcing in space and time: F = 8.
We observe that there is an important underestimation of the energy of the mean—
a feature caused by the misleading modeling of the nonlinear fluxes that cannot bal-
ance the number of instabilities occurring at the correct energy level. We also observe
that there is essentially zero improvement compared with the DO method since the
main cause of the failure is not misleading modeling of linear processes but rather
insufficient modeling of the nonlinear mechanisms.

3.2 Modified Quasilinear Gaussian (MQG) Method

In the MQG closure the modeling of the nonlinear fluxes is done by using statistical
steady-state information for a given set of forcing and system parameters (Sapsis and
Majda 2013b). In particular we consider the first two moment equations (2) and (4)
associated with the original system with respect to an orthogonal, fixed basis vi . In
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Fig. 3 Misleading performance of QG-DO and DO method for the Lorenz-96 system with F = 8. In both
cases a large number of modes is employed (s = 26)

the statistical steady state the nonlinear fluxes QF will satisfy the relation

Lv(ū∞)R∞ + R∞L∗
v(ū∞) + Qσ + QF∞ = 0. (16)

We split the empirical fluxes into a positive semi-definite part Q+
F∞ and a negative

semi-definite part Q−
F∞:

QF∞ = Q−
F∞ + Q+

F∞.

Note that the empirical fluxes must satisfy for every time instant the conservative
property of B which in the above context is expressed by the constraint:

Tr[QF ] = 0 ⇒ Tr
[
Q+

F

] = −Tr
[
Q−

F

]
. (17)

The positive fluxes Q+
F indicate the energy being ‘fed’ on the stable modes in the

form of external stochastic noise. On the other hand the negative fluxes Q−
F should

act directly on the positive part of the Lv-spectrum, effectively stabilizing the unsta-
ble modes. To achieve this we choose to represent the negative fluxes as additional
damping

Q−
F (R) = N∞R + RN∗∞

with N∞ determined by solving the equation

Q−
F∞ = N∞R∞ + R∞N∗∞,

which has as a unique solution:

N∞ = 1

2
Q−

F∞R−1∞ .

In addition, as explained in detail in Sapsis and Majda (2013b) we add a small amount
of damping and noise to improve the marginal stability which otherwise occurs in the
steady state. Moreover, we scale the fluxes with a suitable functional (here we use
the square-root of the total energy) in order to achieve the best possible accuracy in
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the timescales of the system and the transient response. This will give the final MQG
closure scheme:

dū
dt

= [L + D]ū + B(ū, ū) + RijB(vi ,vj ) + F, (18a)

dR

dt
= LvR + RL∗

v + NR + RN∗ + Q+
F + Qσ , (18b)

N = 1

2

f (R)

f (R∞)

(
Q−

F∞ − qI
)
R−1∞ and Q+

F = − Tr[Q−
F ]

Tr[Q+
F∞]

(
Q+

F∞ + qI
)
,

(18c)

with q = qsλmax[QF∞] and f (R) = √
Tr(R). The last formulation guarantees the

conservation property (17) on every time-instant.
In the MQG closure the modeling of the nonlinear fluxes occurs in the second-

order level and therefore no statistical information for higher-order moments is re-
quired to be computed or measured. Essentially, we are using the steady information
to determine the magnitude (for each degree of freedom) of the minimum amount
of additional damping and additional noise required to approximate the effect of the
nonlinear energy transfer terms. This additional damping will balance the linear, per-
sistent instabilities while the additional noise will ‘feed’ the stable modes with energy.

The MQG closure presents remarkable performance even under forcing conditions
that ‘push’ the system to energetic regimes which are very far from the tuning regime
(Sapsis and Majda 2013b). However, for forcing conditions which are strongly inho-
mogeneous in space and create local, in space, instabilities the additional damping
and noise N,Q+

F (which have been computed for homogeneous conditions) may fail
to capture the correct energy transfers. Here we measure the performance of the MQG
closure scheme through the L-96 system with a strongly time-space dependent forc-
ing given by

Fi(t) = F + 2F sin

(
a

3i

10
− 3t

20

)
sin

(
a

3i

2
+ 3t

4
+ π

)
, 0 ≤ i ≤ 39, (19)

where F = 8 and the nonlinear fluxes have been tuned based on the F = 8 steady
state. Note that there are large inhomogeneous changes in the forcing magnitude com-
pared to the tuning value for any a. In Fig. 4 we observe that for a = 0 and a = 0.2,
i.e. zero or slow spatial variation of the forcing but large changes in magnitude, the
MQG algorithm has very good performance on capturing first- and second-order mo-
ments. For much faster spatial variation of the forcing (a = 1) MQG is unable to
adequately model the energy transfers. Therefore, despite its very good performance
for homogeneous or close-to-homogeneous conditions, MQG may have important
discrepancies in the case of strongly inhomogeneous excitations (Fig. 4). Modeling
such inhomogeneous responses will be the goal of the next section where the nonlin-
ear fluxes will be modeled by combining ideas from reduced-order subspaces with
the MQG approach.



1054 J Nonlinear Sci (2013) 23:1039–1071

Fig. 4 Comparison of MQG UQ scheme (solid line) with Monte Carlo (dashed line) in L-96 for different
spatial dependence of the forcing Fi(t) (Eq. (19)). First row: a = 0—no spatial dependence; second row:
a = 0.2—weak spatial dependence; third row: a = 1—strong spatial dependence. The tuning of the fluxes
has been made using steady-state statistics that correspond to constant forcing F = 8

4 A Blended Approach Based on MQG and Subspace Generated Nonlinear
Fluxes (MQG-DO Method)

We saw that MQG has the most robust behavior in UQ of turbulent systems, com-
pared with all the other UQ methodologies. However, for strong forcing or varia-
tion of system parameters additional instabilities may be introduced which cannot be
modeled appropriately by the MQG fluxes. For this case we introduce a blended ap-
proach where the MQG fluxes will be improved through a reduced-subspace model
which will run over a DO basis. The reduced-order model that runs inside the sub-
space has also to take into account the energy fluxes coming from the nonlinear pro-
cesses outside the subspace. To this end, we will have a two-way coupling between
MQG and DO where

(i) the nonlinear fluxes of the MQG model will be corrected using higher-order
stochastic information from the subspace, while

(ii) the evolution of the dynamics inside the subspace will take into account the
nonlinear fluxes occurring due to the nonlinear interactions between the subspace
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modes and the orthogonal (to the subspace) modes, a feature that is captured by the
MQG fluxes.

We will use a double representation for the solution. Similarly with the QG-DO
method, we will represent the solution (i) using a fixed, high-dimensional basis

uMQG(t) = ū(t) +
N∑

i=1

Zi(t;ω)vi

and (ii) a time-dependent, low dimensional basis

uDO(t) = ū(t) +
s∑

i=1

Yi(t;ω)ei (t)

to represent the dynamics within a reduced-order subspace VS = span[ei (t)]. We re-
quire the two solutions to have the same mean and also to be identical inside the
subspace. This is expressed by the condition

uDO(t) · ei (t) = uMQG(t) · ei (t), for i = 1, . . . , s,

or equivalently,

N∑

j=1

Zj vj · ei = Yi, (20)

which gives the consistency condition between the high dimensional covariance (R =
〈ZZ∗〉) and the reduced-order covariance (CYY = 〈YY∗〉):

CYY = P ∗RP, where R
N×s  Pji = vj · ei . (21)

Note that for the case where the stochastic coefficients are independent, identically,
distributed stochastic processes the equality (20) implies directly Gaussian statis-
tics for the coefficients (Marcinkiewicz 1938). This is consistent with the developed
framework since for the case of independent, identically, distributed stochastic co-
efficients the nonlinear fluxes (which depend on the third-order moments) vanish
identically and therefore we have linear dynamics which result in Gaussian statistics.

The MQG-DO UQ scheme is developed as follows.

Mean Field Equation The mean field equation that we will employ is that one that
takes into account the high-dimensional covariance information—expressed through
the covariance R. This is Eq. (2) rewritten here for convenience

dū
dt

= [L + D]ū + B(ū, ū) + RijB(vi ,vj ) + F. (22)

Evolution of the Covariance Matrix R We recall the second-order moment equation
(Eq. (4))

dR

dt
= LvR + RL∗

v + QF + Qσ .
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In the MQG approach we represent the nonlinear fluxes QF , using steady-state infor-
mation, through a positive definite (external noise) and negative definite (minimum
additional dissipation) part. In the QG-DO this is done using higher-order statistical
information inside the subspace. In this blended MQG-DO approach we will combine
these ideas by using MQG fluxes but improving those (since they rely on steady-state
information) by correcting them using higher-order statistical information from the
low dimensional subspace VS . In particular from the MQG nonlinear fluxes we will

(i) subtract the steady-state nonlinear fluxes QVS,∞ that correspond to the sub-
space VS , and

(ii) we will add the corresponding fluxes computed using the high-order statistics
of the subspace which also include transient dynamics information:

QF = QMQG + QVS
− QVS,∞, (23)

where QMQG = NR + RN∗ + Q+
F (see Eq. (18c)). This correction of the nonlinear

fluxes (i.e. QVS
instead of QVS,∞) will be able to take into account important tran-

sient, and spatially non-homogeneous effects. To this end the evolution equation for
the full covariance will take the form

dR

dt
= LvR + RL∗

v + Qσ + QVS
+ QMQG − QVS,∞. (24)

The next step is to write down explicit formulas for the fluxes QVS
and QVS,∞.

The energy flux in the reduced-order subspace will be given by

QVS
= 〈YmYnYk〉

[(
B(em, en) · vi

)
(vj · ek) + (

B(em, en) · vj

)
(vi · ek)

]
.

This is the nonlinear flux matrix inside the subspace projected back to the high dimen-
sional basis. The above fluxes also sum up to zero since VS ⊂ spani[vi] and therefore
em = (vq · em)vq . Thus we will have

Tr[QVS
] = 2〈YmYnYk〉

(
B(em, en) · vp

)
(vp · ek)

= 2〈YmYnYk〉
(
B(em, en) · ek

) = 0.

To represent the steady-state nonlinear fluxes within the subspace we use the steady-
state skewness (assumed to be known) suitably rescaled with the current variance of
the system:

QVS,∞ = μmnk,∞
√〈

Y 2
m

〉〈
Y 2

n

〉〈
Y 2

k

〉[(
B(em, en) ·vi

)
(vj · ek)+ (

B(em, en) ·vj

)
(vi · ek)

]
,

(25)
where the steady-state skewness coefficients are given by

μmnk,∞ = 〈Ym,∞Yn,∞Yk,∞〉
√

〈Y 2
m,∞〉〈Y 2

n,∞〉〈Y 2
k,∞〉

, with Ym,∞ = (u∞ − ū∞) · em(t).

We emphasize that the time-dependence in the skewness coefficients μmnk,∞ comes
only through the time-dependent modes. Additionally, we have by construction

Tr[QMQG] = Tr[QVS
] = Tr[QVS,∞] = 0.
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Therefore, the nonlinear flux formulation (23) is consistent with the energy conser-
vation property of the nonlinear operator B . Equation (24) expresses the first level
of coupling, i.e. the influence of the DO subspace dynamics on the evolution of the
high-dimensional covariance.

Evolution of the DO Stochastic Subspace The evolution of the DO basis will be
done using the standard DO equations for the basis (Sapsis and Lermusiaux 2009)

∂ei

∂t
= [L + D]ei + B(ū, ei ) + B(ei , ū) + B(em, en)〈YkYmYn〉C−1

ik

− ej

([L + D]ei + B(ū, ei ) + B(ei , ū) + B(em, en)〈YkYmYn〉C−1
ik

) · ej . (26)

Reduced-order stochastic dynamics The last step of our scheme is the formulation
of a reduced-order dynamical system inside the time-dependent subspace. This will
be formulated by minimally modifying the standard reduced-order model (obtained
by Galerkin projection to the DO basis, i.e. Eq. (13)) so that the subspace covariance
(expressed through the coefficients Y) is energetically consistent with the covariance
of the coefficients Z (consistency condition (21)). Differentiating Eq. (21) gives

dCYY

dt
= P ∗ dR

dt
P + Ṗ ∗RP + P ∗RṖ (27)

(where dR
dt

is known, given by Eq. (24)). This is the consistency constraint expressed
in differential form.

On the other hand for the evolution of the dynamics inside the subspace we con-
sider the standard Galerkin projection model with an additional damping matrix
NC ∈ R

s×s and noise term Q
1/2
C ∈ R

s×s that will represent the nonlinear interac-
tions between modes of the subspace and the modes outside of it. With this ansatz we
will have the reduced-order dynamical system

dYi

dt
= ((

P ∗LvP
)
im

+ NC,im

)
Ym + (YmYn − CYY,mn)B(em, en) · ei + ẆmQ

1/2
C,im

+ Ẇkσk · ei . (28)

In the above equation all the quantities are known except for the pair NC and QC .
This will be determined by using the differential constraint (27). In particular we
formulate the second-order equation for the covariance CYY by using Eq. (28):

dCYY

dt
= (

P ∗LvP +NC

)
CYY +CYY

(
P ∗LvP +NC

)∗ +QC +P ∗Qσ P +P ∗QVS
P.

(29)
From the covariance consistency condition (Eqs. (21), (27)) and the evolution equa-
tion for R (Eq. (24)) we have

dCYY

dt
= P ∗(LvR + RL∗

v + Qσ + QVS
+ QMQG − QVS,∞

)
P + Ṗ ∗RP + P ∗RṖ .
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By equating the two right hand sides of the last two equations we obtain (also taking
into account that CYY = P ∗RP )

NC

(
P ∗RP

) + (
P ∗RP

)
N∗

C + QC

= P ∗Lv

[
I − PP ∗]RP + P ∗R

[
I − PP ∗]L∗

vP + P ∗QMQGP − P ∗QVS,∞P

+ Ṗ ∗RP + P ∗RṖ . (30)

We recall that QMQG = NR +RN∗ +Q+
F and we choose the positive definite matrix

QC as follows:

QC = P ∗Q+
F P, (31)

which is always possible since Q+
F is by construction positive definite. Then Eq. (30)

takes the form

NC

(
P ∗RP

) + (
P ∗RP

)
N∗

C

= P ∗(Lv

[
I − PP ∗] + N

)
RP + P ∗R

([
I − PP ∗] + N∗)L∗

vP − P ∗QVS,∞P

+ Ṗ ∗RP + P ∗RṖ .

From this we obtain NC

NC = 1

2

[
P ∗((Lv

[
I − PP ∗] + N

)
R + R

([
I − PP ∗]L∗

v + N∗) − QVS,∞
)
P

+ Ṗ ∗RP + P ∗RṖ
](

P ∗RP
)−1

. (32)

With the above construction it is guaranteed that the dynamics inside the subspace
will always contain the correct second-order information (correct energy) by taking
into account the nonlinear energy fluxes due to the nonlinear interactions with the
dynamics outside the subspace. The above construction can also be seen as a general-
ized Galerkin projection that takes into account available information for the dynam-
ics which are not spanned by the employed basis. Equations (31) and (32) express the
second level of coupling between MQG and DO, i.e. the influence of the MQG fluxes
on the reduced-order dynamics. This completes the set of equations for the MQG-DO
UQ scheme.

For s = 0, MQG-DO is simplified to the standard MQG scheme while for
s = N we recover the original equation. For s = 1 the dynamics in the DO sub-
space become linear since B(e1, e1) · e1 = 0. Therefore we expect Gaussian statistics
for the stochastic coefficient Y1. In this case the nonlinear fluxes QVS

generated by
the subspace will vanish since 〈Y 3

1 〉 = 0. On the other hand, the steady-state fluxes
QVS,∞ that we subtract will be non-zero since μ111,∞ is based on exact statistics.
Thus, for s = 1 we expect inferior performance compared with MQG.

Note that although Eq. (28) can be formulated as a Fokker–Planck equation for the
probability density function fY of the coefficients Yi , this transport equation will not
have a standard form since its coefficients will depend on the quantities ū,R, and P

which are essentially driven by integrals of fY through the rest of the MQG-DO equa-
tions. Therefore, there will be a non-local dependence of the coefficients that govern
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fY , on fY . To this end the equation governing the pdf fY can be seen as infinite-
dimensional approximation of the full Kramers–Moyal expansion (Kramers 1940;
Moyal 1949). The infinite-dimensional character is due to the fact that only quantities
connected with statistical moments (i.e. integrals of fY ) show-up in the coefficients
of Eq. (28). We emphasize that only second or infinite-order approximations of the
full Kramers–Moyal expansion are meaningful (Pawula 1967).

4.1 Consistency of the MQG-DO with the Exact Steady-State Statistics

Here we will prove that the MQG-DO UQ method will result in the correct steady-
state statistics. Essentially, we will need to prove that the steady state of the MQG-DO
scheme is compatible with the exact steady-state statistics. First we observe that

QVS
|Y∞ = 〈Ym∞Yn∞Yk∞〉[(B(em, en) · vi

)
(vj · ek) + (

B(em, en) · vj

)
(vi · ek)

]

= μmnk,∞
√〈

Y 2
m∞

〉〈
Y 2

n∞
〉〈
Y 2

k∞
〉[(

B(em, en) · vi

)
(vj · ek)

+ (
B(em, en) · vj

)
(vi · ek)

]

= QVS,∞.

We will also have

dR

dt

∣∣∣∣
ū∞,R∞,Y∞

= Lv(ū∞)R∞ + R∞L∗
v(ū∞) − lim

t→∞QVS
+ QMQG + QVS,∞ + Qσ

= Lv(ū∞)R∞ + R∞L∗
v(ū∞) + QMQG + Qσ = 0,

where the last equation vanishes by the construction of the MQG nonlinear fluxes
QMQG.

Next, we consider the equation for the coefficients (28). By construction the co-
variance of the coefficients satisfies Eq. (27). Therefore, assuming that the subspace
has converged to a steady state, i.e. Ṗ = 0 we obtain that for Y = Y∞, ū = ū∞,
R = R∞

dCYY

dt

∣∣∣∣
ū∞,R∞,Y∞

= 0.

The mean equation is trivially satisfied. Thus, the MQG-DO model is indeed consis-
tent (up to second order), by construction, with the correct steady-state information.

4.2 Summary of the MQG-DO Equations

Here we present a summary of the blended MQG-DO method for the convenience of
the reader.

Equation for mean and covariance

dū
dt

= [L + D]ū + B(ū, ū) + RijB(vi ,vj ) + F,

dR

dt
= LvR + RL∗

v + Qσ + QVS
+ QMQG − QVS,∞,

(33)
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where

QMQG = NR + RN∗ + Q+
F ,

N = 1

2

f (R)

f (R∞)

(
Q−

F∞ − qI
)
R−1∞ and Q+

F = − Tr[Q−
F ]

Tr[Q+
F∞]

(
Q+

F∞ + qI
)
,

Q−
F∞ + Q+

F∞ = QF∞ = −Lv(ū∞)R∞ − R∞L∗
v(ū∞) − Qσ ,

q = qsλmax[QF∞] and f (R) = √
Tr(R),

and

QVS
= 〈YmYnYk〉

[(
B(em, en) · vi

)
(vj · ek) + (

B(em, en) · vj

)
(vi · ek)

]
,

QVS,∞ = 〈Ym∞Yn∞Yk∞〉[(B(em, en) · vi

)
(vj · ek) + (

B(em, en) · vj

)
(vi · ek)

]
.

Equation for the subspace basis

∂ei

∂t
= [L + D]ei + B(ū, ei ) + B(ei , ū) + B(em, en)〈YkYmYn〉C−1

ik

− ej

([L + D]ei + B(ū, ei ) + B(ei , ū) + B(em, en)〈YkYmYn〉C−1
ik

) · ej . (34)

Equation for the subspace dynamics

dYi

dt
= ((

P ∗LvP
)
im

+ NC,im

)
Ym + (YmYn − CYY,mn)B(em, en) · ei + ẆmQ

1/2
C,im

+ Ẇkσk · ei , (35)

where Pij = vi · ej and

NC = 1

2

[
P ∗((Lv

[
I − PP ∗] + N

)
R + R

([
I − PP ∗]L∗

v + N∗) − QVS,∞
)
P

+ Ṗ ∗RP + P ∗RṖ
](

P ∗RP
)−1

,

QC = P ∗Q+
F P.

4.2.1 Numerical Implementation and Computational Cost of the MQG-DO Scheme

The numerical implementation of the MQG-DO scheme is as follows:
(i) Computation of the current third-order statistics inside the subspace and sub-

sequent computation of the subspace nonlinear fluxes QVS
, QVS,∞ (s-dimensional

computation).
(ii) Evolution of the DO modes with a first-order Euler method (s-dimensional

computation).
(iii) With fixed nonlinear fluxes from step (i) we evolve the nonlinear equa-

tions (33) for a numerical time step using a fourth-order Runge–Kutta method (N -
dimensional computation).
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Table 1 Computational cost associated with the MC, DO, MQG, and blended methods

Uncertainty
quantification method

Deterministic equations Stochastic equation
dimensionalityNumber of equations Dimensionality

Monte Carlo − − N

DO s + 1 N s

MQG-DO and QG-DO s + 1 N s

1 N2

MQG 1 N –

1 N2

(iv) We compute the matrices NC and QC using the evolved values of R and ū
from the previous step (s-dimensional computation).

(v) We evolve the stochastic coefficients Yi for a numerical time step using a
fourth-order Runge–Kutta method on Eq. (35) with fixed matrices NC and QC given
by the previous step (s-dimensional computation).

(vi) We perform orthonormalization of the DO modes and the stochastic coeffi-
cients to avoid numerical errors according to the procedure described in Ueckermann
et al. (2013) (Sect. 5.2) (s-dimensional computation).

The computational cost associated with the MQG-DO method as well as a com-
parison with Monte-Carlo, MQG, and DO methods is presented in Table 1. The extra
cost associated with the MQG-DO method, compared with standard DO reduction, is
the evolution of the covariance matrix R. On the other hand in the MQG framework
we do have to evolve the covariance matrix R but we do not need to solve a stochastic
differential equation.

4.2.2 Dimensionality of the Subspace

The dimensionality of the DO subspace (as well as adaptive criteria for its modifica-
tion) has been discussed in the context of low-complexity fluid flows in Sapsis and
Lermusiaux (2012). In the present framework the dimensionality of the subspace can
be chosen based on the contribution of the nonlinear energy fluxes produced by this
subspace to the overall energy transfers.

In particular, the estimation of the subspace dimensionality s can be made a pri-
ori (i.e. before performing any MQG-DO computation) using steady-state statistics
obtained through (sufficiently long) time averaging of a single realization. Based on
first- and second-order statistics we can estimate through Eq. (16) the matrix of non-
linear energy fluxes in steady state i.e., the nonlinear energy transfers due to the dy-
namical interplay of the complete basis. We can then estimate what part of these non-
linear energy transfers is modeled by the s most energetic modes (in steady state).
The s most energetic modes can be obtained through second-order statistics while
the nonlinear energy fluxes that correspond to these modes can be computed using
expression (25) and third-order statistics. Through this approach we can construct di-
agrams showing the relative contribution of a specific number of modes to the overall
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energy fluxes (similar to those presented in Fig. 2—last row) and obtain a priori esti-
mates about what would be the expected influence of s modes to the nonlinear energy
fluxes.

5 Application of MQG-DO to Systems with Unstable Dynamics

Here we apply the new blended algorithm to the two unstable systems presented
previously. We will consider for each system two configurations:

(i) a case with constant parameters where the system reaches the steady state which
has been used to tune the MQG fluxes, and

(ii) a case where we have explicit time-dependence to the system/forcing param-
eters. This time dependence is chosen so that it ‘pushes’ the system away from the
energetic regime for which the steady-state statistics have been computed by intro-
ducing additional instabilities.

5.1 Triad System with Unstable Mean State

5.1.1 Steady-State Dynamics

The first case that we consider is the triad system in the unstable configuration pre-
sented in Sect. 2.1. In Fig. 5 we compare the performance of the MQG-DO with di-
rect Monte-Carlo simulation and with other UQ methods (MQG and QG-DO). Note
that the performance of the QG-DO UQ scheme for the constant forcing case has
been discussed already in Sect. 3.1 and it will not be considered here. For MQG
we observe that even though it recovers very well the steady-state performance it
presents some discrepancies during the transient regime, especially in the variance.
On the other hand MQG-DO with two modes is able to resolve much more effec-
tively the transient dynamics while it still maintains the very good performance of
MQG in the steady state. In addition, through MQG-DO we are able to recover the
full non-Gaussian steady-state statistics inside the DO subspace which compare fa-
vorably with the exact ones (Fig. 5). This is due to the fact that the fluxes are partially
resolved explicitly.

5.1.2 Time Dependent Forcing

To illustrate more clearly the advantages of the MQG-DO method we consider a case
where both the forcing and the system parameters fluctuate over time. Their fluctua-
tions are chosen so that the system moves between dynamical regimes of zero, one,
and two instabilities. Note that the steady-state statistics are chosen based on the re-
sponse of the previous (constant-parameters) configuration where only one instability
is present. In particular the triad system that we consider has the form

du1 = (−γ1u1 + λ12u2 + λ13u3 + β1u3u2 + g1)dt + (
σ1 + f 2(σT 1 − σ1)

)
dW1,

du2 = (−γ2u2 − λ12u1 + λ23u3 + β2u1u3 + g2)dt + (
σ2 + f 2(σT 2 − σ2)

)
dW2,
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Fig. 5 Triad system in an unstable configuration with constant forcing/parameters resolved with various
UQ methods. The mean and the variance are plotted. In the lower plots a comparison is given between the
pdf inside the subspace computed with MQG-DO and direct Monte Carlo

du3 = (−γ3u3 − λ13u1 − λ23u2 + β3u2u1 + g3)dt + (
σ3 + f 2(σT 3 − σ3)

)
dW3,

where the system parameters remain as in Sect. 2.1 and g1, g2, g3, and f are functions
of time. Moreover, we choose the new additional parameters for the noise as σT i =
3
5σi so that important variations in the noise intensity occur. We consider two cases for
the time dependent functions: a time-periodic and one with random time dependence.
For the periodic case we choose

g1(t) = 0, g2(t) = −1+0.5 sin
πt

2
, g3(t) = 1+0.2 cos

πt

2
, f (t) = 1.3 sin

πt

2
,

and as we observe in Fig. 6 (lower-left subplot) the system oscillates between a stable
and an unstable regime with one instability. The blended MQG-DO method (s = 2)
recovers very well both the periodic attractor and the initial transient regime in terms
of the first- and second-order statistics. MQG does very well for the mean but it
cannot track the second-order statistics very effectively. This is due to the fact that
MQG has been tuned for a dynamical regime with one unstable direction and, as
the results indicate, the correct nonlinear fluxes are not effectively represented in
the fully stable regime. This is also the case for QG-DO where nonlinear fluxes are
partially represented through the non-Gaussian statistics inside the DO subspace. By
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Fig. 6 Triad system with time dependent parameters and forcing. The system oscillates between a stable
and an unstable regime. The performance of MQG-DO algorithm is compared with Monte Carlo and other
UQ methods

comparing QG-DO and MQG we can conclude that for unstable systems it is more
effective to use a complete (full-order) model of the nonlinear fluxes based on steady-
state statistics which may refer to a different energy/dynamical regime rather than
model the nonlinear fluxes using an explicit approach such as QG-DO which gives
an incomplete (reduced-order) representation of the nonlinear dynamics and creates
important discrepancies.

In the case with random time-dependence we have the functions gi given by

g(t) =
⎛

⎝
0

−1
1

⎞

⎠ + g(t)

⎛

⎝
1
1
1

⎞

⎠ where dg = −1

4
g + 0.4

√
1

2
dWg(t;ω),
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and the noise intensity is also controlled by an Ornstein–Uhlenbeck (OU) process

df = −1

4
f + 0.7

√
1

2
dWf (t;ω).

In Fig. 6 (lower-right subplot) we show the resulted evolution of the eigenvalues for
the linearized dynamics. The transition involves fully stable and unstable regimes
with one and two instabilities. From Fig. 6 (second plot on the right column) we ob-
serve the explosion of variance occurring right after the system passes very briefly
through the regime with two instabilities (t ∼ 7.5). MQG-DO (s = 2) is able to track
very effectively this unstable transition while QG-DO and MQG overestimate the
system variance since they cannot model the correct nonlinear fluxes during the sub-
sequent stable phase. Similarly with the periodic case MQG performs very well for
the estimation of the mean given its extremely inexpensive computational character.
When we compare MQG with QG-DO we can make similar conclusions with the pe-
riodic case, i.e. that an empirical, but nevertheless complete (full-order) model, of the
nonlinear fluxes (such as MQG) performs much better than a scheme that explicitly
models the nonlinear fluxes through a reduced-order approach.

5.2 Lorenz-96 with Time-Space Dependent Forcing

The second application where we illustrate and validate MQG-DO method is the
Lorenz-96 system presented in Sect. 2.2. Similarly with the triad system we will
consider two cases:

(i) constant parameters where a statistical steady state is reached, and
(ii) strongly time-space dependent forcing.

5.2.1 Steady-State Dynamics

For this constant parameters case we choose F = 8 and we use the second-order
statistics describing the statistical steady state to obtain the MQG nonlinear fluxes.
Then we resolve the transient problem in order to examine how well the blended
MQG-DO method does on capturing the transient dynamics, the steady-state spec-
trum, and also recovering the higher-order statistical structures inside the subspace.
Based on the study of the nonlinear energy fluxes that we presented previously
(Fig. 2), we obtain an estimate of the maximum improvement on the nonlinear fluxes,
by resolving s modes within the DO subspace. For example we can immediately con-
clude that if s < 15 the impact of the DO correction to the MQG nonlinear fluxes will
be less than 2–3 % and in this case the statistics inside the subspace are essentially
driven by the MQG component. In order to achieve two way coupling we choose
s = 26 so that we have equal orders of contribution between the MQG and the DO
component.

Note that due to the special geometry of the triad interactions occurring in the
Lorenz-96 system the problem is particularly hard. In more realistic turbulent systems
we do not expect the very low-energy modes to directly interact with the largest
energy modes. In this case we rather expect strong triad interactions between high
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Fig. 7 Lorenz-96 system for F = 8 resolved with MQG-DO method and s = 26. The time series for the
mean, the spectrum, and the third-order central moments within the subspace are shown and compared
with direct Monte Carlo. The plotting of the third-order moments follows the same technique as used in
Fig. 2

and intermediate energy modes and subsequent flow of energy through the inertial
scales to the dissipations scales.

In Fig. 7 we present the performance of the MQG-DO scheme with s = 26 modes.
The recovery of the correct spectrum indicates that the two-level coupling between
MQG and DO occurs naturally without causing important discrepancies. This is also
suggested by the higher-order statistics in steady state. In particular in the lower plots
of Fig. 7 we present the third-order moments in steady state, Mijk = 〈Y∞iY∞j Y∞k〉,
as those are computed with MQG-DO and with direct Monte Carlo. In particular,
we plot only the moments that have values for which |Mijk| > 0.15 maxijk Mijk and
we color those according to their values. Through these results we can clearly see
that the third-order moments inside the subspace are recovered very effectively even
though a full Monte-Carlo scheme is run only for the DO dynamics inside the sub-
space.
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5.2.2 Time-Space Dependent Forcing

Here we consider the strongly forced Lorenz-96 presented in Sect. 3.2 in the extreme
regime where the MQG scheme fails to performs UQ adequately. In particular we
consider the forcing given by Eq. (19) with a = 1. The spatiotemporal pattern of the
excitation is shown in Fig. 8 (upper-left subplot). Under the effect of this excitation
we inject energy directly to the high-wavenumber modes and an important portion
of it is transferred back to the small-wavenumber modes. MQG is not capable to

Fig. 8 Lorenz-96 system with extreme time and space dependent forcing. The performance of MQG and
MQG-DO methods (for various s) is shown and compared with Monte Carlo in terms of the spectrum, the
energy of the mean, and the total stochastic energy
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Fig. 9 Upper plot: localization of the energy spanned by the DO modes {ej }26
j=1 expressed through the

grid point energy density
∑26

m,n=1CYY,mnemkenk for t = 8 and s = 26 (blue bold curve); the forcing
Fj (t) for t = 8 (red solid curve) plotted together with the large scale modulation envelope of the forcing.
Lower plot: the first three modes e1, e2, and e3 for t = 8 (Color figure online)

model adequately this energy transfer since it has been calibrated in a completely
different dynamical regime where such energy transfers do not occur. To this end, as
we can observe in the MQG spectrum of Fig. 8, energy is overestimated in the high-
wavenumber modes while the low-wavenumber modes have smaller energy than the
Monte-Carlo simulation.

On the other hand, MQG-DO directly models an important part of the nonlinear
energy fluxes. As we observe in Fig. 9 the DO modes localize exactly in the loca-
tions where the high-frequency forcing is active. The non-Gaussian statistics in the
stochastic subspace explicitly model the nonlinear fluxes from the high-wavenumber
modes to the low-wavenumber modes. However, as explained previously, due to the
peculiarity of the nonlinear interactions in Lorenz-96, we need an important number
modes in order to have an effective correction of the MQG nonlinear fluxes (which
do not take into account the time-space character of the external excitation). There-
fore for s = 14 the improvement is minimal and is restricted in the low-wavenumber
modes of the spectrum. For a larger subspace (s = 20) things are improved more
but still the large-wavenumber modes do not carry completely the correct amount of
energy to the low-energy modes. This is achieved when s = 26 where the obtained
spectrum has very good agreement with the exact spectrum. Note that some minor
discrepancies are expected since still we do not resolve the full nonlinear energy
fluxes and an important portion of them is based on steady-state information.
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Fig. 10 Comparison of third-order central-moments for Lorenz-96 subjected to extreme excitation. The
moments inside the subspace are shown (for t = 8) computed with MQG-DO (s = 26) and Monte Carlo.
The visualization follows the same technique as used in Fig. 2

In Fig. 8 we also present the time series for the energy of the mean and the trace
of the covariance. We can immediately conclude the monotonic convergence to the
Monte-Carlo statistics as the number of modes is increasing. This is another mani-
festation of the natural coupling between the MQG and the DO components that re-
sults in pure improvement of the MQG. Finally, in Fig. 10 we present the third-order
moments inside the subspace as those are computed for t = 8 using the MQG-DO
scheme and a direct Monte-Carlo simulation. We emphasize that these results refer
to a transient problem and even though the agreement is not in the point-wise sense
we still have a very satisfactory estimation of the nonlinear interactions inside the
subspace.

6 Conclusions and Future Directions

We have presented a blending framework between inexpensive, full-space, second-
order methods based on diagnostic nonlinear energy fluxes from a steady-state
(MQG) and high-statistical-order methods for reduced-order subspaces (DO). The
coupling of these two methodologies presents particular challenges due to the contra-
dictory nature of the two ingredients. Based on energy fluxes arguments we establish
a two-way coupling by

(i) correcting the MQG nonlinear energy fluxes using non-Gaussian statistical in-
formation from the DO subspace, and

(ii) correct the reduced-order dynamics inside the subspace so that the interactions
with dynamical components outside the subspace are fully taken into account.

With this blended MQG-DO method we prove that
(i) the steady-state statistics are still recovered correctly (as it happens in the MQG

method), and
(ii) we obtain a pure improvement compared with the MQG method, which in-

creases monotonically as the number of modes, whose full statistics are modeled,
increases. We illustrate the blended approach in two unstable systems (where MQG
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and order-reduction approaches fail to approximate correctly) under extreme excita-
tion scenarios involving localized forcing and energy injected in high-wavenumber
modes. The results indicate that the MQG-DO method is able to recover the correct
evolution of the spectrum and the mean (second-order statistics) over the full dimen-
sionality of the system, but also approximate satisfactorily the higher-order statistics
within the stochastic subspace. Future work includes the application of the above
framework in realistic turbulent systems using a combination of DO and carefully
chosen, fixed modes. Also, the above methodology has great potential for the correct
quantification of non-Gaussian statistics and in particular extreme events for specific
modes of interest (e.g. extreme waves in the ocean, etc.).
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