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Abstract This paper deals with the Cauchy problem for a shallow water equation
with high-order nonlinearities, yt + um+1yx + bumuxy = 0, where b is a constant,
m ∈ N, and we have the notation y := (1 − ∂2

x )u , which includes the famous
Camassa–Holm equation, the Degasperis–Procesi equation, and the Novikov equa-
tion as special cases. The local well-posedness of strong solutions for the equation in
each of the Sobolev spaces Hs(R) with s > 3

2 is obtained, and persistence properties
of the strong solutions are studied. Furthermore, although the H 1(R)-norm of the
solution to the nonlinear model does not remain constant, the existence of its weak
solutions in each of the low order Sobolev spaces Hs(R) with 1 < s < 3

2 is estab-
lished, under the assumption u0(x) ∈ Hs(R) ∩ W 1,∞(R). Finally, the global weak
solution and peakon solution for the equation are also given.
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1 Introduction

In this paper, we consider the Cauchy problem for the following shallow water equa-
tion with high-order nonlinearities:{

yt + um+1yx + bumuxy = 0, x ∈ R, t > 0,

u(x,0) = u0(x), x ∈ R,
(1.1)

where b is a constant and m ∈ N, the notation y := (1 − ∂2
x )u. It is easy to see that

model (1.1) contains the three kinds of famous shallow water equation, that is, the
Camassa–Holm equation, the Degasperis–Procesi equation, and the Novikov equa-
tion.

Obviously, if m = 0, b ∈ R, Eq. (1.1) becomes a b-equation:

ut − uxxt + (b + 1)uux = buxuxx + uuxxx, t > 0, x ∈ R, (1.2)

which can be derived as the family of asymptotically equivalent shallow water wave
equations that emerges at quadratic order accuracy for any b �= −1 by an appropriate
Kodama transformation. For the case b = −1, the corresponding Kodama transfor-
mation is singular and the asymptotic ordering is violated (see Dullin et al. Dullin
et al. 2001, 2003, 2004). Equation (1.2) belongs to the following family of nonlinear
dispersive partial differential equations:

ut − γ uxxx − α2uxxt = (
c1u

2 + c2u
2
x + c3uuxx

)
x
,

where γ,α, c1, c2 and c3 are real constants. Up to rescaling there are only three equa-
tions that are asymptotically integrable within this family: the KdV equation, the
Camassa–Holm (Eq. (1.2) with b = 2) equation and the Degasperis–Procesi equation
(Eq. (1.2) with b = 3). In fact, the Camassa–Holm and Degasperis–Procesi equa-
tions are the only members of the b-equation family with a bi-Hamiltonian structure
(Ivanov 2007), and these two kinds of shallow water equation have been studied
extensively recently (see Bressan and Constantin 2007; Camassa and Holm 1993;
Constantin and Lannes 2009; Constantin and Escher 2011; Constantin and Strauss
2000; Degasperis et al. 2002, 2003; Degasperis and Procesi 1999; Escher et al. 2006;
Liu and Yin 2006; Xin and Zhang 2000; Yin 2004 and references therein). The so-
lutions of the b-equation were studied numerically for various values of b in Holm
and Staley (2003a, 2003b), where b was taken as a bifurcation parameter. The nec-
essary conditions for integrability of the b-equation were investigated in Mikhailov
and Novikov (2002). In Gilson and Pickering (1995), Hone (2009), Painlevé analysis
is applied to these sorts of equation. The b-equation also admits peakon solutions for
any b ∈ R (see Degasperis et al. 2003; Holm and Staley 2003a, 2003b). The well-
posedness, blow-up phenomena, and global solutions for the b-equation were shown
in Escher and Yin (2008), Mu et al. (2011).

On the other hand, taking m = 1, b = 3 in (1.1) we found the Novikov equation,

ut − uxxt + 4u2ux = 3uuxuxx + u2uxxx, t > 0, x ∈ R, (1.3)

which was recently discovered by Novikov in a symmetry classification of nonlocal
PDEs with quadratic or cubic nonlinearity (Novikov 2009). Since then the Novikov



J Nonlinear Sci (2013) 23:863–889 865

equation has been studied by some researchers (Hone and Wang 2008; Hone et al.
2009; Ni and Zhou 2011; Jiang and Ni 2012). The Novikov equation possesses a ma-
trix Lax pair, infinitely many conserved densities, a bi-Hamiltonian structure as well
as peakon solutions (Hone and Wang 2008). These apparently exotic waves replicate
a feature that is characteristic of the waves of great height waves of largest amplitude
that are exact solutions of the governing equations for water waves (Constantin 2006;
Constantin and Escher 2007, 2011; Toland 1996). The Novikov equation possesses
the explicit formulas for multi-peakon solutions (Hone et al. 2009). It has been shown
that the Cauchy problem for the Novikov equation is locally well-posed in Besov
spaces and in Sobolev spaces and possesses persistence properties (Ni and Zhou
2011; Yan et al. 2012). Analogous to the Camassa–Holm equation, the Novikov equa-
tion displays the blow-up phenomenon (Jiang and Ni 2012) and global weak solutions
(Wu and Yin 2011).

In fact, many different types of solution for various shallow water equations have
been investigated. Wazwaz (2006, 2007) studied the solitary wave solutions for gen-
eralized b-family equation

ut − uxxt + (1 + b)umux = buxuxx + uuxxx (1.4)

for m = 2. Since then Eq. (1.4) has attracted a lot of researchers. When m = 2, peakon
wave solutions of (1.4) with b = 2 were studied in Liu and Qian (2001), Tian and
Song (2004),and the periodic blow-up solutions and limit forms for (1.3) were ob-
tained in Liu and Guo (2008). Peakon wave solutions for b = 3 was also discussed in
Liu and Ouyang (2007). Especially, when m = 2 and b > −2 is arbitrary, Liu (2010)
gave several new types of the explicit nonlinear traveling wave solution of (1.4). For
any positive integer m, Shen and Xu (2005) considered the bifurcations of the smooth
and non-smooth traveling waves of (1.4) for b = 2, Zhang et al. (2007) analyzed (1.4)
for b = 3. Recently, Deng et al. (2011) investigated the traveling wave solutions for
Eq. (1.4). The local and global existence and blow-up phenomenon of solutions for
Eq. (1.1) with b = m + 2 are considered by Li et al. (2012), Mi and Mu C. L. (2013).

Recently, applying the method of pseudoparabolic regularization, Hakkaev and
Kirchev (2005) investigated the local well-posedness for generalized Camassa–Holm
equation with high-order nonlinearities

ut + (
a(u)

)
x

=
(

b′(u)
u2

x

2
+ b(u)uxx

)
x

, (1.5)

where b(u) = up and a(u) = 2ku + p+2
2 up+1. The stability of peakons and orbital

stability of solitary wave solution are also obtained in Hakkaev and Kirchev (2005).
Motivated by the results mentioned above, the goal of this paper is to establish

the well-posedness and persistence property of strong solutions, and weak solutions
and peakon solutions for problem (1.1). Most of our results can be extended to the
periodic case. First, we use Kato’s Theorem to obtain the existence and uniqueness
of strong solutions for Eq. (1.1).

Theorem 1.1 Let u0 ∈ Hs(R) with s > 3/2. Then there exist a maximal T =
T (‖u0‖Hs(R)), and a unique solution u(x, t) to the problem (1.1) such that

u = u(·, u0) ∈ C
([0, T );Hs(R)

) ∩ C1([0, T );Hs−1(R)
)
.
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Moreover, the solution depends continuously on the initial data, i.e. the mapping

u0 → u(·, u0) : Hs(R) → C
([0, T );Hs(R)

) ∩ C1([0, T );Hs−1(R)
)

is continuous.

In Himonas et al. (2007), Ni and Zhou (2011, 2012), Henry (2009), the spatial de-
cay rate for the strong solution to the Camassa–Holm, b-equation, Novikov equation
were established provided that the corresponding initial datum decays at infinity. This
kind of property is the so-called persistence property. Similarly, for Eq. (1.1), we also
have the following persistence properties for the strong solution. However, the hard
question is that there are high nonlinearity in (1.1), which makes the proof of several
required nonlinear estimates very difficult.

Theorem 1.2 Assume that u0 ∈ C([0, T );Hs(R)) with s > 3/2 satisfies∣∣u0(x)
∣∣, ∣∣u0x(x)

∣∣ ∼ O
(
e−θx

)
as x ↑ ∞,(

respectively,
∣∣u0(x)

∣∣, ∣∣u0x(x)
∣∣ ∼ O

(
(1 + x)−α

)
as x ↑ ∞)

for some θ ∈ (0,1)(respectively, α ≥ 1
m+1 ), then the corresponding strong solution

u ∈ C([0, T );Hs(R)) to Eq. (1.1) satisfies, for some T > 0,∣∣u(x, t)
∣∣, ∣∣ux(x, t)

∣∣ ∼ O
(
e−θx

)
as x ↑ ∞,(

respectively,
∣∣u(x)

∣∣ ∼ O
(
(1 + x)−α

)
as x ↑ ∞)

uniformly in the time interval [0, T ].

Since the “peakon” solution u(t, x) = c
1

m+1 e−|x−ct |, c > 0 does not satisfy the
asymptotic behavior in Theorem 1.2. The following result establishes the optimality
of Theorem 1.2 and tells us that a strong non-trivial solution of (1.1) corresponding
to data with fast decay at infinity will immediately behave asymptotically, in the
x-variable at infinity, as the “peakon” solution

u(t, x) = c
1

m+1 e−|x−ct |, c > 0.

Theorem 1.3 Assume that u0 ∈ C([0, T );Hs(R)) with s > 3/2 satisfies∣∣u0(x)
∣∣ ∼ O

(
e−x

)
,

∣∣u0x(x)
∣∣ ∼ O

(
e−θx

)
as x ↑ ∞,(

respectively,
∣∣u0(x)

∣∣ ∼ O
(
(1 + x)−α

)
,
∣∣u0x(x)

∣∣ ∼ O
(
(1 + x)−β

)
as x ↑ ∞)

for some θ ∈ ( 1
m+1 ,1)(respectively, α ≥ 1

m+1 , β ∈ ( α
m+1 , α)), then the corresponding

strong solution u ∈ C([0, T );Hs(R)) to Eq. (1.1) satisfies for some T > 0∣∣u(x, t)
∣∣ ∼ O

(
e−x

)
as x ↑ ∞,(

respectively,
∣∣u(x)

∣∣ ∼ O
(
(1 + x)−α

)
as x ↑ ∞)

uniformly in the time interval [0, T ].
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Remark 1.1 The notation means that

∣∣f (x)
∣∣ ∼ O

(
e−θx

)
as x ↑ ∞ if lim

x→∞
f (x)

e−θx
= L,

where L is a constant (allowed to be zero).

Next, we apply the method of pseudoparabolic regularization to deal with the weak
solution of Eq. (1.1). To this goal, we need rewrite Eq. (1.1). For a real number s with
s > 0, suppose that the function u0(x) is in Hs(R), and let uε0 be the convolution

uε0 = φε ∗ u0 of the function φε(x) = ε− 1
4 φ(ε− 1

4 x) with u0, where the function φ is
such that the Fourier transform φ̂ of φ satisfies φ̂ ∈ C∞

0 , φ̂(ξ) ≥ 0 and φ̂(ξ) = 1 for
any ξ ∈ (−1,1). Thus we have uε0(x) ∈ C∞. It follows from Theorem 1.1 that for
each ε satisfying 0 < ε < 1

4 , the Cauchy problem

{
ut − uxxt + (m + 3)umux = um+1uxxx + (m + 2)umuxuxx, x ∈ R, t > 0,

u(x,0) = uε0(x), x ∈ R,

(1.6)
has a unique solution uε ∈ C∞([0, Tε),H

∞(R)), in which Tε may depend on ε.
However, we shall show that under certain assumptions, there exist two constants
c and T > 0, both independent of ε, such that the solution of problem (1.6) sat-
isfies ‖um

ε uεx‖L∞(R) ≤ c for any t ∈ [0, T ) and exists a weak solution u(x, t) ∈
L2([0, T ],H s(R)) for problem (1.6). These results are summarized in the following
two theorems.

Theorem 1.4 If u0(x) ∈ Hs(R) with s ∈ [1, 3
2 ] such that ‖um

0 u0x‖L∞(R) < ∞. Let
uε0 be defined as in system (1.6). Then there exist two constants c and T > 0, which
are independent of ε, such that uε of problem (1.6) satisfies ‖um

ε uεx‖L∞(R) ≤ c for
any t ∈ [0, T ).

Past the limit ε → 0 in Theorem 1.4, we can obtain the existence of weak solution
in the space L2([0, T ],H s(R)) with 1 < s ≤ 3

2 for Eq. (1.1).

Theorem 1.5 Suppose that u0(x) ∈ Hs(R) ∩ W 1,∞(R) with 1 < s ≤ 3
2 . Then there

exists a life span T > 0 such that problem (1.1) has a weak solution u(x, t) ∈
L2([0, T ],H s(R)) in the sense of distribution and umux ∈ L∞([0, T ] × R).

Finally, we consider global weak solution and peakon solution for problem (1.1).

Theorem 1.6 The single peakon takes the form u(t, x) = c
1

m+1 e−|x−ct−x0|, c > 0.
Moveover, this peakon solitary wave is a global weak solution to Eq. (1.1).

Moreover, we discuss the existence of multi-peakon solutions to Eq. (1.1).
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Theorem 1.7 Equation (1.1) has peakon solutions of the form

u(t, x) =
N∑

i=1

pi(t)e
−|x−qi (t)|, (1.7)

whose positions qt (t) and amplitudes pj (t) are in accordance to the dynamical sys-
tem

p′
j =

(
N∑

i=1

pie
−|qj −qi (t)|

)m+1

,

q ′
j = (b − m − 1)qj

(
N∑

i=1

pie
−|qj −qi |

)m(
N∑

i=1

pi sgn(qj − qi)e
−|qj −qi |

)
.

(1.8)

This paper is organized as follows. In the next section, the local well-posedness
and persistence properties of strong solutions for the problem (1.1) are established,
and Theorems 1.1–1.3 are proved. The existence of weak solutions for the problem
(1.1) is proved in Sect. 3. In Sect. 4, we consider the global weak solution and peakon
solutions for the problem (1.1), and prove Theorems 1.6–1.7.

2 Well-Posedness and Persistence Properties of Strong Solutions

Notation The space of all infinitely differentiable functions f (x, t) with com-
pact support in R × [0,+∞) is denoted by C∞

0 . Let p be any constant with
1 ≤ p < ∞ and denote Lp = Lp(R) the space of all measurable functions f such
that ‖f ‖p

Lp = ∫
R

|f (x)|p dx < ∞. The space L∞ = L∞(R) with the standard norm

‖f ‖L∞ = infm(e)=0 supx∈R/e |f (x)|. For any real number s, let Hs = Hs(R) denote
the Sobolev space with the norm defined by

‖f ‖Hs =
(∫

R

(
1 + |ξ |2)s∣∣f̂ (ξ, t)

∣∣2 dξ

) 1
2

< ∞,

where f̂ (ξ, t) = ∫
R

e−ixξ f (x, t)dx. Let C([0, T ];Hs(R)) denote the class of con-
tinuous functions from [0, T ] to Hs .

Proof of Theorem 1.1 To prove well-posedness we apply Kato’s semigroup approach
(Kato 1975). For this, we rewrite the Cauchy problem of Eq. (1.1) as the following
transport equation: {

ut + um+1ux + F(u) = 0,

u(x,0) = u0(x),
(2.1)

where F(u) := P ∗E(u). E(u) = m(b−m−1)
2 um−1(∂xu)3 +∂x(

b
m+2um+2 + 3m+3−b

2 ×
umu2

x) and P(x) = 1
2 e−|x|. Similar to Constantin and Escher (1998), we can choose
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the notation A(u) = um+1∂x , Y = Hs , X = Hs−1 and Q = Λ = (1−∂2
x )

1
2 . Following

closely the considerations made in Constantin and Escher (1998), Mu et al. (2011),
Lai and Wu (2010), we obtain the statement of Theorem 1.1. �

Proof of Theorem 1.2 We introduce the notation M = supt∈[0,T ] ‖u(t)‖Hs . For the
first step we will give estimates on ‖u(x, t)‖L∞ . Integrating both sides with re-
spect to x by multiplying the first equation of (2.1) by u2p−1 with p ∈ Z

+, we can
get

∫
R

u2p−1ut dx +
∫

R

u2p−1(um+1ux

)
dx +

∫
R

u2p−1(P ∗ E(u)
)

dx = 0. (2.2)

Note that the estimates∫
R

u2p−1ut dx = 1

2p

d

dt

∥∥u(x, t)
∥∥2p

L2p = ∥∥u(x, t)
∥∥2p−1

L2p

d

dt

∥∥u(x, t)
∥∥

L2p ,

and ∣∣∣∣
∫

R

u2p−1(um+1ux

)
dx

∣∣∣∣ ≤ ∥∥umux(x, t)
∥∥

L∞
∥∥u(x, t)

∥∥2p

L2p

are true. Moreover, we use Hölder’s inequality

∣∣∣∣
∫

R

u2p−1(P ∗ E(u)
)

dx

∣∣∣∣ ≤ ∥∥u(x, t)
∥∥2p−1

L2p

∥∥P ∗ E(u)
∥∥

L2p .

From (2.2) we obtain

d

dt

∥∥u(x, t)
∥∥

L2p ≤ ∥∥umux(x, t)
∥∥

L∞
∥∥u(x, t)

∥∥
L2p + ∥∥P ∗ E(u)

∥∥
L2p .

Since ‖f ‖Lp → ‖f ‖L∞ as p → ∞ for any f ∈ L∞ ∩ L2. Form the above inequality
we deduce that

d

dt

∥∥u(x, t)
∥∥

L∞ ≤ Mm+1
∥∥u(x, t)

∥∥
L∞ + ∥∥P ∗ E(u)

∥∥
L∞,

where we are using

∥∥ux(x, t)
∥∥

L∞
∥∥u(x, t)

∥∥m

L∞ ≤ ∥∥ux(x, t)
∥∥

H
1
2 +

∥∥u(x, t)
∥∥m

H
1
2 + ≤ ∥∥u(x, t)

∥∥m+1
Hs ≤ Mm+1.

Because of Gronwall’s inequality, we get

∥∥u(x, t)
∥∥

L∞ ≤ exp
(
Mm+1t

)(∥∥u0(x)
∥∥

L∞ +
∫ t

0

∥∥(
P ∗ E(u)

)
(x, τ )

∥∥
L∞ dτ

)
.
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Next, we will give estimates on ‖ux(x, t)‖L∞ . Differentiating (2.1) with respect
to the x-variable produces the equation

uxt + um+1uxx + (m + 1)umu2
x + ∂x

(
P ∗ E(u)

) = 0. (2.3)

Multiplying this equation by (ux)
2p−1 with p ∈ Z

+, integrating the result in the
x-variable, and using integration by parts:∫

R

(ux)
2p−1uxt dx = 1

2p

d

dt

∥∥ux(x, t)
∥∥2p

L2p = ∥∥ux(x, t)
∥∥2p−1

L2p

d

dt

∥∥ux(x, t)
∥∥

L2p ,

∣∣∣∣
∫

R

(ux)
2p−1(umu2

x

)
dx

∣∣∣∣ ≤ ∥∥u(x, t)
∥∥m

L∞
∥∥ux(x, t)

∥∥
L∞

∥∥ux(x, t)
∥∥2p

L2p ,

∣∣∣∣
∫

R

(ux)
2p−1(um+1uxx

)
dx

∣∣∣∣ =
∣∣∣∣m + 1

2p

∫
R

umu
2p+1
x dx

∣∣∣∣
≤ m + 1

2p

∥∥u(x, t)
∥∥m

L∞
∥∥ux(x, t)

∥∥
L∞

∥∥ux(x, t)
∥∥2p

L2p .

From the above inequalities, we also get the following inequality:

d

dt

∥∥ux(x, t)
∥∥

L2p ≤
(

m + 1 + m + 1

2p

)
Mm+1

∥∥ux(x, t)
∥∥

L2p + ∥∥∂x

(
P ∗ E(u)

)∥∥
L2p ,

where we are using ‖ux(x, t)‖L∞‖u(t)‖m
L∞ ≤ Mm+1. Then passing to the limit in this

inequality and using Gronwall’s inequality one obtains∥∥ux(x, t)
∥∥

L∞

≤ exp
(
(m + 1)Mm+1t

)(∥∥u0x(x)
∥∥

L∞ +
∫ t

0

∥∥∂x

(
P ∗ E(u)

)
(x, τ )

∥∥
L∞ dτ

)
.

We shall now repeat the arguments using the weight

ϕN(x) =

⎧⎪⎨
⎪⎩

1, x ≤ 0,

eθx, 0 < x < N,

eθN , x ≥ N,

where N ∈ Z
+ and θ ∈ (0,1). Observe that for all N we have

0 ≤ ϕ′
N(x) ≤ ϕN(x), for all x ∈ R. (2.4)

Using the notation E(u), from (2.1) we get

∂t (uϕN) + (
um+1ϕN

)
ux + ϕN

(
P ∗ E(u)

) = 0,

and from (2.3), we also obtain

∂t (ϕN∂xu) + um+1ϕN∂2
xu + (m + 1)um(ϕN∂xu)∂xu + ϕN∂x

(
P ∗ E(u)

) = 0.
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We need to eliminate the second derivatives in the second term in the above equality.
Thus, combining integration by parts and (2.4) we find∣∣∣∣

∫
R

um+1ϕN∂2
xu(∂xuϕN)2p−1

∣∣∣∣
=

∣∣∣∣
∫

R

um+1(∂xuϕN)2p−1(∂x(ϕN∂xu) − ∂xuϕ′
N

)
dx

∣∣∣∣
=

∣∣∣∣
∫

R

1

2p
um+1∂x

(
(∂xuϕN)2p

) − um+1(∂xuϕN)2p−1∂xuϕ′
N dx

∣∣∣∣
≤ (‖u‖L∞ + ‖∂xu‖L∞

)‖u‖m
L∞‖∂xuϕN‖2p

L2p .

Hence, as in the weightless case, we have

‖uϕN‖L∞ + ‖∂xuϕN‖L∞

≤ exp
(
(m + 1)Mm+1t

)(∥∥u0(x)ϕN

∥∥
L∞ + ∥∥u0x(x)ϕN

∥∥
L∞

)
+ exp

(
(m + 1)Mm+1t

)∫ t

0

(∥∥ϕN∂x

(
E(u)

)∥∥
L∞ + ∥∥ϕN

(
E(u)

)∥∥
L∞

)
dτ.

A simple calculation shows that there exists C > 0, depending only on θ ∈ (0,1),
such that for any N ∈ Z

+,

ϕN

∫
R

1

ϕN(y)
dy ≤ C = 4

1 − θ
.

Thus, we have

∣∣ϕN

(
1 − ∂2

x

)−1(
um−1u3

x

)∣∣ = 1

2

∣∣∣∣ϕN

∫
R

e−|x−y|(um−1u3
x

)
(y)dy

∣∣∣∣
= 1

2

∣∣∣∣ϕN

∫
R

e−|x−y| 1

ϕN(y)
(ϕNux)

(
um−1u2

x

)
(y)dy

∣∣∣∣
≤ 1

2

(
ϕN

∫
R

e−|x−y| 1

ϕN(y)
dy

)
‖ϕNux‖L∞

∥∥um−1u2
x

∥∥
L∞

≤ c‖ϕNux‖L∞
∥∥um−1u2

x

∥∥
L∞ ,

and

∣∣ϕN

(
1 − ∂2

x

)−1
∂x

(
um−1u3

x

)∣∣ = 1

2

∣∣∣∣ϕN

∫
R

sgn(x − y)e−|x−y|(um−1u3
x

)
(y)dy

∣∣∣∣
≤ c‖ϕNux‖L∞

∥∥um−1u2
x

∥∥
L∞ .

Using the same method, we can estimate the other terms:∣∣ϕN

(
1 − ∂2

x

)−1(
um+1ux

)∣∣ ≤ c‖u‖m+1
L∞ ‖ϕNux‖L∞,∣∣ϕN

(
1 − ∂2

x

)−1
∂x

(
um+1ux

)∣∣ = ∣∣ϕN

(
1 − ∂2

x

)−1
∂2
x

(
um+2)∣∣
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≤ ∣∣ϕN

(
um+2)∣∣ + ∣∣ϕN

(
1 − ∂2

x

)−1(
um+2)∣∣

≤ c‖u‖m+1
L∞ ‖ϕNu‖L∞,

and ∣∣ϕN

(
1 − ∂2

x

)−1
∂x

(
umu2

x

)∣∣ ≤ c‖ϕNu‖L∞
∥∥um−1u2

x

∥∥
L∞ ,

∣∣ϕN

(
1 − ∂2

x

)−1
∂2
x

(
umu2

x

)∣∣ ≤ ∣∣ϕNumu2
x

∣∣ + ∣∣ϕN

(
1 − ∂2

x

)−1(
umu2

x

)∣∣
≤ c‖ϕNu‖L∞

∥∥um−1u2
x

∥∥
L∞ ,

Thus, it follows that there exists a constant C > 0 which depends only on M,m

and T , such that

‖uϕN‖L∞ + ‖∂xuϕN‖L∞

≤ C
(‖u0ϕN‖L∞ + ‖u0xϕN‖L∞

)
+ C

∫ t

0

((‖u‖m+1
L∞ + ∥∥um−1u2

x

∥∥
L∞

)(‖ϕN∂xu‖L∞ + ‖ϕNu‖L∞
))

dτ

≤ C
(‖u0ϕN‖L∞ + ‖u0xϕN‖L∞

) + C

∫ t

0

(‖ϕN∂xu‖L∞ + ‖ϕNu‖L∞
)

dτ.

Hence, for any n ∈ Z and any t ∈ [0, T ] we have

‖uϕN‖L∞ + ‖∂xuϕN‖L∞ ≤ C
(‖u0ϕN‖L∞ + ‖u0xϕN‖L∞

)
≤ C

(∥∥u0 max
{
1, eθx

}∥∥
L∞ + ∥∥u0x max

{
1, eθx

}∥∥
L∞

)
.

Finally, taking the limit as N goes to infinity, we find that for any t ∈ [0, T ],∥∥ueθx
∥∥

L∞ + ∥∥∂xueθx
∥∥

L∞ ≤ C
(∥∥u0 max

{
1, eθx

}∥∥
L∞ + ∥∥u0x max

{
1, eθx

}∥∥
L∞

)
.

By an argument similar to the one used above and the proof of Theorem 1.1 in Ni and
Zhou (2012), we get∥∥u(1 + x)α

∥∥
L∞ + ∥∥∂xu(1 + x)α

∥∥
L∞

≤ C
(∥∥u0 max

{
1, (1 + x)α

}∥∥
L∞ + ∥∥u0x max

{
1, (1 + x)α

}∥∥
L∞

)
,

which completes the proof of Theorem 1.2. �

Next, we give a simple proof for Theorem 1.3.

Proof of Theorem 1.3 We use Theorem 1.2 to prove this theorem.
For any t1 ∈ [0, T ], integrating Eq. (2.1) over the time interval [0, t1] we get

u(x, t1) − u(x,0) +
∫ t1

0

(
um+1ux

)
(x, τ )dτ +

∫ t1

0

(
P ∗ E(u)

)
(x, τ )dτ = 0. (2.5)
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From Theorem 1.2 it follows that∫ t1

0

(
um+1ux

)
(x, τ )dτ ∼ O

(
e−(m+2)θx

)
as x ↑ ∞,

and so ∫ t1

0

(
um+1ux

)
(x, τ )dτ ∼ O

(
e−x

)
as x ↑ ∞.

We shall show that the last term in (2.5) is O(e−x); thus we have

∫ t1

0

(
P ∗ E(u)

)
(x, τ )dτ = P(x) ∗

∫ t1

0

(
E(u)

)
(x, τ )dτ

.= P(x) ∗ ρ(x).

From the given condition and Theorem 1.2. we know ρ(x) ∼ O(e−x) as x ↑ ∞.
Since

P(x)∗ρ(x) = 1

2

∫
R

e−|x−y|ρ(y)dy = 1

2
e−x

∫ x

−∞
eyρ(y)dy + 1

2
ex

∫ ∞

x

e−yρ(y)dy,

we have

e−x

∫ x

−∞
eyρ(y)dy = O(1)e−x

∫ x

−∞
e2y dy ∼ O(1)e−x ∼ O

(
e−x

)
as x ↑ ∞,

ex

∫ ∞

x

e−yρ(y)dy = O(1)ex

∫ ∞

x

e−2y dy ∼ O(1)e−x ∼ O
(
e−x

)
as x ↑ ∞.

Thus ∫ t1

0

(
P ∗ E(u)

)
(x, τ )dτ ∼ O

(
e−x

)
as x ↑ ∞.

From (2.5) and |u0(x)| ∼ O(e−x) as x ↑ ∞, we know

∣∣u(x, t1)
∣∣ ∼ O

(
e−x

)
as x ↑ ∞.

By the arbitrariness of t1 ∈ [0, T ], we get

∣∣u(x, t)
∣∣ ∼ O

(
e−x

)
as x ↑ ∞

uniformly in the time interval [0, T ].
By an argument similar to the one used above and the proof of Theorem 1.2 in Ni

and Zhou (2012), we get

∣∣u(x, t)
∣∣ ∼ O

(
(1 + x)−α

)
as x ↑ ∞

uniformly in the time interval [0, T ]. This completes the proof of Theorem 1.3. �
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3 Existence of Weak Solutions

In order to establish the proofs of Theorems 1.4 and 1.5, we give several lemmas.

Lemma 3.1 (See Kato 1975) If r > 0, then Hr ∩ L∞ is an algebra, and

‖fg‖Hr ≤ c
(‖f ‖L∞‖g‖Hr + ‖g‖L∞‖h‖Hr

)
,

where c is a constant depending only on r .

Lemma 3.2 (See Kato 1975) If r > 0, then∥∥[
Λr,f

]
g
∥∥

L2 ≤ c
(‖∂xf ‖L∞‖Λr−1g‖L2 + ∥∥Λrf

∥∥
L2‖g‖L∞

)
,

where [Λr,f ]g = Λr(fg) − f Λrg with Λ = (1 − ∂2
x )

1
2 , and c is a constant depend-

ing only on r .

Lemma 3.3 For s ≥ 1 and f (x) ∈ Hs and letting k1 > 0 be an integer such that
k1 ≤ s − 1, then f,f ′, . . . , f k1 are bounded uniformly continuous functions which
converge to 0 at x = ±∞.

Proof This proof was stated by Bona and Smith (1975, p. 559). �

Now for s ≥ 2, multiplying Eq. (1.1) by u, we have

uut − uutxx = −(b + 1)um+2ux + bum+1uxuxx + um+2uxxx. (3.1)

Integrating by parts on R,

1

2

d

dt

∫
R

(
u2 + u2

x

)
dx = (b − m + 2)

∫
R

(
umuxuxx

)
dx

= (b − m + 2)(m + 1)

2

∫
R

umu3
x dx,

from which we have∫
R

(
u2 + u2

x

)
dx = (b − m + 2)(m + 1)

∫ t

0

[∫
R

umu3
x dx

]
dτ +

∫
R

(
u2

0 + u2
0x

)
dx.

(3.2)

Lemma 3.4 Let s ≥ 4 and let the function u(x, t) be a solution of the problem (1.1)
and the initial data u0(x) ∈ Hs , then we have

2π‖u‖2
H 1 ≤

∫
R

(
u2

0 + u2
0x

)
dx + (m + 1)|m + 2 − b|

∫ t

0

∥∥umux

∥∥
L∞‖u‖2

H 1 dτ.

(3.3)
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For q ∈ (0, s − 1], there is a constant c depending only on q such that∫
R

(
Λq+1u

)2 dx ≤
∫

R

(
Λq+1u0

)2 dx + c

∫ t

0
‖u‖m

L∞‖ux‖L∞
(‖u‖2

Hq + ‖u‖2
Hq+1

)
+ ‖u‖m−2

L∞ ‖ux‖3
L∞‖u‖2

Hq dτ. (3.4)

If q ∈ [0, s − 1], there is a constant c depending only on q such that

‖ut‖Hq ≤ c‖u‖m+1
H 1 ‖u‖Hq+1 . (3.5)

Proof Using 2π‖u‖2
H 1 ≤ ∫

R
(u2 + u2

x)dx and (3.2), we deduce (3.3).
We write Eq. (1.1) in the equivalent form

ut − uxxt = − b + 1

m + 2

(
um+2)

x
+ 1

m + 2
∂3
xum+2 + b − 3(m + 1)

2
∂x

(
umu2

x

)

− m[b − (m + 1)]
2

um−1u3
x. (3.6)

Since ∂2
x = −Λ2 + 1, the Parseval equality gives rise to∫
R

(
Λqu

)
Λq∂3

xum+2 dx = −(m + 2)

∫
R

(
Λq+1u

)
Λq+1(um+1ux

)
dx

+ (m + 2)

∫
R

(
Λqu

)
Λq

(
um+1ux

)
dx.

For any q ∈ (0, s − 1], applying (Λqu)Λq to both sides for Eq. (3.6), respectively,
and integrating with respect to x again,using integration by parts, one obtains

1

2

d

dt

∫
R

((
Λqu

)2 + (
Λqux

)2)dx

= −b

∫
R

(
Λqu

)
Λq

(
um+1ux

)
dx −

∫
R

(
Λq+1u

)
Λq+1(um+1ux

)
dx

− b − 3(m + 1)

2

∫
R

(
Λqux

)
Λq

(
umu2

x

)
dx

− m[b − (m + 1)]
2

∫
R

(
Λqu

)
Λq

(
um−1u3

x

)
dx. (3.7)

We will estimate the terms on the right-hand side of (3.7) separately. For the first
term, by using the Cauchy–Schwartz inequality and Lemmas 3.1 and 3.2; we have∫

R

(
Λqu

)
Λq

(
um+1ux

)
dx

=
∫

R

(
Λqu

)[
Λq

(
um+1ux

) − um+1Λqux

]
dx +

∫
R

(
Λqu

)
um+1Λqux dx
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≤ c‖u‖Hq

(
(m + 1)‖u‖m

L∞‖ux‖L∞‖u‖Hq + ‖u‖m
L∞‖ux‖L∞‖u‖Hq

)
+ m + 1

2
‖u‖m

L∞‖ux‖L∞
∥∥Λqu

∥∥2
L2

≤ c‖u‖m
L∞‖ux‖L∞‖u‖2

Hq .

Using the above estimate or the second term on the right-hand side of (3.7) yields∫
R

(
Λq+1u

)
Λq+1(um+1ux

)
dx = c‖u‖m

L∞‖ux‖L∞‖u‖2
Hq+1 .

For the third term on the right-hand side of (3.7), using the Cauchy–Schwartz in-
equality, and Lemma 3.1, we obtain∫

R

(
Λqux

)
Λq

(
umu2

x

)
dx ≤ ∥∥Λqux

∥∥
L2

∥∥Λq
(
umu2

x

)∥∥
L2

≤ c‖u‖Hq+1

(∥∥umux

∥∥
L∞‖ux‖Hq + ‖ux‖L∞

∥∥umux

∥∥
Hq

)
≤ c‖u‖m

L∞‖ux‖L∞‖u‖2
Hq+1 .

For the last term on the right-hand side of (3.7), using Lemma 3.1 repeatedly results
in ∫

R

(
Λqu

)
Λq

(
um−1u3

x

)
dx

=
∫

R

(
Λqu

)[
Λq

((
um−1u3

x

)) − um−1Λqu3
x

]
dx +

∫
R

(
Λqu

)
um−1Λqu3

x dx

≤ c‖u‖Hq

(
(m − 1)‖u‖m−2

L∞ ‖ux‖L∞‖u‖3
Hq + ‖u‖m−2

L∞ ‖ux‖3
L∞‖u‖Hq

)
+ m − 1

2
‖u‖m−2

L∞ ‖ux‖3
L∞

∥∥Λqu
∥∥2

L2

≤ c‖u‖m−2
L∞ ‖ux‖3

L∞‖u‖2
Hq .

By the above inequalities, it follows from (3.7) that

1

2

∫
R

((
Λqu

)2 + (
Λqux

)2)dx − 1

2

∫
R

((
Λqu0

)2 + (
Λqu0x

)2)dx

≤ c

∫ t

0
‖u‖m

L∞‖ux‖L∞
(‖u‖2

Hq + ‖u‖2
Hq+1

) + ‖u‖m−2
L∞ ‖ux‖3

L∞‖u‖2
Hq dτ. (3.8)

Thus, we get (3.4).
Applying the operator (1 − ∂2

x )−1 by multiplying both sides of (3.6) yields the
equation

ut + um+1ux = −m(b − m − 1)

2

(
1 − ∂2

x

)−1
um−1(∂xu)3

− (
1 − ∂2

x

)−1
∂x

(
b

m + 2
um+2 + 3m + 3 − b

2
um(∂xu)2

)
. (3.9)
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Multiplying both sides of (3.9) by (Λqut )Λ
q for q ∈ [0, s − 1] and integrating the

resultant equation by parts give rise to∫
R

(
Λqut

)2 dx +
∫

R

(
Λqut

)
Λq

(
um+1ux

)
dx

= −m(b − m − 1)

2

∫
R

(
Λqut

)(
1 − ∂2

x

)−1
Λq

(
um−1(∂xu)3)dx

−
∫

R

(
Λqut

)(
1 − ∂2

x

)−1
Λq∂x

(
b

m + 2
um+2 + 3m + 3 − b

2
um(∂xu)2

)
. (3.10)

Using ‖um+1ux‖Hq ≤ c‖um+2‖Hq+1 ≤ c‖u‖m+1
L∞ ‖u‖Hq+1 ≤ c‖u‖m+1

H 1 ‖u‖Hq+1 , we
have∫

R

(
Λqut

)
Λq

(
um+1ux

)
dx ≤ ∥∥Λqut

∥∥
L2

∥∥Λq
(
um+1ux

)∥∥
L2 ≤ c‖ut‖Hq

∥∥um+1ux

∥∥
Hq

≤ c‖ut‖Hq ‖u‖m+1
H 1 ‖u‖Hq+1 .

Since ∫
R

(
Λqut

)(
1 − ∂2

x

)−1
Λq

(
um−1(∂xu)3)dx

≤ ∥∥Λqut

∥∥
L2

(∫
R

(
1 + ξ2)q

(∫
R

ûm−1ux(ξ − η)ûx
2(η)dη

)2) 1
2

,

it follows from Young’s inequality (‖f � g‖r ≤ ‖f ‖p‖g‖q, 1
p

+ 1
q

= 1 + 1
r
) and from

the inequality (1 + ξ2)l ≤ c[(1 + (ξ − η)2)l + (1 + η2)l], l > 0, that∫
R

(
Λqut

)(
1 − ∂2

x

)−1
Λq

(
um−1(∂xu)3)dx

≤ ∥∥Λqut

∥∥
L2

(∫
R

c

(∫
R

[(
1 + (ξ − η)2) q

2 + (
1 + η2) q

2
]

× ûm−1ux(ξ − η)ûx
2(η)dη

)2) 1
2

≤ c
∥∥Λqut

∥∥
L2

(∥∥ ̂Λqum−1ux � ûx
2
∥∥

L2 + ∥∥ûm−1ux � Λ̂q−1u2
x

∥∥
L2

)
≤ c

∥∥Λqut

∥∥
L2

(∥∥ ̂Λqum−1ux

∥∥
L2

∥∥ûx
2
∥∥

L1 + ∥∥ûm−1ux

∥∥
L2

∥∥Λ̂q−1u2
x

∥∥
L1

)
≤ c

∥∥Λqut

∥∥
L2

(∥∥um−1ux

∥∥
Hq ‖ux‖L2 + ∥∥um−1ux

∥∥
L2‖ux‖Hq−1

)
≤ c‖ut‖Hq ‖u‖m−1

L∞ ‖u‖2
H 1‖u‖Hq+1 .
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On the right-hand side of (3.10), we have

∫
R

(
Λqut

)(
1 − ∂2

x

)−1
Λq∂x

(
b

m + 2
um+2 + 3m + 3 − b

2
um(∂xu)2

)

≤ c‖ut‖Hq

(∫
R

(
1 + ξ2)q−1 dξ

×
(∫

R

[
ûm+1(ξ − η)̂u(η) + ûmux(ξ − η)ux(η)

]
dη

)2) 1
2

≤ c‖ut‖Hq ‖u‖m
L∞‖u‖H 1‖u‖Hq+1 .

Applying the Sobolev inequality ‖u‖L∞ ≤ ‖u‖H 1 to the above three estimates, then,
from (3.10) we find the inequality

‖ut‖Hq ≤ c‖u‖m+1
H 1 ‖u‖Hq+1

for a constant c > 0. This completes the proof of Lemma 3.4. �

For an arbitrary positive Sobolev exponent s > 0, we give the following lemma.

Lemma 3.5 For u0 ∈ Hs with s > 0 and uε0 = φε � u0, the following estimates hold
for any ε with 0 < ε < 1

4 ,

‖uε0x‖L∞ ≤ c‖u0x‖L∞ and ‖uε0‖Hq ≤ c, if q ≤ s, (3.11)

‖uε0‖Hq ≤ cε
s−q

4 , if q > s, (3.12)

‖uε0 − u0‖Hq ≤ cε
s−q

4 , if q ≤ s, (3.13)

‖uε0 − u0‖Hs = o(1), (3.14)

where c is a constant independent of ε.

Proof This proof is similar to that of Lemma 5 in Bona and Smith (1975) and
Lemma 4.5 in Lai and Wu (2011), so we omit it. �

Lemma 3.6 For s ≥ 1 and u0 ∈ Hs , there exists a constant c independent of ε, such
that the solution uε of problem (1.6) satisfies

‖uε‖H 1 ≤ c exp

{
(m + 1)|m + 2 − b|

∫ t

0

∥∥um
ε uεx

∥∥
L∞ dτ

}
for t ∈ [0, Tε). (3.15)

Proof Using u0 ∈ Hs , we know the uε0 ∈ C∞. It follows from Theorem 1.1 that
uε(x, t) ∈ C∞([0, Tε),H

∞). Thus, all the assumptions in Lemma 3.4 are valid. From
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(3.3) and (3.11), we get

‖uε‖2
H 1 ≤

∫
R

(
u2

ε + u2
εx

)
dx

=
∫

R

(
u2

ε0 + u2
ε0x

)
dx + (m + 1)|m + 2 − b|

∫ t

0

∥∥um
ε uεx

∥∥
L∞‖uε‖2

H 1 dτ

≤ ‖uε0‖2
H 1 + (m + 1)|m + 2 − b|

∫ t

0

∥∥um
ε uεx

∥∥
L∞‖uε‖2

H 1 dτ

≤ c + (m + 1)|m + 2 − b|
∫ t

0

∥∥um
ε uεx

∥∥
L∞‖uε‖2

H 1 dτ.

Using Gronwall’s inequality, we can obtain the inequality (3.15), which finishes the
proof of Lemma 3.6. �

Proof of Theorem 1.4 Using the notation u = uε and differentiating (3.9) with respect
to x give rise to

uxt − b

m + 2
um+2 − 3m + 1 − b

2
um(∂xu)2 + um+1uxx = G (3.16)

with G = −m(b−m−1)
2 Λ−2∂x(u

m−1u3
x) − Λ−2( b

m+2um+2 + 3m+3−b
2 umu2

x).

Letting p > 0 be an integer and multiplying (3.16) by (umux)
2p+1, then integrat-

ing the resulting equation with respect to x, and using∫
R

um+1uxx

(
umux

)2p+1
dx = −m + 1 + m(2p + 1)

2p + 2

∫
R

um(2p+2)(ux)
2p+3 dx,

yield the equality

1

2p + 2

d

dt

∫
R

(
umux

)2p+2 dx − b

m + 2

∫
R

um+2(umux

)2p+1 dx

=
∫

R

G · (umux

)2p+1 dx

+
(

m + 1 + m(2p + 1)

2p + 2
+ 3m + 1 − b

2

)∫
R

um(2p+2)(ux)
2p+3 dx.

Applying the Hölder inequality, we get

1

2p + 2

d

dt

∫
R

(
umux

)2p+2 dx

≤
∣∣∣∣ m + 1

2p + 2
+ 3m + 1 − b

2

∥∥∥∥∥∥umux

∥∥
L∞

∫
R

∣∣umux

∣∣2p+2 dx
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+
{

b

m + 2

(∫
R

∣∣um+2
∣∣2p+2 dx

) 1
2p+2 +

(∫
R

|G|2p+2 dx

) 1
2p+2

}

×
(∫

R

∣∣umux

∣∣2p+2 dx

) 2p+1
2p+2

,

that is

d

dt

(∫
R

(
umux

)2p+2 dx

) 1
2p+2

≤
{

b

m + 2

(∫
R

∣∣um+2
∣∣2p+2 dx

) 1
2p+2 +

(∫
R

|G|2p+2 dx

) 1
2p+2

}

+
∣∣∣∣ m + 1

2p + 2
+ 3m + 1 − b

2

∥∥∥∥∥∥umux

∥∥
L∞

(∫
R

∣∣umux

∣∣2p+2 dx

) 1
2p+2

.

Since ‖f ‖Lp → ‖f ‖L∞ as p → ∞ for any f ∈ L∞ ∩ L2, integrating the above
inequality with respect to t and taking the limit as p → ∞ result in the estimate

∥∥umux

∥∥
L∞ ≤ ∥∥um

0 u0x

∥∥
L∞ + c

∫ t

0

(∥∥um+2
∥∥

L∞ + ‖G‖L∞ + ∥∥umux

∥∥2
L∞

)
dτ. (3.17)

Using the algebraic property of Hs with s > 1
2 and Lemma 3.6 leads to

∥∥um+2
∥∥

L∞ ≤ c
∥∥um+2

∥∥
H

1
2 + ≤ c‖u‖m+2

H 1

≤ c exp

{
(m + 2)(m + 1)|m + 2 − b|

∫ t

0

∥∥umux

∥∥
L∞ dτ

}
, (3.18)

and

‖G‖L∞ =
∥∥∥∥m(b − m − 1)

2
Λ−2∂x

(
um−1u3

x

)

+ Λ−2
(

b

m + 2
um+2 + 3m + 3 − b

2
umu2

x

)∥∥∥∥
L∞

≤ c
(∥∥Λ−2∂x

(
um−1u3

x

)∥∥
H

1
2 + + ∥∥Λ−2um+2

∥∥
H

1
2 + + ∥∥Λ−2umu2

x

∥∥
H

1
2 +

)
≤ c

(∥∥um−1u3
x

∥∥
H 0 + ∥∥um+2

∥∥
H 0 + ∥∥umu2

x

∥∥
H 0

)
≤ c

(∥∥um−1u2
x

∥∥
L∞‖u‖H 1 + ‖u‖m+2

H 1 + ∥∥umux

∥∥
L∞‖u‖H 1

)
.
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Using Lemma 3.6 again∫ t

0
‖G‖L∞ dτ

≤ c

∫ t

0

(∥∥umux

∥∥2
L∞‖u‖H 1 + ‖u‖m+2

H 1 + ∥∥umux

∥∥
L∞‖u‖H 1

)
dτ

≤ c

∫ t

0

{(∥∥umux

∥∥2
L∞ + 1 + ∥∥umux

∥∥
L∞

)
exp

(
c

∫ τ

0

∥∥umux

∥∥
L∞ dξ

)}
dτ, (3.19)

where c is independent of ε. Applying (3.11), (3.17)–(3.19) and writing out the sub-
script ε of u, we obtain∥∥um

ε uεx

∥∥
L∞ ≤ ∥∥um

0 u0x

∥∥
L∞

+ c

∫ t

0

{(∥∥um
ε uεx

∥∥2
L∞ + 2 + ∥∥um

ε uεx

∥∥
L∞

)

× exp

(
c

∫ τ

0

∥∥um
ε uεx

∥∥
L∞ dξ

)
+ ∥∥um

ε uεx

∥∥2
L∞

}
dτ.

It follows from the contraction mapping principle that there is a T > 0 such that the
equation

‖W‖L∞ = ∥∥um
0 u0x

∥∥
L∞

+ c

∫ t

0

{(‖W‖2
L∞ + 2 + ‖W‖L∞

)
exp

(
c

∫ τ

0
‖W‖L∞ dξ

)
+ ‖W‖2

L∞

}
dτ

has a unique solution W ∈ C[0, T ], and from the above inequality, we know that the
variable T only depends on c and ‖um

0 u0x‖L∞ . Using the theorem on p. 51 in Li
and Olver (2000) or Theorem II in Sect. 1.1 in Walter (1970) one derives that there
are constants T > 0 and c > 0 independent of ε such that ‖um

ε uεx‖L∞ ≤ W(t) for
arbitrary t ∈ [0, T ], which leads to the conclusion of Theorem 1.4. �

Remark 3.1 Under the assumptions of Theorem 1.4, there exist two constants T

and c, both independent of ε, such that the solution uε of problem (1.6) satisfies
um

ε uεx ≤ c for any t ∈ [0, T ]. This states that, in Lemma 3.6, there exists a T inde-
pendent of ε such that (3.15) holds.

Using Theorem 1.4, Lemma 3.6, (3.4), (3.5), the notation uε = u and Gronwall’s
inequality results in the inequalities

‖uε‖Hq ≤ c exp

{
c

∫ t

0

∥∥umux

∥∥
L∞ dτ

}
≤ c,

and

‖uεt‖Hr ≤ ‖uε‖Hr+1‖uε‖m+1
H 1 ≤ c,
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where q ∈ (0, s], r ∈ (0, s − 1] and t ∈ [0, T ). It follows from Aubin’s compact-
ness theorem that there is a subsequence of {uε}, denoted by {uεn}, such that {uεn}
and their temporal derivatives {uεnt } are weakly convergent to a function u(x, t) and
its derivative ut in L2([0, T ],H s) and L2([0, T ],H s−1), respectively. Moreover, for
any real number R1 > 0, {uεn} is strongly convergent to the function u in the space
L2([0, T ],Hq(−R1,R1)) for q ∈ (0, s] and {uεnt } strongly converges to ut in the
space L2([0, T ],H r(−R1,R1)) for r ∈ (0, s − 1].

Proof of Theorem 1.5 From Theorem 1.4, we know that {um
εn

uεnx}(εn → 0) is
bounded in the space L∞. Thus, the sequences uεn , uεnx , u2

εn
, and u3

εn
are weakly

convergent to u,ux,u
2
x , and u3

x , respectively, in the space L2([0, T ],H r(−R1,R1))

for any r ∈ (0, s − 1]. Hence, u satisfies the equation

−
∫ T

0

∫
R

u(gt − gxxt )dx dt

=
∫ T

0

∫
R

[(
b + 1

m + 2
um+2 − b − 3(m + 1)

2
umu2

x

)
gx

− 1

m + 2
um+2gxxx + m[b − (m + 1)]

2
um−1u3

xg

]
dx dt

with u(x,0) = u0(x) and g ∈ C∞
0 . Since X = L1([0, T ] × R) is a separable Banach

space and um
εn

uεnx is a bounded sequence in the dual space X∗ = L∞([0, T ] × R)

of X, there exists a subsequence of um
εn

uεnx , still denoted by um
εn

uεnx , weakly star
convergent to a function v in L∞([0, T ]× R). As um

εn
uεnx weakly converges to umux

in L2([0, T ] × R), we have the result that umux = v almost everywhere. Thus, we
obtain umux ∈ L∞([0, T ] × R). �

4 Global Weak Solution and Peakon Solution

The main purpose of this section is to show that there exists a unique global weak
solution to the problem (1.1) provided that the initial data y0 satisfies certain sign
conditions. In fact, the problem (1.1) can be rewritten as{

ut + um+1ux + F(u) = 0, t > 0, x ∈ R,

u(x,0) = u0(x), x ∈ R,
(4.1)

where

F(u) = m(b − m − 1)

2

(
1 − ∂2

x

)−1
um−1(∂xu)3

+ (
1 − ∂2

x

)−1
∂x

(
b

m + 2
um+2 + 3m + 3 − b

2
um(∂xu)2

)
. (4.2)
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Definition 4.1 Let u0 ∈ H 1. If u belongs to L∞
loc([0, T );H 1) and satisfies the identity

∫ T

0

∫
R

(
uψt + (

um+1ux + F(u)
)
ψ

)
dx dt +

∫
R

u0(x)ψ(0, x) = 0

for all ψ ∈ C∞
0 ([0, T ) × R), then u is called a weak solution to (4.1). If u is a weak

solution on [0, T ) for every T > 0, then it is called a global weak solution to (4.1).

Proposition 4.1

(i) Every strong solution is a weak solution.
(ii) If u is a weak solution and u ∈ C([0, T );Hs) ∩ ([0, T );Hs−1) with s > 3/2,

then it is a strong solution.

Proof The proof is similar to that of Proposition 4.1 in Constantin and Escher (1998),
Wu and Yin (2011), so we omit it. �

Next, we prove that the peakon solitary wave u(t, x) = c
1

m+1 e−|x−ct−x0|, c > 0, is
a global weak solution to Eq. (1.1).

Proof of Theorem 1.6 Without loss of generality, we set x0 = 0. Note that ut =
sgn(x − ct)cu,ux = − sgn(x − ct)u; then

−ut + um+1ux = −(
cu + um+2) sgn(x − ct). (4.3)

On the other hand, by a simple computation, we get

F(u) =
∫

R

m(b − m − 1)

4
e−|x−y|um−1(∂xu)3(t, y)dy

− sgn(x − y)

∫
R

1

2
e−|x−y|

(
b

m + 2
um+2(t, y)

+ 3m + 3 − b

2
um(∂xu)2(t, y)

)
dy

= − sgn(x − ct)

∫
R

m(b − m − 1)

4
e−|x−y|um+2(t, y)dy

− sgn(x − y)

∫
R

1

2
e−|x−y|

(
b

m + 2
um+2(t, y) + 3m + 3 − b

2
um+2(t, y)

)
dy

= −
∫ x

−∞
1

2
ey−x

(
sgn(y − ct)

m(b − m − 1)

2

+ b

m + 2
+ 3m + 3 − b

2

)
um+2(t, y)dy
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+
∫ ∞

x

1

2
ex−y

(
− sgn(y − ct)

m(b − m − 1)

2

+ b

m + 2
+ 3m + 3 − b

2

)
um+2(t, y)dy.

If x < ct , we deduce

2F(u) = a1

∫ x

∞
ey−xum+2(t, y)dy + a2

∫ ct

x

ex−yum+2(t, y)dy

− a1

∫ ∞

ct

ex−yum+2(t, y)dy

= c
m+2
m+1

(
a1

∫ x

∞
ey−xe(m+2)(y−ct) dy + a2

∫ ct

x

ex−ye(m+2)(y−ct) dy

− a1

∫ ∞

ct

ex−ye(m+2)(−y+ct) dy

)

= c
m+2
m+1

(
a1

m + 3
e(m+3)y−x−ct (m+2)

∣∣x∞ + a2

m + 1
e(m+1)y+x−ct (m+2)

∣∣ct
x

+ a1

(m + 3)
e−(m+3)y+x+ct (m+2)

∣∣∞
ct

)

= c
m+2
m+1

(
a1

m + 3
e(m+2)(x−ct) + a2

m + 1

(
ex−ct − e(m+2)(x−ct)

)

− a1

(m + 3)
ex−ct

)

= c
m+2
m+1

[(
a1

m + 3
− a2

m + 1

)
e(m+2)(x−ct) +

(
a2

m + 1
− a1

m + 3

)
ex−ct

]

= −2c
m+2
m+1

[
e(m+2)(x−ct) + ex−ct

]
= −2cu − 2um+2

where

a1 = m(b − m − 1)

2
− b

m + 2
− 3m + 3 − b

2

= bm(m + 3) − (m + 1)(m + 2)(m + 3)

2(m + 2)
,

a2 = m(b − m − 1)

2
+ b

m + 2
+ 3m + 3 − b

2

= bm(m + 1) − (m + 1)(m + 2)(m − 3)

2(m + 2)
,
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and then

F(u) = −cu − um+2 if x < ct.

By a similar computation, we have

F(u) = cu + um+2 if x > ct,

therefore

F(u) = (
cu + um+2) sgn(x − ct). (4.4)

Combining (4.3) with (4.4), we obtain∫ T

0

∫
R

(
uψt + (

um+1ux + F(u)
)
ψ

)
dx dt +

∫
R

u0ψ(0, x)dx

=
∫ T

0

∫
R

(−ut + um+1ux + F(u)
)
ϕ dx dt = 0.

Thus, by Definition 4.1, the peakon solitary wave u(t, x) = c
1

m+1 e−|x−ct−x0| is a
global weak solution to Eq. (1.1). �

Proof of Theorem 1.7 We now derive the multi-peakon solutions of Eq. (1.1). We
assume that Eq. (1.1) has an N -peakon solution of the form (1.7). It follows from
Definition 4.1 that for any ψ(t, x) ∈ C∞

c ([0,∞) × R) the solution (4.1) satisfies∫ ∞

0

∫
R

[
ut + um+1ux + m(b − m − 1)

2

(
1 − ∂2

x

)−1
um−1(∂xu)3

+ (
1 − ∂2

x

)−1
∂x

(
b

m + 2
um+2 + 3m + 3 − b

2
um(∂xu)2

)]
ϕ(x)dx dt = 0, (4.5)

which is equivalent to the following equation:∫ ∞

0

∫
R

[
ut (φ − φxx) + 1

m + 2
um+2φxxx + m(b − m − 1)

2
um−1(∂xu)3φ

− φx

(
b + 1

m + 2
um+2 + 3m + 3 − b

2
um(∂xu)2

)]
dx dt = 0, (4.6)

where ϕ = φ − φxx,φ(t, x) ∈ C∞
c ([0,∞) × R).

A straightforward computation gives

∫ ∞

0

∫
R

ut (φ − φxx)dx dt =
N∑

i=1

∫ ∞

0

∫ qj (t)

−∞
(
p′

j − pjq
′
j

)
ex−qj (φ − φxx)dx dt

+
N∑

i=1

∫ ∞

0

∫ ∞

qj (t)

(
p′

j + pjq
′
j

)
e−(x−qj )(φ − φxx)dx dt

= 2
∫ ∞

0

N∑
i=1

(
p′

jφ(qj ) + pjq
′
jφx(qj )

)
dt, (4.7)
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and

1

m + 2

∫
R

um+2φxxx dx

= −
(∫ q1

−∞
+

N−1∑
j=1

∫ qj+1

qj

+
∫ ∞

qN

)
um+1uxφxx dx

= −um+1uxφx

(∣∣q1
−∞ +

N−1∑
j=1

∣∣qj+1
qj

+ ∣∣∞
qN

)
+

∫
R

(
(m + 1)umu2

x + um+1uxx

)
φx dx

= [−um+1uxφx + (
(m + 1)umu2

x + um+2)φ](∣∣q1
−∞ +

N−1∑
j=1

∣∣qj+1
qj

+ ∣∣∞
qN

)

−
∫

R

(
m(m + 1)um−1u3

x + 2(m + 1)um+1ux + (m + 2)um+1ux

)
φ dx (4.8)

and

−
∫

R

(
b + 1

m + 2
um+2 + 3m + 3 − b

2
um(∂xu)2

)
φx dx

= −
[(

b + 1

m + 2
um+2 + 3m + 3 − b

2
umu2

x

)
φ

](∣∣q1
−∞ +

N−1∑
j=1

∣∣qj+1
qj

+ ∣∣∞
qN

)

+
∫

R

(
(b + 1)um+1ux + (3m + 3 − b)um+1ux

+ m(3m + 3 − b)

2
um−1u3

x

)
dx. (4.9)

Thus, combining (4.8) with (4.9), we get∫
R

[
1

m + 2
um+2φxxx + m(b − m − 1)

2
um−1(∂xu)3φ

− φx

(
b + 1

m + 2
um+2 + 3m + 3 − b

2
um(∂xu)2

)]
dx

=
(

−um+1uxφx + b − m − 1

2
umu2

xφ

)(∣∣q1
−∞ +

N−1∑
j=1

∣∣qj+1
qj

+ ∣∣∞
qN

)

= −2
N∑

j=1

[
pj

(
N∑

i=1

pie
−|qj −qi |

)m+1

φx(qj )

]
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− 2(b − m − 1)

N∑
j=1

[
pj

(
N∑

i=1

pie
−|qj −qi |

)m

×
(

N∑
i=1

pi sgn(qj − qi)e
−|qj −qi |

)
φ(qj )

]
. (4.10)

Substituting (4.7), (4.10) into (4.6), we obtain the following system:

p′
j =

(
N∑

i=1

pie
−|qj −qi (t)|

)m+1

,

q ′
j = (b − m − 1)qj

(
N∑

i=1

pie
−|qj −qi |

)m(
N∑

i=1

pi sgn(qj − qi)e
−|qj −qi |

) (4.11)

this leads to the conclusion of Theorem 1.7. �
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