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Abstract We consider the wrinkling of highly stretched, thin rectangular sheets—
a problem that has attracted the attention of several investigators in recent years,
nearly all of which employ the classical Föppl–von Kármán (F–K) theory of plates.
We first propose a rational model that correctly accounts for large mid-plane strain.
We then carefully perform a numerical bifurcation/continuation analysis, identifying
stable solutions (local energy minimizers). Our results in comparison to those from
the F–K theory (also obtained herewith) show: (i) For a given fine thickness, only a
certain range of aspect ratios admit stable wrinkling; for a fixed length (in the highly
stretched direction), wrinkling does not occur if the width is too large or too small. In
contrast, the F–K model erroneously predicts wrinkling in those very same regimes
for sufficiently large applied macroscopic strain. (ii) When stable wrinkling emerges
as the applied macroscopic strain is steadily increased, the amplitude first increases,
reaches a maximum, decreases, and then returns to zero again. In contrast, the F–K
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model predicts an ever-increasing wrinkling amplitude as the macroscopic strain is
increased. We identify (i) and (ii) as global isola-center bifurcations—in terms of
both the macroscopic-strain parameter and an aspect-ratio parameter. (iii) When sta-
ble wrinkling occurs, for fixed parameters, the transverse pattern admits an entire
orbit of neutrally stable (equally likely) possibilities: These include reflection sym-
metric solutions about the mid-plane, anti-symmetric solutions about the mid-line
(a rotation by π radians about the mid-line leaves the wrinkled shape unchanged)
and a continuously evolving family of shapes “in-between”, say, parametrized by an
arbitrary phase angle, each profile of which is neither reflection symmetric nor anti-
symmetric.

Keywords Wrinkling · Thin films · Nonlinearly elastic plates · Global bifurcation

Mathematics Subject Classification (2010) 35B32 · 35J58 · 35Q74 · 74G66 ·
74K20

1 Introduction

Transverse wrinkles often form in extremely thin, rectangular elastic sheets when
two opposing clamped ends are pulled apart. Apparently Friedl et al. (2000) was
the first work to identify and analyze a model for the problem. Shortly thereafter it
was taken up by Cerda et al. (2002) and Cerda and Mahadevan (2003), which drew
a great deal of attention to the problem leading to many subsequent investigations;
see, e.g., Jacques and Potier-Ferry (2005), Puntel et al. (2011), Nayyar et al. (2011)
(the present work being no exception). Each of these papers gives a nice overview of
wrinkling with applications and extensive bibliographies, which we do not attempt
to reproduce here. From the point of view of analysis, a basic idea put forth in those
works is that wrinkling, in the presence of small bending stiffness, can be treated as a
bifurcation from the primary planar stretched state, with macroscopic (end) strain as
the control parameter. For realistic aspect ratios and truly clamped boundary condi-
tions, the pre-wrinkled planar state is non-homogenous; the clamped boundary con-
ditions prevent uniform Poisson contraction in the transverse direction, potentially
leading to transverse compression that is relieved by wrinkling. Apparently an ac-
curate pre-wrinkled solution must be determined numerically. Most of the above-
cited works incorporate various clever but nonetheless approximating assumptions
concerning the pre-wrinkled state in order to carry out a linear instability analysis
“by hand”, while relying on the classical Föppl–von Kármán theory, e.g., Dym and
Shames (1973). The latter incorporates linear infinitesimal elasticity as a model for
the planar unwrinkled behavior. An exception to this approach is the work of Nayyar
et al. (2011); the commercial finite-element code Abaqus is employed using finite-
deformation hyper-elastic shell elements. They investigate post-critical wrinkling via
ad-hoc mode-imperfection “trials” near the critical state, the latter of which is highly
singular due to the fine thickness of the film. While some of the correct post-critical
phenomena is apparently captured in that work, the results are incomplete. A true
bifurcation analysis is not carried out; more importantly no stability information is



J Nonlinear Sci (2013) 23:777–805 779

obtained. Also, the underlying two-dimensional continuum model is neither identi-
fied nor discussed in Nayyar et al. (2011).

Our contributions to this problem are the following. We first modify the Föppl–von
Kármán model, in the simplest manner possible, accounting for the finite mid-plane
deformation of the highly stretched state. We study the resulting continuum model,
in particular noting the singularly perturbed structure of the bifurcation problem, and
we discuss the existence of planar solutions via minimum-energy arguments. We then
use a so-called conformal finite-element discretization (e.g., Reddy 2004) and employ
Euler–Newton arc-length continuation (Keller 1987) or path-following to compute
equilibria. The latter is greatly facilitated by the use of continuation parameters other
than the applied macroscopic strain. In particular, for primary continuation we em-
ploy the naturally occurring reciprocal of the squared thickness of the film. Thus we
avoid the potential numerical pitfalls of a singularly perturbed eigenvalue problem to
determine the onset of wrinkling. We also introduce a rescaling parameter enabling
continuation in the aspect ratio. We carefully perform an accurate bifurcation analysis
and identify stable equilibria (local energy minimizers). We efficiently obtain numer-
ous stable wrinkled states via continuation, often of striking consequence—especially
in comparison with the numerical results for the Föppl–von Kármán model, which we
also provide:

(1) For a given fine thickness, only a certain range of aspect ratios admit stable wrin-
kling; for a fixed length (in the highly stretched direction), wrinkling does not
occur if the width is too large or too small. In contrast, the Föppl–von Kármán
model erroneously predicts wrinkling in those very same regimes for sufficiently
large applied macroscopic strain.

(2) When stable wrinkling emerges as the applied macroscopic strain is steadily in-
creased, the amplitude first increases, reaches a maximum, decreases, and then
returns to zero again. In contrast, the Föppl–von Kármán model predicts an ever-
increasing wrinkling amplitude as the macroscopic strain is increased.

(3) When stable wrinkling occurs, for fixed parameters, the transverse pattern ad-
mits an entire orbit of neutrally stable (equally likely) possibilities: These in-
clude reflection symmetric solutions about the mid-plane, anti-symmetric solu-
tions about the mid-line (a rotation by π radians about the midline leaves the
wrinkled shape unchanged) and a continuously evolving family of shapes “in-
between”, say, parametrized by an arbitrary phase angle, each profile of which is
neither reflection symmetric nor anti-symmetric.

We remark that the qualitative behavior (2) and to a lesser extent (1) can be seen
in the results from Nayyar et al. (2011)—albeit in the absence of stability informa-
tion and apparently for anti-symmetric wrinkled patterns only. Our detection of the
phenomenon in (3) is new.

The outline of the work is as follows: In Sect. 2 we propose a simple modification
of the classical Föppl–von Kármán model accounting for finite in-plane strain; we
replace the 2 × 2 infinitesimal in-plane strain tensor with the 2 × 2 in-plane Green’s
strain tensor in the stored-energy function. An examination of the governing Euler–
Lagrange equilibrium equations reveals a geometrically correct nonlinear membrane
theory coupled to linear bending. The latter, as in the von Kármán theory, is adequate
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for the small-amplitude wrinkles expected under very high tension. For purely planar
behavior (no wrinkling), this is tantamount to a so-called Saint Venant–Kirchhoff
material, which is well known to be inadequate for the general purposes of nonlinear
elasticity, cf. Raoult (1986), Ciarlet (1988).

In Sect. 3 we examine the consequences of this from the point of view of math-
ematical existence. First we justify the use of the Saint Venant–Kirchhoff material
for determining the highly stretched planar state: Using general results from Le Dret
and Raoult (1995), we show that the quasi-convexification of the minimum energy
problem (allowing for well-posed existence), requires no modification of the stored
energy function in a large neighborhood of finite (Green) strains: one principal strain
is positive while the other principal strain is positive or possibly negative, the permis-
sible magnitude of the latter being not more than that allowed by Poisson contraction.
This is certainly reasonable and within the “operating” regime of the problem at hand.
Within that regime we can say something about the existence of energy minimizers
and their partial regularity for our model. Next we examine the ostensibly singularly
perturbed structure of the bending equation; as in the von Kármán model, this reflects
the direct dependence of the bending energy on the third power of thickness of the
sheet, while the in-plane energy is directly dependent upon the thickness itself. We
propose a simple but key idea to get around this difficulty: We divide the bending
equation by the squared thickness, and then treat its reciprocal—now appearing in
the lower-order terms—as a global bifurcation/continuation parameter. In this way
the principal part of the elliptic (biharmonic) operator is left undiminished, while
continuation to large values of the new bifurcation parameter (with the macroscopic
strain fixed) leads to desired solutions of very fine thickness. We remark that we have
already used this idea with great advantage in phase-change problems for solids in
the presence of small interfacial energy, cf. Healey and Miller (2007).

In Sect. 4 we discuss our numerical discretization and overall solution strategy.
The formulation incorporates several explicit continuation parameters: the reciprocal
of the squared thickness of the film, the macroscopic strain, a rescaling parameter
controlling the aspect ratio, and Poisson’s ratio. Also noteworthy here is the iden-
tification of two classes of solutions—reflection symmetric and anti-symmetric. We
solve each of these via distinct boundary value problems on the quarter domain, the
latter reduction coming from the fact the both classes of wrinkled solutions have
reflection symmetry about the mid-plane perpendicular to the line of action of the
imposed macroscopic strain. We emphasize that once such equilibria are found, they
are readily extended by symmetry to the entire domain, which is necessary for a care-
ful evaluation of the Hessian associated with the second variation of the energy for
stability. In Sect. 5 we present our numerical results. We immediately observe that
stable equilibria always come in pairs—one reflection symmetric and the other anti-
symmetric. We note the lack of sufficient symmetry in the model to justify this appar-
ent degeneracy. Instead we use an approximate beam-on-elastic foundation analogy
to argue that the two different modes asymptotically coincide as the thickness of the
film goes to zero. This, in turn, leads to the apparent “asymptotic continuous symme-
try” discussed in (3) above.
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Fig. 1 Schematic diagram of a
stretched elastic film

2 Formulation

In this section we formulate the problem of a highly stretched, thin elastic film,
employing a modification of the Föppl–von Kármán model. Let {e1, e2, e3} de-
note a fixed orthonormal basis for the Euclidean vector space E

3. We assume that
the undeformed rectangular sheet, denoted Ω , lies in the plane E

2 = span{e1, e2};
Ω = {x := xαeα : x1 ∈ (0,L), x2 ∈ (0,W)}. Here and throughout we employ summa-
tion convention, with repeated Latin indices summing from 1 to 3, and repeated Greek
indices summing from 1 to 2. We denote the deformation of the sheet, f : Ω → E

3,
via

f(x) := x + u(x) + w(x)e3, (2.1)

where u : Ω → E
2 and w : Ω → R denote the in-plane displacement and the out-of-

plane displacement component, respectively. The deformation gradient is then given
by

F := ∇f = I + ∇u + e3 ⊗ ∇w, (2.2)

where ∇(·) denotes the surface gradient, I := eα ⊗ eα , and “⊗” denotes the tensor
product. This yields the membrane (Lagrangian) strain

E := 1

2

(
FT F − I

) = 1

2

(∇u + ∇uT + ∇uT ∇u + ∇w ⊗ ∇w
)
, (2.3)

and we also define the linear bending strain

K := −∇2w, (2.4)

where ∇2 := ∇ ◦ ∇(·) denotes the surface second gradient.
As illustrated in Fig. 1, we fix the sheet on the left side of the boundary at x1 = 0,

and on the right side we prescribe the displacement u(L,x2) ≡ εLe1, ε > 0. It is con-
venient to make the change of variables u′(x) ≡ u(x) − εx1e1. Henceforth dropping
the notation (·)′, equations (2.2), (2.3) now take the form

Fε = I + εe1 ⊗ e1 + ∇u + e3 ⊗ ∇w, (2.5)

Eε = (
ε + ε2/2

)
e1 ⊗ e1 + ε

2

(
e1 ⊗ ∇uT e1 + ∇uT e1 ⊗ e1

)

+ 1

2

(∇u + ∇uT + ∇uT ∇u + ∇w ⊗ ∇w
)
, (2.6)
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respectively, where the subscript has been added to emphasize the dependence upon
the macroscopic strain ε. Accordingly we may now prescribe the homogeneous
boundary conditions

u(0, x2) = u(L,x2) = 0, w(0, x2) = w(L,x2) = 0, 0 ≤ x2 ≤ W. (2.7)

As in the Föppl–von Kármán model, we assume an additive decomposition of
the stored energy density, in terms of membrane and bending effects, viz., Υm + Υb ,
where

Υm = Eh

2(1 − ν2)

(
ν(tr E)2 + (1 − ν)E · E

)
,

Υb = Eh3

24(1 − ν2)

(
ν(tr K)2 + (1 − ν)K · K

)
,

(2.8)

with E,ν and h denoting Young’s modulus, Poisson’s ratio and sheet thickness, re-
spectively. In the absence of body forces and tractions (on the top and bottom parts
of the boundary), we may normalize (2.8) to

Wm(E) = 6
(
ν(tr E)2 + (1 − ν)E · E

)
,

Wb(K) = h2

2

(
ν(tr K)2 + (1 − ν)K · K

)
,

(2.9)

without affecting the formulation. The total (normalized) potential energy of the film
is then given by

V =
∫

Ω

[
Wm(Eε) + Wb(K)

]
dx. (2.10)

Note that our problem is independent of Young’s modulus; we make the physically
reasonable assumption

0 < ν < 1/2. (2.11)

Next we define

Nε := dWm

dE
= 12

[
ν(tr Eε)I + (1 − ν)Eε

]
,

M := dWb

dK
= h2[ν(tr K)I + (1 − ν)K

]
.

(2.12)

Clearly Nε is the (in-plane) second Piola–Kirchhoff (P–K) stress tensor, while M
is a couple-stress tensor. Smooth fields η : Ω → E

2 and ζ : Ω → R satisfying the
respective geometric conditions (2.7) are said to be admissible variations. The first
variation of the energy yields the weak form of the equilibrium equations:

δV =
∫

Ω

[
(I + εe1 ⊗ e1 + ∇u)Nε · ∇η + (Nε∇w) · ∇ζ − M · ∇2ζ

]
dx = 0, (2.13)

for all admissible variations η, ζ . Integration by parts formally delivers the Euler–
Lagrange equilibrium equations for (2.10):

∇ · [(I + εe1 ⊗ e1 + ∇u)Nε

] = 0,

∇ · (∇ · M + Nε∇w) = 0 in Ω,
(2.14)
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where ∇ · (·) denotes the surface divergence. From (2.4), (2.9)2, and (2.12), the equi-
librium equations (2.14) take on the more revealing form

∇ · [(I + εe1 ⊗ e1 + ∇u)Nε

] = 0,

h2
2w − ∇ · (Nε∇w) = 0 in Ω,
(2.15)

where 
(·) := ∇ · (∇(·)) denotes the Laplace operator and 
2(·) := 
 ◦ 
(·) the bi-
harmonic operator. Integration by parts also gives natural boundary conditions, which
we list here for the sake of completeness:

n · Mn = 0 on straight edges of ∂Ω, (2.16)

(I + εe1 ⊗ e1 + ∇u)Nεe2|x2=0 = 0,

(I + εe1 ⊗ e1 + ∇u)Nεe2|x2=W = 0,

e2 ·
[

Nε∇w + ∂

∂x1
(Me1) + ∇ · M

]∣∣∣∣
x2=0

= 0,

e2 ·
[

Nε∇w + ∂

∂x1
(Me1) + ∇ · M

]∣∣∣
∣
x2=W

= 0, 0 < x1 < L,

(2.17)

where n denotes the outward unit normal to the boundary ∂Ω . In summary, the formal
boundary value problem (BVP) comprises the partial differential equations (2.15), the
geometric boundary conditions (2.7), the natural boundary conditions (2.16), (2.17),
the constitutive relations (2.9), (2.12), and the kinematic relations (2.4), (2.6).

Our model combines a geometrically exact, nonlinear membrane theory, cf. (2.5),
(2.6), (2.9)1, with the linearized bending theory of the von Kármán model, cf. (2.4),
(2.9)2. Observe that it reduces to the Föppl–von Kármán model when the nonlinear
strain term “∇uT ∇u” is dropped from (2.3), e.g., cf. Dym and Shames (1973). The
differences between the Föppl–von Kármán model and ours arise, not only from the
use of the Lagrangian strain (2.3), (2.6) in (2.12)1, (2.17), but perhaps more pro-
foundly in the governing equations (2.15). Observe that (2.15)1 requires the diver-
gence of the “in-plane” first Piola–Kirchhoff stress to vanish, whereas in the classical
model we have ∇ · N = 0. The former impacts (2.15)2, generally giving rise to a
first-order term (in ∇w), which vanishes identically in the classical case.

3 Mathematical Considerations

We first look for planar solutions of the BVP, i.e.,w ≡ 0, in which case (2.15)2,
(2.16), (2.17)3,4 are satisfied identically, while (2.6), (2.7), (2.12)1, (2.15)1, (2.17)1,2
specialize to a rather formidable problem of 2-dimensional nonlinear elasticity
(in E

2). Indeed for ε > 0, it’s easy to see that there are no homogeneous solutions
satisfying (2.7), and it seems highly unlikely that a closed-form inhomogeneous so-
lution can be found. It’s then natural to contemplate local existence theorems, say,
based upon the implicit function theorem, e.g., Valent (1988), and subsequent global
continuation methods, cf. Healey and Simpson (1998). However, all such techniques
demand sufficient smoothness of solutions that would obviate the expected singu-
larities arising at the four corners of Ω , where prescribed displacements (2.7) and
tractions (2.17)1,2 meet.
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Another possibility is to employ direct methods of energy minimization in order
to obtain the existence of a planar solution. The so-called Saint Venant–Kirchhoff en-
ergy density Wm(E) does not exhibit unbounded growth as det F ↘ 0 (cf. (2.2), (2.9)1
with w ≡ 0 and F ∈ L(E2) := set of all linear transformations of E

2 into itself). But
this is more than acceptable for thin films, since we expect out-of-plane wrinkling in
lieu of vanishing local area ratios. Moreover, it simplifies the analysis of the planar
problem. On the other hand, the minimization of

Vm :=
∫

Ω

Wm(E)dx, (3.1)

with E ∈ L(E2) given by (2.6) (with w ≡ 0), subject to (2.7)1,2, is generally not well
posed—the functional is not quasi-convex, cf. Raoult (1986). As such, the minimum
of (3.1) will not generally be attained in the expected topology u ∈ W 1,4(Ω;R

2) (i.e.,
each component uα(x) and its two generalized partial derivatives belong to L4(Ω),
α = 1,2).

Fortunately it is known how to “repair” the problem by explicit construction of
the quasi-convex envelope of Wm(E), cf. Le Dret and Raoult (1995). We need a lit-
tle extra notation in order to explain this. In view of (2.3) with w ≡ 0, we define
Φ(FT F) := Wm(E). As shown in that work, the quasi-convex envelope of Wm(E)

has the general characterization

W ∗
m(E) = inf

A∈S+
2

Φ
(
FT F + A

)
, (3.2)

where S+
2 denotes the set of all positive, symmetric, semi-definite linear transforma-

tions of E
2 into itself. We then replace (3.1) with minimization of the relaxed energy

∫

Ω

W ∗
m(E)dx, (3.3)

which always attains its minimum under the conditions described above for (3.1).
Moreover, the minimum of (3.3) coincides with the infimum of (3.1), and any in-
fimizing sequence for (3.1) has a subsequence converging weakly in W 1,4(Ω;R

2) to
a minimizer of (3.3), cf. Dacorogna (2008).

An explicit formula for (3.2) is provided in Le Dret and Raoult (1995) for the Saint
Venant–Kirchhoff density in the 3-dimensional setting. It is revealing to specialize
their approach, in part, to our planar, 2-dimensional elasticity model. In particular, a
calculation similar to theirs shows that

W ∗
m(E) ≡ Wm(E) = Φ

(
FT F

)
, (3.4)

whenever the principal values of C = FT F, denoted λ2
1, λ

2
2 (squared principle

stretches) satisfy

λ2
1 ≥ λ2

2, ν
(
λ2

1 − 1
) ≥ −(

λ2
2 − 1

)
. (3.5)

That is, Wm(E) coincides with its quasi-convex envelope W ∗
m(E) within the domain

(3.5). For our planar pre-wrinkled state, we expect λ2
1 ≈ (1+ε)2 with λ2

2 ≤ 1 possibly
on some subset of Ω of non-zero measure. In that case the second condition in (3.5)
simply requires no more than total Poisson contraction in terms of the principal Green
strains. This is completely reasonable and expected for the problem at hand. We note



J Nonlinear Sci (2013) 23:777–805 785

that if a minimizer u ∈ W 1,4(Ω;R
2) of (3.3) verifies (3.5), then by (3.4) and the

results of Evans (1986), we see that u, which is easily shown to be a weak solution
of (2.13) (with w = ζ ≡ 0), actually satisfies the partial differential equation (pde)
(2.15)1 in the strong sense a.e. in Ω . Finally we remark that for non-planar solutions
the direct minimization of the energy (2.10) on (u,w) ∈ W 1,4(Ω;R

2) × H 2(Ω) is
well posed due to the convexity in the argument ∇2w (provided it can be shown that
any minimizer is not characterized by w ≡ 0).

Next we take the point of view that a one-parameter family of planar solutions
u = uε,w ≡ 0 is known. Formal linearization of (2.15)2 then leads to the pde

h2
2w − ∇ · (No
ε∇w

) = 0, (3.6)

where, from (2.6), (2.12)1, we have

No
ε := 12

[
ν
(
tr Eo

ε

)
I + (1 − ν)Eo

ε

]
,

Eo
ε := (

ε + ε2/2
)
e1 ⊗ e1 + ε

2

(
e1 ⊗ ∇uT

ε e1 + ∇uT
ε e1 ⊗ e1

)

+ 1

2

(∇uε + ∇uT
ε + ∇uT

ε ∇uε

)
.

(3.7)

Nontrivial solution pairs (ε,w) of (3.6), subject to (2.7)3,4, (2.16) and the lineariza-
tion of (2.17)3,4, yield potential bifurcation points indicating the onset of wrinkling.
More pertinent here is the weak form of (3.6), which follows most easily from (2.4),
(2.12)2 and (2.13) with η ≡ 0, Nε = No

ε :
∫

Ω

[(
No

ε∇w
) · ∇ζ + h2(ν
w
ζ + (1 − ν)∇2w · ∇2ζ

)]
dx = 0, (3.8)

for all admissible variations ζ . In particular, choosing ζ ≡ w in (3.8), we arrive at
∫

Ω

[(
No

ε∇w
) · ∇w + h2(ν(
w)2 + (1 − ν)∇2w · ∇2w

)]
dx = 0. (3.9)

Since the last two terms in (3.9) are non-negative, we have:

Lemma Suppose that No
ε ∈ L2(Ω,R

2×2) and

a · No
εa ≥ 0 for all a ∈ E

2 a.e. in Ω, (3.10)

i.e., the second P–K stress is non-compressive almost everywhere in the stretched
flat film. Then the only weak solution, w ∈ H 2(Ω) (i.e., w and each of its first and
second generalized partial derivatives belong to L2(Ω)), satisfying (3.8) is the trivial
one w ≡ 0 (no wrinkling). We conclude that a necessary condition for bifurcation is
the violation of (3.10), i.e., that No

ε “sustains compression”.

The proof of the Lemma follows easily from (3.9), (3.10), which immediately
yield ∇2w = 0 ⇒ ∇w = c (const.) a.e. in Ω . Integration and the boundary conditions
(2.7) then imply w ≡ 0.
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4 Solution Strategy and Numerical Implementation

Since h2 is extremely small for thin films, we recognize that (3.6) (or (3.8)) is a sin-
gularly perturbed eigenvalue problem. Indeed, the nonlinear pde (2.15)2 is singularly
perturbed. Consequently, we generally expect numerical difficulties in realistic mod-
els of thin sheets. We avoid this problem here by an approach similar to that employed
successfully in Healey and Miller (2007). The first simple step is to divide through
by the squared thickness, replacing (2.15)2 with


2w − κ∇ · (Nε∇w) = 0, κ := 1/h2. (4.1)

The key idea is to employ κ as a bifurcation/continuation parameter. The numer-
ical advantage of (4.1) over (2.15)2 is obvious: we leave the well behaved elliptic
operator 
2w undiminished, while seeking bifurcations in the parameter κ , and use
continuation to very large values of κ . Our selection criterion here, employed in con-
cert with this approach, is to choose stable solutions, the latter which we now make
precise.

First we define the admissible solution space

X = {
(u,w) ∈ W 1,4(Ω;R

2) × H 2(Ω) : the b.c.’s (2.7) hold

(in the sense of trace)
}
. (4.2)

In view of (2.9), (2.10), we define an equivalent potential energy functional

I = 1

2

∫

Ω

(
12κ

[
ν(tr Eε)

2 + (1 − ν)Eε · Eε

] + [
ν(
w)2 + (1 − ν)∇2w · ∇2w

])
dx,

(4.3)

where Eε is given by (2.6). For fixed ε, κ > 0, we say that (u,w) ∈ X is a weak
equilibrium solution if

δI =
∫

Ω

[
κ
{
(I + εe1 ⊗ e1 + ∇u)Nε · ∇η + (Nε∇w) · ∇ζ

}

+ ν
w
ζ + (1 − ν)∇2w · ∇2ζ
]

dx = 0, (4.4)

for all admissible variations η, ζ , where Nε is defined in (2.12)1. Observe that (4.4)
is equivalent to (2.13). In addition, the weak equilibrium solution (u,w) is said to
be stable if the second variation of the potential energy evaluated there is positive,
i.e.,

δ2I =
∫

Ω

[
κ
{(∇ηNε + (I + εe1 ⊗ e1 + ∇u)

[
ν tr(δEε)I + (1 − ν)δEε

]) · ∇η

+ ([
ν tr(δEε)I + (1 − ν)δEε

]∇w + Nε∇ζ
) · ∇ζ

}

+ ν(
ζ)2 + (1 − ν)∇2ζ · ∇2ζ
]

dx > 0, (4.5)

for all admissible variations η, ζ , such that η �= 0 and/or ζ �= 0, where

δEε := ε

2

(
e1 ⊗ ∇ηT e1 + ∇ηT e1 ⊗ e1

)

+ 1

2

(∇η + ∇ηT + ∇uT ∇η + ∇ηT ∇u + ∇w ⊗ ∇ζ + ∇ζ ⊗ ∇w
)
. (4.6)

We employ the formulation (4.3)–(4.6) throughout the remainder of this work.
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Obviously our problem is characterized by three explicit, non-negative parame-
ters, ε, ν and κ , each of which is useful in continuation. It is also convenient for
the purposes of continuation to have a parametric formulation allowing for vari-
ation of the aspect ratio. One way to accomplish this is to rescale the variable
e2 · x = x2 → x2/β,β > 0, and then work on a fixed domain Ω = (0,L) × (0,W),
where L,W are fixed constants. Defining the diagonal transformation

Iβ := e1 ⊗ e1 + βe2 ⊗ e2, (4.7)

we then arrive at the appropriate formulation, characterized by explicit dependence
upon β in (4.3)–(4.6), via the following substitutions:

∇w → Iβ∇w,

∇u → ∇uIβ,

∇2w → Iβ∇wIβ.

(4.8)

That is, the expressions on the left of (4.8) are replaced in (4.3)–(4.6) by the respective
expressions on the right. In this way, a solution w(x1, x2),u(x1, x2) of (4.3)–(4.6),
for a given fixed value β > 0 on the fixed domain (0,L) × (0,W), yields a solution
w(x1, βx2),u(x1, βx2) on the domain (0,L) × (0,W/β).

Problem (4.3)–(4.8) has obvious but important symmetries that we exploit in com-
puting equilibria:

Reflection symmetric solutions: x2 �→ w is even,

x2 �→ u2 is odd about x2 = W/2;
Anti-symmetric solutions: x2 �→ w,u2 are odd about x2 = W/2.

(4.9)

In each case, we solve the problem on the lower half of the domain, say, subject to
sets of boundary conditions along x2 = W/2, the latter of which we discuss shortly.
In this way we efficiently separate the computation of two distinct families of equi-
libria. Of less importance, we also expect relevant solutions of each family (4.9) to
possess reflection symmetry about the line x1 = L/2, enabling a further reduction
to a quarter-domain in each case. However, it’s worth mentioning now that the full
equilibrium solution, extended over the entire domain, is required in order to check
for stability.

We discretize problem (4.3)–(4.6) via a uniform rectangular grid and employ
4-node rectangular conformal finite elements (e.g., Reddy 2004) as follows: Each
corner of a given rectangular element possesses 6 degrees of freedom corresponding
to the values of u1, u2,w,w,1 := ∂w/∂x1,w,2 := ∂w/∂x2 and w,12 := ∂2w/∂x1∂x2

there. We use a superscript j = 1, . . . ,4 to distinguish their values at each of the four
corners of the element, respectively, say, counter-clockwise in a consistent way. Let
(xc, yc) denote the coordinates of the center of a given element, and define the local
coordinates (ξ, η), where ξ := (x1 − xc)/a, η := (x2 − yc)/b and “2a × 2b” denotes
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the uniform size of each element. Letting (ξj , ηj ) denote the local coordinates of the
j th corner, we introduce the interpolation polynomials

N0
i = 1

4
(1 + ξξi)(1 + ηηi),

N1
i = 1

16
(ξ + ξi)

2(ξξi − 2)(η + ηi)
2(ηηi − 2),

N2
i = − 1

16
ξi(ξ + ξi)

2(ξξi − 1)(η + ηi)
2(ηηi − 2),

N3
i = − 1

16
(ξ + ξi)

2(ξξi − 2)ηi(η + ηi)
2(ηηi − 1),

N4
i = 1

16
ξi(ξ + ξi)

2(ξξi − 1)ηi(η + ηi)
2(ηηi − 1).

(4.10)

Next we define the nodal variables vector for the element:

u = [
u1

1u
1
2w

1w1
,1w

1
,2w

1
,12

∣∣ u2
1 · · ·w2

,12

∣∣ u3
1 · · ·w3

,12

∣∣ u4
1 · · ·w4

,12

]
. (4.11)

Then the displacement field over the element can be approximated via interpolation:

u1(x1, x2) ∼= [
N0

1 0 · · · 0
∣∣ N0

2 0 · · · 0
∣∣ N0

3 0 · · · 0
∣∣ N0

4 0 · · · 0
] ·u ≡ N1 ·u,

u2(x1, x2) ∼= [
0 N0

1 · · · 0
∣∣ 0 N0

2 · · · 0
∣∣ 0 N0

3 · · · 0
∣∣ 0 N0

4 · · · 0
] ·u ≡ N2 ·u,

w(x1, x2)

∼= [
0 0 N1

1 N2
1 N3

1 N4
1

∣∣ 0 0 N1
2 · · · N4

2

∣∣ 0 0 N1
3 · · · N4

3

∣∣ 0 0 N1
4 · · · N4

4

] ·u

≡ N3 ·u,

(4.12)

and the required derivatives are readily computed:

u1,1 := ∂u1/∂x1 ∼= N1,1 ·u,

u1,2 ∼= N1,2 ·u, u2,1 ∼= N2,1 ·u, u2,2 ∼= N2,2 ·u,

w,1 ∼= N3,1 ·u, w,2 ∼= N3,2 ·u,

w,11 ∼= N3,11 ·u, w,22 ∼= N3,22 ·u, w,12 ∼= N3,12 ·u.

(4.13)

We now substitute (4.13) into (4.3) for each rectangular element and then sum, arriv-
ing at a finite-dimensional approximation of the total potential energy:

I (˜u;κ, ε,β, ν) :=
Ne∑

i=1

∫

Ωi

g
(
ui;κ, ε,β, ν

)
dx, (4.14)

where “Ne” denotes the total number of elements in the quarter-domain, Ωi is the
rectangular domain of the ith element, ui is the nodal variables vector (4.11) for the
ith element, and g(ui;κ, ε,β, ν) denotes the integrand in (4.3) after the substitution
from (4.13). Here ˜u denotes the global nodal “displacement” vector of unknowns,
assembled in the usual way, representing the unconstrained degrees of freedom for
the system. For both types of solutions (4.9), we work on the quarter-domain and
enforce (2.7) along x1 = 0. In consonance with (4.4), the problem is unconstrained
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along x2 = 0. The following distinct sets of boundary conditions follow directly from
(4.9):

Reflection symmetric solutions: u2 = w,2 = w,12 = 0 along x2 = W/2,

Anti-symmetric solutions: u2 = w = w,1 = 0 along x2 = W/2.
(4.15)

We also impose the following reflection-symmetric boundary conditions for both
types in (4.9):

u1 = w,1 = w,12 = 0 along x1 = L/2. (4.16)

The specifically chosen geometric boundary conditions (4.15) and (4.16) are now
clear, given the degrees of freedom associated with our discretization. In particular,
accounting for 6 degrees of freedom at each unconstrained node, and accounting for
(2.7), (4.15), (4.16), assume a M × N grid on the quarter-domain, i.e., Ne = MN ,
where M is along the length and N along the width. Then for each case in (4.15), the
total number of unknowns for the problem is the same, viz.,

d = 6(M − 1)N + 3(M − 1 + N) + 1, (4.17)

i.e., ˜u ∈ R
d in each case (although their precise entries are not the same).

The vanishing of the total derivative of (4.14) delivers the discrete equilibrium
equations

˜f(˜u;κ, ε,β, ν) := D
˜u
I (˜u;κ, ε,β, ν) =

Ne∑

i=1

∫

Ωi

Dug
(
ui;κ, ε,β, ν

)
dx = 0. (4.18)

As is typical of any Rayleigh–Ritz method, (4.4) and (4.18) are the same when the
former is evaluated according to (4.13) and the admissible variations (η, ζ ) ≡ (u,w)

are chosen in the same consistent manner. Specifically, we define the nodal variation
vector for a typical element as in (4.11):

ξ = [
η1

1 η1
2 ζ 1 ζ 1

,1 ζ 1
,2 ζ 1

,12

∣∣ η2
1 · · · ζ 2

,12

∣∣ η3
1 · · · ζ 3

,12

∣∣ η4
1 · · · ζ 4

,12

]
. (4.19)

Then as in (4.12) we have

η1(x1, x2) ∼= N1 · ξ , η2(x1, x2) ∼= N2 · ξ , ζ(x1, x2) ∼= N3 · ξ , (4.20)

and we may compute approximate derivatives as in (4.13). Direct substitution into
(4.4) now leads to

δI =
Ne∑

i=1

[(∫

Ωi

Dug
(
ui;κ, ε,β, ν

)) · ξ i

]
≡˜f(˜u;κ, ε,β, ν) ·

˜
ξ = 0, (4.21)

for all global variation vectors
˜
ξ ∈ R

d , which yields (4.18).
Observe that ˜f : R

d × R
4 → R

d , i.e., (4.18) represents d simultaneous nonlinear
equations in the d unknowns, ˜u, while containing 4 parameters, κ, ε,β, ν, each of
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which is at our disposal for numerical continuation. The later requires various partial
derivatives that are readily obtained from (4.18), e.g.,

D
˜u˜f(˜u;κ, ε,β, ν) := D2

˜u
I (˜u;κ, ε,β, ν) =

Ne∑

i=1

∫

Ωi

D2
ug

(
ui;κ, ε,β, ν

)
dx,

˜fκ (˜u;κ, ε,β, ν) := D
˜u
Iκ(˜u;κ, ε,β, ν) =

Ne∑

i=1

∫

Ωi

Dugκ

(
ui;κ, ε,β, ν

)
dx, etc.

(4.22)

Equation (4.22)1 gives the tangent or Jacobian matrix for the symmetry-reduced prob-
lems associated with (4.15), (4.16), which is related to the second variation (4.6). But
as mentioned previously, (4.5) must be evaluated at a solution for the full problem
over the entire domain in the determination of stability. In either of the cases (4.15),
together with (4.16), we readily extend the solutions by reflection or rotation via (4.9),
and then extend by reflection across the line x1 = L/2. We denote the extended so-
lution by ˜ue ∈ R

r , where “r” denotes the total number of degrees of freedom for the
full problem: Since we now have 4Ne = 4(MN) elements subject only to (2.7), we
find that

r = 6(2M − 1)(2N + 1). (4.23)

Imitating (4.14), we obtain the total potential energy for the full problem by summing
over the total number of elements, 4Ne:

I (˜ue;κ, ε,β, ν) :=
4Ne∑

i=1

∫

Ωi

g
(
ui;κ, ε,β, ν

)
dx. (4.24)

We then obtain the required Hessian for checking stability by repeated differentiation
of (4.24) as in (4.22)1:

H(˜ue;κ, ε,β, ν) := D2

˜u
I (˜ue;κ, ε,β, ν) =

4Ne∑

i=1

∫

Ωi

D2
ug

(
ui;κ, ε,β, ν

)
dx. (4.25)

Evaluated at an equilibrium ˜ue, observe that (4.15) is a symmetric, square matrix of
size r2, cf. (4.23). Similar to (4.18)–(4.21), the discretized second variation (4.5) is
given by

δ2I =
4Ne∑

i=1

ξ i ·
[(∫

Ωi

D2
ug

(
ui;κ, ε,β, ν

))
ξ i

]
≡

˜
ξ ·H(˜ue;κ, ε,β, ν)

˜
ξ , (4.26)

for all global variation vectors
˜
ξ ∈ R

r . In view of (4.5) and (4.26), we conclude
that the discrete equilibrium ˜ue is stable if the Hessian (4.25) is positive definite.
Finally, we comment that in lieu of (4.25), the Hessian is easily and more efficiently
assembled from the Jacobian (4.22)1 on the quarter-domain via sub-structuring.

5 Numerical Results

Referring to Fig. 2, we choose W = 10 cm (width) and L = 20 cm (length) as the
dimensions of the fixed domain Ω . In order to solve (4.18) for the two cases (4.15)
on the quarter-domain, our computational strategy is as follows:
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Fig. 2 The first four bifurcating solution branches with bifurcation parameter κ = 1/h2

1. Fix κ = 1/h2 = 100, ν = 0.45 (Poisson’s ratio) and β = 1 (aspect-ratio param-
eter). For this moderately thick sheet (h = 0.1 cm), wrinkling is not an issue:
starting from the known solution point (ε, ˜u) = (0, ˜0), compute a family of planar
solutions (w ≡ 0) of (4.18) with ε as the continuation parameter up to ε = 0.1.

2. Next fix ε = 0.1 and continue the family of planar solutions, but now with
κ = 1/h2 as the continuation/bifurcation parameter. In the range 100 ≤ κ ≤
20,000, locate the first few bifurcation points, say κ = κm,m = 1, . . . ,4, at which
the Jacobian (4.22)1 is not invertible. For each of the cases (4.15), this is easily
done by tracking the sign of a few of the smallest eigenvalues.

3. Switch to nontrivial (non-planar) bifurcating branches with κ as the bifurcation
parameter and compute to very large values of κ (corresponding to very small
values of h2).

4. Extend the solution over the entire domain Ω according to (4.9) (as discussed
above (4.23)), and then check for stability via positivity of the full Hessian (4.25).
Since the Hessian H is symmetric, this is carried out efficiently via the Cholesky
decomposition—its success/failure indicates a stable/unstable equilibrium.

5. Once stable solutions are found for sufficiently small values of the squared thick-
ness, fix κ = 1/h2 and continue solutions in the other three parameters to study
robustness of the results. In particular, we are keenly interested in the behavior of
wrinkled solutions as the macroscopic strain ε is varied.

Remark In carrying out steps 1–3 and 5 above, we employ Euler–Newton continu-
ation with pseudo arc-length control, cf. Keller (1987). Except at bifurcation points,
the Euler prediction is proportional to the unique tangent to the solution curve; at
simple bifurcation points the Euler prediction incorporates a component of the null
vector of the Jacobian (4.22)1 to facilitate branch switching.

In Fig. 2 we summarize the results of the calculations resulting from steps 1–3
above, i.e., the bifurcation diagram is given for the first four bifurcating branches
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Fig. 3 Wrinkled configurations along the first branch of anti-symmetric solutions

in κ = 1/h2 for each of the two problems (4.15). Here the anti-symmetric branches
are shown in blue, and the reflection symmetric branches in red. Each of the eight
branches is a projection of a “pitchfork” bifurcation. For reasons to be discussed
shortly, the calculations throughout this section for the determination of equilibria
are carried out on a 70 × 170 uniform grid on the quarter domain, i.e., Ne = 11,900,
with more refinement in the x2-direction. The stability check, step 4 above, reveals
that the higher bifurcating branches 2–4 (bifurcating at values κ > 1) are globally
unstable, while the first two branches are “neutrally stable” all along the branches.
We discuss this terminology in more detail shortly. In any case, Figs. 3 and 4 each
depict three such wrinkled configurations—anti-symmetric and reflections symmet-
ric, respectively—along the first branches at the specific solution points marked on
Fig. 2. Note that in each case the three wrinkled configurations represent membrane
thicknesses of 0.1, 0.05, and 0.033 mm, respectively, but otherwise corresponding to
the same data.

A striking aspect of Fig. 2 is the apparent coincidence of bifurcation points (along
the κ-axis) for the “blue” and the “red” branches. This is verified by their computed
numerical values. Recall that these solution branches are computed via two distinct
reduced problems, cf. (4.15). Of course each is a solution branch of the full prob-
lem. We remark that there is no generic explanation for the occurrence of double
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Fig. 4 Wrinkled configurations along the first branch of reflection symmetric solutions

eigenvalues here based on symmetry. For example, the frequencies of vibration for
simply-supported rectangular membranes and plates are “generically” distinct; see
e.g., Meirovitch (1967). From the group-theoretic point of view, the irreducible rep-
resentations of the symmetry group (of a thin rectangular object in 3-space) are all
1-dimensional. Thus, based on symmetry, we should expect a repeated eigenvalue
here only in situations for which the parameters are specially “tuned”, cf. Golubit-
sky and Schaeffer (1985). This is closely related to our terminology above, neutrally
stable, in reference to the first two apparently simultaneous branches. In particular,
we find that the computed Hessian (4.25) along each branch is positive semi-definite,
always possessing one and only one near-zero eigenvalue: along the anti-symmetric
branch the near-zero eigenvalue is associated with a reflection symmetric eigenvector
and vice versa. We draw this conclusion from the following observation.

We compare the smallest (in magnitude) computed eigenvalue of the Hessian
(4.25) along the trivial solution up to the first bifurcation point and then along each
of the first two bifurcating branches—anti-symmetric and reflection symmetric—as a
function of κ for various grid sizes. The results are summarized in Fig. 5: For a given
grid on the entire domain Ω , the two zero eigenvalues eventually depart slightly from
zero—sometimes with opposite signs and sometimes together. But as the grid size is
increased, the two eigenvalues “stay together at zero” for greater and greater values
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Fig. 5 Smallest eigenvalue of the Hessian evaluated along the first two primary bifurcating branches—for
various grid sizes

of κ . For example, for the grid size 140 × 340, the two eigenvalues are contained in
[−5 × 10−7,5 × 10−7] for all κ ∈ [8605,50000].

As discussed in Sect. 3, the inhomogeneity of the planar solution (3.7) renders
a direct analysis of the linearized wrinkling problem (3.6) an unlikely possibility.
In an effort to understand the occurrence of double bifurcation points, we consider
an analogy with the buckling of a beam on an elastic foundation under thrust with
free ends, cf. Hetényi (1946). In that case the first buckling mode can be either even
or odd (with respect to the mid-span), depending on the magnitude of the bending
stiffness and strength of the elastic foundation. But as the modulus of the elastic
foundation becomes large in comparison to the bending stiffness, the first buckling
loads for the two symmetry types both increase and asymptotically approach the same
value. For the sake of analogy, assume that No

ε in (3.6) has the homogeneous form
No

ε = T (ε)e1 ⊗ e1 − C(ε)e2 ⊗ e2, where T (ε),C(ε) > 0 are independent of x. Then
assuming a solution of (3.6) of the form w(x1, x2) = sin(πx1/L)v(x2), we arrive at
the beam-on-elastic- foundation equation

v′′′′ + Pv′′ + kv = 0, where

P := C(ε)/h2 − 2(π/L)2 and k := T (ε)/h2 + (π/L)4. (5.1)

In the beam analogy for (5.1), P = O(1/h2) > 0 represents the axial compressive
load, k = O(1/h2) > 0 is the foundation modulus, and the bending stiffness of the
beam is “1”. As κ = 1/h2 becomes sufficiently large, the first buckling load asymp-
totically possesses both an even and an odd buckling mode. The buckling load it-
self also increases in the limit, by a known formula (cf. Hetényi 1946), which is
not pertinent here because the presumed homogeneous form for No

ε is not correct.
Nonetheless, from the Lemma in Sect. 3, No

ε(x) must have principal “compressive”
components over some subset of Ω of non-zero measure, over which the behavior of
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Fig. 6 Bifurcation diagrams, maximum amplitude, max |w|, vs. macroscopic strain ε; film thicknesses
(a) h = 0.1 mm; (b) h = 0.05 mm

Fig. 7 Anti-symmetric wrinkled configurations for increasing macroscopic strain ε; h = 0.1 mm
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Fig. 8 Reflection symmetric wrinkled configurations for increasing macroscopic strain ε; h = 0.1 mm

the principal stresses is O(1/h2), by virtue of (4.1). Thus, we expect similar behav-
ior here in our case, leading to double bifurcation points to within the accuracy of the
computations.

With stable solutions in hand, we now fix a conveniently large value of κ along
the first two (simultaneous) bifurcating branches and then continue in the other pa-
rameters. In particular, we begin with the macroscopic strain ε. In this way we easily
construct more physically relevant bifurcation diagrams in ε > 0 for films of a given
fine thickness—without directly confronting the singular-perturbation problem (3.6).
Such diagrams are presented in Fig. 6 for film thicknesses 0.1 mm and 0.05 mm. In
each case the blue curve represents the obtained solutions for our model, valid (the
same) for both reflection symmetric and anti-symmetric configurations. All solutions
on the blue curves are neutrally stable, as previously discussed above. In Figs. 7, 8, 9,
10 we depict wrinkled configurations—rotationally symmetric and anti-symmetric—
corresponding to the marked points on the respective bifurcation diagrams.
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Fig. 9 Anti-symmetric wrinkled configurations for increasing macroscopic strain ε; h = 0.05 mm

Referring to Fig. 6, observe that each blue solution curve is bounded—starting
and then terminating again on the ε-axis. This indicates that as the film is increasingly
stretched, wrinkles emerge with an amplitude that first increases, reaches a maximum,
and decreases, with the wrinkles then disappearing again. This is certainly realistic:
As dramatized in the depicted configurations, as the film is increasingly stretched, it
eventually approaches a nearly homogeneous, compressive-free state away from the
two clamped ends. In contrast, the red curve in each bifurcation diagram depicts the
solutions obtained for the classical Föppl–von Kármán model. In each case, observe
the unrealistic prediction that a constant increase of wrinkling magnitude occurs as
the macroscopic strain is indefinitely increased.

Figure 6 suggests that the isola “region” of macroscopic strains associated with
wrinkling increases with decreasing film thickness. This is reinforced by the bifur-
cation diagram for thickness h = 0.082 mm (κ = 15,000), shown below in Fig. 11.
For example, from Fig. 6(a) we see that there is no wrinkling when, say, ε = 0.12
at thickness h = 0.1 mm, while from Fig. 11, there is slight wrinkling for that same
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Fig. 10 Reflection symmetric wrinkled configurations for increasing macroscopic strain ε; h = 0.05 mm

value of ε when h = 0.082 mm. As in the previous bifurcation diagrams, the red
curve in Fig. 11 depicts the response for the Föppl–von Kármán model.

The investigation of stable wrinkling for other values of the aspect-ratio parameter
β and Poisson’s ratio ν is readily carried out by continuation from any of the above
solutions. First we consider varying the aspect ratio at the fixed values h = 0.05 mm
and ε = 0.1: The resulting bifurcation diagram in β (corresponding to the true width
W = 10/β) is shown in Fig. 12. We present a sampling of such configurations in
Fig. 13, as marked along the branch in Fig. 12, in the anti-symmetric case only (since
the reflection-symmetric case delivers the identical bifurcation diagram). Observe
that wrinkles occur only for a specific range of aspect ratios.

As a further illustration of this behavior, we provide a sequence of bifurcation di-
agrams in the macroscopic strain ε for various aspect ratios (with h = 0.05 mm) in
Fig. 13. The diagram in Fig. 6(b) (β = 1) should also be included in this sequence. As
before the bounded blue curve represents the solutions obtained for our model, while
the red curve is that obtained from the Föppl–von Kármán model. Two significant
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Fig. 11 Bifurcation diagram,
maximum amplitude, max |w|,
vs. macroscopic strain ε; film
thicknesses h = 0.082 mm

Fig. 12 Typical bifurcation diagram for maximum amplitude, max |w|, vs. aspect-ratio parameter β

observations here are: (i) wrinkling occurs only within a bounded range of aspect
ratios. The disappearance of a bifurcating branch for β ≤ 0.75 and for β ≥ 1.9 (not
necessarily sharp bounds) indicates a standard isola-center bifurcation (the “birth”
or “death” of a closed loop of bifurcating solutions from a singular point, cf. Golu-
bitsky and Schaeffer 1985). (ii) The Föppl–von Kármán model erroneously predicts
bifurcation of wrinkling solutions for β ≤ 0.75 and for β ≥ 1.9.

The same qualitative behavior is preserved in the bifurcation diagrams if we con-
tinue to other reasonable values of Poisson’s ratio, as shown in Figs. 15. These too
should be viewed together with Fig. 6(b) (ν = 0.45).

Finally we return to the discussion above concerning the double bifurcations as-
sociated with reflection symmetric and anti-symmetric solutions. As mentioned pre-
viously, the bifurcation diagrams given in Fig. 6, but also in Figs. 11, 12, 14, and 15,
are valid (identical) for the two types of solutions. This is undoubtedly a nonlinear
version of the above argument (5.1) for very large κ = 1/h2. Also, recall that the anti-
(reflection) symmetric branches of solutions presented in these figures are neutrally
stable, with the Hessian (4.25) always possessing an essentially zero eigenvalue that
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Fig. 13 Wrinkled configurations at different aspect ratios

is associated with a reflection (anti-) symmetric eigenvector. In terms of stability, the
two types of wrinkled solutions are equally likely. But these observations strongly
suggest more: that there are asymmetrical solutions corresponding to an arbitrary
phase shift between the reflection symmetric and the rotational symmetric solutions
(for the same data). Indeed we find that our solutions come in “orbits”, as depicted
schematically in Fig. 16. We find these by seeking solutions of (4.18) over the en-
tire domain via Euler–Newton continuation along the suspected orbit as follows: For
the first Euler step, we start with an anti- (reflection) symmetric solution and add to
it a sufficiently small increment of the reflection (anti-) symmetric eigenvector as-
sociated with the zero eigenvalue. We then correct via Newton iteration, which we
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Fig. 14 Bifurcation diagrams, maximum amplitude max |w| vs. macroscopic strain ε, for different aspect
ratios

find to successfully converge. The updated full Hessian is then found to have a near-
zero eigenvalue. Solutions along an orbit are then obtained by a similar continuation
scheme—the first Euler step is always in a small “direction” of the eigenvector as-
sociated with the near-zero eigenvalue. In this way we compute an entire family of
neutrally stable (and hence equally likely) solutions connecting the reflection sym-
metric solutions to the anti-symmetric solutions. Note also that the value of the total
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Fig. 15 Bifurcation diagrams, maximum amplitude max |w| vs. macroscopic strain ε, for ν = 0.4 and
ν = 0.475

Fig. 16 Schematic illustration
of solution orbits

energy is constant along such an orbit—to within the small tolerance employed in the
Newton solver.

Configurations along half of the orbit for h = 0.05 mm are shown in Fig. 17.
Here φ is a convenient phase variable along the orbit, defined so that φ = 0 and π

represent the two “sides” of the blue pitchfork of anti-symmetric solutions, while
φ = π/2 represents the reflection symmetric solution that is half-way “between” the
two. Note that each solution along the quarter orbit “in-between” an anti-symmetric
solution and a reflection symmetric solution is neither reflection symmetric nor anti-
symmetric.

6 Concluding Remarks

Our results point to the potential dangers in modeling thin-film problems involving
large mid-plane strains via the classical Föppl–von Kármán theory. In this paper we
show that it leads to unrealistic post-critical behavior, e.g., an indefinite increase in the
wrinkling amplitude with increasing macroscopic strain, and it erroneously predicts
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Fig. 17 Configurations along an orbit of solutions

bifurcation in certain regimes. Indeed the classical theory was devised solely for the
purpose of initial post-buckling behavior of thin metallic rectangular panels, with air-
craft structures in mind, cf. Von Kármán and Edson (1967). In particular, the in-plane



804 J Nonlinear Sci (2013) 23:777–805

strains are typically quite small in that setting. Our geometrically correct membrane
model allows for phenomena not seen in the classical theory, e.g., the appearance
and disappearance of bifurcating solutions via an isola-center bifurcation, as demon-
strated in Fig. 14. The beautiful existence work due to Berger (1977) on the classical
model shows the persistence of an infinity of bifurcation modes as an in-plane com-
pressive load is increased indefinitely—just as in Euler’s elastica. On the other hand,
our results here are striking similar to what happens when large compressibility is in-
corporated into a generalized elastica: Only finitely many bifurcating pitchforks may
exist, and the latter can “interact” as parameters are varied, leading to non-bifurcating
solutions and/or isola-center bifurcations, cf. Antman and Pierce (1990). Similarly
we note that symmetry-breaking isola-center bifurcations occur quite naturally in the
inflation of nonlinearly elastic, nominally spherical balloons, cf. Chen and Healey
(1991).

The model employed here is crude by the standards of general nonlinear elasticity,
and improvements are certainly possible. Obviously a superior in-plane, nonlinear
membrane theory can be used such that worries about quasi-convexification of the
energy as in Sect. 3 are not an issue. But for the strain regime considered in this prob-
lem, our simple, finite-strain model is shown to be rational and performs very well.
Also, our model incorporates linear bending; models involving more accurate mea-
sures of curvature are well known, e.g., Ciarlet (2005), Steigmann (2013). However,
for small-amplitude wrinkling under high tension as observed here in this problem, it
seems unlikely that such corrections would have much of an impact on the results.

Our numerical results demonstrating continuous orbits of neutrally stable solutions
—connecting reflection symmetric solutions to anti-symmetric solutions—seems to
be a new phenomenon. The symmetry of the problem is not rich enough to explain
the results. Rather the results appear to be asymptotic in the limit of a vanishingly thin
film in the presence of large stretch. We call this asymptotic continuous symmetry,
since to within the accuracy of the numerical solver, the problem behaves like one in
the presence of a continuous symmetry group.
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