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Abstract In 1941 Kolmogorov and Obukhov postulated the existence of a statistical
theory of turbulence, which allows the computation of statistical quantities that can
be simulated and measured in a turbulent system. These are quantities such as the
moments, the structure functions and the probability density functions (PDFs) of the
turbulent velocity field. In this paper we will outline how to construct this statistical
theory from the stochastic Navier–Stokes equation. The additive noise in the stochas-
tic Navier–Stokes equation is generic noise given by the central limit theorem and
the large deviation principle. The multiplicative noise consists of jumps multiplying
the velocity, modeling jumps in the velocity gradient. We first estimate the struc-
ture functions of turbulence and establish the Kolmogorov–Obukhov 1962 scaling
hypothesis with the She–Leveque intermittency corrections. Then we compute the
invariant measure of turbulence, writing the stochastic Navier–Stokes equation as an
infinite-dimensional Ito process, and solving the linear Kolmogorov–Hopf functional
differential equation for the invariant measure. Finally we project the invariant mea-
sure onto the PDF. The PDFs turn out to be the normalized inverse Gaussian (NIG)
distributions of Barndorff-Nilsen, and compare well with PDFs from simulations and
experiments.
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1 Introduction

In 1941 Kolmogorov (1941a, 1941b) and Obukhov (1941) proposed a statistical the-
ory of turbulence based on dimensional arguments. The main consequence and test of
this theory was that the structure functions of the velocity differences of a turbulent
fluid

E
(∣∣u(x, t) − u(x + l, t)

∣∣p) = Sp = Cplp/3

should scale with the distance (lag variable) l between them, to the power p/3. This
theory was immediately criticized by Landau for not taking into account the influence
of the large flow structure on the constants Cp and later for not including the influence
of the intermittency, in the velocity fluctuations, on the scaling exponents.

Kolmogorov (1962) and Obukhov (1962) proposed a corrected theory were both of
those issues were addressed. They also pointed out that the scaling exponents for the
first two structure functions could be corrected by log-normal processes. For higher
order structure functions the log-normal processes gave intermittency corrections in-
consistent with contemporary simulations and experiments (Anselmet et al. 1984).

The correct intermittency corrections were found by She and Leveque (1994). She
and Waymire (1995) and Dubrulle (1994) showed that these corrections are produced
by log-Poisson processes.

Assuming that the noise in fully developed turbulence is a generic noise deter-
mined by the general theorems in probability, the central limit theorem and the large
deviation principle, we are able to formulate and solve the Kolmogorov–Hopf equa-
tion for the invariant measure of the stochastic Navier–Stokes equations. The stochas-
tic Navier–Stokes equation arises from the deterministic equation when fluid insta-
bilities magnify ambient noise present in the fluid (Birnir 2007). It can also be con-
sidered to be the equation for the small (inertial) scales in a Reynolds decomposition
(Bernard and Wallace 2002; Pope 2000) of the flow, or the equation for the small
scales in a coarse graining of the Navier–Stokes equation (Kraichnan 1974).

The intermittency corrections, to the scaling exponents of the structure func-
tions, require a multiplicative (multiplying the fluid velocity u) noise in the stochas-
tic Navier–Stokes equation. We let this multiplicative noise, in the equation, con-
sist of a simple (Poisson) jump process and then show how the Feynman–Kac for-
mula produces the log-Poissonian processes in the solution (She and Leveque 1994;
She and Waymire 1995; Dubrulle 1994). These log-Poissonian processes give the
intermittency corrections that agree with modern direct Navier–Stokes simulations
(DNS) and experiments.

The probability density function (PDF) plays a key role when direct Navier–Stokes
simulations or experimental results are compared to theory. The statistical theory of
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turbulence is determined, including the scaling of the structure functions of turbu-
lence, by the invariant measure of the Navier–Stokes equation and the PDFs for the
various statistics (one-point, two-point, . . . , N -point) can be obtained by taking the
trace of the corresponding invariant measures. Hopf (1953) derived a functional equa-
tion for the characteristic function (Fourier transform) of the invariant measure. In
distinction to the nonlinear Navier–Stokes equation, this is a linear functional dif-
ferential equation. The theory for solving such equation (Da Prato 2006) has only
recently become available.

The PDFs obtained from the invariant measures for the velocity differences
(two-point statistics) are shown to be the four parameter normalized inverse Gaus-
sian (NIG) distributions, found and investigated by Barndorff-Nilsen (1977, 1998).
These PDF have heavy tails and a convex peak at the origin. A suitable pro-
jection of the Kolmogorov–Hopf equations is the differential equation determin-
ing the NIG distributions. Because of intermittency each structure function gen-
erates its own NIG distribution with separate parameters. Then we compare these
PDFs with DNS results and experimental data (Barndorff-Nilsen et al. 1990,
2004).

The questions that this paper seeks to answer are reviewed in a very readable short
review paper “Turbulence in fluids” by Nelkin (2000) which contains a guide to the
literature, and more specifically for the small scale turbulence, in the authoritative
review paper “The phenomenology of small-scale turbulence” by Sreenivasan and
Antonia (1997). The general background and more physical details are given in the
book “Turbulence” by Frisch (1995). The mathematical background can be found
in the books Bhattacharya and Waymire (2007, 1990), Oksendal (1998), Oksendal
and Sulem (2005), and the paper extends the results in the book “An Introduction to
Infinite-Dimensional Analysis” by Da Prato (2006). The details of this mathematical
theory applied to the turbulence problem can be found in the book “The Kolmogorov–
Obukhov Theory of Turbulence” (Birnir 2013).

2 The Deterministic Navier–Stokes Equation

Fluid flow is described by the deterministic Navier–Stokes equation,

ut + u · ∇u = ν�u − ∇p,

u(x,0) = u0(x),
(1)

with the incompressibility conditions

∇ · u = 0, (2)

where u(x), x ∈ R, is the velocity of the fluid and ν is the kinematic viscosity. Elim-
inating the pressure p using (2) gives the equation

ut + u · ∇u = ν�u + ∇{
�−1[trace(∇u)2]}. (3)

The turbulence of the fluid is quantified by the dimensionless Reynolds number R =
UL
ν

where U is a typical velocity of the flow and L is a typical length scale associated
with the flow. The transition to turbulence occurs at R ∼ 500 and the flow is typically
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fully turbulent when R ∼ 2000. Most flows occurring in nature are turbulent even a
small stream can have Reynolds number of 104 and for a large river it is not unusual
that R ∼ 106.

The deterministic Navier–Stokes equation describes laminar flow that may exist
when the Reynolds number is large, but then laminar flow is usually unstable. Small
noise prevalent in nature is magnified by the instabilities in the flow and it becomes
more useful to consider the velocity u(x, t) in turbulent flow to be a stochastic process
(Kolmogorov 1941b). Then u satisfies a stochastic Navier–Stokes equation

du = (
ν�u − u · ∇u + ∇{

�−1
[
trace(∇u)2

]})
dt + dft ,

u(x,0) = u0(x).
(4)

Here dft denotes the stochastic forcing in fully developed turbulence.
Much effort has gone into trying to derive the form of the stochastic forcing dft in

the stochastic Navier–Stokes equation (4) for particular cases of fluid flow and flow
boundaries. Most of this effort have been in vain because the noise in fully develop
turbulence does not seem to care how it arose, at least not sufficiently far away from
the boundary. Instead the noise seems to take a general form depending only on that
generic small environmental noise was magnified by the fluid instabilities and this
growth then saturated by the nonlinearities present in the flow (and in the Navier–
Stokes equation) (Birnir 2007). The resulting large noise has a generic form. Below
we will assume that the stochastic forcing has a general form stipulated by probability
theory and use this form and the structure of the Navier–Stokes equation to derive the
probability density function (PDF) for turbulence. Then we will compare this PDF
with PDFs obtained from simulations and fluid experiments.

If we let D denote the volume in space and put vanishing (or periodic for D a box)
velocity boundary condition on the boundary ∂D then we can derive a differential
equation relating the mean energy and the mean enstrophy:

E = 1

2|D|
∫

D

∣∣u(x, t)
∣∣2 dx, Ω = 1

2|D|
∫

D

∣∣∇u(x, t)
∣∣2 dx. (5)

Here |D| denotes the volume of D and “mean” refers to the fact that we are dividing
the energy and enstrophy by the volume. Multiplying the Eq. (1) by u and integrating
over D we get, by integration by parts,

d

dt
E = −2νΩ,

because all the other terms integrate to zero by the vanishing boundary conditions.
The mean energy dissipation is now defined to be

ε = − d

dt
E . (6)

3 The Noise in Fully Developed Turbulence

We will assume that the fluid satisfies periodic boundary conditions on its domain.
This is done for convenience and can easily be relaxed. Then the velocity lies in a nice
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Hilbert space namely u(x) ∈ L2(T3), or the underlying domain D can be taken to be
a three-torus T

3 and the fluid velocity lies in the space of functions square integrable
on the torus. By a classical result by Leray (1934) one knows that, if ∇u(x,0) lies in
L2, then u(x, t) lies in L2, for all t , and that one can also make sense of the gradient
∇u, for almost every t , at least for the deterministic equation (1).

The stochastic Navier–Stokes equations describing fully developed turbulence is,

du = (
ν�u − u · ∇u + ∇�−1tr(∇u)2

)
dt +

∑

k∈Z3

c
1
2
k dbk

t ek(x)

+
∑

k �=0

dkηk dtek(x) + u

m∑

k �=0

∫

R

hkN̄
k(dt,dz),

u(x,0) = u0(x),

(7)

where, in the additive noise, each Fourier component ek = e2π ik·x comes with its own

independent Brownian motion bk
t and a deterministic term ηkt . The coefficients c

1
2
k

and dk decay sufficiently fast so that the Fourier series converges. The sizes of the
jumps hk in the velocity gradient do not decay, but for t < ∞, only finitely many
hks, |k| ≤ m, are nonzero.

The stochastic processes bk
t are independent. The discrete processes Nk

t are also
independent, for different ks, but can be associated with bk and ηkt , for the same k.
This link is manifested in the experimentally observed fact that large velocity excur-
sion are accompanied by large dissipation events.

The situation described by the Eq. (7) is the general situation in turbulent flow.
There is some large scale flow that drives all the small scales and one can decompose
the velocity field into two parts U + u where U describes the large scale flow and u

describes the smaller scale turbulence. In physics u is said to describe the fluctuations.
The large scale flow generates a force acting on the small scale and the noise in (7) is
a model of this force. We will argue below that based on probability theory this force
has a general form in fully developed turbulence. This decomposition of the velocity
field can also be thought of as the classical Reynolds decomposition and then the
force, exerted by the small scales u on the large scales U , is the well-known eddy
diffusivity. Still another way of thinking about the Eq. (7) is in terms of the coarse
graining of the Navier–Stokes equation, where U describes the mean flow and (7) is
the equation describing the fluctuations u.

Turbulent flow consists of complicated and sometimes violent motion that is dissi-
pated in the flow. We split the torus into small boxes and let pj denote the stochastic
dissipation process in the j th box. We assume that the pj s in different boxes are
weakly coupled and have mean m. By the central limit theorem (Billingsley 1995) in
probability theory, the average

Mn = 1

n

n∑

j=1

pj
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converges to a normal (Gaussian) random variable
√

n(Mn − m)/σ → N(0,1), as
n → ∞, with mean zero and variance one, as we let the number of boxes (n) increase
to infinity. We now let

Sn =
n∑

j=1

pj

denote the sum and define the stochastic processes

xn
t = S[tn] − nm√

nσ
,

where [tn] denotes integer value. Then if the pj s are independent and identically
distributed with variance σ 2 > 0 and mean m, the functional central limit theorem,
see Theorem 8.1 in Bhattacharya and Waymire (1990), says that the stochastic pro-
cesses {xn

t , t ≥ 0} converge (in distribution) to a Brownian motion bt , starting at the
origin with zero drift and diffusion coefficient 1, as n → ∞. This must be done in
the direction of any Fourier components (ek = exp(2π ik · x)), which form a basis
in the infinite dimensional space L2, and the result is the differential of an infinite
dimensional Brownian motion

df 1
t =

∑

k∈Z3

c
1
2
k dbk

t ek(x).

Here each Fourier component comes with its independent Brownian motion bk
t and

the c
1/2
k s are constant vectors.

The central limit theorem says that the average of the dissipation processes con-
verges to a Gaussian but there also exist a large excursion or fluctuations in the mean.
The effects of these fluctuations are frequently captured by the large deviation prin-
ciple (Varadhan 1984). If these excursions are completely random then they can, for
example, be modeled by a Poisson process with the rate λ. If, moreover, these pro-
cesses have a bias, an application of the large deviation principle shows that the large
deviations of Mn are bounded above by a deterministic term which is a constant de-
termining the direction of the bias, times the rate η. By Theorems 1.3 and 1.5 and
Examples 1.3 and 1.5 in Birnir (2013), since the rate λk → ∞ as k → ∞, the rate
function is bounded by η = λ. This also holds in the direction of each Fourier com-
ponent and gives the term

df 2
t =

∑

k �=0

dkηk dtek(x),

the second term in the additive noise in stochastic Navier–Stokes equation. Here the
dks are constant vectors, representing the bias in a particular direction in Fourier
space, and the ηk are the rates in the kth direction. We will choose the rate ηk = |k|1/3

below. This makes the two terms in the additive noise give similar scaling in the
Fourier variable k. This must be the case, because the second term is capturing the
fluctuations in the mean by an application of the large deviation principle, and thus
together the two terms give a more accurate description of the mean. In other words
there is only one additive noise term df1 +df2, and both terms must produce the same



J Nonlinear Sci (2013) 23:657–688 663

scaling. It turns out, see below, that the two terms together produce the Kolmogorov–
Obukhov 1942 scaling. Intermittency in the dissipation is then an additional effect
caused by the interaction of the multiplicative and additive noise with the Navier–
Stokes evolution. This will be made clear below.

We must also capture the large excursions and intermittency in the velocity and
this gives rise to a multiplicative noise term (multiplying the velocity) in the stochas-
tic Navier–Stokes equations. The velocity fluctuations are discrete and if they are
completely random, they can be modeled by the Poisson jump process xk

t , with
its number process Nk

t denoting the integer number of velocity excursions, associ-
ated with kth wavenumber, that have occurred at time t . The differential dNk(t) =
Nk(t + dt) − Nk(t) denotes the number of these excursions in the time interval
(t, t + dt]. The process

∑

k �=0

∫

R

hk(t, z)N̄
k(dt,dz),

in the multiplicative noise, models the excursions (jumps) in the velocity gradient
(Oksendal and Sulem 2005). The hk are the sizes of the jumps in the velocity gradi-
ents and N̄k is the compensated number (of jumps) process. We will include a term
in the Poissonian distribution for the jump process that correlates Nk with only the
kth Fourier mode. This models the link between large velocity and dissipation events.

The Eq. (7) represents the stochastic Navier–Stokes equation for the small scales
with the general form of turbulent noise. The two terms in the additive noise result
from scaling the average of the dissipation processes in different ways in n (number
of processes), but they must both be present, and together they accurately describe the
mean dissipation. The coefficients c

1/2
k and dk give their relative size that varies from

experiments to experiment, for small k. For large k this ratio should be universal. The
central limit theorem and the large deviation principle determine the additive noise in
fully developed turbulence, but the multiplicative noise is modeled in (7) as a general
(Poisson) jump process. It would also be possible to formulate the equation as the
deterministic equation (1) if we continuously modified the initial data so as to absorb
the evolving noise. This amounts to continuously modifying the initial data with a
stochastic process and is what is effectively done in direct Navier–Stokes simulations
(DNS). Clearly, these two formulations must be equivalent.

4 Is the Noise Generic?

We now ask the question: In what sense is the noise in the stochastic Navier–Stokes
equation (7) generic? The mathematical answer is that it is modeled by a homoge-
neous Lévy process, which is as general as you would expect generic noise in fully
developed turbulence to be. A homogeneous Lévy process can be written as a sum of
a Brownian motion and a limit of independent superpositions of compound Poisson
processes with varying jump sizes, see Theorem T.1.3 in Bhattacharya and Waymire
(1990). We have used the central limit theorem and large deviation principle to get
a detailed description of the mean dissipation processes including their fluctuations.
The resulting process turns out to be a homogeneous Lévy process with continuous
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increments. The homogeneous Lévy process is still missing the compound Poisson
processes, in order to be generic in the sense of Theorem T.1.3 in Bhattacharya and
Waymire (1990). The increments of this Poisson process have jumps and the question
is were do these jumps come from? Considering the Navier–Stokes equation (3) and
assuming that the fluid velocity is continuous, we see that the only term that could
give rise to noise with jumps is the inertial term u · ∇u. In other words the jumps in
the noise would arise from near jumps (or vorticity concentrations) in the velocity
gradient ∇u. Also these jumps would be multiplied by the velocity u so this would
constitute multiplicative noise of the form u multiplied by jumps. Since the L2 norm
of u is finite, we could approximate u at the jumps with piecewise linear function
(in x). Then taking the gradient, we get exactly the form of the multiplicative noise
in (7). In other words, any noise including jumps in the gradient of u must have the
form above, to leading order. It may be possible to model the exact form of the noise
by adding terms (of higher order in x), but any noise stemming from the (near) jumps
must still include the above multiplicative terms.

We conclude that the noise in fully developed turbulence is a homogeneous Lévy
process, with a part with continuous increments that is additive, and a part with pure
jumps that is multiplicative. From a physical point of view there is surprisingly little
flexibility in the construction of these terms. The central limit theorem and the large
deviation principle give a complete description of the mean dissipation processes
without any flexibility and the apparent flexibility in the height of the jumps and the
mean of the jump process NK

t is taken away, by the spectral theory of the linearized
Navier–Stokes operator and the requirement that the most singular structure in the
flow is one-dimensional, see Sect. 6 below. So in the end there are not free parameters
in the homogeneous Lévy process defining the noise in (7).

The question still remains why we are representing the noise in (7) by a convergent
Fourier series? Why do we not take noise that is white both in space and time? Surely,
the tiny ambient noise in nature is white both in space and time. The reason for this
is, as explained in Chap. 1 in Birnir (2013), that we are modeling the noise in fully
developed turbulence, not small ambient noise in nature. The latter noise is the source
for the noise in fully developed turbulence but that noise has developed through the
Navier–Stokes evolution or the fluid flow, where the tiny white noise gets magnified
by the flow instabilities and saturated and colored as explained in Chap. 1 in Birnir
(2013).

Physically it is also clear that the noise in fully developed turbulence cannot be
white both in time and space. The heat equation with such noise is solved in Walsh
(1984) and found to have continuous solutions only in one or two dimensions. In di-
mensions three and greater, the solutions are distributions without any spatial smooth-
ness. This is contrary to what is observed in turbulent flow. The relevance is direct
for the Navier–Stokes equation, because the linear part of the equation is the same as
that of the heat equation. The fluid velocity seems to be continuous in space even in
very-high Reynolds number flow, see Birnir (2010) and Chap. 3 in Birnir (2013), for
more information on this. The convergence of the Fourier series in (7) is the minimal
requirement that one can make to get the spatially smoothness of the fluid velocity
observed in turbulent flow. In this sense the noise is also physically generic.
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5 Integral Equation and Spectrum of the Navier–Stokes Operator

We write the stochastic Navier–Stokes equation in integral form,

u = eK(t)e
∫ t

0 dqMtu
0 +

∑

k �=0

c
1/2
k

∫ t

0
eK(t−s)e

∫ t
s dqMt−s dbk

s ek(x)

+
∑

k �=0

dk

∫ t

0
eK(t−s)e

∫ t
s dqMt−s |k|1/3 dtek(x), (8)

where K is the linear (Navier–Stokes) operator

K = ν� + ∇�−1tr(∇u∇),

Mt = exp

{
−

∫
u(Bs, s)dBs − 1

2

∫ t

0

∣∣u(Bs, s)
∣∣2 ds

}
,

is a martingale, with Bt ∈ R
3 an auxiliary Brownian motion, and

3
∫ t

s

dq =
m∑

k �=0

{∫ t

0

∫

R

ln(1 + hk)N̄
k(ds,dz) +

∫ t

0

∫

R

(
ln(1 + hk) − hk

)
mk(ds,dz)

}
,

by Ito’s formula and a computation similar to the one that produces the geometric
Lévy process (Oksendal and Sulem 2005). mk is the Lévy measure of the jump pro-
cess xk

t . We have set the rates ηk = |k|1/3 assuming that the two terms in the additive
noise produce similar scalings. The operator K does not generate a semi-group be-
cause of its dependence on u but with some conditions on u, see below, it generates
a flow. The notation eK(t−s)f (s) simply means that we solve the equation ft = Kf ,
with initial data f (s) for the time interval [s, t].

The form of the integral equation (8) requires a couple of assumptions. The first
observation is that the pressure term ∇�−1tr(∇u · ∇·) is independent of the fluid ve-
locity u(x, t) at the point x. This is of course true since x is a set of measure zero and
we can be set the integrand to any value at x without changing the integral. In other
words, the pressure gradient can be treated as a global force that depends on the veloc-
ity field as a whole not only on some particular fluid particle. This is consistent with
the view of pressure in most of fluid dynamics. The other assumption is that pressure
acts as additional diffusion and the integral equation (8) describes a (Ito) diffusion.
This is also consistent with most researchers view of pressure but seems to be a more
radical assumption from a mathematical point of view. However, it can be proven to
be true using the vorticity formulation of the Navier–Stokes equation (Birnir 2013).
The first assumption implies that the right hand side of (8) is independent of u(x, t)

so that by Ito’s formula the integral equation (8) is equivalent to the initial value
problem (7). The second assumption implies that we can apply Girsanov’s theorem
(Oksendal 1998) to remove the inertial (drift) term from the linearized Navier–Stokes
operator in lieu of the Martingale Mt .

To proceed we need to develop the spectral theory of the operator K . The existence
of unique turbulent solutions to the stochastic Navier–Stokes equations (7) can be
proven in some cases; for example, if the equation is driven by a strong swirling
flow (Birnir 2010). This result is not terribly surprising. If the initial data had the
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symmetry of the swirl then the deterministic problem would be two-dimensional and
the global existence of the two-dimensional Navier–Stokes equation is well known.
It is also well-known that if the initial data are close to such a two-dimensional flow
then global existence can be extended to this case also; see Babin et al. (1995, 1996),
for another such example.

In Birnir (2010) the author obtained the global bound for the Sobolev space norm
of u, based on L2(T3) with index 11

6
+ = 11

6 + ε, ε small, for a swirling flow,

E
(‖u‖2

11
6

+(t)
) ≤ C, (9)

where E denotes the expectation and the constant C is independent of t . The Sobolev
space consists of Hölder continuous functions of Hölder index 1/3, as pointed out by
Onsager (1945).

Suppose that

E
(‖u‖2

3
2

+
) ≤ C, (10)

then the operator K generates a flow denoted by eK(t) and limt→∞ eK(t)f0 = 0, for
f0 ∈ H 1(T3) (Birnir 2013).

Then using the bound (9), we get an estimate on the operator K .

Lemma 5.1 Suppose that (9) holds, then the pressure operator is bounded by the
spectrum of a symmetric operator with discrete spectrum λ2

k and satisfies the estimate

−C|k|2/3 ≤ −λk ≤ ∣∣∇�−1tr∇u · ∇Pk

∣∣
2 ≤ λk ≤ C|k|2/3, k ∈ Z

3, (11)

on the Hilbert space H
11
6

+
(T3), in the inertial range, see below. Pk is the projection

onto the kth eigenspace of the symmetric operator. Moreover, in the inertial range the
operator K satisfies the bound

−C|k|2/3 − 4νπ2|k|2 ≤ |KPk|2 ≤ C|k|2/3 + 4νπ2|k|2, k ∈ Z
3. (12)

We will use this estimate below in order to compute the structure functions of
turbulence or the moments of the velocity difference at two points in the fluid, in
the inertial range of turbulence, where 1/L ≤ |k| ≤ 1/η, ko = 1/η = (ε/ν3)1/4, a
constant. η = 1/ko is called the Kolmogorov length scale, ε is the energy dissipation
rate (6) and L is a typical length scale associated with the large eddies in the flow.
The above estimate implies that for a large Reynolds number where ν is small and
1/L ≤ |k| ≤ 1/η, we can think of the spectrum of K growing as a constant times
|k|2/3, with the error 4νπ2|k|2, in the inertial range, see Birnir (2013) for more details.

The proof of Lemma 5.1 and the bounds (11) and (12) is the following. A general
vector w in L2(T3) can be decomposed into a divergence free and an irrotational part,

w = u + v = ∇ × A + ∇φ,

respectively. The pressure operator Df = ∇�−1tr∇u · ∇f maps the subspace U of
divergence free vectors in L2(T3) to the subspace of the irrotational vectors V in
L2(T3). Thus D has no eigenvalues or eigenvectors in U . However, the magnitude of



J Nonlinear Sci (2013) 23:657–688 667

the pressure gradient, the force that keeps the fluid velocity in U , is measured by the
norm |Df |2 or by

|Df |22 = 〈Df,Df 〉 = 〈
f,DTDf

〉

where DT is the transpose of D on V . Thus the magnitude of D is measured by λk

where the λ2
k are the eigenvalues of the symmetric operator DTD on the eigenspaces

Pk in U , if DTD has discrete spectrum. We will establish the discreteness of the
spectrum and estimate the spectrum of DTD by comparing it with the spectrum of
the symmetric operator (∂

2/3
x )2 on U . For f ∈ H 2/3, D satisfies the estimate

|Df |2 ≤ C‖u‖ 11
6

+
∣∣∂2/3

x f
∣∣
2. (13)

The estimate (13) follows from Fourier transform

D̂f = ̂∇�−1tr∇u · ∇f = 2π ik

|k|2 tr
∑

j �=0

(k − j) ⊗ û(k − j)j ⊗ f̂ (j)

≤ 2π
1

|k|3/2
tr

∑

j �=0

|k|1/2|j |1/3|k − j |∣∣û(k − j)
∣∣|j |2/3

∣∣f̂ (j)
∣∣

≤ 1

(2π)3/2|k|3/2+

(∑

j �=0

∣∣
̂

∂
11
6

+
x u(k − j)

∣∣2
)1/2(∑

j �=0

∣∣̂∂2/3
x f (j)

∣∣2
)1/2

by Schwartz’s inequality. Now squaring and summing in k we get (13).
Thus for non-degenerate fluid velocities u that satisfy (9), DTD maps a dense

subset of H 2/3(T3)∩U onto L2(T3)∩U . This means that the resolvent (I −DTD)−1

maps L2(T3) ∩ U onto H 2/3(T3) ∩ U . Since the latter space sits compactly in the
former, (I −DTD)−1 is a compact operator with discrete spectrum. This implies that
DTD also has discrete spectrum.

The estimate (11) follows from the minimax principle (Kato 1976), comparing the
eigenvalues of the symmetric operators

DTD ≤ C2‖u‖2
11
6

+
(
∂

2/3
x

)2

and taking both branches of the square root. Similarly, (12) follow by comparing the
eigenvalues of the symmetric operators

(D − ν�)T(D − ν�) = DTD − ν
(
DT� + �D

) + ν2�2 ≤ (
C‖u‖ 11

6
+∂

2/3
x − ν�

)2
.

This concludes the proof of Lemma 5.1, Birnir (2013) can be consulted for more
details.

6 The Log-Poissonian Processes

The processes found by She and Leveque (1994), and shown to be log-Poisson pro-
cesses by She and Waymire (1995) and by Dubrulle (1994), are produced by applying
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the Feynman–Kac formula to the potential dq . Namely, e
∫ t

0 dq = e
∑m

k �=0
∫ t

0 dqk and by
setting hk = β − 1 and computing the mean of Nk

t

E
(
Nk

t

) =
∫

R

mk(t,dz) = −γ ln |k|
β − 1

, (14)

we get

3
∫ t

0
dqk =

∫ t

0

∫

R

ln(1 + hk)N̄
k(ds,dz) +

∫ t

0

∫

R

(
ln(1 + hk) − hk

)
mk(ds,dz)

= Nk(t) ln(β) + (β − 1)

(
γ

ln |k|
β − 1

)
.

This gives the term

e
∫ t

0 dqk = e(γ ln |k|+Nk lnβ)/3 = (|k|γ βNk
)1/3 = (|k|γ βNk

t
)1/3

, (15)

in the (implicit) solution (8) of the stochastic Navier–Stokes equation. These are ex-
actly the log-Poisson processes found by the above authors. Then we get

lnE
((

eγ ln |k|+Nk lnβ
) p

3
) = lnE

((|k|γ βNk
) p

3
) = γ

(
p

3
− βp/3 − 1

β − 1

)
ln |k|

= −τp ln |k|,
for the logarithm of the pth moment, where τp are the intermittency corrections
in (21). Now the expression

τp = −γ

(
p

3
− βp/3 − 1

β − 1

)

implies that τ0 = 0 and τ3 = 0 independently of γ . The latter condition is required by
the Kolmogorov 4/5 law (Frisch 1995). However, to be consistent with the spectral
theory of the operator D above, which moves energy around in quanta of |k|2/3, we
should set γ = 2/3. This means that the log-Poissonian processes also move energy in
quanta of |k|2/3 in Fourier space. However, |k|2/3 is multiplied by βNk

t in (15) above,
namely the number of jumps on the kth level contribute to the transfer of energy,
and so far β is a free parameter. We follow She and Leveque (1994) in making the
assumption that determines β , see also She and Zhang (2009). The basic assumption
is that the most singular structures in the turbulent fluid are one-dimensional vortex
lines that the highest moments capture. Thus (assuming 0 < β < 1) by the Lagrange
transformation (She and Leveque 1994)

τp = −2

3

(
p

3

)
+ 2

3

1

1 − β
− 2

3

βp/3

1 − β
→ −2

3

(
p

3

)
+ 2

3

1

1 − β
= −2

3

(
p

3

)
+ Co

as p → ∞, where Co = 2 is the codimension of the one-dimensional vortex lines and
this implies that β = 2/3. We will make this choice of β .

Thus we see that the jumps multiplying u in the Eq. (7) produce the log-Poisson

processes (|k| 2
3 ( 2

3 )
Nk

t )
1
3 in the integral equation for u.
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u = eK(t)

(
m∏

k

|k| 2
3 (2/3)N

k
t

) 1
3

Mtu0

+
∑

k �=0

c
1/2
k

∫ t

0
eK(t−s)

(
m∏

j

|j | 2
3 (2/3)

N
j

(t−s)

)

Mt−s dbk
s ek(x)

+
∑

k �=0

dk

∫ t

0
eK(t−s)

(
m∏

j

|j | 2
3 (2/3)

N
j

(t−s)

) 1
3

Mt−s |k|1/3 dtek(x)

since only the kth log-Poissonian processes are correlated with the kth Fourier com-
ponent. This equation clearly shows how the intermittency in the velocity (in Eq. (7))
causes intermittency in the dissipation through the Navier–Stokes evolution, if we
recall how the discrete (Poisson) distribution picks the kth term (associated with ek)
out of the product.

The last formula and the derivation in this section gives a theoretical justification
of the log-Poisson processes presenting intermittency in turbulence. The inevitable
question is: was the noise in (7) somehow cooked up to produce the log-Poisson
processes? In Sect. 4, we argued that any turbulent flow containing (near) jumps in
the velocity gradient must produce multiplicative noise consisting of the fluid velocity
multiplied by jump. Given such a simple and generic noise term, the Feynman–Kac
formula and the Ito calculus produce the log-Poisson processes as explained above.
This is a surprising (in its simplicity) but satisfying result.

7 The Kolmogorov–Obukhov–She–Leveque Theory

Kolmogorov (1941a, 1941b) and Obukhov (1941) proposed a statistical theory of
turbulence based on dimensional arguments. The main consequence and test of this
theory was that the structure functions of the velocity differences of a turbulent fluid

E
(∣∣u(x, t) − u(x + l, t)

∣∣p) = Sp = Cplp/3

should scale with the distance (lag variable) l between them, to the power p/3. This
theory was immediately criticized by Landau for not taking into account the influence
of the large flow structure on the constants Cp and later for not including the influence
of the intermittency in the velocity fluctuations on the scaling exponents (Anselmet
et al. 1984).

Kolmogorov (1962) and Obukhov (1962) proposed a corrected theory were both
of the above issues were addressed. They presented their refined similarity hypothesis

Sp = C′
p

〈
ε̃p/3〉lp/3, (16)

where l is the lag variable and the averaged energy dissipation rate is

ε̃ = 1
4
3πl3

∫

|s|≤l

ε(x + s)ds, (17)

ε being the mean energy dissipation rate (6). They also pointed out that the scal-
ing exponents for the first two structure functions could be corrected by log-normal
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processes. However, for higher order structure functions the log-normal processes
gave intermittency corrections inconsistent with contemporary simulations and ex-
periments.

In the refined similarity hypothesis (16) the averaged dissipation rate ε̃ will de-
pend on the large flow structure, so its addition addresses Landau’s objections at least
partially. The assumption is that

〈
ε̃p/3〉 ∼ lτp ,

because of intermittency, where the τp are called the intermittency corrections (to the
scaling). Consequently, intermittency corrections are also produced,

Sp = C′
p

〈
ε̃p/3〉lp/3 = Cplp/3+τp = Cplζp ,

where

ζp = p

3
+ τp

are the scaling exponents with intermittency corrections included, and the Cps are
not universal but depend on the large flow structure. We will see below that starting
with (7) this scaling hypothesis in fact holds.

The She–Leveque intermittency corrections are

τp = −2p

9
+ 2

(
1 − (2/3)p/3),

given by the log-Poissonian processes derived above. These intermittency corrections
are consistent with contemporary simulations and experiments (Anselmet et al. 1984;
Renzi et al. 1993; She and Leveque 1994; She and Zhang 2009).

8 Estimates of the Structure Functions

We will now show how the integral form (8) of the stochastic Navier–Stokes equation
can be used to compute an estimate for the structure functions of turbulence.

In order to compute the structure functions of turbulence or the moments of the
velocity difference at two points in the fluid, we need to estimate the operator K

above; compare Eq. (12). Recall the eigenvalues λk > 0 that are the square roots of
the eigenvalues of the symmetric operator DTD above, with Pk the projector onto
the corresponding eigenspace. Then the Eq. (12) can be reformulated as

−C|k|2/3 − 4νπ2|k|2 ≤ −λk − ν4π2|k|2 ≤ |KPk|2
≤ λk + ν4π2|k|2 ≤ C|k|2/3 + ν4π2|k|2, (18)

if u satisfies the bound

E
(‖u‖ 11

6
+
)
(t) ≤ C. (19)

For a large Reynolds number ν is small and since |k|2 ≤ k2
o , ko = (ε/ν3)1/4, where

ko is the inverse of the Kolmogorov length, we can now think of the spectrum of K

growing as a constant times |k|2/3 in the inertial range. ε is the dissipation rate (6).
The coefficient C is a constant times a Sobolev space norm of u, by the estimate (13)



J Nonlinear Sci (2013) 23:657–688 671

(Birnir 2010). The lower estimate in (18) is the relevant one for the forward cascade
of energy.

Now estimates of the structure functions are possible and we get the follow-
ing result. Suppose that the coefficients ck and dk in Eq. (4) satisfy the conditions∑

k∈Z3\{0} ck < ∞ and
∑

k∈Z3\{0} |k|1/3|dk| < ∞. Then the scaling of the structure
functions of (7) is

Sp ∼ Cp|x − y|ζp , (20)

where

ζp = p

3
+ τp = p

9
+ 2

(
1 − (2/3)p/3), (21)

p
3 being the Kolmogorov–Obukhov 1941 scaling and τp the She–Leveque intermit-
tency corrections, when the lag variable |x − y| is small.

The values in Eq. (21) agree with experimental values in Renzi et al. (1993), they
are in agreement with Kolmogorov–Obukhov scaling hypothesis with intermittency
corrections, computed by She and Leveque, but disagree with the log-normal distri-
bution (Kolmogorov 1962; Obukhov 1962), for the intermittency corrections.

The estimate of the first structure function is straightforward,

S1(x, y, t) = E
(∣∣u(x, t) − u(y, t)

∣∣)

= 2
∑

k∈Z3\{0}
dk

∫ t

0
e−λk(t−s)|k|1/3 dsE

([
eγ ln |k|+Nk ln(β)

]1/3)

× sin
(
πk · (x − y)

)

≤ 2

C

∑

k∈Z3\{0}
|dk| (1 − e−λkt )

|k|ζ1

∣
∣ sin

(
πk · (x − y)

)∣∣. (22)

We have estimated the spectrum of K(t) by −λk = −C|k|2/3 in the second line (we
use this approximation, ν = 0, throughout the computations) and also used the ex-
pectation of the Poisson jump process

E
([

eγ ln |k|+Nk ln(β)
]1/3) = 1

|k|τ1
,

from Sect. 6. We used the lower estimate in (18) and this makes the estimate in (22) be
an overestimate of the efficiency of the cascade. The measure of the discrete process
must be written as

∞∑

l=−∞
δl,k

m∏

j �=l

δ
N

j
t

∞∑

j=0

(·)m
j
l

j ! e(−ml), (23)

where δl,k = 0, l �= k,1, l = k is the Kronecker delta function, because Nk
t depends

on the kth Fourier component ek (or dbk
t and |k|1/3 dt) but is independent of the

components with different wavenumbers. The δ functions in the product imply that
the probabilities of all the N

j
t s, j �= k, concentrate at 0.
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Now, if
∑

k∈Z3\{0} |dk| < ∞, then we get a stationary state as t → ∞

S1(x, y,∞) ≤ 2

C

∑

k∈Z3\{0}

|dk|
|k|ζ1

∣∣ sin
(
πk · (x − y)

)∣∣,

and, for |x − y| small,

S1(x, y,∞) ∼ 2πζ1

C

∑

k∈Z3\{0}
|dk||x − y|ζ1 ,

where ζ1 = 1/3 + τ1 ≈ 0.37.
A similar computation gives the second structure function,

S2 = E
(∣∣u(x, t) − u(y, t)

∣∣2)

≤ 2

C

∑

k∈Z3\{0}
ck

1 − e−2λkt

|k|ζ2
sin2(πk · (x − y)

)

+ 4

C2

∑

k∈Z3\{0}
dk

2 (1 − e−λkt )2

|k|ζ2
sin2(πk · (x − y)

)
,

again by using the lower estimate in (18). As t → ∞, we get

S2(x, y,∞) ∼ 4πζ2

C2

∑

k∈Z3\{0}

[
dk

2 +
(

C

2

)
ck

]
|x − y|ζ2 ,

when |x − y| is small, where ζ2 = 2/3 + τ2 ≈ 0.696.
Similarly

S3 = E
(∣∣u(x, t) − u(y, t)

∣∣3)

≤ 23

C3

∑

k∈Z3\{0}

[|dk|3(1 − e−λkt )3 + 3(C/2)ck|dk|(1 − e−2λkt )(1 − e−λkt )]
|k|

× ∣
∣ sin3(πk · (x − y)

)∣∣,

and

S3(x, y,∞) ∼ 23π

C3

∑

k∈Z3\{0}

[|dk|3 + 3(C/2)ck|dk|
]|x − y|,

where ζ3 = 1.
All the structure functions are computed in a similar manner; for the pth structure

functions, we see that Sp is estimated by

Sp ≤ 2p

Cp

∑

k∈Z3\{0}

σp · (−i
√

2)pU(− 1
2p, 1

2 ,− 1
2 (M/σ)2)

|k|ζp

∣∣ sinp
(
πk · (x − y)

)∣∣

= 2p

Cp

∑

k∈Z2\{0}

2(p+1)/2Mσp−1

√
π

Γ

(
1 + p

2

)

1F1

(
1 − p

2
,

3

2
,− M2

2σ 2

)

× ∣∣ sinp
(
πk · (x − y)

)∣∣, p odd
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Table 1 Moments of a Gaussian

Order Raw moment Central moment Cumulant

1 M 0 M

2 M2 + σ 2 σ 2 σ 2

3 M3 + 3Mσ 2 0 0

4 M4 + 6M2σ 2 + 3σ 4 3σ 4 0

5 M5 + 10M3σ 2 + 15Mσ 4 0 0

6 M6 + 15M4σ 2 + 45M2σ 4 + 15σ 6 15σ 6 0

7 M7 + 21M5σ 2 + 105M3σ 4 + 105Mσ 6 0 0

8 M8 + 28M6σ 2 + 210M4σ 4 + 420M2σ 6 + 105 σ 8 105σ 8 0

= 2p

Cp

∑

k∈Z2\{0}

2p/2σp

√
π

Γ

(
p + 1

2

)

1F1

(
−p

2
,

1

2
,− M2

2σ 2

)∣∣ sinp
(
πk · (x − y)

)∣∣,

p even,

where U is the confluent hypergeometric function, M = |dk|(1 − e−λkt ) and

σ = √
(C/2)ck(1 − e−2λkt ) and 1F1(a, b, z) = ∑∞

n=0
a(n)zn

b(n)n! , a(n) = a(a + 1)(a +
2) · · · (a + n − 1), is the generalized hypergeometric series. Thus the coefficients of
Sp are given by the raw moments of a Gaussian, the first few of which are listed in
Table 1. Now Sp(x, y,∞) is

Sp ∼ 2pπζp

Cp

∑

k∈Z3\{0}

(
(C/2)ck

)p/2 · (−i
√

2)pU

(
−1

2
p,

1

2
,− d2

k

Cck

)
|x − y|ζp ,

to leading order for |x − y| small. We also obtain Kolmogorov’s 4/5 law (Frisch
1995),

S3 = −4

5
ε(0)|x − y|

to leading order in ν = 1
R

, were ε is the mean energy dissipation rate (6).

9 The Invariant Measure of Turbulence

The invariant measure of the stochastic Navier–Stokes equation determines all the
one-point statistics of turbulence, or the statistics of quantities defined at one point
x in the flow. This quantity determines all the statistical properties of the turbulent
velocity field (Da Prato 2006), and in distinction to the nonlinear Navier–Stokes equa-
tion, the invariant measure satisfies a linear but a functional differential equation (Da
Prato 2006). In fact Hopf (1953) found a linear equation for the characteristic func-
tion (Fourier transform) of the invariant measure in 1952, but at that time methods for
solving such an equation were not available. In Hopf’s equation the noise for fully
developed turbulence was missing, but in Kolmogorov’s equation for the invariant
measure the noise is always supplied. Since only the linearized Navier–Stokes equa-
tion appears below, in the Kolmogorov–Hopf equation for the invariant measure, we
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will think about the linearized Navier–Stokes equation as the infinite-dimensional
Ito process, whose generator gives the Kolmogorov–Hopf equation. Thus associated
with such an Ito process is a diffusion equations, a linear functional differential equa-
tion determining the invariant measure. We will now derive this equation. This will
make it clear how to compute the coefficients in the Kolmogorov–Hopf equation.

The Kolmogorov–Hopf equation for the invariant measure is

∂φ

∂t
= 1

2
tr
[
PtCP ∗

t �φ
] + tr[PtD̄∇φ] + 〈

K̄(z)Pt ,∇φ
〉
, (24)

where D̄ = (|k|1/3dk), φ(z) is a bounded function of z and |x| = 〈x, x〉1/2 where 〈·, ·〉
is the inner product on H . Here C1/2, D ∈ L(H) are linear operators on H = L2(T3),
defined by

C1/2u =
∑

k �=0

C
1
2
k ûkek, Du =

∑

k �=0

Dkûkek

for u = ∑
k �=0 ûkek ∈ L2(T3), C

1/2
k and Dk are 3 by 3 diagonal matrices with entries

c
1/2
k,j and dk,j , j = 1,2,3 on the diagonal.

Pt = e− ∫ t
0 ∇udr

m∏

k

(|k|2/3(2/3)N
k
t
) 1

3 ,

by the computation of how the log-Poisson processes are produced, from the stochas-
tic Navier–Stokes equation, by the Feynman–Kac formula (15) above. The operator
K̄ is the linearized Navier–Stokes operator

K̄ = ν� − u · ∇ + 2∇�−1tr(∇u∇) = K − u · ∇.

and z is the solution of the linearized Navier–Stokes equation. Notice that now K has
a 2 in front of the pressure term.

To find the infinite-dimensional Ito process whose Kolmogorov’s backward equa-
tion is (24), we consider the linearized Navier–Stokes equation with the same noise
as (7). This is the functional derivative of the deterministic Navier–Stokes equa-
tion (1), driven with the same noise as the stochastic equation (7), to give an Ito
process in function space. It is analogous to the stochastic evolution of the volume
element in finite dimensions, but here the Ito process determines the evolution of any
bounded function of u, in infinite dimensions (Da Prato 2006). The solution of the
linearized Navier–Stokes equation can be written in integral form as

z = eKtPtMtz
0 +

∑

k �=0

c
1/2
k

∫ t

0
eK(t−s)Pt−sMt−s dbk

s ek(x)

+
∑

k �=0

dk

∫ t

0
eK(t−s)Pt−sMt−s |k|1/3 dsek(x) (25)

by the Feynman–Kac formula, where is the operator K generates the flow eKt , and

Mt = exp

{
−

∫
u(Bs, s)dBs − 1

2

∫ t

0

∣∣u(Bs, s)
∣∣2 ds

}
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is a martingale with Bt ∈ R
3 an auxiliary Brownian motion; see Sect. 6 and Birnir

(2013).
Now we define the variance

Qt =
∫ t

0
eK(s)PsMsCMsP

∗
s eK∗(s) ds (26)

and drift

Et =
∫ t

0
eK(s)PsMsD̄ ds (27)

operators. Then the solution of the Kolmogorov–Hopf equation (24) can be written
in the form

Rtφ(z) =
∫

H

φ(y)N(eKtPtMt z+Et I,Qt )
∗ PPt (dy)

=
∫

H

φ
(
eKtPtMtz + EtI + y

)
N(0,Qt ) ∗ PPt (dy)

where PPt is the Poisson law of Pt . Nm,Qt denotes the infinite-dimensional normal
distribution on H with mean m and variance Qt (Da Prato 2006), I = ∑

ek , and
EtI ∈ H .

9.1 The Invariant Measure of Turbulence

We can now write a formula for the invariant measure of turbulence.

Theorem 9.1 The invariant measure of the stochastic Navier–Stokes equation on
Hc = H 3/2+

(T3) has the form

μ(dx) = e〈Q−1/2EI, Q−1/2x〉− 1
2 |Q−1/2EI |2 N(0,Q)(dx)

∑

k

δk,l

m∏

j �=l

δ
N

j
t

∞∑

j=0

p
j
ml

δ(Nl
t −j)

(28)

where Q = Q∞, E = E∞, mk = ln |k|2/3 is the mean of the log-Poisson pro-

cesses (14) and p
j
mk

= (mk)
j e−mk

j ! is the probability of Nk∞ = Nk having exactly j

jumps, δk,l is the Kronecker delta function.

Suppose that the operator Q is trace-class, E(Q1/2H) ⊂ Q1/2(H) and that
eKtPtMt(H) ⊂ Q

1/2
t (H), t > 0, where H = Hc, then, with u given, the invariant

measure μ is unique, ergodic and strongly mixing. We know that the above invari-
ant measure is unique for the strong swirl (Birnir 2010) and strong rotation (Babin
et al. 1995, 1996) but it depends on u, and its uniqueness for general turbulent flows
depends on the uniqueness of u.

The proof of Theorem 9.1 uses the above machinery and is analogous to the proof
of Theorem 8.20 in Da Prato (2006); see Birnir (2013) for details.
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10 The Invariant Measure for the Velocity Differences

We will now find the Kolmogorov–Hopf functional differential equation for the in-
variant measure of the Navier–Stokes equation for the velocity differences

z = u − w = u(x, t) − u(y, t).

The previous measure was the measure determining the 1-point statistics but the mea-
sure for the velocity difference will determine the 2-point statistics. We are simplify-
ing this a little using isotrophy; namely, in general the velocity difference is a tensor.
The linearized Navier–Stokes operator is now

K̄ = ν� − u · ∇ + ∇�−1tr
(
(∇u + ∇w)∇)

,

but otherwise the derivation is similar to the derivation of the 1-point measure above.
The formula for the 2-point measure is the same (28), but now the operator K depends
on the two points x and y and therefore the variance (26) and the drift (27), will also
depend on these two points. In fact the measure depends on the lag variable x − y.
A better way of capturing the dependence on the lag variable is to write the difference
of the inertial terms as

−u · ∇w + w · ∇u = −u · ∇(u − w) − (u − w) · ∇u + (u − w) · ∇(u − w).

This produces the new operator

K̃ = ν� − u · ∇ + z · ∇ − ∇u + ∇�−1tr
(
(∇u + ∇w)∇) = K − u · ∇ + z · ∇ − ∇u

with the understanding that now K is a function of (
(u+w)

2 ) through the pressure
term. The last three terms are removed by a combination of Feynman–Kac and the
Cameron–Martin formula (Girsanov’s theorem) and we get the martingale

Mt = exp

{∫ t

0
u(x − B−s + y, s) · dB−s +

∫ t

0
z(Bs) · dBs

− 1

2

∫ t

0

∣∣u(x − B−s + y, s) + z(Bs), s)
∣∣2 ds

}

after a time reversal of the auxiliary Brownian motion Bt see McKean (2002). The
computation of the measure follows the procedure for the computation of the measure
for the 1-point statistics. The difference of the two equations (for u and w) is written
as an integral equation

z = eK(t)e− ∫ t
0 ∇udse

∫ t
0 dqMtz

0 +
∑

k �=0

c
1/2
k

∫ t

0
eK(t−s)e− ∫ t

s ∇udre
∫ t
s dqMt−s dbk

s ek(x)

+
∑

k �=0

dk

∫ t

0
eK(t−s)e− ∫ t

s ∇udre
∫ t
s dqMt−s |k|1/3 dsek(x) (29)

by the Feynman–Kac formula and Girsanov’s theorem where K is the operator

K = ν� + ∇�−1tr
(
(∇u + ∇w)∇)

, (30)

and

Pt = e− ∫ t
0 ∇udse

∫ t
0 dqMt = e− ∫ t

0 ∇udr
∏

k

|k|2/3(2/3)N
k
t Mt .
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The Kolmogorov–Hopf equation for the Ito processes (29) now becomes

∂φ

∂t
= 1

2
tr
[
PtCP ∗

t �φ
] + tr[PtD̄∇φ] + 〈

K(z)Pt ,∇φ
〉
, (31)

where D̄ = (|k|1/3Dk) and φ(z) is a bounded function of z. It is also the Kolmogorov
backward equation of the Ito process (29).

The variance is

Qt =
∫ t

0
eK(s)PsCP ∗

s eK∗(s) ds (32)

and the drift is

Et =
∫ t

0
eK(s)PsD̄ ds. (33)

Then the solution of the Kolmogorov–Hopf equation (31) can be written in the form

Rtφ(z) =
∫

H

φ(y)N(eK(t)Pt z+Et I,Qt )
∗ N(0,2ν) ∗ PPt (dy)

=
∫

H

φ
(
eK(t)Ptz + EtI + y

)
N(0,Qt ) ∗ N(0,2ν) ∗ PPt (dy), (34)

where PPt is the Poisson law of Pt (Da Prato 2006). Here |x| = 〈x, x〉1/2 where 〈·, ·〉
is the inner product on H , and z = z0. Nm,Qt denotes the infinite-dimensional normal
distribution on H with mean m and variance Qt , I = ∑

ek , EtI ∈ H and N(0,2ν) the
law of the three-dimensional Brownian motion in the Martingale Mt . If Qt is of
trace-class Qt ∈ L+(H), then Rt is Markovian.

Theorem 10.1 The invariant measure for the velocity differences (two-point statis-
tics) of the Navier–Stokes equation on Hc = H 3/2+

(T3) has form

μ(dx,dy)

= e〈Q−1/2EI, Q−1/2x〉− 1
2 |Q−1/2EI |2 N(0,Q)(dx) ∗ N(0,2ν)(dy)

∑

k

δk,l

∞∑

j=0

p
j
ml

δ(Nl−j),

(35)

where Q = Q∞, E = E∞. Here mk = ln |k|2/3 is the mean of the log-Poisson pro-

cesses (14) and p
j
mk

= (mk)
j e−mk

j ! is the probability of Nk∞ = Nk having exactly j

jumps; δk,l is the Kronecker delta function.

Suppose that the operator Q is trace-class, E(Q1/2H) ⊂ Q1/2(H) and that

eK(t)Pt (H) ⊂ Q
1/2
t (H), t > 0,

where H = L2(T3), then, given u, the invariant measure μ is unique, ergodic and
strongly mixing. The proof of Theorem 10.1 is similar to the proof of Theorem 9.1;
see Birnir (2013) for details.

It is easy to check that the moments of the invariant measure for the two-point
statistics give the estimates for the structure functions above. The variable in the latter
three-dimensional Gaussian N(0,2ν)(dy) in the invariant measure is the lag variable.
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The same comments as above apply to the measure (35) as the invariant measure
for the one-point statistics (28). It is unique for the strong swirl (Birnir 2010) and
strong rotation (Babin et al. 1995, 1996) but its uniqueness for general turbulent flows
depends on the uniqueness of u.

11 The Differential Equation for the PDF

We must compute the PDF of the invariant measure (28), for the velocity differences,
in order to compare with PDFs constructed from simulations and experiments. The
simplest way of doing this is to derive the differential equation for the density func-
tion from the Kolmogorov–Hopf equation (24). We start by rewriting the equation
Kolmogorov–Hopf (24) in the form

∂φ

∂t
= 1

2
tr[Qt�φ] + tr[Et∇φ] (36)

where Qt and Et are, respectively, the variance (26) and drift (27), computed with
the operator K in (30). This can be done by redefining the underlying infinite-
dimensional Ito process appropriately (Birnir 2013). We have to take the trace of
the functional variables to get the equation for the PDF. The resulting equation is

∂φ

∂t
= 1

2
�φ + 1√

2t
c · ∇φ (37)

where ĉ(|k|) = (Q
−1/2
t Et )k are the Fourier coefficients of c, after we scale by the

variance Qt . Now scaling the equation by −2t and sending t → ∞ gives the equation

1

2
�φ + c · ∇φ = φ, (38)

with a trivial rescaling of time. This is the (stationary) equation for the distribution
function. Now the PDF is for the absolute value of the velocity differences w =
|u(x, t)−u(y, t)|, by the Eq. (43) below, so the angle derivatives of w do not appear,
and ĉ = (Q−1/2E)k ∼ c̄|k|1/3/|k|1/3 = c̄ for k large. Thus, taking the trace of the
spatial (lag) variables also, we get c = c̄

w
. In polar coordinates �φ = φww + 2

w
φw , in

three dimensions. Thus (38) becomes
1

2
φww + 1 + c̄

w
φw = φ. (39)

This is the stationary equation satisfied by the PDF.
The above computation is clarified by the following example. Consider the equa-

tion
φt = φxx + c√

2t
φx

where φ = e−(x−a)2/b√
πb

is a Gaussian. It is easy to check that this equation holds if at =
− c√

2t
and bt = 4, so a = −c

√
2t and b = 4t . Thus invariant measure is produced by

scaling out t ,

φ(y)dy = e− (y+c)2

2√
2π

dy = e
(y− a√

b/2
)2

2√
2π

dy = φ(x, t)dx,

where y = x/
√

2t . This invariant measure satisfies the stationary equation (38).
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12 The PDF for the Turbulent Velocity Differences

It is now possible to compute the probability density function (PDF) for the velocity
differences in turbulence. The form of the Eq. (39) suggests that we should look for
a solution of the form f = xaKλ where Kλ is a modified Bessel’s function of the
second kind, satisfying the equation,

Kxx + 1

x
Kx −

(
1 + λ2

x2

)
K = 0.

A substitution of this ansatz into Eq. (39) gives a = −c̄ and λ =
√

c̄(c̄+1)
2 . The so-

lution is the generalized hyperbolic distribution (Barndorff-Nilsen 1977). It has an
algebraic cusp at the origin and exponential tails and is constructed by multiplying
the modified Bessel’s function of the second kind Kλ, by x−λ. For the zeroth moment
we get a distinguished solution λ = c̄ = 1 which give the Normal Inverse Gaussian
(NIG) distribution that was also investigated by Barndorff-Nilsen (1998) and used
by Barndorff-Nilsen, Blæsild, and Schmiegel to model PDFs of velocity increments
for several datasets in Barndorff-Nilsen et al. (2004). It turns out that the distribution
functions for all of the moments can be expressed by the NIG distribution function.
However, since the intermittency corrections are different for the different moments,
the NIG distributions for the different moments have different parameters, as will be
explained below.

The PDF of the NIG is

αδK1(α
√

δ2 + (x − μ)2)

π
√

δ2 + (x − μ)2
eδγ+β(x−μ). (40)

The parameters are

α heavyness of the tail, β asymmetry, δ scaling

μ centering, γ =
√

α2 − β2.

The NIG distribution has very nice properties that are summarized in Barndorff-
Nilsen et al. (2004). In particular its characteristic function and all of its moments
are easily computed. However, the moments of the velocity differences are not the
moments of the same NIG distributions, because of the intermittency correction. In
fact, the invariant measure (35) has both a continuous and a discrete part and be-
cause of this each moment comes with its own PDF, as mentioned above. All of
these PDF are solutions of the stationary equation (39) and they can be expressed
in terms of NIG distributions. However, their parameters α,β, δ and μ all depend
on the particular moment for which one is computing the PDF. Thus these pa-
rameters are different for the different moments. The cumulant generating function
μz + δ(γ − √

α2 − (β + z)2) is particularly simple for the NIG and this make the
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moments easy to compute (Barndorff-Nilsen et al. 2004). The first few moments and
the characteristic function of the NIG distribution are

Mean μ + δβ/γ

Variance δα2/γ 3

Skewness 3β/(α
√

δγ )

Excess kurtosis or flatness 3
(
1 + 4β2/α2

)
/(δγ )

Characteristic Function eiμz+δ(γ−
√

α2−(β+iz)2).

(41)

However, since the parameters α,β, δ and μ are different for different moments, care
must be taken when the moments above are used the compute these parameters. This
will be discussed in more details in the next section.

Thus we see that the probability density function of the velocity increment is a nor-
malized inverse Gaussian (NIG) distribution that is a generalized hyperbolic distribu-
tions with index 1. Using the invariances of the NIG it is given by the four-parameter
formula

fj (x,α,β, δ,μ) = αδeδγ K1(α
√

δ2 + (x − μ)2)

π
√

δ2 + (x − μ)2
eβ(x−μ), j = 1,2, (42)

where α measures how heavy the exponential part of the tail of the distribution is, β

measures how skew the distribution is, δ is a scaling parameter and μ determines the
location (center) of the distribution, γ = √

α2 − β2. K1 is the modified Bessel func-
tion of the second kind with index 1. Now the first moment of the velocity differences
is

E(δju) = E
([

u(x + s, ·) − u(x, ·)] · r) = E
(∣∣u(x + s, ·) − u(x, ·)∣∣|r| cos(θ)

)

=
∫ ∞

∞
(xfj )(x,α,β, δ,μ)dx, (43)

where j = 1, if r = ŝ is the longitudinal direction (that is, the direction along the lag
vector s), and j = 2, if r = t̂ where t ⊥ s is a transversal direction, r̂ and t̂ being
unit vectors. θ is the angle between the vectors [u(x + s, ·) − u(x, ·)] and r , and
the absolute value of the former is the reason why the angle derivatives wash out
in (39). The PDF is symmetric in the transversal direction, then β = μ = 0. In that
case there are only two independent adjustable parameters, α is the exponential decay
at x = ±∞ and δ is the “peakedness” at the origin. In the nonsymmetric case, there
are two more independent adjustable parameters, the skewness parameter β and the
centering parameter μ.

The PDF for the velocity increments has the asymptotics,

fj ∼ δeδγ

π

eβ(x−μ)

(δ2 + (x − μ)2)

for (x − μ) small. This is the algebraic (rational) cusp at the origin. The exponential
tails are,

fj ∼
√

2δαeδγ−βμ

π3/2

e−α|x|+βx

|x|3/2

for |x| large.
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The exponential tails of the PDF are caused by occasional sharp velocity gradients
(rounded-off shocks), whereas the cusp at the origin is caused by the random and
gentile fluid motion in the center of the ramps leading up to the sharp velocity gradient
(Kraichnan 1991).

For large values of the lag variable, the NIG distribution must also approximate
a Gaussian. It turns out to do just that. Letting α, δ → ∞, in the formulas for fj (x)

above, in such a way that δ/α → σ , we get

fj → e− (x−μ)2

2σ√
2πσ

eβ(x−μ).

13 Comparison with Simulations and Experiments

We now compare the above PDFs with the PDFs found in simulations and experi-
ments, using the first moment gj (x) = (xfj )(x,α,β, δ,μ), where fj , j = 1,2 are
the PDFs in formula (42). Because of the discrete jump measure (23) all the higher
moments come with their own PDF. The PDF for the pth moment is given by the
formula

f
p
j (α,β,δ,μ)(p)

(x) = αδeδγ K1(α
√

δ2 + (x − μ)2)

π
√

δ2 + (x − μ)2
eβ(x−μ), (44)

where γ = √
α2 − β2, K1 is the modified Bessel function of the second kind with

index 1, similar to (42). The density of the pth moment itself is

xpf
p
j (α,β,δ,μ)(p)

(x) = α1−pδeδγ K1(α
√

δ2 + (x − μ)2)

π(δ2 + (x − μ)2)(1−p)/2
eβ(x−μ), (45)

where j = 1, for the longitudinal and j = 2 for the transverse component, as in (42).
All the four parameters α,β, δ,μ are functions of p because of intermittency.

If the first four moments in (41) are given, then the four parameters in the NIG
distribution can be computed directly. However, this is probably not the best way to
do so. Firstly, this would only give the parameters for the first four moments and
the parameters for the higher moments would have to be computed separately. Sec-
ondly, since both the longitudinal and the transverse moments can be measured, see
Eq. (43), giving the first four moments may overdetermine the four parameters in
NIG. A better method is to give both the longitudinal and transverse measurements
for two moments. This will determine the four parameters in NIG and give the NIG
for these two moments. One is actually giving the NIG of the projection onto these
two moments in moments space. From a theoretical point of view it makes sense to
always give the measurements for the third moment, because it does not have any
intermittency corrections, corresponding to Kolmogorov’s 4/5 law. Thus one can say
given the longitudinal and transverse measurements for the third moment, the PDF
(NIG) for every moment is determined by the longitudinal and transverse measure-
ments for that moment. However, it may depend on the experiment whether this is
the most practical projection.
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Fig. 1 The PDFs from
simulations and fits for the
longitudinal direction. The
PDFs for increasing values of
the lag variable are displaced
downward. The last PDF looks
distinctly Gaussian

Fig. 2 The log of the PDFs
from simulations and fits for the
longitudinal direction, compare
Fig. 4.5 in Wilczek (2010).
Again the logs of PDFs for
increasing values of the lag
variable are displaced
downward. The last ones look
Gaussian

Fig. 3 The PDFs from
simulations and fits for a
transversal direction. The PDFs
for increasing values of the lag
variable are displaced
downward. The last PDF looks
distinctly Gaussian

The direct Navier–Stokes (DNS) simulations, in Figs. 1, 2, 3, 4 were provided by
Michael Wilczek from his Ph.D. thesis (Wilczek 2010). The simulations are plotted in
blue and the fits in red. The experimental results in Figs. 5 and 6 are from the particle
tracking experiments by Eberhard Bodenschatz group. The PDFs of Eulerian velocity
differences are obtained from the instantaneous particle velocities by conditioning
on given spatial separations (Xu et al. 2006). In each case the fit was checked by
computing the normalized log-likelihood function. First the data point zero or close
to zero were removed and then the normalized log-likelihood function computed for
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Fig. 4 The log of the PDFs
from simulations and fits for the
a transversal direction, compare
Fig. 4.6 in Wilczek (2010).
Again the logs of PDFs for
increasing values of the lag
variable are displaced
downward. The last ones look
Gaussian and all of them are
symmetric and centered at 0.

Fig. 5 The PDFs from
experiments and fits. The PDFs
for increasing values of the lag
variable are displaced downward

Fig. 6 The log of the PDFs
from experiments and fits.
Again the logs of PDFs for
increasing values of the lag
variable are displaced downward

the remaining points. The experimental results are plotted in blue and the fits in red.
The experimental results in Figs. 7 and 8 are from Sreenivasan and Dhruva (1998)
for the high Reynolds number atmospheric turbulence. The numbers plotted are from
Table 2 in Chen et al. (2005), where both experimental and simulations results are
compared. We plotted the numbers from the latter simulation (10243) in Table 2.
We thank all of these researchers for the permission to use their results to compare
with the theoretically computed PDFs. The NIG distribution, was used by Barndorff-
Nilsen et al. (2004) to obtain fits to the PDFs for three different experimental datasets.
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Fig. 7 The exponents of the
structure functions as a function
of order, theory or Kol-
mogorov–Obukhov–She–Leveque
scaling (red, lower line),
experiments (disks), DNS
simulations (circles) (Chen et al.
2005), and experiments (X) (She
and Leveque 1994). The
Kolmogorov–Obukhov 1941
scaling is also shown as a blue,
upper line for comparison

Fig. 8 The exponents of the
structure functions as a function
of order (−1,2], theory or Kol-
mogorov–Obukhov–She–Leveque
scaling (red line, with disks),
experiments (disks), DNS
simulations (circles), from Chen
et al. (2005). The
Kolmogorov–Obukhov 1941
scaling is also shown as a blue
diskless line for comparison

Table 2 Some relevant parameters for the atmospheric data. Here, U is the mean speed, u′ is the root-
mean-square velocity, ε is the mean rate of energy dissipation, η and λ are the Kolmogorov and Taylor
microscales, respectively, and Rλ = uλ/ν, ν being the kinematic viscosity of air at the measurement tem-
perature

U u′ ε η λ Rλ

7.6 ms−1 1.36 ms−1 0.032 m2 s−3 0.57 mm 11.4 mm 10 340

14 Description of Simulations and Experiments

First we described the simulations in the Ph.D. thesis of Michael Wilczek follow-
ing (Wilczek 2010). The DNS data were produced by a standard pseudospectral
code with periodic boundary conditions at a Taylor-based Reynolds number of 112.
The simulations were run in a statistically stationary state with a large-scale forcing
that preserves the kinetic energy of the flow and yields approximately homogeneous
isotropic turbulence. For more details we refer the reader to Michael Wilczek’s Ph.D.
thesis (Wilczek 2010) and to Wilczek et al. (2011).

The experiment by Xu, Ouellette and Bodenschatz is described in their paper (Xu
et al. 2006): The turbulence is generated in a closed cylindrical chamber containing
roughly 0.1 m3 of water using counterrotating disks (French washing machine). The



J Nonlinear Sci (2013) 23:657–688 685

flow was seeded with transparent polystyrene microspheres with a diameter of 25 μm
(smaller than or comparable to the smallest turbulent length scale) and a density 1.06
times that of water. These particles have previously been shown to act as passive trac-
ers in this flow. The microspheres were illuminated by two pulsed Nd:YAG lasers, and
their motion was recorded in three dimensions by three high-speed cameras at rates
of up to 27 000 frames per second so that the smallest turbulent time scales were
well resolved. The trajectories of individual tracer particles were reconstructed using
particle tracking algorithms. Once the raw particle tracks were obtained, Lagrangian
velocities were obtained by convolution with a Gaussian smoothing and differentiat-
ing kernel. The smoothing operation works as a filter to suppress the measurement
noise while the differentiation operation gives the derivative of the filtered signal.

The data from Sreenivasan and Dhruva (1998) consist of a series of measurements
in atmospheric turbulence at Taylor microscale Reynolds number ∼ √

15R ranging
between 10 000 and 20 000. The Taylor frozen hypothesis is used but it was verified
by comparison with true spatial data obtained from two probes separated by a known
streamwise distance (Sreenivasan and Dhruva 1998). The parameter values are listed
in Table 2 (Chen et al. 2005).

Hotwire measurements were made in the atmospheric surface layer at a height of
35 m above the ground using a standard meteorological tower at Brookhaven Na-
tional Laboratory. The tower itself presented very little obstacle to the wind because
of its low solidity. The dataset analyzed here is part of a more comprehensive batch
of data obtained at the tower. The hotwire, 0.7 mm in length and 0.5 µm in diameter,
was placed facing the wind, about two meters away from the tower. (For monitor-
ing the wind direction, the tower was equipped with a vane anemometer placed two
meters away from the measurement station.) The calibration was performed in situ
using a TSI calibrator and checked later in a windtunnel. The signals were low-pass
filtered at 5 kHz and sampled at 10 kHz. The anemometer and signal conditioners
were placed nearby at the height of measurement, and the conditioned signal was
transmitted to the ground and digitized using a 12-bit A/D converter. Typical data
records contained between 10 and 40 million samples, during which time the wind
direction and its mean speed were deemed acceptably constant. More details are given
in Dhruva (2000), but the essential features for this particular set of data are listed in
Table 2. The wind conditions were somewhat unstable.

15 Conclusion

We have seen that the Navier–Stokes equation, for all but the largest scales in turbu-
lent flow, can be expressed as a stochastic Navier–Stokes equation (7). The stochastic
forcing results from instabilities of the flow that magnify small ambient noise and
saturate its growth into large stochastic forcing. This has been modeled before by a
Reynolds decomposition and by a coarse graining of the flow. The stochastic force is
generic and is determined by the general principles of probability with a minimum of
physical inputs. It consists of two components additive noise and multiplicative noise
and the additive component is determined by the central limit theorem and the large
deviation principle. The physical input is that these two term must produce similar
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scalings because they are caused by the same dissipative processes. This determines
the rate in the large deviation principle. The multiplicative noise multiplies the fluid
velocity and models jumps (vorticity concentrations) in the velocity gradient. It is ex-
pressed by a generic Poisson process where only the rate needs to be given. This rate
is determined by the spectral analysis of the (linearized) Navier–Stokes operator and
the requirement, following She and Leveque (1994), that the dimension of the most
singular vorticity structure (filaments) is one. Thus the stochastic forcing is generic
and determined with two mild physical inputs.

The stochastic Navier–Stokes equation can be expressed as an integral equation (8)
and the log-Poissonian processes found by She and Leveque and explored by She and
Waymire and Dubrulle are produced from the multiplicative noise by the Feynman–
Kac formula. This give a satisfying mathematical derivation of the intermittency phe-
nomena that had earlier been derived from impirical considerations. Moreover, the
integral equations show how the Navier–Stokes evolution and the log-Poissonian in-
termittency processes act on the dissipation processes, to product the intermittency in
the dissipation. This is a mathematical derivation of the experimental observation that
intermittent dissipation processes accompany intermittent velocity variations. Using
the integral equation we get an upper estimate on all the structure functions of the
velocity differences in turbulence. The evidence from simulations and experiments is
that this upper bound is reached in turbulent flow. Why the inertial cascade achieves
this maximal efficiency in the energy transfer remains to be explained.

We then built on Hopf’s (1953) ideas to compute the invariant measure of turbulent
flow. This measure can be computed because it solves a linear functional differential
equation (Da Prato 2006). It turns out to be an infinite-dimensional Gaussian mul-
tiplied by a (discrete) Poisson distributions. This Poisson distribution corresponds
to the intermittency and the log-Poisson processes. Then by taking the trace of the
invariant measure we get the PDF of the velocity differences. We first derive the
functional differential equation (PDE) for the PDF and then show that there are in-
finitely many PDFs each corresponding to a particular moment, because of the in-
termittency corrections. The PDE (38) for the sequence of PDFs can also be solved
and the PDFs turn out to be the normalized inverse Gaussian (NIG) distributions of
Barndorff-Nilsen (1998). Their parameters are easily computed and we see how to
do this for both simulations and experiments.

It is interesting to notice that although the solution of the Navier–Stokes equation
may not be unique or smooth the invariant measure of the velocity differences (35)
may still be well defined by Leray’s (1934) existence theory. Moreover, different
velocities produce equivalent measures so the statistical observables of turbulence
are unique although the turbulent velocity may not be.
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