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1 Introduction

There are several classical models describing the motion of waves at the free surface
of shallow water under the influence of gravity, such as the Korteweg–de Vries (KdV)
equation and the Benjamin–Bona–Mahoney (BBM) equation.

Another well-known such model is the Camassa–Holm (CH) equation (Camassa
and Holm 1993; Camassa et al. 1994; Constantin and Lannes 2009; Fokas and
Fuchssteiner 1981/82)

ut + 2ωux − utxx + 3uux = 2uxuxx + uuxxx, (1.1)

where u is the fluid velocity in the x direction (or equivalently the height of the wa-
ter’s free surface above a flat bottom), ω is a constant related to the critical shallow
water wave speed. Before Camassa and Holm (1993), families of integrable equations
similar to the CH equation were known to be derivable in the general context of hered-
itary symmetries by Fokas and Fuchssteiner (1981/82). Camassa and Holm (1993)
independently derived (1.1) using asymptotic expansions directly in the Hamiltonian
for Euler’s equations for inviscid incompressible flow in the shallow-water regime.
They found the bi-Hamiltonian structure and the peakons, showed their interaction,
and constructed a Lax pair for the equation. Equation (1.1) was also found indepen-
dently as a model for nonlinear waves in cylindrical hyperelastic rods (Dai 1998).
Recently, it was claimed in Lakshmanan (2007) that the CH equation might be rele-
vant to the modeling of a tsunami; see also the discussion in Constantin and Johnson
(2008).

The novelty of the CH equation is due to its two non-standard properties. The first
most remarkable is the presence of multi-soliton or infinite-soliton solutions con-
sisting of a train of peaked solitary waves or ‘peakons’ (Camassa and Holm 1993;
Camassa et al. 1994; Cao et al. 2004). These peakons are weak solutions in the
distributional sense and have been shown to be stable in Cao et al. (2004), Con-
stantin and Molinet (2001), Constantin and Strauss (2000). Another remarkable
property is the occurrence of wave-breaking phenomena (i.e. a solution that re-
mains bounded while its slope becomes unbounded in finite time) (Constantin 2000;
Constantin and Escher 1998a, 1998b, 2000). It is worth pointing out that Bressan and
Constantin proved that the solutions to the CH equation can be uniquely continued
after wave breaking as either global conservative or global dissipative weak solution
in Bressan and Constantin (2007a) and Bressan and Constantin (2007b), respectively.

The interest in the CH equation inspired the search for various generalizations of
this equation. The following two-component integrable Camassa–Holm (CH2) sys-
tem was first derived in Olver and Rosenau (1996) and can be viewed as a model
in the context of shallow-water theory (see also Constantin and Ivanov 2008, Ivanov
2009): {

ut − utxx − Aux + 3uux + κρρx = 2uxuxx + uuxxx,

ρt + (ρu)x = 0,
(1.2)

where m = u − uxx , and the following generalized two-component integrable
Camassa–Holm (GCH2) system which was derived from shallow-water theory with
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nonzero constant vorticity:{
ut − utxx − Aux + 3uux + κρρx = σ(2uxuxx + uuxxx),

ρt + (ρu)x = 0,
(1.3)

where in these two equations ρ(t, x) is related to the free surface elevation from equi-
librium (or scalar density), and the parameter A > 0 characterizes a linear underlying
shear flow propagating in the positive direction of the x-coordinate (or the critical
shallow-water speed). The parameter κ = ±1 and the case κ = 1 (κ = −1) corre-
sponds to the situation in which the gravity acceleration points downwards (upwards)
(Constantin and Ivanov 2008). The real dimensionless constant σ in system (1.3) is
a parameter which provides the competition, or balance, in fluid convection between
nonlinear steepening and amplification due to stretching.

Obviously if ρ ≡ 0, then (1.2) becomes the CH equation (1.1). When σ = 1, sys-
tem (1.3) turns into the standard CH2 system (1.2). System (1.2) without vorticity,
i.e. A = 0 was also justified by Constantin and Ivanov (2008) to approximate the
governing equations for shallow-water waves. Chen et al. (2006) established a re-
ciprocal transformation between system (1.2) (where κ = −1 and hence the gravity
acceleration points upwards) and the first negative flow of the AKNS hierarchy. More
recently, Holm et al. (2009) proposed a modified CH2 system which possesses singu-
lar solutions in component ρ. Mathematical properties of system (1.2) and (1.3) have
been also studied further in much work. For example, if κ = 1, Constantin and Ivanov
(2008) provided some conditions of wave breaking and small global solutions for sys-
tem (1.2); Using the localization analysis in the transport equation theory, Gui and Liu
obtained a wave-breaking criterion for strong solutions of system (1.2) in the lowest
Sobolev space. If κ = −1, Escher et al. (2007) investigated local well-posedness for
the system (1.2) with initial data (u0, ρ0) ∈ Hs × Hs−1 (s ≥ 2) and derived some
precise blow-up scenarios for strong solutions to the system. More results on math-
ematical properties of system (1.2) can be found in Fu et al. (2010), Guan and Yin
(2010, 2011), Gui and Liu (2010, 2011) and Zhang and Liu (2010). Recently, Chen
and Liu (2011) derived system (1.3) form the theory of shallow-water waves moving
over a linear shear flow. Moreover, some conditions to guaranteeing wave-breaking
phenomena and blow-up rate are also given in their paper.

Dullin et al. (2001) studied the following 1 + 1 quadratically nonlinear equation:

ut − α2utxx + 2ωux + 3uux + γ uxxx = α2(2uxuxx + uuxxx), (1.4)

where the constants α2 and γ
2ω

are squares of length scales, and ω = 1
2

√
gh is the

linear wave speed for undisturbed water at rest at spatial infinity. Equation (1.4) is
equivalent to its original form, i.e. the CH equation (1.1), and not Galilean invariant.
Hence, we must regard this equation as a family of equations whose linear dispersion
parameters ω and γ depend on the appropriate choice of Galilean frame and boundary
conditions. Dullin, Gottwald and Holm’s new derivation attaches additional physical
meaning to Eq. (1.4) in the context of asymptotics for shallow-water wave equation
(Dullin et al. 2001). Equation (1.4) is connected with two separately integrable soliton
equations for shallow-water waves. Formally, when α2 = 0, Eq. (1.4) becomes the
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KdV equation

ut + 2ωux + 3uux + γ uxxx = 0.

When γ = 0, Eq. (1.4) turns into the CH equation (1.1). In the presence of surface
tension, Dullin, Gottwald and Holm used an approach based on the Kodama trans-
formation to derive Eq. (1.4) as a shallow water-wave equation and discussed the
dispersive effects in Dullin et al. (2003) and Dullin et al. (2004). (The parameter
σ = 0 (or σ̄ = 0) means that there is no surface tension, see Eq. (8) in Dullin et al.
2004). Two different conditions to guarantee finite time singularity formation were
given in Liu (2006) and Zhou (2007), respectively.

In this paper, in the presence of a linear shear flow and nonzero vorticity, we will
follow Ivanov’s approach (Ivanov 2009) to derive the following generalized two-
component Dullin–Gottwald–Holm (GDGH2) system:{

ut − utxx − Aux + 3uux = σ(2uxuxx + uuxxx) − γ uxxx − ρρx,

ρt + (ρu)x = 0
(1.5)

with the boundary assumptions u → 0, ρ → 1 as |x| → ∞. When σ = 1, it recovers
the standard two-component Dullin–Gottwald–Holm system (see Guo et al. 2012).
Obviously, under the constraint γ = 0 this system is reduced to system (1.3). In the
case σ = 0 and ρ = 0, it becomes the BBM equation, which models the motion of
internal gravity waves in shallow channel (Benjamin et al. 1972). The significance
of our derivation is the inclusion of vorticity, an important feature of water waves
that has been given increasing attention during the last decades (Ivanov 2009). It is
worth pointing out that the linear term attributed to shear or vorticity in the GDGH2
system (1.5) was already appeared in the original paper Camassa and Holm (1993).
As discussed in Camassa and Holm (1993), a Galilean boost of the CH equations
introduces a linear dispersion of KdV-type (uxxx ). Physically, the Galilean frame and
thus the value of the dispersion coefficient is determined by the boundary conditions
at spatial infinity, or by the mean velocity in the periodic case (Camassa and Holm
1993). The GDGH system (1.5) has the following Hamiltonians:

E(u,ρ) = 1

2

∫
R

[
u2 + u2

x + (ρ − 1)2]dx (1.6)

and

F(u,ρ) = 1

2

∫
R

[
u3 + σuu2

x − Au2 − γ u2
x + 2u(ρ − 1) + u(ρ − 1)2]dx. (1.7)

In this paper, we will study solitary wave solutions of (1.5), i.e. solutions of the
form (

u(x, t), ρ(x, t)
) = (

ϕ(x − ct), ρ(x − ct)
)
, c ∈ R

for some ϕ, ρ: R → R such that ϕ → 0 and ρ → 1 as |x| → ∞. In the study of the CH
traveling waves it was observed through phase-plane analysis that both peaked and
cusped traveling waves exist (Li and Olver 1997). Subsequently, Lenells (2005, 2006)
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used a suitable framework for weak solutions to classify all weak traveling waves of
the CH equation (1.1).

Using a natural weak formulation of the GDGH2 system (1.5), we will establish
exactly in what sense the peaked and cusped solitary waves are solutions. It was
shown in Constantin and Ivanov (2008), Mustafa (2009), Zhang and Liu (2010) that
the two-component system (1.2) has only smooth solitary waves, with a single crest
profile and exponential decay far out. In Holm et al. (2009), the authors considered a
modified two-component CH equation which allows dependence on average density
as well as pointwise density and a linear dispersion is added to the first equation of
the system. They showed that the modified system admits a peakon solution in both u

and ρ. The existence and the stability of solitary wave solutions of the GCH2 system
are obtained in Chen et al. (2011). However, it is unclear whether the GDGH2 system
(1.5) has solitary waves with singularities. We show here that peaked solitary waves
do exist and we provide an implicit formula for these peaked solitary waves.

It is well known that different from the KdV equation, the CH equation, the CH2
system and the GCH2 system have a remarkable property, that is, the wave-breaking
phenomenon. Due to the similarity in the structure, a natural question is: does the
GDGH2 system (1.5) have similar wave-breaking phenomena as the classical CH
equation in some Sobolev space? We will use the transport equation theory to derive
a wave-breaking criterion for solution of the system (1.5). Our main tool to investi-
gate the blow-up mechanism for system (1.5) is due to Constantin (2000), Constantin
and Escher (1998a), that is, we show that for a large class of initial profiles the cor-
responding solutions to system (1.5) blow up in finite time by using the continuous
family of diffeomorphisms of the line associated to the system. However, since sys-
tem (1.5) has two characteristics (see (4.3)–(4.4) in Sect. 4), one cannot just follow
their approaches. In fact we will make use of the diffeomorphism of the trajectory q2

defined in (4.4), which captures the maximum/minimum of ux , therefore the trans-
port equation for ρ can coincide with the equation for u. Compared with Chen et al.
(2011) and Gui and Liu (2010), we not only make the classifications of the traveling
waves and give the blow-up scenario for the GDGH2 system (1.5), but also formulate
two sufficient conditions which can guarantee wave-breaking phenomena.

The remainder of this paper is organized as follows. In Sect. 2, we will follow the
modeling approach in the shallow water theory (Ivanov 2009) to derive the GDGH2
system (1.5). The local well-posedness result (Theorem 3.2), the classification result
(Theorem 3.7 and Theorem 3.9) are presented in Sect. 3. Moreover, the solitary wave
solutions are classified in this section. The blow-up mechanism is analyzed in detail
in Sect. 4. It is shown that the solution to (1.5) can only have singularities which cor-
respond to wave breaking (Theorem 4.3) and two sufficient conditions to ensure wave
breaking occurs are given (Theorems 4.5 and Theorem 4.7). T he lower bound of the
lifespan (Theorem 4.9) is also given in Sect. 4. Finally, the proof of Theorem 3.9 is
supplemented as an Appendix.

All spaces of functions are assumed to be over R and R is dropped in function
spaces notation if there is no ambiguity.
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2 Derivation of the Model

In this section, we will follow Ivanov’s approach in Ivanov (2009) to derive system
(1.5).

Consider the motion of an inviscid incompressible fluid with a constant density ρ

governed by the Euler equations:⎧⎨
⎩

∂ �v
∂t

+ (v · ∇)�v = − 1

ρ
∇P + �g,

∇ · v = 0,

(2.1)

where �v(x, y, z, t) is the velocity of the fluid at the point (x, y, z) at the time t ,
P(x, y, z, t) is the pressure in the fluid, �g = (0,0,−g) is the gravity acceleration.

Using the shallow-water approximation and non-dimensionalization, the above
equations can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut + ε(uux + wuz) = −px,

δ2[wt + ε(uwx + wwz)] = −pz,

ux + wz = 0,

w = ηt + εuηx, p = η on z = 1 + εη,

w = 0 on z = 0,

where now �v = (u,0,w), p(x, z, t) is the pressure variable measuring the deviation
from the hydrostatic pressure distribution, ε = a

h
and δ = h

λ
are two dimensionless

parameters, in which a is the typical amplitude and λ is the typical wavelength of the
wave, respectively.

We now consider waves in the presence of a shear flow. In such case the horizontal
velocity of the flow will be u + Ũ (z), where Ũ (z),0 ≤ z ≤ h,w ≡ 0,p ≡ 0, η ≡ 0
is an exact solution of the governing equation (2.1) and this solution represents an
arbitrary underlying shear flow. We take the simplest case: Ũ (z) = Az where A > 0
is a constant.

In the case of constant vorticity ω = A, we obtain the following equations for u0
and η by ignoring the terms of o(ε2, δ4, εδ2):(

u0 − 1

2
δ2u0,xx

)
t

+ εu0u0,x + ηx − A

3
δ2u0,xxx = 0 (2.2)

and

ηt + Aηx +
[
(1 + εη)u0 + A

2
εη2

]
x

− 1

6
δ2u0,xxx = 0, (2.3)

where u0(x, t) is the leading order approximation of u.
Let the two parameters ε and δ go to 0; one obtains from (2.2)–(2.3) the system of

linear equations

u0,t + ηx = 0,

ηt + Aηx + u0,x = 0,
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hence,

ηtt + Aηtx − ηxx = 0. (2.4)

This equation has a traveling wave solution η = η(x − ct) with a velocity c satisfying

c2 − Ac − 1 = 0.

This gives the same solution for c that follows from the Burns condition (Burns 1953).
We introduce a new variable

ρ = 1 + εαη + ε2βη2 + εδ2μu0,xx

for some constants α,β , and μ satisfying

μ

α
= 1

6(c − A)
(2.5)

and

α = 1 + Ac

2
+ β

α
. (2.6)

With m = u0 − 1
2δ2u0,xx , Eqs. (2.2) and (2.3) can be rewritten as

mt + Amx − Au0,x − 1

6c2(c − A)
δ2u0,xxx + ε

(
1 − α2 + 2β

α
c2

)
u0u0,x + ρρx

εα
= 0,

(2.7)

ρt + Aρx + αε(ρu0)x = 0. (2.8)

At order O(1), we may break u0u0,x up as

u0u0,x = s(2mu0,x + u0mx) + (1 − 3s)u0u0,x + O
(
δ2)

for any s ∈ R. Therefore Eq. (2.7) can be reformulated at order O(ε, δ2) as

mt + Amx − Au0,x − 1

6c2(c − A)
δ2u0,xxx + εs

(
1 − α2 + 2β

α
c2

)
[2mu0,x + u0mx]

+ ε(1 − 3s)

(
1 − α2 + 2β

α
c2

)
u0u0,x + ρρx

εα
= 0.

By the scaling u0 → 1
αε

u0, x → δx, t → δt , we deduce from the above equation and
(2.8) that⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

mt + Amx − Au0,x − 1

6c2(c − A)
u0,xxx + s

α

(
1 − α2 + 2β

α
c2

)
[2mu0,x + u0mx]

+ 1 − 3s

α

(
1 − α2 + 2β

α
c2

)
u0u0,x + ρρx = 0,

m = u0 − u0,xxx,

ρt + Aρx + (ρu0)x = 0.
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If we choose

1

3α

(
1 − α2 + 2β

α
c2

)
= 1

and denote γ = − 1
6c2(c−A)

, σ = 3s, then we arrive at

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mt + Amx − Au0,x + γ u0,xxx + σ(2mu0,x + u0mx)

+ 3(1 − σ)u0u0,x + ρρx = 0,

m = u0 − u0,xx,

ρt + Aρx + (ρu0)x = 0.

(2.9)

The constants α,β,μ, and c satisfy

α = 1

3(1 + c2)
+ c2

3
,

β = α2 − α

(
1 + Ac

2

)
,

μ = α

6(c − A)
,

c2 − Ac − 1 = 0.

With a further Galilean transformation x → x − At, t → t , we can drop the terms
Amx and Aρx in (2.9) and hence get the GDGH2 system (1.5).

3 Traveling Wave Solutions

In this section, we will establish the local well-posedness result and make classifi-
cations of the solitary wave solution for system (1.5). Let X = H 1 × L2 be a real
Hilbert space with inner product (, ), and denote its element by −→

u = (u, η). The dual
of X is X∗ = H−1 × L2 and a natural isomorphism I from X to X∗ can be defined
by

I =
(

1 − ∂2
x 0

0 1

)
.

Using the map I , the paring 〈·, ·〉 between X and X∗ can be represented as

〈I−→
u ,−→v 〉 = 〈u,v〉1 + 〈η, ξ 〉0, for −→

u = (u, η) ∈ X,−→v = (v, ξ) ∈ X∗,

where 〈·, ·〉s denotes the Hs × H−s dual pairing. We will identify the second dual
X∗∗ with X in a natural way.
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Since ρ → 1 as |x| → ∞ in (1.5), we can let ρ = 1 + η with η → 0 as |x| → ∞
and hence we rewrite system (1.5) as

{
ut − utxx − Aux + 3uux − σ(2uxuxx + uuxxx) + γ uxxx + (1 + η)ηx = 0,

ηt + (
(1 + η)u

)
x

= 0.

(3.1)
The two Hamiltonians introduced in the Introduction define the following two func-
tionals on X:

E(
−→
u ) = 1

2

∫
R

(
u2 + u2

x + η2)dx (3.2)

and

F(
−→
u ) = 1

2

∫
R

(
u3 + σuu2

x − Au2 − γ u2
x + 2uη + uη2)dx, (3.3)

with −→
u = (u, η) ∈ X. The quantity E(

−→
u ) associates with the translation invariance

of (3.1). Using functional F(
−→
u ), system (3.1) can be written in an abstract Hamilto-

nian form,

−→
u t = JF ′(−→u ), (3.4)

where J is a closed skew symmetric operator given by

J =
(−∂x + ∂xxx 0

0 −∂x

)

and F ′(−→u ) : X → X∗ is the variational derivative of F in X at −→
u .

Note that if

p(x) =: 1

2
e−|x|, x ∈ R, (3.5)

then (1 − ∂2
x )−1f = p ∗ f for all f ∈ L2. We rewrite system (3.1) in a weak form as

⎧⎨
⎩ut + (σu − γ )ux = −∂xp ∗ [

(γ − A)u + 3 − σ

2
u2 + σ

2
u2

x + 1

2
(1 + η)2],

ηt + (
(1 + η)u

)
x

= 0.
(3.6)

Definition 3.1 Let 0 < T ≤ ∞. A function −→
u = (u, η) ∈ C([0, T );X) is called a

solution of (3.1) on [0, T ) if it satisfies (3.6) in the distribution sense on [0, T ) and
E(

−→
u ) and F(

−→
u ) are conserved.

System (3.6) is suitable for applying Kato’s theory (Kato 1975), we have

Theorem 3.2 If (u0, η0) ∈ Hs × Hs−1, s ≥ 2, then there exist maximal time T =
T (‖(u0, η0)‖Hs×Hs−1) > 0 and a unique solution (u, η) of (3.6) in C([0, T );Hs ×
Hs−1)∩C1([0, T );Hs−1 ×Hs−2) with (u, η)|t=0 = (u0, η0). Moreover, the solution
depends continuously on the initial data and T is independent of s.
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Since the proof of this result is essentially similar to Theorem 2.2 in Escher et al.
(2007), we omit it here.

It is easily seen from the embedding H 1 ↪→ L∞ that E(
−→
u ) and F(

−→
u ) are both

well defined in Hs × Hs−1 with s ≥ 2, and E(
−→
u ) is conserved, as suggested in the

local well-posedness Theorem 3.2. From (3.4) we see that

d

dt
F (

−→
u ) = 〈

F ′(−→u ),
−→
u t

〉 = 〈
F ′(−→u ), JF ′(−→u )

〉 = 0,

therefore F(
−→
u ) is also invariant.

Now we give the definitions of solitary wave, peakon, and cuspon of (3.1).

Definition 3.3 A solitary wave of (3.1) is a nontrivial traveling wave solution of (3.1)
of the form −→ϕ = (ϕ(x − ct), η(x − ct)) ∈ H 1 × H 1 with c ∈ R and ϕ, η vanishing
at infinity.

Solitary waves were first observed by John Scott Russell in 1834. The ability of
this water wave to retain its shape for a long period of time is quite remarkable (Con-
stantin 2011).

Definition 3.4 (Lenells 2005) We say that a continuous function ϕ has a peak at x if
ϕ is smooth locally on either side of x and

0 �= lim
y↑x

ϕx(y) = − lim
y↓x

ϕx(y) �= ±∞.

Wave profiles with peaks are called peaked waves or peakons (Fig. 1).

Definition 3.5 (Lenells 2005) We say that a continuous function ϕ has a cusp at x if
ϕ is smooth locally on either side of x and

lim
y↑x

ϕx(y) = − lim
y↓x

ϕx(y) = ±∞.

Wave profiles with cusps are called cusped waves or cuspons (Fig. 1).

‘Cuspons’ are non-standard solitons which differ from peakons in that their wave
peaks are cusps (Li et al. 2012).

For a solitary wave �ϕ = (ϕ, η) with speed c ∈ R, it satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
−cϕ + σ

2
ϕ2 + p ∗

(
−Aϕ + 3 − σ

2
ϕ2 + σ

2
ϕ2

x + γ ϕxx

+ 1

2
(1 + η)2

)]
x

= 0, in D′(R),

(−cη + (1 + η)ϕ
)
x

= 0.

(3.7)
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Fig. 1 The traveling waves of system (3.1) corresponding to Theorem 3.9

Integrating and applying (1 − ∂2
x ) to the first equation we get{

−(c + A)ϕ + (c + γ )ϕxx + 3

2
ϕ2 = σϕϕxx + σ

2
ϕ2

x − 1

2
(1 + η)2 + 1

2
, in D′(R).

−cη + (1 + η)ϕ = 0.

(3.8)
The fact that the second equation of the above system holds in a strong sense

comes from the regularity of ϕ and η.

Proposition 3.6 If (ϕ, η) is a solitary wave of (3.1) for some c ∈ R, then c �= 0 and
ϕ(x) �= c for any x ∈ R. If σ = 0, then c �= −γ .

Proof By the definition of solitary waves (3.3) and the embedding theorem we know
that ϕ and η are both continuous. If c = 0, then (3.8) becomes⎧⎨

⎩−Aϕ + γ ϕxx + 3

2
ϕ2 = σϕϕxx + σ

2
ϕ2

x − 1

2
(1 + η)2 + 1

2
,

(1 + η)ϕ = 0.
(3.9)

Since η vanishes at infinity, the second equation of the above system indicates that
ϕ(x) = 0 for |x| large enough. Denote x0 = max{x : ϕ(x) �= 0}. Hence ϕ(x) = 0 on
[x0,∞) and ϕ �≡ 0 on (x0 − δ, x0) for any δ > 0. Using the first equation of (3.9),
we know that η ≡ 0 on [x0,∞). Then the continuity of η implies that there exists a
δ1 > 0 such that 1 + η(x) > 0 on (x0 − δ1, x0). This fact and the second equation of
(3.9) lead to ϕ(x) ≡ 0 on (x0 − δ1, x0), which is a contradiction. Therefore c �= 0.

Next we show ϕ �= c. Otherwise there is some x1 ∈ R such that ϕ(x1) = c. From
the second equation of (3.8) we infer that

ϕ(x1) = (
c − ϕ(x1)

)
η(x1) = 0,

so c = 0, which is a contraction.
If σ = 0 and γ = −c, then (3.8) becomes{

−(A + c)ϕ + 3

2
ϕ2 = −1

2
(1 + η)2 + 1

2
,

−cη + (1 + η)ϕ = 0.
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Due to (ϕ, η) ∈ H 1 × H 1, a contradiction will be got whether this equation has a
solution or not. �

Using Proposition 3.6 we obtain from the second equation of (3.8) that

η = ϕ

c − ϕ
. (3.10)

Plugging this into the first equation of (3.8), we obtain an equation for the unknown ϕ:

−(c + A)ϕ + (c + γ )ϕxx + 3

2
ϕ2 = σϕϕxx + σ

2
ϕ2

x − 1

2

c2

(c − ϕ)2
+ 1

2
, in D′(R).

(3.11)

3.1 The Case σ = 0

When σ = 0, (3.11) becomes

ϕxx = c + A

c + γ
ϕ − 3

2(c + γ )
ϕ2 + 1

2(c + γ )
− 1

2

c2

(c + γ )(c − ϕ)2
. (3.12)

Since ϕ ∈ H 1 and c−ϕ �= 0, we know that |c−ϕ| is bounded away from 0. Hence
from the standard local regularity theory to elliptic equation we see that ϕ ∈ C∞ and
so is η. Therefore in this case all solitary waves are smooth.

As for the existence, we may multiply (3.12) by ϕx and integrate on (−∞, x] to
get

ϕ2
x = ϕ2(c − ϕ − A1)(c − ϕ − A2)

(c + γ )(c − ϕ)
:= G(ϕ), (3.13)

where

A1 = −A + √
A2 + 4

2
, A2 = −A − √

A2 + 4

2
(3.14)

are the two roots of the equation y2 + Ay − 1 = 0. Since A > 0, we know
A1 > 0 > A2.

By the decay property of ϕ at infinity, we know that a necessary condition for
existence is

(c − A1)(c − A2)

(c + γ )c
≥ 0. (3.15)

But one may prove furthermore the following.

Theorem 3.7 When σ = 0, (3.1) admits a solitary solution if and only if

(c − A1)(c − A2)

(c + γ )c
> 0. (3.16)

Moreover, all solitary waves are smooth in this case.
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Proof The regularity is discussed above. So we will just focus on the existence part.
If c = A1, then (3.13) becomes

ϕ2
x = −ϕ3(A1 − A2 − ϕ)

(A1 + γ )(A1 − ϕ)
:= G1(ϕ). (3.17)

(1) If γ > −A1, then ϕ(x) < 0 near −∞. Because ϕ(x) → 0 as x → −∞, there is
some x0 sufficiently large negative so that ϕ(x0) = −ε < 0, with ε sufficiently small,
and ϕx(x0) < 0. From standard ODE theory, we can generate a unique local solution
ϕ(x) on [x0 − L,x0 + L] for some L > 0. Since A1 > 0 > A2, we have[−ϕ3(A1 − A2 − ϕ)

(A1 − ϕ)

]′
= ϕ2[−3ϕ2 + (6A1 − 2A2)ϕ − 3A1(A1 − A2)]

(A1 − ϕ)2
< 0,

(3.18)
for ϕ < 0. Therefore G1(ϕ) decreases for ϕ < 0. Because ϕx(x0) < 0, ϕ decreases
near x0, so G1(ϕ) increases near x0. Hence by (3.17), ϕx decreases near x0, and then
ϕ and ϕx both decreases on [x0 − L,x0 + L]. Since

√
G1(ϕ) is local Lipschitz in ϕ

for ϕ ≤ 0, we can continue the local solution to all of R and obtain ϕ(x) → −∞ as
x → ∞, which fails to be in H 1. Thus there is no solitary wave in this case.

(2) If γ < −A1, then ϕ(x) > 0 near −∞. Because ϕ(x) → 0 as x → −∞, there is
some x0 sufficiently negatively large so that ϕ(x0) = ε > 0, with ε sufficiently small,
and ϕx(x0) > 0.

By (3.18) we have

G′
1(ϕ) > 0, for 0 ≤ ϕ < A1.

Thus ϕ(x) and ϕx(x0) both increases on [x0 − L,x0 + L] with the help of (3.17).
Since

√
G1(ϕ) is local Lipschitz in ϕ for 0 ≤ ϕ < A1, we can extend the local solution

to all of R and obtain ϕ(x) → A1 as x → ∞, which fails to be in H 1(R). Therefore
there is no solitary wave in this case.

Similarly we can prove that when c = A2 there is no solitary wave. The proof of
this theorem is thus completed. �

3.2 The Case σ �= 0

In this case we can rewrite (3.11) as

((
ϕ − c + γ

σ

)2)
xx

= ϕ2
x − 2(c + A)

σ
ϕ + 3

σ
ϕ2 − 1

σ
+ c2

σ(c − ϕ)2
, in D′(R).

(3.19)
The following lemma concerns the regularity of the solitary waves. The idea is

inspired by the study of the traveling waves of Camassa–Holm equation (Lenells
2005).

Lemma 3.8 Let σ �= 0 and (ϕ, η) is a solitary wave of (3.1). Then

(
ϕ − c + γ

σ

)k

∈ Cj

(
R \ ϕ−1

(
c + γ

σ

))
, for k ≥ 2j . (3.20)
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Therefore

ϕ ∈ C∞
(

R \ ϕ−1
(

c + γ

σ

))
. (3.21)

Proof From Proposition 3.6 we know that c �= 0 and ϕ �= c, therefore ϕ satisfies
(3.19). Let v = ϕ − c+γ

σ
and denote

r(v) = 3

σ

(
v + c + γ

σ

)2

− 2(c + A)

σ

(
v + c + γ

σ

)
− 1

σ
.

Obviously r(v) is s polynomial in v. Using the fact that ϕ − c �= 0, we know that

(σ − 1)c − γ

σ
− v �= 0. (3.22)

Then v satisfies

(
v2)

xx
= v2

x + r(v) + c2

σ

(
(σ − 1)c − γ

σ
− v

)−2

.

By the assumption we know that (v2)xx ∈ L1
loc. Hence (v2)x is absolutely continuous

and

v2 ∈ C1, and then v ∈ C1(
R \ v−1(0)

)
.

From (3.22) and v + c+γ
σ

∈ H 1 ⊂ C(R) it follows that

(
(σ − 1)c − γ

σ
− v

)−2

∈ C(R) ∩ C1(
R \ v−1(0)

)
.

Moreover,

(
vk

)
xx

= ((
vk

)
x

)
x

= k

2

(
vk−2(v2)

x

)
x

= k(k − 2)vk−2v2
x + k

2
vk−2(v2)

xx

= k(k − 2)vk−2v2
x + k

2
vk−2

[
v2
x + r(v) + c2

σ

(
(σ − 1)c − γ

σ
− v

)−2]

= k

(
k − 3

2

)
vk−2v2

x + k

2
vk−2r(v)

+ kc2

2σ
vk−2

(
(σ − 1)c − γ

σ
− v

)−2

. (3.23)

For k = 3, the right-hand side of (3.23) is in L1
loc. Then

v3 ∈ C1(R).



J Nonlinear Sci (2013) 23:617–656 631

For k ≥ 4, from (3.23) we infer that

(
vk

)
xx

= k

4

(
k − 3

2

)
vk−4[(v2)

x

]2

+ k

2
vk−2r(v) + kc2

2σ
vk−2

(
(σ − 1)c − γ

σ
− v

)−2

∈ C(R).

It follows that vk ∈ C2(R) for k ≥ 4.
For k ≥ 8, we deduce from the above facts that

v4, vk−4, vk−2, vk−2r(v) ∈ C2(R), and

vk−2
[
(σ − 1)c − γ

σ
− v

]−2

∈ C2(
R \ v−1(0)

)
.

Moreover,

vk−2v2
x = 1

4

(
v4)

x

1

k − 4

(
vk−4)

x
∈ C1(R).

Thus from (3.23) we conclude that

vk ∈ C3(
R \ v−1(0)

)
, k ≥ 8.

Performing similar arguments to higher values of k, we can prove that vk ∈ Cj (R\
v−1(0)) for k ≥ 2j . This is just (3.20). �

Denote x = min{x : ϕ(x) = c+γ
σ

} (if ϕ �= c+γ
σ

for all x then let x = +∞), then
x ≤ +∞. By Lemma 3.8, a solitary wave ϕ is smooth on (−∞, x) and (3.11) holds
pointwise on (−∞, x). Multiplying (3.19) by ϕx and integrating on (−∞, x] for
x < x to get

ϕ2
x = ϕ2(c − ϕ − A1)(c − ϕ − A2)

(c − ϕ)(c + γ − σϕ)
:= F(ϕ), (3.24)

where A1 and A2 are defined in (3.14).
Performing similar arguments as in Lenells (2005), we obtain the following con-

clusions.
1. When ϕ approaches a simple zero m = c−A1 or m = c−A2 of F(ϕ), it follows

that F(m) = 0 and F ′(m) �= 0. Then the solution ϕ of (3.24) satisfies

ϕ2
x = (ϕ − m)F ′(m) + O

(
(ϕ − m)2) as ϕ → m,

where f = O(g) as x → a means that |f (x)/g(x)| is bounded in some interval
[a − ε, a + ε] with ε > 0. Hence

ϕ(x) = m + 1

4
(x − x0)

2F ′(m) + O
(
(x − x0)

4) as x → x0, (3.25)

where ϕ(x0) = m.
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2. If F(ϕ) has a double zero at ϕ = 0, so that F ′(0) = 0 and F ′′(0) > 0, then

ϕ2
x = ϕ2F ′′(0) + O

(
ϕ3) as ϕ → 0,

and we get

ϕ(x) � α exp
(−x

√
F ′′(0)

)
as x → ∞, (3.26)

for some constant α. Thus ϕ → 0 exponentially as x → ∞.

3. If ϕ approaches a simple pole ϕ(x0) = c+γ
σ

(when γ �= (σ − 1)c). Then

ϕ(x) − c + γ

σ
= β1|x − x0|2/3 + O

(
(x − x0)

4/3) as x → x0, (3.27)

and

ϕx =

⎧⎪⎪⎨
⎪⎪⎩

2

3
β1|x − x0|−1/3 + O

(
(x − x0)

1/3) as x ↓ x0,

−2

3
β1|x − x0|−1/3 + O

(
(x − x0)

1/3) as x ↑ x0,

(3.28)

for some constant β1 > 0. In particular, whenever F(ϕ) has a pole, the solution ϕ has
a cusp.

4. Peaked solitary waves occur when ϕ suddenly changes direction: ϕx → −ϕx

according to (3.24).
Now we give the following theorem on the existence of solitary waves of (3.1) for

σ �= 0.

Theorem 3.9 For σ �= 0 and γ �= −c we have

1. −c < −A1 < γ .
(1) If σ < 0, then there is a smooth wave ϕ > 0 with maxx∈R ϕ(x) = c − A1

and an anticusped wave (the solution profile has a cusp pointing downward)
ϕ < 0 with minx∈R ϕ(x) = c+γ

σ
(see Fig. 2).

(2) If 0 < σ ≤ 1, then there is a smooth wave ϕ > 0 with maxx∈R ϕ(x) = c − A1
(see Figs. 3 and 4).

(3) If σ > 1, then ϕ > 0. Moreover, we have the following.
If γ > (σ − 1)c − σA1, then the solitary waves are smooth and unique up to

translation with maxx∈R ϕ(x) = c − A1.
If γ = (σ − 1)c − σA1, then the solitary wave is peaked with maxx∈R ϕ(x) =

c − A1 = c+γ
σ

.
If −c < γ < (σ − 1)c − σA1, then the solitary waves are cusped with

maxx∈R ϕ(x) = c+γ
σ

(see Fig. 5).
2. −c < γ = −A1.

(1) If σ < 0, then there is a smooth wave ϕ > 0 with maxx∈R ϕ(x) = c −A1 and
an anticusped wave ϕ < 0 with minx∈R ϕ(x) = c+γ

σ
(see Fig. 2).

(2) If 0 < σ < 1, then there is a smooth wave ϕ > 0 with maxx∈R ϕ(x) = c − A1
(see Fig. 3).

(3) If σ = 1, then the solitary wave is peaked with maxx∈R ϕ(x) = c−A1 = c+γ
σ

(see Fig. 4).
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Fig. 2 The case σ < 0. In this case, there are three kind of waves: cuspons, anticuspons and smooth
waves. The 14 cases give rise to the subcategories of the categories 1–14 in Theorem 3.9, i.e. 1(1), 2(1),
3(1), 4(1), 5(1), 6(1), 7(1), 8(1), 9(1), 10(1), 11(1), 12(1), 13 and 14

(4) If σ > 1, then the solitary wave is cusped with maxx∈R ϕ(x) = c+γ
σ

(see
Fig. 5).

3. −c < γ < −A1.
(1) If σ < 0, then there is a smooth wave ϕ > 0 with maxx∈R ϕ(x) = c −A1 and

an anticusped wave ϕ < 0 with minx∈R ϕ(x) = c+γ
σ

(see Fig. 2).
(2) If 0 < σ < 1, then ϕ > 0. Moreover, we have the following.

If −c < γ < (σ − 1)c − σA1, then the solitary waves are cusped with
maxx∈R ϕ(x) = c+γ

σ
.

If γ = (σ −1)c−σA1, then the solitary wave is peaked with maxx∈R ϕ(x)

= c − A1 = c+γ
σ

.
If γ > (σ − 1)c −σA1, then the solitary waves are smooth and unique up

to translation with maxx∈R ϕ(x) = c − A1 (see Fig. 3).
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Fig. 3 The case 0 < σ < 1. In this case, there are four kind of waves: cuspons, anticuspons, peakons, and
smooth waves. The 12 cases give rise to the subcategories of the categories 1–12 in Theorem 3.9, i.e. 1(2),
2(2), 3(2), 4(2), 5(2), 6(2), 7(2), 8(2), 9(2), 10(2), 11(2), and 12(2)

(3) If σ ≥ 1, then the solitary wave is cusped with maxx∈R ϕ(x) = c+γ
σ

(see
Figs. 4 and 5).

4. −A1 < γ < −c < 0.
(1) If σ < 0, then ϕ < 0. Moreover, we have the following.

If σ < 0 and −A1 < (σ − 1)c < γ < −c, then there is a smooth
wave ϕ < 0 with minx∈R ϕ(x) = c − A1 and a cusped solitary waves with
maxx∈R ϕ(x) = c+γ

σ
.

If σ < 0 and −A1 < γ ≤ (σ − 1)c, then there is a smooth wave ϕ < 0
with minx∈R ϕ(x) = c − A1 (see Fig. 2).

(2) If 0 < σ < 1, then ϕ < 0. Moreover, we have the following.
If (σ − 1)c − σA1 < γ < −c, then the solitary waves are anticusped with

minx∈R ϕ(x) = c+γ
σ

.
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Fig. 4 The case σ = 1. In this case, there are four kind of waves: cuspons, anticuspons, peakons and
smooth waves. The 12 cases give rise to the subcategories of the categories 1–12 in Theorem 3.9, i.e. 1(2),
2(3), 3(3), 4(3), 5(3), 6(2), 7(2), 8(3), 9(3), 10(3), 11(3), and 12(2)

If γ = (σ −1)c−σA1, then the solitary wave is peaked with minx∈R ϕ(x)

= c+γ
σ

.
If γ < (σ − 1)c −σA1, then the solitary waves are smooth and unique up

to translation with minx∈R ϕ(x) = c − A1 (see Fig. 3).
(3) If σ ≥ 1, then there is an anticusped solitary wave ϕ < 0 with minx∈R ϕ(x) =

c+γ
σ

(see Figs. 4 and 5).
5. A1 = γ < −c < 0.

(1) If σ < 0, then there is a smooth solitary wave ϕ < 0 with minx∈R ϕ(x) =
c − A1, and if σ < 0 and (σ − 1)c < γ there are cusped solitary waves with
maxx∈R ϕ(x) = c+γ

σ
and a smooth wave ϕ < 0 with minx∈R ϕ(x) = c − A1

(see Fig. 2).
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Fig. 5 The case σ > 1. In this case, there are four kind of waves: cuspons, anticuspons, peakons and
smooth waves. The 12 cases give rise to the subcategories of the categories 1–12 in Theorem 3.9, i.e. 1(3),
2(4), 3(3), 4(3), 5(4), 6(3), 7(3), 8(4), 9(3), 10(3), 11(4), and 12(3)

(2) If 0 < σ < 1, then there is a smooth wave ϕ < 0 with minx∈R ϕ(x) = c − A1
(see Fig. 3).

(3) If σ = 1, then there is a peaked wave ϕ < 0 with minx∈R ϕ(x) = c+γ
σ

=
c − A1 (see Fig. 4).

(4) If σ > 1, then the solitary waves is anticusped with minx∈R ϕ(x) = c+γ
σ

(see
Fig. 5).

6. γ < −A1 < −c < 0.
(1) If σ < 0 and (σ − 1)c < γ < −A1, then there is a smooth wave ϕ < 0 with

minx∈R ϕ(x) = c − A1 and a cusped wave ϕ > 0 with maxx∈R ϕ(x) = c+γ
σ

(see Fig. 2).
(2) If 0 < σ ≤ 1, then there is a smooth wave ϕ < 0 with minx∈R ϕ(x) = c − A1

(see Figs. 3 and 4).



J Nonlinear Sci (2013) 23:617–656 637

(3) If σ > 1, then ϕ < 0. Moreover, we have the following.
If (σ − 1)c − σA1 < γ < −c, then the solitary waves are anticusped

waves with minx∈R ϕ(x) = c+γ
σ

.
If γ = (σ −1)c−σA1, then the solitary wave is peaked with minx∈R ϕ(x)

= c − A1 = c+γ
σ

.
If γ < (σ − 1)c − σA1, then there is a smooth wave ϕ < 0 with

minx∈R ϕ(x) = c − A1 (see Fig. 5).
7. γ < −A2 < −c.

(1) If σ < 0, then there is a smooth wave ϕ > 0 with minx∈R ϕ(x) = c − A2 and
a cusped wave ϕ > 0 with maxx∈R ϕ(x) = c+γ

σ
(see Fig. 2).

(2) If 0 < σ ≤ 1, then there is a smooth wave ϕ < 0 with minx∈R ϕ(x) = c − A2
(see Figs. 3 and 4).

(3) If σ > 1, then ϕ < 0. Moreover, we have the following.
If γ < (σ − 1)c −σA2, then the solitary waves are smooth and unique up

to translation with minx∈R ϕ(x) = c − A2.
If γ = (σ −1)c−σA2, then the solitary wave is peaked with minx∈R ϕ(x)

= c − A2 = c+γ
σ

.
If (σ − 1)c − σA2 < γ < −c, then the solitary waves are anticusped with

minx∈R ϕ(x) = c+γ
σ

(see Fig. 5).
8. γ = −A2 < −c.

(1) If σ < 0, then there is a smooth wave ϕ < 0 with minx∈R ϕ(x) = c −A2, and
a cusped wave ϕ > 0 with maxx∈R ϕ(x) = c+γ

σ
(see Fig. 2).

(2) If 0 < σ < 1, then there is a smooth wave ϕ < 0 with minx∈R ϕ(x) = c − A2
(see Fig. 3).

(3) If σ = 1, then the solitary wave is peaked with minx∈R ϕ(x) = c −A2 = c+γ
σ

(see Fig. 4).
(4) If σ > 1, then the solitary wave is anticusped with minx∈R ϕ(x) = c+γ

σ
(see

Fig. 5).
9. −A2 < γ < −c.

(1) If σ < 0, then there is a smooth wave ϕ < 0 with minx∈R ϕ(x) = c − A2 and
a cusped wave ϕ > 0 with maxx∈R ϕ(x) = c+γ

σ
(see Fig. 2).

(2) If 0 < σ < 1, then ϕ < 0. Moreover, we have the following.
If (σ − 1)c − σA2 < γ < −c, then the solitary waves are anticusped with

minx∈R ϕ(x) = c+γ
σ

.
If γ = (σ −1)c−σA2, then the solitary wave is peaked with minx∈R ϕ(x) =

c − A2 = c+γ
σ

.
If γ < (σ − 1)c −σA2, then the solitary waves are smooth and unique up

to translation with minx∈R ϕ(x) = c − A2 (see Fig. 3).
(3) If σ ≥ 1, then the solitary wave is anticusped with minx∈R ϕ(x) = c+γ

σ
(see

Figs. 4 and 5).
10. 0 < −c < γ < −A2.

(1) If σ < 0, then ϕ > 0. Moreover, we have the following.
If σ < 0 and −c < γ < (σ − 1)c < −A2, then there is a smooth wave

ϕ > 0 with maxx∈R ϕ(x) = c − A2 and an anticusped solitary waves with
minx∈R ϕ(x) = c+γ

σ
.

If σ < 0 and (σ − 1)c ≤ γ < −A2, then there is a smooth wave ϕ > 0
with maxx∈R ϕ(x) = c − A2 (see Fig. 2).
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(2) If 0 < σ < 1, then ϕ > 0. Moreover, we have the following.
If −c < γ < (σ − 1)c − σA2, then the solitary waves are cusped with

maxx∈R ϕ(x) = c+γ
σ

.
If γ = (σ −1)c−σA2, then the solitary wave is peaked with maxx∈R ϕ(x)

= c+γ
σ

.
If (σ − 1)c −σA2 < γ , then the solitary waves are smooth and unique up

to translation with maxx∈R ϕ(x) = c − A2 (see Fig. 3).
(3) If σ ≥ 1, then there is a cusped solitary wave ϕ > 0 with maxx∈R ϕ(x) = c+γ

σ

(see Figs. 4 and 5).
11. 0 < −c < γ = A2.

(1) If σ < 0, then there is a smooth solitary wave ϕ > 0 with maxx∈R ϕ(x) = c−
A2, and if σ < 0 and γ < (σ − 1)c there are anticusped solitary waves with
minx∈R ϕ(x) = c+γ

σ
and a smooth wave ϕ > 0 with maxx∈R ϕ(x) = c − A2

(see Fig. 2).
(2) If 0 < σ < 1, then there is a smooth wave ϕ > 0 with maxx∈R ϕ(x) = c − A2

(see Fig. 3).
(3) If σ = 1, then there is a peaked wave ϕ > 0 with maxx∈R ϕ(x) = c+γ

σ
=

c − A2 (see Fig. 4).
(4) If σ > 1, then the solitary waves is cusped with maxx∈R ϕ(x) = c+γ

σ
(see

Fig. 5).
12. 0 < −c < −A2 < γ .

(1) If σ < 0 and −A2 < γ < (σ − 1)c, then there is a smooth wave ϕ > 0 with
maxx∈R ϕ(x) = c − A2 and an anticusped wave ϕ < 0 with minx∈R ϕ(x) =
c+γ
σ

(see Fig. 2).
(2) If 0 < σ ≤ 1, then there is a smooth wave ϕ > 0 with maxx∈R ϕ(x) = c − A2

(see Figs. 3 and 4).
(3) If σ > 1, then ϕ > 0. Moreover, we have the following.

If −c < γ < (σ − 1)c − σA2, then the solitary waves are cusped waves
with maxx∈R ϕ(x) = c+γ

σ
.

If γ = (σ −1)c−σA2, then the solitary wave is peaked with maxx∈R ϕ(x)

= c − A2 = c+γ
σ

.
If γ > (σ − 1)c − σA2, then there is a smooth wave ϕ > 0 with

maxx∈R ϕ(x) = c − A2 (see Fig. 5).
13. c = A1.

(1) If γ > −A1 and σ < 0, then there is an anticusped wave ϕ < 0 with
minx∈R ϕ(x) = c+γ

σ
.

(2) If (σ − 1)A1 < γ < −A1, then the solitary waves are cusped with
maxx∈R ϕ(x) = c+γ

σ
(see Fig. 2).

14. c = A2.
(1) If γ < −A2 and σ < 0, then there is a cusped wave ϕ > 0 with maxx∈R ϕ(x)

= c+γ
σ

.
(2) If −A2 < γ < (σ − 1)A2, then the solitary waves are anticusped with

minx∈R ϕ(x) = c+γ
σ

(see Fig. 2).

Moreover, each kind of the above solitary waves is unique and even up to transla-
tion. All solitary waves decay exponentially to zero at infinity.
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We enclose the proof of this theorem as an Appendix for conciseness.

Remark 3.10 The peakons are solitons, which is a self-reinforcing solitary wave (a
wave packet or pulse) that maintains its shape while it travels at constant speed. Soli-
tons are caused by a cancelation of nonlinear and dispersive effects in the medium
(Constantin 2011). They replicate a characteristic of the traveling waves of greatest
height-exact traveling solutions of the governing equations for water waves with a
peak at their crest. The concept of peakon was introduced by Camassa and Holm
(1993). The way a smooth initial condition breaks up into a train of peakons is by
limiting to a verticality at each inflection point with negative slope, from which a
derivative discontinuity emerges (see the blow-up mechanism in Sect. 4) (Camassa
and Holm 1993).

Remark 3.11 The peakons and cuspons are both physical solutions. Indeed, break-
ing waves, both whitecaps and surf, are commonly observed in the ocean (there-
fore the cuspon is physical solution since for a cuspon ϕ we have limy↑x ϕx(y) =
− limy↓x ϕx(y) = ±∞). Moreover, when initiated by earthquakes, these waves
may turn into formidable shallow-water breaking wave phenomenon, the tsunami.
A tsunami wave is generated when a large body of water, such as a region in a lake
or a sea, becomes rapidly displaced on a massive scale. With typical wavelengths of
200 km, tsunamis are governed by shallow water equations and can be catastrophic
when they reach land, as seen in the recent Indonesia and Japan earthquakes (Con-
stantin 2011).

Remark 3.12 To our knowledge, there are two approach to study stability. One is the
variational approach, that is, it should be proved that each peakon is the unique min-
imum (ground state) of constrained energy, from which its orbital stability is proved
(Constantin and Molinet 2001). Another approach to study stability is to linearize the
equation around the solitary waves, and it is commonly believed that nonlinear stabil-
ity is governed by the linearized equation. However, for the Dullin–Gottwald–Holm
system, the nonlinearity plays the dominant role rather than being a higher-order
correction to linear terms. Thus it is unclear how one can get nonlinear stability of
peakons by studying the linearized problem. Moreover, the peakons are not differen-
tiable, making it difficult to analyze the spectrum of the linearized operator around
them.

We think one possible approach to establish the stability of the peakons for the
GDGH2 system is due to Constantin and Strauss (2000), Lin and Liu (2009) for the
Degasperis–Procesi equation). To extend the approach to nonlinear stability of the
GDGH2 peakons, our main difficulty is: by expanding the energy E (given by (1.6)
in the introduction) around the peakon, the error term is in the form of the difference
of the maxima of peakon and the perturbed solution. Then how to estimate this error
term?

We will study the orbital stability of the smooth solitary waves of the GDGH2
system using the classical method provided by Grillakis et al. (1987).

In view of the length of this paper, we will discuss the stability of smooth solitary
waves and peakons in a forthcoming paper.
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Though there is no explicit expression for ϕ, and so η in view of (3.10), as in
Zhang and Liu (2010), the effects of the traveling speed c on the function ϕ can be
analyzed to provide some general description of its profile. Similarly to the case in
Zhang and Liu (2010) we have

Proposition 3.13 Assume (3.16) holds and ϕ is a smooth solitary wave of (3.1) as
obtained in Theorem 3.7. Then ∂cϕ decays exponentially to zero at infinity and has
at most two zeros on R. In particular, if −A1 < γ < A and A1 < c < 1

A−γ
, then ∂cϕ

has exactly two zeros on R.

Proof Again we only discuss the case c > A1. The other cases can be handled simi-
larly.

Denote ω = ∂cϕ. The exponential decay of ω can be inferred from (A.2). Since
ϕ is unique and even up to translations, we may assume that ϕ(0) = c − A1. Hence
ω(0) = 1 and ω is even. Assume ω(x0) = 0 for some x0 > 0. Differentiating (3.24)
with respect to c and evaluating at x = x0, we get

2ϕxωx = ϕ2

c + γ − σϕ

[
1 + 1

(c − ϕ)2
+ (c − ϕ)2 + A(c − ϕ) − 1

(c − ϕ)(c + γ − σϕ)

]

= ϕ2

c + γ − σϕ

[
1 + 1

(c − ϕ)2
+ ϕ2

x

ϕ2

]
> 0,

where use has been made of c + γ − σϕ > 0. Since ϕx(x0) < 0, we deduce from the
above inequality that ωx(x0) < 0. Therefore ω is strictly decreasing near x0. It is then
inferred from the continuity of ω that it has at most two zeros on R.

If −A1 < γ < A and A1 < c < 1
A−γ

, then we have (−A − γ )c2 + 2c − γ > 0.
Using the decay estimate (A.2) we see that ϕ decays faster at infinity as c gets larger,
since

∂c

(√
c2 + Ac − 1√

c(c + γ )

)
= (−A − γ )c2 + 2c − γ

(c(c + γ ))3/2
√

c2 + Ac − 1
> 0,

we know ω(x) < 0 at infinity and ω has at least two zeros. Combining the above
argument we proved that ω(x) has exactly two zeros ±x0 in this case.

Next we try to find an implicit formula for the peaked solitary waves. Let us con-
sider only the case −c < −A1 < γ . By Theorem 3.7 we know that peaked solitary
waves exist only when γ = (σ − 1)c − σA1. In this case we have

ϕ2
x = ϕ2(c − A2 − ϕ)

c − ϕ
.

Since ϕ is positive, even with respect to some x0 and decreasing on (x0,∞), so for
x > x0 we have

ϕx = −ϕ

√
1 − A2

c − ϕ
.
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Integrating we get

−(x − x0) =
∫ ϕ

c−A1

dt

t

√
1 − A2

c−t

.

Let ω = 1 − A2
c−t

in the above equation; then

−(x − x0) =
∫ 1− A2

c−ϕ

1− A2
A1

−A2

[cω − (c − A2)](ω − 1)
√

ω
dω

=
∫ 1− A2

c−ϕ

1− A2
A1

1√
ω

[
c

cω − (c − A2)
− 1

ω − 1

]
dω

=
(√

c

c − A2
ln

∣∣∣∣
√

cω − √
c − A2√

cω + √
c − A2

∣∣∣∣ − ln

∣∣∣∣
√

ω − 1√
ω + 1

∣∣∣∣
)1− A2

c−ϕ

1− A2
A1

.

Therefore we obtain an implicit formula for the peaked solitary waves:

−|x − x0| =
(√

c

c − A2
ln

∣∣∣∣
√

cω − √
c − A2√

cω + √
c − A2

∣∣∣∣ − ln

∣∣∣∣
√

ω − 1√
ω + 1

∣∣∣∣
)1− A2

c−ϕ

1− A2
A1

. (3.29)

�

4 Wave-Breaking Phenomena

In this section, we study the blow-up problem for the GDGH system (1.5). For con-
venience, we rewrite system (1.5) as the following conservation law form (see also
system (3.6)):⎧⎨

⎩ ut + (σu − γ )ux = −∂xp ∗
[
(γ − A)u + 3 − σ

2
u2 + σ

2
u2

x + 1

2
ρ2

]
,

ρt + uρx = −ρux.

(4.1)

4.1 Blow-up Scenario

Using the Littlewood–Paley analysis for the transport equation and Moser-type esti-
mates, Gui and Liu proved the following lemma in Gui and Liu (2010) to handle the
regularity of solutions to the model (1.2). We recall this proposition for completeness.

Proposition 4.1 (Gui and Liu 2010) Let 0 < σ < 1. Suppose that f0 ∈ Hσ ,g ∈
L1([0, T ];Hσ ), v, ∂xv ∈ L1([0, T ];L∞) and that f ∈ L∞([0, T ];Hσ ) ∩ C([0, T ];
S ′) solves the 1-dimensional linear transport equation{

∂tf + v∂xf = g,

f |t=0 = f0.
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Then f ∈ C([0, T ];Hσ ). Moreover, to state it precisely, there exists a constant C

depending only on σ and such that the following statement holds:

∥∥f (t)
∥∥

Hσ ≤ ‖f0‖Hσ + C

∫ t

0

∥∥g(τ)
∥∥

Hσ dτ + C

∫ t

0

∥∥f (τ)
∥∥

Hσ V ′(τ )dτ

or, hence, ∥∥f (t)
∥∥

Hσ ≤ eCV (t)

(
‖f0‖Hσ + C

∫ t

0

∥∥g(τ)
∥∥

Hσ dτ

)

with V (t) = ∫ t

0 (‖v(τ)‖L∞ + ‖∂xv(τ )‖L∞)dτ .

The two equations for u and ρ in system (4.1) are of a transport structure,

∂tf + v∂xf = g.

It is well known that most of estimates are available when v has enough regular-
ity. Roughly speaking, the regularity of the initial data is expected to be preserved
as soon as v belongs to L1(0, T ;Lip). More specifically, u and ρ are “transported”
along directions of u − γ and u, respectively. Thus, the solution can be estimated in
a Gronwall way involving ‖ux‖L∞ . Hence, we can use these estimates and Proposi-
tion 4.1 to derive the following blow-up criterion. The detailed proof can be found in
Gui and Liu (2010).

Theorem 4.2 Assume (u,ρ) is the solution of system (4.1) with initial data (u0, ρ0 −
1) ∈ Hs × Hs−1, s ≥ 2, and let T be the maximal time of existence. Then

T < ∞ ⇒
∫ T

0

∥∥ux(τ)
∥∥

L∞ dτ = ∞.

Based on the above result, we can establish the following theorem on the precise
blow-up mechanism. It is shown that the solution to the model (4.1) can only have
singularities which correspond to wave breaking.

Theorem 4.3 (Wave-breaking criterion) Let (u0, ρ0 − 1) ∈ Hs × Hs−1 with s ≥ 2,
and T > 0 be the maximal time of existence of the solution (u,ρ) to system (4.1) with
initial data (u0, ρ0). Then the corresponding solution (u,ρ) blows up in finite time if
and only if

lim
t↑T

[
inf
x∈R

σux(t, x)
]

= −∞. (4.2)

Since the proof of this result is essentially similar to Theorem 3.4 in Chen and Liu
(2011), so we omit it here.

4.2 Wave-Breaking Phenomena

We next give two conditions, which can guarantee wave-breaking phenomena in fi-
nite time. We will use the following two associated Lagrangian scales of the GDGH
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system (4.1), namely: ⎧⎨
⎩

∂q1

∂t
= σu(t, q1) − γ, 0 < t < T,

q1(0, x) = x, x ∈ R

(4.3)

and ⎧⎨
⎩

∂q2

∂t
= u(t, q2), 0 < t < T,

q2(0, x) = x, x ∈ R,
(4.4)

where u ∈ C1([0, T ),Hs−1) is the first component of the solution (u,ρ) to system
(4.1) with initial data (u0, ρ0 − 1) ∈ Hs × Hs−1 (s ≥ 2), and T > 0 is the maximal
time of existence. By a direct calculation, we have

q1,tx(t, x) = σux

(
t, q1(t, x)

)
q1,x(t, x)

and

q2,tx(t, x) = ux

(
t, q2(t, x)

)
q2,x(t, x).

Then,

q1,x(t, x) = eσ
∫ t

0 ux(τ,q1(τ,x))dτ > 0, for t > 0, x ∈ R

and

q2,x(t, x) = e
∫ t

0 ux(τ,q2(τ,x))dτ > 0, for t > 0, x ∈ R,

which means that qi(t, ·) : R → R (i = 1,2) are two diffeomorphisms of the line for
every t ∈ [0, T ). Consequently, the L∞-norm of any function v(t, ·) ∈ L∞ (t ∈ [0, T )

is preserved under the family of these two diffeomorphisms qi(t, ·) (i = 1,2), i.e.,∥∥v(t, ·)∥∥
L∞ = ∥∥v

(
t, q1(t, ·)

)∥∥
L∞ = ∥∥v

(
t, q2(t, ·)

)∥∥
L∞, t ∈ [0, T ).

Similarly,

inf
x∈R

v(t, x) = inf
x∈R

v
(
t, q1(t, x)

) = inf
x∈R

v
(
t, q2(t, x)

)
, t ∈ [0, T )

and

sup
x∈R

v(t, x) = sup
x∈R

v
(
t, q1(t, x)

) = sup
x∈R

v
(
t, q2(t, x)

)
, t ∈ [0, T ).

We recall the following useful lemma established by Constantin and Escher.

Lemma 4.4 (Constantin and Escher 1998a) Let T > 0 and v ∈ C1([0, T );H 2). Then
for every t ∈ [0, T ), there exists at least one point ξ(t) ∈ R with

m1(t) := inf
x∈R

[
vx(t, x)

] = vx

(
t, ξ(t)

)
,
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and the function m(t) is almost everywhere differentiable on (0, T ) with

dm1

dt
= vtx

(
t, ξ(t)

)
a.e. on (0, T ). (4.5)

We are in the position to give the first blow-up result.

Theorem 4.5 Let σ > 0. Assume (u0, ρ0 − 1) ∈ Hs × Hs−1 with s ≥ 2. If there is
some x0 ∈ R such that

ρ0(x0) = 0, u0,x(x0) = inf
x∈R

u0,x(x) (4.6)

and one of the following two conditions holds:

∥∥(u0, ρ0 − 1)
∥∥2

H 1×L2

<
(
√|γ − A|2 + C1 − |γ − A|)(|γ − A|2 + C1 − |γ − A|√|γ − A|2 + C1)

C2
1

√|γ − A|2 + C1
,

(4.7)

u0,x(x0) < − C2√
σ

. (4.8)

Then the corresponding solution (u,ρ) to system (4.1) blows up in finite time in the
following sense: there is a T1 with

0 < T1 ≤ 2 + 4(1 − ε0)(1 + |u0,x(x0)|)
ε0(1 − ε0) − [C1(1 − ε0) + |γ − A|2]‖(u0, ρ0 − 1)‖2

H 1×L2

, (4.9)

0 < T1 ≤ 1

C2
√

σ
ln

√
σu0,x(x0) − C2√
σu0,x(x0) + C2

(4.10)

respectively, such that

lim inf
t↑T1

(
inf
x∈R

ux(t, x)
)

= −∞,

where

C1 = 2|3 − σ | + 2σ,

C2 =
(

|3 − σ | + |γ − A|2 + σ

2

) 1
2 ∥∥(u0, ρ − 1)

∥∥
H 1×L2

and

ε0 = |γ − A|2 + C1 − |γ − A|√|γ − A|2 + C1

C1
(4.11)
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is the maximum point of the function

g(ε) = ε(1 − ε)

C1(1 − ε) + |γ − A|2 . (4.12)

Proof By Theorem 3.2 and a simple density argument, we need only to prove this
theorem for s ≥ 3. We may also assume u0 �= 0, otherwise it is trivial. Let T > 0 be
the maximal time of existence of the corresponding solution (u,ρ) to system (4.1).

By Lemma 4.4, we can define m1(t) and ξ(t) as

m1(t) = ux

(
t, ξ(t)

) = inf
x∈R

ux(t, x), t ∈ [0, T ). (4.13)

Obviously

uxx

(
t, ξ(t)

) = 0, a.e. t ∈ [0, T ). (4.14)

Since q2(t, ·) defined by (4.4) is a diffeomorphism of the line for any t ∈ [0, T ), there
exists a x1(t) ∈ R such that

q2
(
t, x1(t)

) = ξ(t), t ∈ [0, T ). (4.15)

Along the trajectory of q2(t, x1(t)), we have

dρ(t, ξ(t))

dt
= −ρ

(
t, ξ(t)

)
ux

(
t, ξ(t)

)
. (4.16)

Equations (4.6) and (4.13) imply that

m1(0) = ux

(
0, ξ(0)

) = inf
x∈R

u0,x(x) = u0,x(x0), (4.17)

hence we can choose ξ(0) = x0 and ρ0(ξ(0)) = ρ0(x0) = 0, and then from (4.16) it
follows that

ρ
(
t, ξ(t)

) ≡ 0, for t ∈ [0, T ). (4.18)

Using the identity −∂2
xp ∗ f = f − p ∗ f , for any f ∈ L2, by differentiating the

first equation in (4.1) with respect to x we obtain

utx + (σu − γ )uxx = −σ

2
u2

x + 3 − σ

2
u2 + 1

2
ρ2 − (γ − A)∂2

xp ∗ u

− p ∗
(

3 − σ

2
u2 + σ

2
u2

x + 1

2
ρ2

)
. (4.19)

Let

f = 3 − σ

2
u2 − (γ − A)∂2

xp ∗ u − p ∗
(

3 − σ

2
u2 + σ

2
u2

x + 1

2
ρ2

)
. (4.20)

Hence, along the trajectory q2(t, x1(t)), for t ∈ [0, T ), noting (4.14), we have

m′
1(t) = −σ

2
m2

1 + f
(
t, ξ(t)

)
, (4.21)

where “′” is the derivative with respect to t .
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We first prove the case (4.7). Toward this goal, let us now estimate the upper bound
for f . Since ∂2

xp ∗ u = ∂xp ∗ ∂xu, we have

f = 3 − σ

2
u2 − (γ − A)∂xp ∗ ∂xu − p ∗

(
3 − σ

2
u2 + σ

2
u2

x

)
− 1

2
p ∗ 1

− p ∗ (ρ − 1) − 1

2
p ∗ (ρ − 1)2

≤ |3 − σ |
2

u2 + |γ − A||∂xp ∗ ∂xu| +
∣∣∣∣p ∗

(
3 − σ

2
u2 + σ

2
u2

x

)∣∣∣∣
− 1

2
+ ∣∣p ∗ (ρ − 1)

∣∣. (4.22)

By the Sobolev embedding theorem, we have

u2 ≤ 1

2

(‖u‖2
L2 + ‖ux‖2

L2

)
. (4.23)

Using Young’s inequality, we deduce that

|γ − A||px ∗ ux | ≤ 1

2
|γ − A|‖ux‖L2 ≤ 1 − ε0

4
+ |γ − A|2

4(1 − ε0)
‖ux‖2

L2, (4.24)

where ε0 is defined by (4.11),∣∣∣∣p ∗
(

3 − σ

2
u2 + σ

2
u2

x

)∣∣∣∣ ≤ 1

2

∥∥∥∥3 − σ

2
u2 + σ

2
u2

x

∥∥∥∥
L1

≤ |3 − σ |
4

‖u‖2
L2 + σ

4
‖ux‖2

L2

(4.25)
and

∣∣p ∗ (ρ − 1)
∣∣ ≤ ‖p‖L2‖ρ − 1‖L2 = 1

2
‖ρ − 1‖L2 ≤ 1

4
+ 1

4
‖ρ − 1‖2

L2 . (4.26)

Substituting the above four estimates (4.23)–(4.26) back into (4.22), we arrive at

f ≤ |3 − σ |
4

(‖u‖2
L2 + ‖ux‖2

L2

) +
(

1 − ε0

4
+ |γ − A|2

4(1 − ε0)
‖ux‖2

L2

)

+
( |3 − σ |

4
‖u‖2

L2 + σ

4
‖ux‖2

L2

)
+

(
1

4
+ 1

4
‖ρ − 1‖2

L2

)
− 1

2

= |3 − σ |
2

‖u‖2
L2 +

( |3 − σ | + σ

4
+ + |γ − A|2

4(1 − ε0)

)
‖ux‖2

L2 + 1

4
‖ρ − 1‖2

L2 − ε0

4

≤
( |3 − σ | + σ

2
+ |γ − A|2

4(1 − ε0)

)∥∥(u0, ρ − 1)
∥∥2

H 1×L2 − ε0

4

= C1 + |γ − A|2
4(1 − ε0)

∥∥(u0, ρ − 1)
∥∥2

H 1×L2 − ε0

4

:= −C3
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for (t, x) ∈ [0, T ) × R. We claim that

C3 > 0.

Indeed, since ε0 is the maximum point of the function g(ε), it is inferred that

max
0≤ε≤1

g(ε) = g(ε0)

= (
√|γ − A|2 + C1 − |γ − A|)(|γ − A|2 + C1 − √|γ − A|2 + C1)

C2
1

√|γ − A|2 + C1

and (4.7) reduces to ∥∥(u0, ρ − 1)
∥∥2

H 1×L2 < g(ε0).

In view of the definitions of C3 and g(ε0), it follows that

C3 = ε0

4
− C1

4
+ |γ − A|24(1 − ε0)

∥∥(u0, ρ − 1)
∥∥2

H 1×L2

= ε0(1 − ε0) − [C1(1 − ε0) + |γ − A|2]‖(u0, ρ − 1)‖2
H 1×L2

4(1 − ε0)

>
ε0(1 − ε0) − [C1(1 − ε0) + |γ − A|2]g(ε0)

4(1 − ε0)

= 0.

Now by (4.21) it is deduced that

m′
1(t) ≤ −σ

2
m2

1(t) − C3 ≤ −C3 < 0, t ∈ [0, T ), (4.27)

which shows that m1(t) is strictly decreasing in [0, T ). If the solution (u,ρ) to (4.1)
exists globally in time, i.e. T = ∞, we will derive a contradiction. Define

t1 = 1 + |u0,x(x0)|
C3

. (4.28)

Integrating (4.27) over [0, t1] yields

m1(t1) ≤ m1(0) +
∫ t1

0
m′

1(t)dt ≤ ∣∣u0,x(x0)
∣∣ − C3t1 = −1,

where we have used (4.17). Therefore

m1(t) ≤ −1 on [t1, T ). (4.29)

We also get from (4.27) that m′
1(t) ≤ −σ

2 m2
1(t) on [t1, T ), i.e.,

− d

dt

(
1

m1(t)

)
≤ −σ

2
, for t ∈ [t1, T ).
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Integrating this inequality and taking into account (4.29) lead to

− 1

m1(t)
− 1 ≤ − 1

m1(t)
+ 1

m1(t1)
≤ −σ

2
(t − t1), for t ∈ [t1, T ),

hence

m1(t) ≤ 2

σ(t − t1) − 2
→ −∞, as t ↑ t1 + 2

σ
, (4.30)

which implies T ≤ t1 + 2
σ

; this is a contradiction since T equals ∞.
We next prove the case (4.8). Instead of (4.24), we use the following estimate:

|γ − A||∂xp ∗ ∂xu| ≤ |γ − A|‖px‖L2‖ux‖L2

= 1

2
|γ − A|‖ux‖L2 ≤ 1

4
+ 1

4
|γ − A|2‖ux‖2

L2 . (4.31)

Combing (4.23), (4.25)–(4.26) and (4.31), it is easy to find that

f ≤
( |3 − σ |

2
+ |γ − A|2 + σ

4

)∥∥(u0, ρ − 1)
∥∥2

H 1×L2 = 1

2
C2

2 . (4.32)

From (4.21), we deduce that

m′
1(t) ≤ −σ

2
m2

1(t) + 1

2
C2

2 , t ∈ [0, T ). (4.33)

If m1(0) = u0,x(x0) < − C2√
σ

, we now claim that

m1(t) < − C2√
σ

, ∀t ∈ [0, T ). (4.34)

In fact, as m1(0) < − C2√
σ

and m1(t) is continuous, failure of (4.34) would ensure

the existence of some t0 ∈ (0, T ) such that m1(t) < − C2√
σ

on [0, t0), while m1(t0) =
− C2√

σ
. But then we would have by (4.33)

dm1(t)

dt
< 0, a.e. t ∈ (0, t0).

Being locally Lipshitz, the function m1(t) is absolutely continuous on [0, t0], and
therefore an integration of the previous inequality would lead to

m1(t0) ≤ m1(0) < − C2√
σ

,

which contradicts our assumption m1(t0) = − C2√
σ

.
Solving the inequality (4.33) gives

√
σm1(0) + C2√
σm1(0) − C2

eC2
√

σ t − 1 ≤ 2C2√
σm1(t) + C2

≤ 0.
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In view of 0 <
√

σm1(0)+C2√
σm1(0)−C2)

< 1, we deduce that there exists T1 satisfying

0 < T1 <
1

C2
√

σ
ln

√
σm1(0) − C2√
σm1(0) + C2

such that limt↑T1 m(t) = −∞. This completes the proof of Theorem 4.5. �

Corollary 4.6 Under the assumptions of Theorem 4.5, assume further that s > 5
2 .

Then there exists a T2 with 0 < T1 ≤ T2 (T1 is defined in (4.9) and (4.10)) such that

(a) lim sup
t↑T2

(
sup
x∈R

ρx(t, x)
)

= +∞, if ρ0,x(x0) > 0;

(b) lim inf
t↑T2

(
inf
x∈R

ρx(t, x)
)

= −∞, if ρ0,x(x0) < 0.

Proof We only prove the case (4.7), since the other case is similar.
Differentiating the second equation in (4.1) with respect to x, evaluating it along

the trajectory q2(t, x), we obtain

dρx(t, q2(t, x))

dt
= −uxx

(
t, q2(t, x)

)
ρ
(
t, q2(t, x)

) − 2ux

(
t, q2(t, x)

)
ρx

(
t, q2(t, x)

)
.

(4.35)
Take x = x1(t) (defined by (4.15)), in view of the fact uxx(t, ξ(t)) = 0 for a.e. t ∈
[0, T ), one infers from (4.35) that

dρx(t, ξ(t))

dt
= −2ux

(
t, ξ(t)

)
ρx

(
t, ξ(t)

)
,

where ξ(t) = q2(t, x1(t)). Recall (4.13); by integrating one obtains

ρx

(
t, ξ(t)

) = ρ0,x(x0)e
−2

∫ t
0 ux(τ,ξ(τ ))dτ = ρ0,x(x0)e

−2
∫ t

0 infx∈R ux(τ,x)dτ .

Since m1(t) is strictly decreasing in [0, T ), by (4.27) and (4.30) we have

e−2
∫ t

0 infx∈R ux(τ,x)dτ = e−2
∫ t1

0 infx∈R ux(τ,x)dτ e
−2

∫ t
t1

infx∈R ux(τ,x)dτ

≥ eC3t
2
1 −2|u0,x (x0)|t1 e

−2
∫ t
t1

2
σ(τ−t1)−2 dτ

= eC3t
2
1 −2|u0,x (x0)|t1+ 4

σ
ln 2e− 4

σ
ln[σ(t1−t)+2], (4.36)

where t1 is defined by (4.28). Obviously,

lim
t↑t1+ 2

σ

e− 4
σ

ln[σ(t1−t)+2] = +∞.

Therefore, if ρ0,x(x0) > 0, in view of Theorem 4.3, it is inferred that there exists
some 0 < T1 ≤ T2 such that

sup
x∈R

ρx(t, x) ≥ ρx

(
t, ξ(t)

) → +∞
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as t ↑ T2; if ρ0,x(x0) < 0, one can deduce (b) similarly. This completes the proof of
Corollary 4.6. �

The second blow-up result we obtained is

Theorem 4.7 Let σ < 0. Assume (u0, ρ0 − 1) ∈ Hs × Hs−1 (s ≥ 2) and there exists
some x1 ∈ R such that

u0,x(x1) >
C4√−σ

, (4.37)

where

C4 =
(

2 + 3 − σ + |γ − A|2
2

) 1
2 ∥∥(u0, ρ0 − 1)

∥∥
H 1×L2 .

Then there exists a T3 with

0 < T3 ≤ −2

σu0,x(x1) −
√

C4(−σ)
3
2 u0,x(x1)

such that

lim inf
t↑T3

(
sup
x∈R

ux(t, x)
)

= ∞.

Proof As in the proof of Theorem 4.5, we need only to prove this theorem for s ≥ 3
and u0 �= 0. Let T > 0 be the maximal time of existence of the corresponding solution
(u,ρ) to system (4.1).

We now estimate the lower bound for f defined by (4.20). Similar to the proof of
(4.32), one infers that

−f = −3 − σ

2
u2 + (γ − A)∂xp ∗ ∂xu + p ∗

(
3 − σ

2
u2 + σ

2
u2

x

)
+ 1

2
p ∗ 1

+ p ∗ (ρ − 1) + 1

2
p ∗ (ρ − 1)2

≤ |γ − A||∂xp ∗ ∂xu| +
∣∣∣∣p ∗

(
3 − σ

2
u2 + σ

2
u2

x

)∣∣∣∣ + 1

2

+ ∣∣p ∗ (ρ − 1)
∣∣ + 1

2
p ∗ (ρ − 1)2

≤
(

1

4
+ 1

4
|γ − A|2‖ux‖2

L2

)
+

(
3 − σ

4
‖u‖2

L2 − σ

4
‖ux‖2

L2

)

+ 1

2
+

(
1

4
+ 1

4
‖ρ − 1‖2

L2

)
+ 1

4
‖ρ − 1‖2

L2

≤ 1 + 3 − σ + |γ − A|2
4

∥∥(u0, ρ0 − 1)
∥∥2

H 1×L2

= 1

2
C2

4 . (4.38)



J Nonlinear Sci (2013) 23:617–656 651

Since

sup
x∈R

[
vx(t, x)

] = − inf
x∈R

[−vx(t, x)
]

and by Lemma 4.4, there exists at least a η(t) ∈ R such that

m2(t) =: ux

(
t, η(t)

) = sup
x∈R

ux(t, x), for t ∈ [0, T ). (4.39)

Obviously,

uxx

(
t, η(t)

) = 0, for a.e. t ∈ [0, T ).

Recall that q2(t, ·) defined by (4.4) is a diffeomorphism of the line for any t ∈ [0, T ),
we see that there exists a x2(t) ∈ R such that

q2
(
t, x2(t)

) = η(t), t ∈ [0, T ). (4.40)

Evaluating (4.19) along q2(t, x2(t)), in view of (4.38), we obtain

m′
2(t) = −σ

2
m2

2(t)+ 1

2
ρ2(t, η(t)

)+f
(
t, η(t)

) ≥ −σ

2
m2

2(t)− 1

2
C2

4 , for t ∈ [0, T ).

(4.41)
Equation (4.37) implies that m2(0) ≥ u0,x(x1) > C4√−σ

; then from (4.41) it follows

that m′
2(0) > 0 and m2(t) is strictly increasing over [0, T ). Therefore

m2(t) > m2(0) ≥ u0,x(x1) > 0. (4.42)

Let

δ = 1

2
+ 1

2

√
C4

u0,x(x1)
√−σ

∈
(

1

2
,1

)
.

By (4.42), it is inferred from (4.41) that

m′
2(t) ≥ −σ

2
m2

2(t)−
1

2
C2

4 ≥ −σ

2
m2

2(t)
[
1−(2δ−1)4] ≥ −δσm2

2(t), for t ∈ [0, T ).

Solving this inequality gives

m2(t) ≥ u0,x(x1)

1 + δσu0,x(x1)t
→ ∞, as t → − 1

δσu0,x(x1)
.

Consequently,

T ≤ − 1

δσu0,x(x1)
,

which is the desired result and completes the proof of the theorem. �

Remark 4.8 It should be pointed out that a “null condition” as (4.6) is not required in
Theorem 4.7.
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4.3 Lower Bound of the Lifespan

Attention is now turned to a lower bound depending only on ‖(u0, ρ0 − 1)‖H 1×L2

and infx∈R u0,x(x) for the lifespan of the solution of system (4.1). We obtain the
following result.

Theorem 4.9 Let σ > 0. Assume that (u0, ρ0 − 1) ∈ Hs × Hs−1 with s ≥ 2 and
Tmax > 0 is the lifespan of the corresponding solution to (4.1). Assume further (4.6)
holds, i.e., there is some x0 ∈ R such that

ρ0(x0) = 0, u0,x(x0) = inf
x∈R

u0,x(x).

If Tmax < ∞, then the lifespan Tmax > 0 satisfies

Tmax ≥ T4 = 2

C5
√

σ
arctan

( −C5√
σ infx∈R u0,x(x)

)
, (4.43)

where C5 is defined by

C5 =
(

2 + |3 − σ | + σ + |γ − A|2
2

) 1
2 ∥∥(u0, ρ0 − 1)

∥∥
H 1×L2 .

Proof For use during the proof, we derive a lower bound estimate of f defined by
(4.20) for σ > 0. Similar to the proof of (4.38), we have

f ≥ −
(

1 + 2|3 − σ | + σ + |γ − A|2
4

∥∥(u0, ρ0 − 1)
∥∥2

H 1×L2

)
= −1

2
C2

5 . (4.44)

Let us first assume that the initial data (u0, ρ0 − 1) ∈ Hs × Hs−1 (s ≥ 3). Noting
(4.44), from (4.21) it is inferred that

m′
1(t) = −σ

2
m2

1 + f
(
t, ξ(t)

) ≥ −σ

2
m2

1 − 1

2
C2

5 .

Integrating gives

arctan

√
σm1(t)

C5
≥ arctan

(√
σm1(0)

C5

)
− C5

√
σ

2
t, ∀t < min{Tmax, T4},

or, which is the same,

m1(t) ≥ C5
√

σm1(0) − C2
5 tan(

C5
√

σ
2 t)

C5
√

σ + σm1(0) tan(
C5

√
σ

2 t)
.

Consequently, due to (4.2), we deduce from the above inequality the desired result
(4.43).

If s ∈ [2,3), it is easy to see that the lifespan T s
max as a function of s for the initial

data (u0, ρ0 − 1) ∈ Hs ×Hs−1 with s ≥ 2 is non-increasing. Therefore T s
max ≥ T r

max,
for 2 ≤ s ≤ r . This ensures the validity of the lower bound of the lifespan Tmax in
(4.43) for all s ≥ 2. �
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Appendix

In this section, we supplement the proof of Theorem 3.9.

Proof of Theorem 3.9 First from (3.24) and the decay of ϕ(x) at infinity, we know
that solitary waves exist if condition (3.15) holds.

If c = A1, then (3.24) becomes

ϕ2
x = −ϕ3(A1 − A2 − ϕ)

(A1 − ϕ)(A1 + γ − σϕ)
:= F1(ϕ). (A.1)

(1) If γ > −A1, then we see that ϕ(x) < 0 near −∞. Similarly as in the proof
of Theorem 3.7, we can find some x0 sufficiently negative with ϕ(x0) = −ε < 0 and
ϕx(x0) < 0, and we can construct a unique local solution ϕ(x) on [x0 − L,x0 + L]
for some L > 0.

If σ < 0, we see that 1
A1+γ−σϕ

is decreasing when (A1 + γ )/σ < ϕ ≤ 0. Combin-

ing this with (3.18) we know that F1(ϕ) decreases for ϕ < 0. Because ϕx(x0) < 0,

ϕ(x) decreases near x0, so that F1(ϕ) increases near x0. Hence from (A.1), ϕx(x)

decreases near x0, then ϕ and ϕx both decreases on [x0 − L,x0 + L]. Since
√

F1(ϕ)

is locally Lipschitz in ϕ for (A1 + γ )/σ < ϕ ≤ 0, we can easily continue the local
solution to (−∞, x0 − L] with ϕ(x) → 0 as x → −∞. As for x ≥ x0 + L, we can
solve the initial valued problem{

ψx = −√
F1(ϕ),

ψ(x0 + L) = ϕ(x0 + L)

all the way until ψ = (A1 + γ )/σ , which is a simple pole of F1(ϕ). By (3.27) and
(3.28), we deduce that we can construct an anticusped solution with a cusp singularity
at ϕ = (A1 + γ )/σ .

If σ > 0, then F ′
1(ϕ) < 0 for ϕ < 0. A similar argument as Theorem 3.7 shows

that there is no solitary wave in this case.
(2) If γ < −A1, then we see that ϕ(x) > 0 near −∞. Similarly as in the proof

of Theorem 3.7, we can find some x0 sufficiently negative with ϕ(x0) = ε > 0 and
ϕx(x0) > 0, and we can construct a unique local solution ϕ(x) on [x0 − L,x0 + L]
for some L > 0.

If σ < 0, then 1
A1+γ−σϕ

is decreasing when 0 ≤ ϕ < (A1 + γ )/σ . Using (3.18) it

is easy to find that F1(ϕ) increases for ϕ > 0. If (σ −1)A1 < γ < −A1, then
√

F1(ϕ)

is locally Lipschitz in ϕ for 0 ≤ ϕ < (A1 + γ )/σ . Similarly as in the proof of (1), we
can construct a cusped solution with a cusp singularity at ϕ = (A1 + γ )/σ .
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If σ > 0, we also see that there is no solitary wave by the similar proof of Theo-
rem 3.7.

Similarly, we conclude that when c = A2, there is no solitary wave when σ > 0.
When σ < 0 and −A2 < γ < (σ − 1)A2, there is an anticusped solution with a cusp
singularity at (A2 + γ )/σ . When σ < 0 and γ < −A2, there is an cusped solution
with a cusp singularity at (A2 + γ )/σ .

For the case (3.16), 14 cases are there we will consider. we will only look at
−c < −A1 < γ . The other cases can be handled in a very similar way. Applying
(3.24), we know that ϕ cannot oscillate around zero near infinity. Let us consider the
following two cases.

Case 1. ϕ(x) > 0 near −∞. Then there is some x0 sufficiently negative so that
ϕ(x0) = ε > 0, with ε sufficiently small, and ϕx(x0) > 0.

(i) When σ ≤ 1,
√

F(ϕ) is locally Lipschitz in ϕ for 0 ≤ ϕ < c − A1. Hence there
is a local solution to {

ϕx = √
F(ϕ),

ϕ(x0) = ε

on [x0 − L,x0 + L] for some L > 0. Therefore by (3.25) and (3.26), we obtain a
smooth solitary wave with maximum height ϕ = c − A1 and an exponential decay to
zero at infinity

ϕ(x) = O

(
exp

(
−

√
c2 + Ac − 1√

c(c − γ )
|x|

))
as |x| → ∞. (A.2)

(ii) When σ > 1,
√

F(ϕ) is locally Lipschitz in ϕ for 0 ≤ ϕ <
c+γ
σ

. Thus if c −
A1 <

c+γ
σ

, i.e., A1 < c <
−γ−σA1

1−σ
, it becomes the same as (i) and we can obtain

smooth solitary waves with exponential decay.
If c − A1 = c+γ

σ
, then the smooth solution can be constructed until ϕ = c − A1 =

c+γ
σ

. However, at ϕ = c − A1 = c+γ
σ

it can make a sudden turn and so give rise to a
peak. Since ϕ = 0 is still a double zero of F(ϕ), we still have the exponential decay
here.

If c − A1 >
c+γ
σ

, then ϕ = c+γ
σ

becomes a pole of F(ϕ). Using (3.27) and (3.28),
we obtain a solitary wave with a cusp at ϕ = c+γ

σ
and decays exponentially.

Case 2. ϕ(x) < 0 near −∞. In this case we are solving{
ϕx = −√

F(ϕ),

ϕ(x0) = −ε

for some x0 sufficiently negative and ε > 0 sufficiently small.
When σ > 0 we see that F ′(ϕ) < 0, for ϕ < 0. Therefore in this case there is no

solitary wave.
If σ < 0, then ϕ = (c + γ )/σ < 0 is a pole of F(ϕ). Arguing as before, we obtain

an anticusped solitary wave with minx∈R = (c + γ )/σ , which decays exponentially.
Finally, by the standard ODE theory and the fact that Eq. (3.11) is invariant under

the transformations x −→ −x, we conclude that the solitary waves obtained above
are unique and unambiguous up to translations. �
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