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Abstract We implement a semi-analytic scheme for numerically computing high or-
der polynomial approximations of the stable and unstable manifolds associated with
the fixed points of the normal form for the family of quadratic volume-preserving dif-
feomorphisms with quadratic inverse. We use this numerical scheme to study some
hyperbolic dynamics associated with an invariant structure called a vortex bubble.
The vortex bubble, when present in the system, is the dominant feature in the phase
space of the quadratic family, as it encloses all invariant dynamics. Our study focuses
on visualizing qualitative features of the vortex bubble such as bifurcations in its ge-
ometry, the geometry of some three-dimensional homoclinic tangles associated with
the bubble, and the “quasi-capture” of homoclinic orbits by neighboring fixed points.
Throughout, we couple our results with previous qualitative numerical studies of the
elliptic dynamics within the vortex bubble of the quadratic family.
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1 Introduction

When studying the qualitative dynamics of a three-dimensional, volume-preserving
discrete-time dynamics system, standard phase space sampling techniques are rarely
sufficient. The reason is that such systems do not admit attractors; thus, a typical
bounded orbit is an amorphous cloud in phase space, which may cast little light on
the geometry of the dynamics. In order to understand the phase space geometry of
volume-preserving systems, it is desirable to study the embedding of one- and two-
dimensional invariant manifolds. In volume-preserving discrete dynamical systems,
two important classes of invariant manifolds are elliptic invariant circles and their
associated invariant tori; and hyperbolic invariant manifolds associated with stable
and unstable eigenspaces of fixed points. (Other important examples are hyperbolic
invariant circles and their associated two-dimensional stable and unstable manifolds,
as well as hyperbolic periodic points and their associated stable and unstable mani-
folds, but these are not treated here.)

In Lomelí and Meiss (1998), a five-parameter family of quadratic volume-
preserving maps is given, and it is shown that the family is a normal form for
quadratic volume-preserving diffeomorphisms with quadratic inverse. The family is
put forward as a natural generalization to three dimensions of the classical area-
preserving Hénon family (Hénon 1969). The quadratic family admits at most two
fixed points, depending on parameters. Because the map preserves volume, the fixed
points are generically hyperbolic, and their two-dimensional stable and unstable man-
ifolds can intersect in such a way as to enclose a region in the phase space.

This region is sometimes referred to as a resonance zone (Lomelí and Meiss
1998, 2000, 2009). At many parameter values there exists an elliptic invariant circle
inside the resonance zone which is surrounded by a family of invariant tori (Dullin
and Meiss 2009). In this situation the resonance zone is called a vortex bubble. The
intersection of the two-dimensional stable and unstable manifolds of the pair of fixed
points forms “lobes” whose volume can be quantitatively related to the measure of
the set of bounded orbits inside the vortex bubble (Lomelí and Meiss 2009).

The present work addresses two distinct but related issues. Section 2 provides
an overview of the computational aspects of the Parameterization Method of Cabré
et al. (2003a, 2003b). Section 4 then illustrates the application of these manifold
computations to the study of the vortex-bubble geometry in the volume-preserving
quadratic family.

In Sect. 2 we begin by discussing in detail the construction of high order poly-
nomial approximations for local stable and unstable manifolds of a fixed point as-
sociated with either a single real eigenvalue or a pair of real distinct eigenvalues. In
the explicit setting of the volume-preserving quadratic family, we derive “by hand”
the equations which implicitly define the polynomial coefficients, and provide nu-
merically verifiable conditions under which the implicit equations are uniquely solv-
able to all orders. Furthermore, we discuss practical considerations such as deciding
the numerical domain of the resulting polynomial approximations. When we supple-
ment the algorithms developed in Sect. 2 with the algorithms for computing two-
dimensional stable/unstable manifolds associated with a pair of complex conjugate
eigenvalues developed in Mireles James and Lomelí (2010), we are able to accu-
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rately compute all the stable/unstable manifolds at a generic hyperbolic fixed point in
the quadratic family.

Section 4 functions as a sequel to Dullin and Meiss (2009). That work provides a
thorough qualitative study of the regular or “elliptic” dynamics inside the vortex bub-
ble of the volume-preserving quadratic family. The present work provides a parallel
study of the irregular, hyperbolic, and chaotic dynamics near the vortex bubble. While
Sects. 2 and 4 are written so that they could be read independently, Sect. 2 is essential
in order to explain how the results of Sect. 4 are obtained. Similarly, Sect. 4 serves
as a case study in the application of the Parameterization Method when studying
the phase space geometry of invariant manifolds in a three-dimensional discrete-time
dynamical system. Finally, Sect. 3 is a brief description of the algorithms used to
compute the homoclinic connecting orbits studied in Sect. 4.

1.1 Context of the Current Work Within the Existing Literature

There is a vast literature on the numerical computation of invariant manifolds in dy-
namical systems; even an overview of the relevant literature is beyond the scope of
this work. We refer to the recent survey article Krauskopf et al. (2005) for an exposi-
tion of several numerical methods for computing two-dimensional stable and unstable
manifolds associated with hyperbolic equilibria of vector fields, and note that a more
complete review of the literature can be found therein.

The Parameterization Method developed in Cabré et al. (2003a, 2003b, 2005), pro-
vides a general framework for studying nonresonant stable/unstable manifolds asso-
ciated with hyperbolic fixed points of diffeomorphisms and equilibria of vector fields.
We note that the Parameterization Method is not discussed in Krauskopf et al. (2005);
hence we treat the method thoroughly in Sect. 2. In addition to the applications dis-
cussed here, we mention that the method has been applied to the computation of hy-
perbolic invariant tori, their breakdown, and the computation of their stable/unstable
manifolds (Haro and de la Llave 2006a, 2006b; Fontich et al. 2009). The Parameteri-
zation Method can also be used to prove constructive KAM theorems which avoid the
use of action-angle coordinates (de la Llave et al. 2005), and extended to facilitate the
computation of center manifolds such as those associated with parabolic fixed points
(Baldomá et al. 2007). From a formal point of view, the computational aspects of the
Parameterization Method are similar in spirit to the techniques of “automatic differ-
entiation” (see Bücker and Corliss 2006 for a very thorough review of the automatic
differentiation literature).

The family of maps studied in this work is called the volume-preserving Hénon
family, and it has been studied extensively from a dynamical systems point of view
(see, for example, Lomelí and Meiss 1998; Dullin and Meiss 2008, 2009; Gonchenko
et al. 2006 and the references in these). It was shown in Lomelí and Meiss (1998) that
the quadratic family can be put into normal form by an affine change of variables.
Then when studying the dynamics of the quadratic family, it is enough to study the
dynamics of the resulting five-parameter normal form. A thorough discussion of the
literature surrounding the quadratic family and its normal form can be found in Dullin
and Meiss (2009). The reference just mentioned also contains a detailed numerical
study of the “elliptic” dynamics of the quadratic family, i.e., the dynamics associated
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with stable invariant circles and tori. In the sequel we will frequently refer to the
numerical results therein.

For a large range of parameters, the quadratic family admits “vortex-bubble” dy-
namics (Dullin and Meiss 2009). A vortex bubble is characterized by the presence of
a toroidal convective roll (family of invariant tori), with “eyes” (fixed points) located
on the top and bottom of the hole in the torus, and where the two-dimensional sta-
ble and unstable manifolds of the fixed points enclose the tori, forming a “bubble.”
The resulting dynamics are qualitatively similar to those of the Hills vortex of fluid
dynamics (Sotiropoulos et al. 2001), or the spheromak of plasma physics (MacKay
1994). The phase space dynamics are similar to those of what is sometimes called a
“vortex ring” in the plasma literature (Archer et al. 2008).

Vortex dynamics are also discussed widely in the fluid and plasma physics litera-
ture (see, for example, Krutzsch 1939; Crow 1970; Archer et al. 2008 for more com-
plete references), and the bubble structure present in the dynamics of the quadratic
family is qualitatively similar to much more complicated models of physical phenom-
ena. Examples include tornados (Peikert and Sadlo 2007), turbulence in stirred fluids
(Shadden et al. 2007), and tokamak dynamics (Hayashi et al. 2001).

We note that while the references just mentioned actually discuss plasma and fluid
models based on differential equations rather than maps, if one were to perturb for
example the models of Sotiropoulos et al. (2001) with a τ -periodic forcing function
and study the time-τ map, the resulting dynamics would be similar to the Lomelí
Family studied here. On the other hand we remark that it is possible to implement
a version of the Parameterization Method for differential equations as in van den
Berg et al. (2011), Lessard et al. (2013), Johnson and Tucker (2011). Using these
techniques one could obtain results similar to ours by working directly with the vector
fields of Sotiropoulos et al. (2001), Hayashi et al. (2001), Shadden et al. (2007).

Vortex dynamics are studied in the applied mathematics literature in connection
with the phenomenon of “chaotic advection” or “chaotic transport” (Kaper and Wig-
gins 1991; Raynal and Wiggins 2006; Davies et al. 2008; Neishtadt et al. 1998;
Mezić 2001; Mullowney et al. 2005, 2008; Chernikov et al. 1991). The vortex-bubble
structure in diffeomorphisms has been studied theoretically from the point of view
of stable/unstable manifold theory in Lomelí and Ramírez-Ros (2008), and from the
view of Melnikov theory in Lomelí and Meiss (1998). Geometric invariants of the
bubble associated with the “lobe-volume” are computed in Lomelí and Meiss (2009).
Mireles James and Lomelí (2010) gives a numerical method for computing Taylor ex-
pansions of the arcs which form at the intersection of stable and unstable manifolds
making up the bubble.

Since (Smale 1965) there has been tremendous interest in homoclinic tangles,
which are transverse intersections of the stable and unstable manifolds of a fixed
point of a diffeomorphism. It is well known that the presence of a homoclinic tangle
implies not only the existence of a homoclinic orbit, but also the existence of chaotic
dynamics in a neighborhood of the homoclinic orbit. Efficient numerical methods for
computing homoclinic orbits appear as early as Beyn and Kleinkauf (1997a, 1997b).
In the sequel we employ a version of the Beyn and Kleinkauf (1997a) algorithm
which exploits the high order polynomial approximations of the stable and unstable
manifolds derived using the Parameterization Method.
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The present work is also closely related to Makino and Berz (2003), Berz and
Hoffstätter (1998), and especially to Newhouse et al. (2008). In the last reference,
a numerical technique for computing high order Taylor expansions of the stable and
unstable manifolds is developed, and applied to the dissipative Hénon mapping of the
plane at the classical parameters. Their method is built on the same principles as the
Parameterization Method, but they globalize the manifolds by repeatedly composing
the polynomial approximations with the Hénon map in order to obtain chart maps
of larger and larger segments of the one-dimensional manifolds. These globalized
manifolds are used to compute a large number of homoclinic intersections, and by
studying these intersections the authors can provide mathematically rigorous bounds
on the topological entropy of the Hénon attractor. Their study is implemented using
the software package COSY (Berz and Makino 2012).

Finally, a word about mathematical rigor. While the present work focuses on clas-
sical floating point computations which are used in order to obtain purely qualitative
information about the volume-preserving quadratic family, note that the Parameter-
ization Method is well suited for computer-assisted proofs. For example, it is pos-
sible, using a combination of a posteriori functional analytic methods and interval
arithmetic, to obtain mathematically rigorous bounds on both the radius of conver-
gence of the formal series and the truncation error introduced by representing the
chart map for the stable or unstable manifolds with polynomials (of finite order). The
reader interested in the details and implementation of such computer assisted argu-
ments should consult Mireles James and Mischaikow (2013) (for maps) and van den
Berg et al. (2011), Johnson and Tucker (2011) (for flows). Of course convergence
and regularity of the formal series is treated from a purely theoretical prospective in
Cabré et al. (2003a, 2003b, 2005). Other methods for obtaining rigorous containment
of invariant manifolds based on topological rather than analytic arguments can be
found for example in Neumaier and Rage (1994), Newhouse et al. (2008), Arioli and
Zgliczyński (2001), Zbigniew and Zgliczyński (2001).

Remark 1.1 (Comparison with Krauskopf et al. 2005) It is worth a moments time to
consider more closely the relationship between the Parameterization method of Cabré
et al. (2003a, 2003b, 2005), van den Berg et al. (2011), Johnson and Tucker (2011),
Mireles James and Mischaikow (2013) as used in the present work, and the methods
of Krauskopf et al. (2005). Our primary remark is to stress that these should be viewed
as complementary rather than competitive methods. The reason for this is that the
methods discussed in Krauskopf et al. (2005)—geodesic level sets, BVP continuation
of trajectories, computation of fat trajectories, PDE formulation with ordered upwind
method, and even the second stage (growth) of the box covering method—are all
methods for globalizing a local stable or unstable manifold patch. The authors use
the linear approximation of the manifold given by the (un)stable eigenspace as the
initial input to their algorithms, but theoretically what is actually required in order to
start their methods is any initial approximation of the local manifold.

The Parameterization method on the other hand is a general method for com-
puting high order expansions of the local manifolds without iterating/integrating the
dynamical system. One advantage of this approach over the straightforward linear ap-
proximation of the manifold is that the stagnant and well understood dynamics close
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to the fixed point are swallowed up into the polynomial. See for example the upper
left hand frame of Fig. 6. The surface and arc in this frame are obtained as the image
of the polynomial parameterizations only. No iteration has been performed to obtain
this picture. Similarly the top annulus in the upper left and right frames, and the lower
left frame of Fig. 10 is the image of a fundamental domain in parameter space under
only the polynomial parametrization.

If the methods of Krauskopf et al. (2005) were to be initialized using the high
order local manifolds given by the Parameterization Method the results would be
better than those obtained initializing with the linear approximation. This is because
we can only iterate or integrate the dynamical system accurately for a finite amount
of time. Then it is better not to spend these iterates computing the local manifold
from the linear approximation, and instead to save our iterates up for computing truly
global dynamics. In this sense the Parameterization Method can be seen as a “pre-
conditioner” for the globalization methods of Krauskopf et al. (2005) (or for any
other globalization scheme based on iteration/integration which one could propose).
This kind of preconditioning is especially useful in systems like the Lomelí Family
where for the interesting parameter values the linear dynamics at the fixed points are
especially slow.

Combining the Parameterization Method with one or more of the industrial
strength globalization methods of Krauskopf et al. (2005) would enhance the util-
ity of both works and is an exciting topic for future study. We note for the expert
that these remarks are especially enticing in the case of the method of fat trajectories,
as the parameterization method can be used to obtain both the tangent space and the
curvature at any point on the local patch, even with rigorous error bounds. We also
remark for the expert that in the sequel we exploit only naive globalization schemes
(straightforward iteration of fundamental domains) which have notorious shortcom-
ings. However the preconditioning provided by the Parameterization Method pro-
vides sufficient stabilization that the resulting globalized manifolds meet the needs of
the present work.

1.2 Background: Quadratic Volume-Preserving Maps

We are concerned with the five-parameter family of (quadratic) volume-preserving
diffeomorphisms f : R

3 → R
3 given by

f (x, y, z) = fα,τ,a,b,c(x, y, z) =
⎛
⎝

z + Qα,τ,a,b,c(x, y)

x

y

⎞
⎠ ,

where Q is the quadratic function

Qα,τ,a,b,c(x, y) = α + τx + ax2 + bxy + cy2, with a + b + c = 1.

The family was introduced in Lomelí and Meiss (1998) as an analog of the two-
dimensional area-preserving Hénon map. We will refer to it as the Lomelí family, or
simply the Lomelí map when it is understood that the parameters are fixed.

We note the following useful facts.
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(a) When τ 2 − 4α > 0 the map has a pair of (real) distinct fixed points p± ∈ R
3

p± =
⎛
⎝

x±
x±
x±

⎞
⎠ ,

where

x± = −τ ± √
τ 2 − 4α

2
.

These are the only possible fixed points of the family.
(b) The map is volume preserving, i.e., |det(Df (p))| = 1, for all p ∈ R

3. Then, for
example, at either of the fixed points p± the generic stability situation will be
either two unstable and one stable eigenvalue, or vice versa (as the product of
the three eigenvalues is required to be 1). The two eigenvalues with the same
stability type (stable or unstable) are generically either real and distinct, or a
complex conjugate pair.

(c) The Jacobian differential of the Lomelí family is

Df (x, y, z) =
⎛
⎝

2ax + by + τ 2cy + bx 1
1 0 0
0 1 0

⎞
⎠ .

In Dullin and Meiss (2009), the authors make an affine change of coordinates to
the Lomelí map, putting it in the form

g(x, y, z) =
⎛
⎝

x + y

y + z − ε + μy + P(x, y)

z − ε + μy + P(x, y)

⎞
⎠ , (1.1)

where P(x, y) = āx2 + b̄xy + c̄z2. We will refer to this as the Dullin–Meiss form
of the map. This form has the advantage that the two fixed points are located on the
z-axis at ±√

ε/ā. Nevertheless, we focus our studies on the classic Lomelí form of
the map, largely so that we can exploit the computational tools developed in Mire-
les James and Lomelí (2010).

Given a set of parameters in Dullin–Meiss form, it is possible to transform to a
Lomelí map with the parameters

a = c̄

c = c̄ + ā − b̄

b = b̄ − 2c̄

τ = 2ā(3 + μ)

2ā − b̄

α = (9 + 6μ + μ2)ā − 4εā2 + 4εāb̄ − εb̄2

(2ā − b̄)2
.

These transformations allow us to relate the numerical studies carried out in this
work, where we work with the Lomelií form of the map, with the numerical studies
in Dullin and Meiss (2009).
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2 Parameterization Method for Stable/Unstable Manifolds of Fixed Points

Suppose that f : R
n → R

n is a diffeomorphism with a fixed point p ∈ R
n, and that

the differential Df (p) is conjugate to a linear isomorphism A : R
n → R

n with

A =
(

As 0
0 Au

)
,

where As : R
ns → R

ns and Au : R
nu → R

nu are linear isomorphisms having ‖As‖ <

1, ‖Au‖ > 1, and ns + nu = n. Let Es = range(As) and Eu = range(Au) denote the
resulting ns- and nu-dimensional invariant linear subspaces of R

n.
The stable manifold theorem (see, for example, Palis and de Melo 1982; Robinson

1999; Katok 2012) states that the sets

W s(p) =
{
x ∈ R

n : lim
k→∞f k(x) = p

}

and

W u(p) =
{
x ∈ R

n : lim
k→∞f −k(x) = p

}

are smooth invariant immersed (but typically not embedded) disks tangent respec-
tively to Es and Eu at p. When Df (p) is diagonalizable, the matrices As and Au can
be taken to be the diagonal matrices containing the stable and unstable eigenvalues of
Df (p) respectively. The Parameterization Method Cabré et al. (2003a, 2003b, 2005)
is a method for computing polynomial expansions for some chart maps of W s,u(p);
specifically, chart maps for neighborhoods of p. Such neighborhoods are called local
stable/unstable manifolds and are denoted by W

s,u
loc (p) respectively.

2.1 Parameterization for One-Dimensional Stable and Unstable Manifolds

Let p ∈ R
n, and f : R

n → R
n be real analytic and invertible on Bρ(p) ⊂ R

n, ρ > 0.
Suppose that f (p) = p, that Df (p) has n − 1 eigenvalues {λu

1, . . . , λ
u
n−1} with

|λi | > 1, 1 ≤ i ≤ n − 1, and that Df (p) has a single eigenvalue λ with |λ| < 1. Let
ξλ ∈ R

n be an eigenvector of λ. As mentioned above, the stable manifold theorem
gives that W s(p) is a one-dimensional smooth (analytic) manifold tangent to ξλ at p.

The goal of the Parameterization Method in this setting is to compute a smooth
injection P : [−τ, τ ] ⊂ R → R

n having

(a) P(0) = p,
(b) P ′(0) = ξλ,
(c) and

f
[
P(θ)

] = P(λθ) (2.1)

for all θ ∈ [−τ, τ ]. Note that any P satisfying these conditions, P([−τ, τ ]) is an
immersed arc through p tangent to ξλ at p, with f ◦ P([−τ, τ ]) ⊂ P([−τ, τ ]). It
follows that the ω-limit set of image(P ) under f is 0, so that the image of P is a
local stable manifold about p, or

P
([−τ, τ ]) = W s

loc(0).
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In general, we will be unable to compute P in closed form. Instead, we note that P

satisfies a (functional) initial value problem with analytic data. Then it is natural to
assume that P has the power series expansion

P(θ) =
∞∑

n=0

vnθ
n, vn ∈ R

n, (2.2)

with v0 = p and v1 = ξλ, and we then try to determine the unknown coefficients vn.
(Throughout the sequel θ is a real, rather than angular variable.) One way to proceed
is to insert Eq. (2.2) into Eq. (2.1), Taylor expand f , and analytically compute recur-
rence relations for the coefficients of P . This is the approach we pursue below. An-
other approach, based on Taylor models, is given in Newhouse et al. (2008), while a
Newton scheme for computing the coefficients of P is implemented in Mireles James
and Lomelí (2010).

2.2 Example: 1D Manifolds for the Lomelí Map

Consider again the Lomelí map

f (x, y, z) =
⎛
⎝

α + τx + z + ax2 + bxy + cy2

x

y

⎞
⎠ ,

and let

P(θ) =
⎛
⎝

P1(θ)

P2(θ)

P3(θ)

⎞
⎠ =

⎛
⎝

∑∞
n=0 v1

nθ
n∑∞

n=0 v2
nθ

n∑∞
n=0 v3

nθ
n

⎞
⎠ ,

where the fixed points p± of the Hénon family are known explicitly, and the associ-
ated eigenvalue can be computed explicitly either analytically or numerically. Then
(v1

0, v2
0, v3

0)T = p±, and (v1
1, v2

1, v3
1)T = ξλ are the zeroth and first order power series

coefficients.
Upon inserting power series into the functional equation

f
[
P(θ)

] = P(λθ),

we have that

f ◦ P =
⎛
⎝

α + τP1 + P3 + a[P1]2 + bP1P2 + c[P2]2

P1
P2

⎞
⎠

on the left, and

P(λθ) =
⎛
⎝

∑∞
n=0 v1

n(λθ)n∑∞
n=0 v2

n(λθ)n∑∞
n=0 v3

n(λθ)n

⎞
⎠ =

⎛
⎝

∑∞
n=0 v1

nλ
nθn∑∞

n=0 v2
nλ

nθn∑∞
n=0 v3

nλ
nθn

⎞
⎠

on the right. Equating the second and third components of the left- and right-hand
sides gives

∞∑
n=0

v1
nθ

n =
∞∑

n=0

v2
nλ

nθn,
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and
∞∑

n=0

v2
nθ

n =
∞∑

n=0

v3
nλ

nθn.

Upon matching like powers we obtain

v1
n − v2

nλ
n = 0, v2

n − v3
nλ

n = 0. (2.3)

The first component equation is more involved. Expanding the left-hand side of
the first component and utilizing the Cauchy product formula gives

α + τ

∞∑
n=0

v1
nθ

n +
∞∑

n=0

v3
nθ

n

+ a

[ ∞∑
n=0

v1
nθ

n

]2

+ b

[ ∞∑
n=0

v1
nθ

n

][ ∞∑
n=0

v2
nθ

n

]
+ c

[ ∞∑
n=0

v2
nθ

n

]2

= α +
∞∑

n=0

τv1
nθ

n +
∞∑

n=0

v3
nθ

n

+
∞∑

n=0

(
n∑

k=0

av1
kv

1
n−k

)
θn +

∞∑
n=0

(
n∑

k=0

bv1
kv

2
n−k

)
θn +

∞∑
n=0

(
n∑

k=0

cv2
kv

2
n−k

)
θn

=
∞∑

n=0

v1
nλ

nθn.

Equating like powers gives that

τv1
n + v3

n + 2av1
0v1

n + bv2
0v1

n + bv1
0v2

n + 2cv2
0v2

n

+
n−1∑
k=1

[
av1

kv
1
n−k + bv1

kv
2
n−k + cv2

kv
2
n−k

]

= λnv1
n,

for n ≥ 2. Here we have removed from the sum any terms containing v1
n, or v2

n. We
isolate the n-th coefficients on the left-hand side of the equality in order to obtain

(
τ + 2av1

0 + bv2
0 − λn

)
v1
n + (

bv1
0 + 2cv2

0

)
v2
n + v3

n

= −
n−1∑
k=1

[
av1

kv
1
n−k + bv1

kv
2
n−k + cv2

kv
2
n−k

]
.

Combining the three component equations in matrix form gives

An

⎡
⎣

v1
n

v2
n

v3
n

⎤
⎦ =

⎡
⎣

sn
0
0

⎤
⎦ ,
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where

An =
⎛
⎝

τ + 2av1
0 + bv2

0 − λn bv1
0 + 2cv2

0 1
1 −λn 0
0 1 −λn

⎞
⎠ (2.4)

and

sn = −
n−1∑
k=1

[
av1

kv
1
n−k + bv1

kv
2
n−k + cv2

kv
2
n−k

]
.

Note that if we let yn = (sn,0,0)T, then the matrix equation has the form
[
Df (p±) − λnI

]
vn = yn, (2.5)

where yn is a known quantity depending recursively on terms of order less than n.
This can be seen by recalling the formula for the Jacobian of f from Sect. 1.2, evalu-
ating the Jacobian at p±, and recalling that (v1

0, v2
0, v3

0) = p±. Equation (2.5) is called
the homological equation for the stable manifold.

The coefficient vn solves the homological equation, and is well defined precisely
when An is invertible. But An is the characteristic matrix Df (p)−λnI of Df (p), and
this is invertible precisely when λn is not an eigenvalue of Df (p±). Since |λ| < 1,
and the remaining eigenvalues {λi} are assumed to have norm greater than one, we
have that λn is not an eigenvalue as long as n ≥ 2. But these are exactly the n for
which we want to solve the equation, as the constant and first order terms are already
constrained. Then the series solution

∑
vnθ

n = P(θ) is formally well defined to all
orders.

Remark 2.1

• The homological equation for a one-dimensional unstable manifold is exactly the
same, except that λ must be the unstable eigenvalue.

• Since the choice of the length of ξλ = v1 is free, the solution P is not unique. How-
ever, once the length of the eigenvector is fixed, all remaining terms are determined
uniquely by Eq. 2.5), as the matrix is always invertible. Then the formal solution
P is unique up to the magnitude of v1 = ξλ. This can be seen as a rescaling of P .

• The computation above provides a numerical scheme for computing approxima-
tions to the stable manifold. Namely, we can compute a polynomial PN which
approximates P to any desired finite order by recursively solving the homological
equation (2.5) for 2 ≤ n ≤ N .

• In the present work we are not concerned with the convergence of the formal se-
ries whose coefficients are defined by the homological equation (2.5). Rather, we
are interested in determining when a finite number of terms of P provides a re-
liable numerical approximation to a local stable/unstable manifold. Nevertheless,
the formal series do converge, as shown in Cabré et al. (2005). In that reference,
and under the assumptions above, the parameterization power series are shown to
converge to entire functions.
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2.3 2D Manifolds of the Lomelí Map

In order to parameterize the two-dimensional stable manifold associated with a pair of
real, distinct eigenvalues λ1, λ2, of Df (p±), having 0 < |λ1| < |λ2| < 1, we choose
eigenvectors ξ1 and ξ2 associated with λ1 and λ2, and assume that the parameteriza-
tion P : R

2 → R
3 has the power series expansion

P(θ1, θ2) =
∞∑

n=0

∞∑
m=0

vmnθ
m
1 θn

2 ,

where vmn ∈ R
3 are coefficients having

v00 = p±,

v10 = ξ1, v01 = ξ2,

and the remaining vmn, m + n ≥ 2, are determined by requiring that P satisfy the
functional equation

f
[
P(θ1, θ2)

] = P(λ1θ1, λ2θ2).

If we let vmn = (v1
mn, v

2
mn, v

3
mn)

T, then a computation similar to that given in
Sect. 2.2 shows that the coefficients for the two-dimensional manifolds in the Lomelí
map solve the homological equation

⎛
⎝

τ + 2av1
00 + bv2

00 − λm
1 λn

2 bv1
00 + 2cv2

00 1
1 −λm

1 λn
2 0

0 1 −λm
1 λn

2

⎞
⎠

⎛
⎝

v1
mn

v2
mn

v3
mn

⎞
⎠ =

⎛
⎝

−smn

0
0

⎞
⎠ ,

where

smn =
n∑

j=0

m∑
i=0

av̄1
(m−i)(n−j)v̄

1
ij + bv̄1

(m−i)(n−j)v̄
2
ij + cv̄2

(m−i)(n−j)v̄
2
ij

and

v̄s
k
 =

{
0 if k = m and 
 = n

vs
k
 otherwise

for s = 1,2,3.

Remark 2.2

• As in the one-dimensional case, this is the correct homological equation for both
the stable and unstable parameterizations.

• If a fixed point of the Lomelí map has a complex conjugate pair of eigenvalues
λ and λ̄, then we complexify and proceed almost as in the one-dimensional case.
More precisely, we take P to have the form

P(x, y) =
∞∑

n=0

∞∑
m=0

vmn(x + iy)m(x − iy)n ≡ P̄ (z, z̄),
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where z = (x + iy) and vmn ∈ C
3. Then we impose that P solve the invariance

equation

f
[
P̄ (z, z̄)

] = P̄ (λz, λ̄z̄).

A thorough discussion of the complex conjugate case, along with implementation
for the Lomelí map, is found in Mireles James and Lomelí (2010). In particular,
ones finds that vnm = vmn so that the image of P(x, y) is real when (x, y) ∈ R

2,
and we obtain the real local (un)stable manifold. We employ the numerical meth-
ods developed in Mireles James and Lomelí (2010) without further comment
whenever needed in the sequel.

• Note that the homological equation for the two-dimensional stable/unstable param-
eterization has the form

[
Df (p±) − λm

1 λn
2I

]
vmn =

⎛
⎝

−smn

0
0

⎞
⎠ ,

which is similar to the one-dimensional situation. Then the coefficients of the for-
mal series exist uniquely for all m,n with m + n ≥ 2, so long as the following
nonresonance condition is satisfied:

λm
1 λn

2 = λi

for i = 1,2. But since 0 < |λ2| < |λ2| < 1 we have that

|λm
1 ||λn

2| < |λ2| for all m + n ≥ 2,

|λm
1 ||λn

2| < |λ1| for all m + n ≥ 2,m = 0,

and |λN
2 | < |λ1| for some N ∈ N.

It follows that if

N >
ln |λ1|
ln |λ2| ,

and m + n ≥ N , then there are no resonances. So λn
2 = λ1 for 2 ≤ n ≤ N − 1

is enough to guarantee that the parameterization coefficients are formally well de-
fined to all orders. These nonresonance conditions are satisfied for generic parame-
ter sets for the Lomelí family. Similar comments can be made for diffeomorphisms
in arbitrary dimensions. See Cabré et al. (2003a, 2005) for details.

In practice, we make sure to numerically compute PN to at least order N >

ln |λ1|/ ln |λ2|. If the system has resonances (or even if the system is roughly ma-
chine epsilon close to a resonance), then one of the matrices defining a parameter-
ization coefficient will be noninvertible (or poorly conditioned) and the numerical
computation will fail (for example, in MatLab attempting to solve a poorly condi-
tioned linear system leads to a warning). However, if we are able to compute the
coefficients numerically to order N (without warning), then we are assured there
are no resonances lurking at orders greater than N . If mathematically rigorous
enclosures of the polynomial coefficients are required, then the homological equa-
tions can be solved using interval methods, as in Mireles James and Mischaikow
(2013), van den Berg et al. (2011).
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2.4 Numerical Domain for the Polynomial Approximation

Suppose that we have recursively solved Eq. (2.5) up to a fixed finite order N . Then
we have a polynomial

PN(θ) =
N∑

n=0

vnθ
n

which approximates the true parameterization P . While any truncated approximation
PN is entire (as PN is a polynomial), we cannot expect PN to approximate P well for
all τ ∈ R. Instead, we will determine a smaller domain on which the approximation
is actually “good.” The following definition makes this precise.

Definition 2.1 Let ε > 0 be a prescribed tolerance. We call the number τ > 0 an
ε-numerical radius of validity for the approximation PN if

Errorτ (PN) ≡ sup
θ∈[−τ,τ ]

∥∥f
[
PN(θ)

] − PN(λθ)
∥∥ ≤ ε. (2.6)

Remark 2.3

• In practice, numerical experimentation is enough to select a good τ .
• We have the bound

Errorτ (PN) ≤
∞∑

n=0

|Cn − Dn|nτn, (2.7)

where Cn, Dn are the power series coefficients of f [PN ] and PN(λθ) respectively.
When f is a polynomial, all but finitely many of An, Bn are zero, and Eq. (2.4)
is easy to compute numerically. If desired, the bound can be made rigorous by
employing interval arithmetic.

• If τ is an ε-numerical radius of validity for a polynomial approximation PN of
a stable/unstable parameterization and ε is small enough, then we can conclude
(under certain weak hypotheses which can be rigorously verified using computer-
assisted arguments) that the truncation error ‖PN − P ‖τ < Cε, where P is the
exact solution of the invariance equation (2.1). This kind of mathematically rigor-
ous a posteriori analysis for the Parameterization Method is discussed in detail in
Cabré et al. (2003a, 2005), and implemented for flows generated by vector fields in
van den Berg et al. (2011) and for maps in Mireles James and Mischaikow (2013).
In particular, an explicit expression for C, in terms of f , N , λ, is obtained in the
references. Due to the qualitative nature of the present work, we are not concerned
with rigorous computations. In the sequel we will, loosely speaking, simply say
that the truncation error of PN on the domain [−τ, τ ] is on the order of ε when-
ever τ is an ε-numerical radius of validity for PN .

• The definition of ε-numerical radii of validity for higher dimensional manifolds
is similar, and is given in Mireles James and Lomelí (2010), Mireles James and
Mischaikow (2013), van den Berg et al. (2011).
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3 Computing Transverse Intersections and Homoclinic Orbits: Method of
Projected Boundary Conditions Meets the Parameterization Method

As an elementary application of the Parameterization Method, we give a general
scheme for computing connecting orbits associated with homoclinic tangles in R

3

(the scheme generalizes for homoclinic tangles in R
n in an obvious way). We note

that a similar technique for computing heteroclinic arcs in R
3 is given and imple-

mented in Mireles James and Lomelí (2010). Software for the scheme developed in
this section has been implemented in MatLab, and is used in Sect. 4 to study connect-
ing dynamics in the vortex bubble of the Lomelí map.

In short, our method is to use the Method of Projected Boundary Conditions of
Beyn and Kleinkauf (1997a, 1997b) in order to formulate the computation of a con-
necting orbit as the zero of a certain nonlinear map. A standard Newton iteration is
used to compute zeros to roughly machine precision. We simply replace the linear
approximations of the stable/unstable manifolds used in Beyn and Kleinkauf (1997a)
with the high order polynomial expansions obtained above. When computing a homo-
clinic orbit which spends a large number of iterations outside a fixed neighborhood
of the fixed point, our adaptation of the projected boundary method provides added
numerical stability. Such orbits are examined in Sect. 4. We describe the modification
in full for the sake of completeness.

Consider a hyperbolic fixed point p ∈ R
3 of the diffeomorphism f : R

3 → R
3,

and suppose that Df (p) has two unstable eigenvalues λ1, λ2 with |λ1|, |λ2| > 1, and
a stable eigenvalue λ with |λ| < 1. Let Ps : [−τ, τ ] ⊂ R → R

3 and Pu : Br(0) ⊂
R

2 → R
3 be parameterizations of the local stable and unstable manifolds.

Now suppose that W s(p) and W u(p) intersect transversally at a point q ∈ R
3.

Then there are parameters t̄ ∈ [−τ, τ ], (θ̄1, θ̄2) ∈ Br, and integers ns, nu ∈ N so that

f nu
[
Pu(θ̄1, θ̄2)

] = f −ns
[
Ps(t̄)

] = q. (3.1)

Since the intersection is transverse at q , the vectors

∂

∂θ1
f nu

[
Pu(θ̄1, θ̄2)

]
,

∂

∂θ2
f nu

[
Pu(θ̄1, θ̄2)

]
, and

∂

∂t
f −ns

[
Ps(t̄)

]
,

span R
3.

Choose nu, ns ∈ N and define φ : R
3 → R

3 by

φ(θ1, θ2, t) = f nu
[
Pu(θ1, θ2)

] − f −ns
[
Ps(t)

]
, (3.2)

and note that a nondegenerate zero of φ is a parameter set which satisfies Eq. (3.1).
Denote the variable for φ by (θ1, θ2, t) = w ∈ R

3. Our goal is to numerically com-
pute a w̄ ∈ R

3 solving φ(w̄) = 0 by iterating the Newton sequence

wn+1 = wn − [
Dφ(wn)

]−1
φ(wn). (3.3)

Note that the differential Dφ is given by

Dφ(θ1, θ2, t) =
[

∂

∂θ1
f nu

[
Pu(θ̄1, θ̄2)

]∣∣∣∣
∂

∂θ2
f nu

[
Pu(θ̄1, θ̄2)

]∣∣∣∣ − ∂

∂t
f −ns

[
Ps(t)

]]
,

where | denotes the operation of adjoining of a column vector to a matrix. The dif-
ferential is then invertible in a neighborhood of w̄ by the transversality assumption
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(these vectors span R
3 near w̄ so that the matrix has nonzero determinant). Then for

|w0 − w̄| small enough, the Newton sequence converges to a true solution w̄ by the
standard Newton–Kantorovich theorem (see, for example, Cheney 2001).

Remark 3.1 (Locating an Approximate Orbit) In practice we must determine the
numbers ns, nu ∈ N in order to define the function φ. In many cases it is possible to
locate the approximate connecting orbits via some numerical continuation procedure.
At other times the approximate orbit can be located via some preliminary numerical
experimentation. A procedure which formalizes this experimentation proceeds along
the following lines.

(a) Choose discretizations of fundamental domains for W s(p) and W u(p) by using
the parameter domains [−τ, τ ] and Br(0) and the known linear dynamics given
by λ, λ1, and λ2.

(b) Compute a fixed iterate nu = C of the two-dimensional fundamental domain, and
iterate the one-dimensional fundamental domain until the sets intersect. Since we
are working in R

3, the intersection is perhaps best detected graphically.
(c) Once a valid pair (ns, nu) has been determined so that the iterates of the fun-

damental domains appear to intersect in phase space, it is easy to search the dis-
cretized parameter sets for triples (θ0

1 , θ0
2 , t0) which map under φ near the desired

intersection. Then we are ready to apply the Newton scheme.

More precisely, this scheme allows us to find parameters w0 ≡ (θ0
1 , θ0

2 , t0), as well
as ns and nu so that ‖φ(w0)‖ < δ. In applications, δ need only be on the order of say
10−1 or even 100, as w0 is the input to the Newton scheme.

Remark 3.2 (Computer-Assisted Proof of Homoclinic Chaos) Since the Newton–
Kantorovich theorem provides a posteriori conditions under which one can conclude
the existence of a true zero from an approximate zero, the scheme just described
above leads quite naturally to elementary computer-assisted proofs of the existence of
chaotic motions. The key to such proofs is that the truncations errors associated with
the Parameterization Method can be rigorously bounded. These matters are treated
in Mireles James and Mischaikow (2013), where the interested reader can find the
complete details and example computations.

4 Hyperbolic Dynamics in the Quadratic Volume-Preserving Family

Consider a hyperbolic fixed-point p ∈ R
3 of a diffeomorphism f : R

3 → R
3. We

say that p has stability type (2,1) if Df (p) has two unstable eigenvalues, and one
stable eigenvalue (hence a two-dimensional unstable and a one-dimensional stable
manifold); and say that p has stability type (1,2) if the situation is reversed. When the
Dullin–Meiss parameters are fixed with ā = 1.0, b̄ = c̄ = 1/2, μ ∈ [−4,0], then for
a large set of ε with 0 < ε < 1 the Lomelí map has one fixed point with stability type
(2,1) and the second fixed point with stability type (1,2). These are the parameters
studied in Dullin and Meiss (2009), and we conform to this convention throughout
the sequel.
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Fig. 1 Cut-away view of the “integrable” vortex bubble: The outer blue and red surfaces are the unstable
and stable manifolds of p0 and p1 respectively. The complementary one-dimensional manifolds are shown
as well (the one- and two-dimensional manifolds intersect at the fixed points). In this figure the comple-
mentary one- and two-dimensional manifolds coincide. The “resonance bubble” or separatrix formed by
the two-dimensional manifolds is cut away to show a pair of invariant tori in the bubble. The outer/larger
torus is represented as a green point cloud. A smaller solid yellow torus is shown within. The entire inside
of the bubble is foliated by such tori which surround an elliptic invariant circle. The dynamics are “inte-
grable” in the sense that every orbit is on a torus, or a separatrix. All orbits on and inside the bubble are
bounded. All orbits outside the bubble are unbounded (Color figure online)

In the situation just described, we will use p0 to denote the fixed point with sta-
bility type (2,1), and p1 to denote the fixed point with stability type (1,2). Then
W u(p0) and W s(p1) are co-dimension one smooth manifolds (immersed disks even)
in R

3. These surfaces can intersect in such a way as to enclose some bounded volume,
creating a structure called a vortex bubble. See Lomelí and Meiss (1998, 2000, 2009),
Lomelí and Ramírez-Ros (2008), Dullin and Meiss (2009) and the introduction. In the
remainder of this section we apply the techniques discussed in Sect. 2 to make a qual-
itative study of the vortex-bubble dynamics of the Lomelí map. In particular, we are
interested in visualizing the geometry of the stable and unstable manifolds associated
with p0 and p1.

4.1 ε → 0+: “Regular” Dynamics

As ε → 0+ in the Dullin–Meiss parameters, the dynamics of the mapping become
increasingly regular. In fact the system approaches “integrable” in a sense made pre-
cise in Dullin and Meiss (2009). The integrable behavior of the quadratic family is
studied in detail in Dullin and Meiss (2009) (see especially Sect. 5). For completeness
we recall some qualitative details.

At ε = 0 the two distinct fixed points collapse into a single fixed point which
disappears for ε < 0. When 0 < ε � 1 the behavior of the mapping is qualitatively



602 J Nonlinear Sci (2013) 23:585–615

similar to the behavior of a time τ map of the integrable spheromak flow; i.e., the
phase space is foliated by invariant 2-tori, associated with a single elliptic invariant
circle. One fixed point has a two-dimensional stable manifold; the other has a two-
dimensional unstable manifold. These two-dimensional manifolds coincide, forming
a separatrix. The one-dimensional stable and unstable manifolds coincide as well.

The situation is illustrated in Fig. 1. In terms of the present study, the most im-
portant observations are the coincidence of the stable and unstable manifolds of the
fixed points, that the dynamics of all orbits in the phase space are understood, and in
particular that there are no chaotic motions.

We also note that since the Lomelí map can be seen as a small perturbation of
an integrable system for 0 < ε � 1, perturbative methods provide substantial insight
into the dynamics of the small ε system. For example, we expect exponential splitting
of the one- and two-dimensional manifolds, the persistence of a large measure set of
invariant tori, the development of hyperbolic and elliptic secondary invariant tori, and
the onset of chaos in the “gaps” between the invariant tori. (Also see Fig. 7 in Dullin
and Meiss (2009) for a typical cross section of the “near integrable” behavior of the
map.)

4.2 ε � 0: Far from Integrable Dynamics

In Sect. 4 of Dullin and Meiss (2009), the authors discuss the dependence of the
measure of the set of bounded orbits in the Lomelí map on the parameters μ and
ε. In particular, it is shown numerically that, for ε > 0.4, the measure of the set
of bounded orbits goes to zero, so that classical phase space sampling reveals no
recurrent dynamics. Nevertheless, by visualizing the embedding of the global stable
and unstable manifolds, we can show that there are nontrivial invariant dynamics in
the region of phase space near the two fixed points.

Consider the situation when ε = 4.0. In this parameter range there are no stable
recurrent sets, and a typical orbit diverges rapidly to infinity. Nevertheless, the map
still has the fixed points p0 and p1 with (2,1) and (1,2) stability respectively. The
image in Fig. 2 illustrates the local dynamics near p0. The image is generated by one
iterate of the two-dimensional local unstable manifold and three inverse iterates of
the one-dimensional local stable manifold.

Two transverse intersections of the stable and unstable manifolds are clearly vis-
ible. It follows, by the Smale tangle theorem (Smale 1965; Burns and Weiss 1995),
that there is a homoclinic orbit through the intersection, and that in some neighbor-
hood of the homoclinic orbit there is a compact invariant set S on which the dy-
namics are conjugate to the full shift on two symbols. Then we can conclude there
are infinitely many distinct bounded periodic orbits in S, an orbit dense in S, sen-
sitive dependence on initial conditions, and chaotic orbits. We are able to arrive at
these conclusions in spite of the fact that, at these parameters, the orbit of a randomly
selected initial condition will diverge to infinity.

4.3 Vortex-Bubble Bifurcations in μ

In this subsection, and in our discussion of bifurcations throughout the sequel, it
is helpful to consider Fig. 3 in Dullin and Meiss (2009). The figure is reproduced
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Fig. 2 Transverse intersection of the stable and unstable manifolds of p0 when ε = 4: two transverse
intersections of W s(p0) and Wu(p0) are visible in the top center of the figure

(with permission of the authors) as our Fig. 3. The figure illustrates the dependence
of the measure of the set of bounded orbits on the parameters ε and μ. In Fig. 3,
dark blue regions in parameter space represent Lomelí maps where less than one
percent of the orbits sampled remain bounded and dark red regions represent Lomelí
maps where the percentage of bounded orbits is larger. Since a set of bounded orbits
of positive measure is often indicative of the existence of invariant tori, Fig. 3 also
suggests parameters which are most likely to exhibit invariant tori. The approximate
bimodality of Fig. 3, for fixed ε and varying μ, is the dominant qualitative feature. In
this subsection we consider bifurcations of the vortex bubble which occur when the
parameter μ is varied for fixed ε. The results are given in Fig. 4.

The six frames of Fig. 4 illustrate six vortex bubbles, corresponding to Dullin–
Meiss parameters near the ε = 0.1 line, with μ equal to −1.383, −1.75, −1.8, −2.0,
−3.0, and −3.5 (the corresponding frames read from left to right, top to bottom).
Each frame of Fig. 4 shows the globalized unstable manifold of p0 (blue) and the
globalized stable manifold of p1 (red). In each frame p0 is in the center left of the
frame and p1 is in the center right (for example, in the bottom left frame, the fixed
points are located at the extreme left and right of the surfaces).

The vortex bubbles exhibit rich geometric structure, which can be described quali-
tatively using the notion of intersection homology. This idea is developed formally in
Lomelí and Meiss (2000), but heuristically the idea is that the intersection of the two-
dimensional manifolds along the outer boundary of the vortex bubble forms curves
which are called the primary intersection of the manifolds. If we choose a fundamen-
tal domain for, say the stable manifold, then we have an annulus in parameter space
whose boundary circles map from one to the other. The primary intersection curves
are pulled back to parameter space and intersected with the annulus. Identifying the
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Fig. 3 Figure 3 in Dullin and Meiss (2009) (reproduced with permission of the authors). The figure
illustrates the density of bounded orbits as a function of the parameters ε and μ. A point in parameter
space is colored blue if no bounded orbits are observed, and colored increasingly red as the density of
bounded orbits increases (Color figure online)

boundary circles of the fundamental domain (annulus) yields a torus, and the homo-
topy class of the intersection curve (now a one-dimensional submanifold of the torus)
describes the geometry of the intersection of the stable and unstable manifolds. (This
notion generalizes the concept of Melnikov level sets to nonperturbative situations.)

The homotopy class of the primary intersection curve in the torus is a pair of in-
tegers (k1, k2), where k1 is the number of times the intersection curve winds around
the homology generator of the annulus, and k2 describes how many times the curve
winds around the homology generator created by identifying the boundary curves of
the annulus. In terms of phase space dynamics, k1 describes how many times the in-
tersection winds around the outside of the vortex bubble, measured over a fundamen-
tal domain; while k2 measures the number of distinct “branches” of the fundamental
intersection. (The interested reader unfamiliar with these notions can consult (Lomelí
and Meiss 2000).)

Figure 4 illustrates the bifurcation of the bubble geometry, and hence the primary
intersection, as the parameter μ is decreased from μ = −1.383 in the top left frame,
to μ = −3.5 in the bottom figure. Varying μ clearly causes bifurcations in the homo-
topy type of the primary intersection, as well as in the regularity of the intersection
curves themselves (note that in the top left and middle right frames the intersection
curves are much smoother or “straighter” than in the top right, middle left, and bot-
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Fig. 4 Vortex-bubble bifurcations in μ: μ = −1.383, ε = 0.11 (top left); μ = −1.75, ε = 0.1 (top right);
μ = −1.8, ε = 0.1 (center left); μ = −2.0, ε = 0.8 (center right); μ = −3.0, ε = 0.1 (bottom left);
μ = −3.5 ε = 0.1 (bottom right)

tom right frames). The most dramatic bifurcation occurs as μ passes through the blue
parameters around μ = −3.0, when it is not clear that the manifolds intersect at all.
When we compare with Fig. 3 we see that there are no bounded orbits near these
parameters. It is possible that the failure of the manifolds to enclose a region cor-
responds to the failure of the system to exhibit bounded orbits. However, we note
that since the pictures do not represent mathematically rigorous computations and
since some regions of the manifolds globalize very slowly while some globalize very
rapidly, a more deliberate study is needed to understand completely what is happen-
ing near μ = −3.0.

Remark 4.1 (Dynamics inside the Vortex Bubble) Several of the frames in Fig. 4 il-
lustrate vortex bubbles at parameter sets already studied in Dullin and Meiss (2009).
This repetition is deliberate, as combining the results of Dullin and Meiss (2009)
with our results increases our understanding of the qualitative dynamics in the bub-
ble. Compare, for example, the first frame of Fig. 4 with the topmost image in Fig. 25
in Dullin and Meiss (2009). The images correspond to the same Dullin–Meiss pa-
rameters of the mapping (μ = −1.383, ε = 0.11), so we know that inside the vortex
bubble in the first frame of Fig. 4 there is an invariant period 5 torus (5 distinct tori
which map one to another), and that these tori are surrounded by a single primary
torus.
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Fig. 5 Vortex-bubble bifurcations in ε: ε = 0.1 (top left), ε = 0.15 (top right), ε = 0.23 (bottom left), and
ε = 0.75 (bottom right). μ = −2.4 throughout

Similarly, the fourth frame of Fig. 4 corresponds to (μ = 2.0, ε = 0.08). The dy-
namics interior to the vortex bubble are illustrated in the right-hand square of Fig. 24
of Dullin and Meiss (2009), and we know that the system has undergone the “string of
pearls” bifurcation. The dynamics interior to the bubble are dominated by four copies
of the original vortex bubble, strung together in a periodic structure. Also compare
Figs. 4 and especially 5 with Fig. 8 of Lomelí and Meiss (1998). The latter figure
illustrates the geometry of vortex-bubble bifurcations for a different two-parameter
family of volume-preserving maps.

4.4 Vortex-Bubble Bifurcations in ε

Now we fix μ = −2.4 and examine the geometry of the bubble as ε varies. Our results
are summarized in Fig. 5. What is clear from comparing Fig. 5 with Fig. 3 is that, as
ε increases, the decrease in the measure in the set of bounded orbits (i.e., the break-
down in the regularity of the dynamics in the bubble) is correlated with an increased
irregularity in the geometry of the vortex bubble. The irregularity can be measured
quantitatively by studying the homotopy type of the primary intersection. Note also
that the disappearance of bounded orbits associated with large ε again seems to cor-
respond to the breakdown of the vortex-bubble structure. This is illustrated in the
bottom right frame of Fig. 5, where it seems that the manifolds may not enclose a
region at all.
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Fig. 6 Geometry of one-dimensional manifold (μ = −2.0, ε = 0.08): Local stable and unstable mani-
folds of p0 (top left; red and blue respectively). 95 inverse iterates of the local stable manifold, illustrate
the “capture” effect of p1 (top right). 115 inverse iterates of the local stable manifold show numerous
transverse intersections with the local unstable manifold, and imply the existence of a topological horse-
shoe (bottom left). 135 inverse iterates of the local stable manifold show accumulation of W s(p0) in itself,
as required by the λ-Lemma (Color figure online)

Remark 4.2 (Dynamics inside the Vortex Bubble) The first and third frames of Fig. 5
correspond to values of ε = 0.1 and ε = 0.32 respectively. The dynamics inside the
vortex bubbles at these parameter values are illustrated in the first and third boxes in
Fig. 8 of Dullin and Meiss (2009). Then inside the bubble shown in the first frame
of Fig. 5, the dynamics are dominated by a family of primary invariant tori, around
which a family of secondary invariant tori are “braided.”

However, inside the vortex bubble of the third frame of Fig. 5, the primary family
of tori have disappeared, and Fig. 8 of Dullin and Meiss (2009) suggests that the tori
have been replaced by a hyperbolic period 7 saddle point (see caption of Fig. 8 in
Dullin and Meiss 2009).

4.5 Geometry of the 1D Stable and Unstable Manifolds, Capture Dynamics, and
Three-Dimensional Homoclinic Tangles

In this section we examine the geometry of the one-dimensional stable and unstable
manifolds in the Lomelí family, and discuss some qualitative dynamics associated
with these manifolds. To begin, we fix the Dullin–Meiss parameters at ε = 0.08 and
μ = −2.0. In Fig. 6 we show the local unstable manifold Wu

loc(p0) and four different
globalizations of the stable manifold Ws(p0). The one-dimensional unstable mani-
fold of p1 is similar.
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Fig. 7 “Quasi-capture” of
W s(p0) by p1 (red curve and
black star respectively). The
unstable manifold of p1 is
shown as well (blue curve)
(Color figure online)

Remark 4.3 (Quasi-Capture Dynamics)

(a) One of the dominant features of the embedding of the one-dimensional manifold
is a kind of “quasi-capture” dynamics, which we describe now. By “capture” we
mean that an entire fundamental domain of the one-dimensional stable manifold
of p0 passes close to the companion fixed point p1. When this happens, we say
that the one-dimensional manifold W s(p0) is “captured” by p1. The term cap-
ture is appropriate, as when a segment of W s(p0) comes close enough to p1 the
dynamics of all the orbits on the segment are dominated by the linear dynamics
induced by Df (p1). Since Df (p1) has a two-dimensional stable eigenspace and
a one-dimensional unstable eigenspace, any orbit which passes close enough to
p1 must leave the neighborhood of p1 along the two-dimensional stable manifold
in backward time.

This is exactly the behavior we see in the second frame of Fig. 6, and in Fig. 7.
The latter figure illustrates the smoothness of this transition, as well as the split-
ting of the one-dimensional manifolds. Note that the closer the segment of stable
manifold comes to p1, the longer the embedding of the manifold is dominated
by the linear stable dynamics of Df (p1). We add the descriptor “quasi” as the
capture is only temporary.

(b) Recall that the dynamics inside the vortex bubble are illustrated in Fig. 24 of
Dullin and Meiss (2009) (the bubble itself is shown in the fourth frame of our
Fig. 4). Then the dynamics inside the bubble consist largely of rotational/toroidal
dynamics about the x = y = z-line. When ε is not too large, this has the effect of
forcing the one-dimensional manifolds through the hole of the torus. This forces
the close pass between Ws(p0) and the fixed point p1.

(c) The phenomena just described might be considered a toy model for the “ballistic
capture” phenomena which have received much attention in celestial mechanics.
See, for example, Belbruno (1993, 1994), Bollt and Meiss (1995), Gomez et al.
(2004), Gidea and Masdemont (2007), Senet and Ocampo (2005), Circi and Te-
ofilatto (2001), and the references therein. Ballistic capture occurs, for example,
when a projectile launched from the earth enters into a temporary orbit about the
moon.
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Fig. 8 Homoclinic capture: The image shows the time series for four homoclinic orbits. The parameter
values are ε = 0.2, ε = 0.32, ε = 0.75, ε = 2.0 (from top to bottom) and μ = −2.4 throughout. The orbits
illustrate the dependence of the capture time on ε. Note that the time scales for the figures are different.
Also, looking at the time-series data reminds us that the system can be thought of as a system of three
coupled, nonlinear difference equations; thus our methods can also be thought of as a way to compute
homoclinic orbits in difference equations
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Fig. 9 The figure illustrates a homoclinic tangle associated with p0 in the volume-preserving Henon
map. This is a three-dimensional analog of the usual planar rendering of tangle dynamics. Note that many
transverse intersections of the one- and two- dimensional manifolds are visible, indicating the existence of
a three-dimensional version of a Smale horseshoe

(d) Since an entire fundamental domain of W s(p0) is quasi-captured by p1, the
amount of time (number of iterates) that the fundamental domain stays in the
neighborhood gives a lower bound on the amount of time that any homoclinic
orbit spends near p1 (see also Fig. 8).

Remark 4.4 (One-Dimensional Tangle Dynamics) If we continue to inverse-iterate
the one-dimensional local stable manifold, then the resulting global manifold W s(p0)

eventually intersects the two-dimensional local unstable manifold of p1. This is illus-
trated in the third frame of Fig. 6. The frame clearly illustrates numerous transverse
intersections of the stable and unstable manifolds. The existence of such intersec-
tions implies, by the Smale tangle theorem (Smale 1965; Burns and Weiss 1995), the
existence of a topological horseshoe and in particular bounded chaotic orbits.

The λ-Lemma (Palis and de Melo 1982) further implies that the one-dimensional
manifold eventually accumulates on itself. This is illustrated in the final frame of
Fig. 6. Moreover, results in topological dynamics show that the closure of W s(p0)

(approximated by the image in the final frame) is a bizarre topological space known
as an indecomposable set (see Barge 1987; Kennedy and Yorke 1997).

Remark 4.5 (Homoclinic Orbits) The existence of a nonempty intersection of the
stable and unstable manifolds implies the existence of a homoclinic orbit. We can use
the Newton scheme discussed in Sect. 3 to actually compute these homoclinic orbits.
The results of such computations are illustrated in Fig. 8. This figure shows time
series (x-coordinate versus time), for orbits homoclinic to p0, computed at ε = 0.2,
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Fig. 10 Stretching and folding dynamics: The series of frames show a fundamental domain for the stable
manifold of p1, along with 5 (top left), 10 (top right), and 35 of its iterates. The last frame (bottom right)
shows the stable manifold itself. The frames are meant to illustrate the geometry of the two-dimensional
stable manifold when a homoclinic tangle is present. The third frame especially illustrates the accumulation
of the manifold on itself, due to λ-Lemma effects

ε = 0.32, ε = 0.75, and ε = 2, all with μ = −2.4. (Recall that the vortex bubbles for
the second and third of these parameter sets are shown in Fig. 5.)

The frames in Fig. 8 illustrate the minimal duration of the capture dynamics as
a function of ε. Then we see, for example, that when ε = 0.2 the homoclinic orbit
spends almost 40 iterates in a small neighborhood of p1 (this appears as the long
plateau in the middle of the top frame). However, when ε = 0.75 (third frame), the
orbit only spends three iterates in a small neighborhood of p1, and when ε = 2.0 (last
frame) the influence of p1 has almost vanished. Compare this also with Fig. 2, which
shows a tangle for ε = 4.0, and where the stable manifold intersects the local unstable
manifold without passing near p1.

We note that these transverse homoclinic orbits can be computed rigorously using
the methods of Mireles James and Mischaikow (2013) and that this leads to a mathe-
matically rigorous proof of the existence of chaotic motions in the Lomelí family.

Remark 4.6 (Two-Dimensional Tangle Dynamics) Figure 9 illustrates one possible
geometry for a homoclinic tangle in three dimensions. The parameter values in this
figure are the same as in Mireles James and Lomelí (2010), namely a = 0.44, b =
0.21, c = 0.35, α = −0.25, and τ = −0.3 (here we are using the Lomelí form of the
parameters).
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Fig. 11 Two-dimensional homoclinic tangle: This figure illustrates the immersion of the two-dimensional
stable manifold of p1 at a homoclinic tangle. Note that the image is that of an immersed disk, and suggests
the manner in which the manifold is stretched and folded back onto itself by the dynamics. This image can
also be seen as a two-dimensional version of the homoclinic tangle which Poincare considered “hard to
draw” in the planar case

In Figs. 10 and 11 we illustrate the embedding of the two-dimensional sta-
ble/unstable manifolds in the presence of tangle dynamics. In the first frame of Fig. 10
(top left) we have plotted a fundamental domain for Ws(p1), along with its fifth
inverse-iterate (the fundamental domain is the annulus in the top of the frame, and its
image is the bent annulus below it). The second frame shows the same fundamental
domain, with its tenth inverse-iterate. The effect of the application of ten (inverse)
iterates of the map on the fundamental domain is largely one of nonlinear stretching
(some parts of the fundamental domain are stretched more than others).

When we look at the thirtieth (inverse) iterate in the third frame (bottom left)
we see a new effect. Here the image of the fundamental domain has been stretched
and then folded in on itself. It is essential to note that the third frame illustrates the
image of an annulus. The third frame indicates the manner in which the manifold
accumulates on itself, as required by the λ-Lemma.

The final frame in the sequence illustrates the global geometry of the stable mani-
fold at this parameter value. The global manifold is, of course, the forward and back-
ward orbit closure of the fundamental domain. An enlarged version of the fourth
frame is shown in Fig. 11. The enlarged image is also given some transparency, so
that the accumulation of the stable manifold on itself can be clearly seen. The fact
that the image in Fig. 11 is the smooth image of a disk highlights the complexity of
the dynamics near a three-dimensional homoclinic tangle.
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5 Conclusions

We have demonstrated the use of the Parameterization Method as a tool for visual-
izing unstable/chaotic dynamics in volume-preserving maps. The Parameterization
Method is well suited for such studies, as it facilitates computation of local stable
and unstable manifolds which are accurate to machine precision. Since the resulting
local approximations occupy large regions of phase space bounded away from the
fixed point, they minimize the number of iterates needed to globalize the manifolds.

These tools are applied to the study of vortex dynamics arising in the family of
quadratic, volume-preserving diffeomorphisms with quadratic inverse. Here our re-
sults highlight connection between the measure of the set of bounded orbits observed
in Dullin and Meiss (2009) and the qualitative features of the vortex-bubble struc-
ture. We further provide geometric evidence for the existence of chaotic motions in
the bubble, by exhibiting transverse intersections between the stable and unstable
manifolds of fixed points. We also examine the qualitative features of homoclinic or-
bits, and the accumulation of the one- and two-dimensional manifolds on themselves
resulting from a homoclinic tangle in three dimensions.
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