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Abstract This paper develops numerical methods for optimal control of mechani-
cal systems in the Lagrangian setting. It extends the theory of discrete mechanics to
enable the solutions of optimal control problems through the discretization of vari-
ational principles. The key point is to solve the optimal control problem as a varia-
tional integrator of a specially constructed higher dimensional system. The developed
framework applies to systems on tangent bundles, Lie groups, and underactuated and
nonholonomic systems with symmetries, and can approximate either smooth or dis-
continuous control inputs. The resulting methods inherit the preservation properties
of variational integrators and result in numerically robust and easily implementable
algorithms. Several theoretical examples and a practical one, the control of an under-
water vehicle, illustrate the application of the proposed approach.

Keywords Variational integrators · Optimal control · Lie group · Discontinuous
control inputs · Nonholonomic systems · Reduced control system

Communicated by Melvin Leok.

F. Jiménez · D. Martín de Diego (�)
Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Campus de Cantoblanco, UAM,
C/Nicolás Cabrera, 15 28049 Madrid, Spain
e-mail: david.martin@icmat.es

F. Jiménez
e-mail: fernando.jimenez@icmat.es

M. Kobilarov
Johns Hopkins University, 117 Hackerman Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA
e-mail: marin@cds.caltech.edu

mailto:david.martin@icmat.es
mailto:fernando.jimenez@icmat.es
mailto:marin@cds.caltech.edu


394 J Nonlinear Sci (2013) 23:393–426

Mathematics Subject Classification 70Q05 · 49J15 · 37M15 · 70H03 · 37J60

1 Introduction

The goal of this paper is to develop, from a geometric point of view, numerical meth-
ods for optimal control of Lagrangian mechanical systems. Our approach employs
the theory of discrete mechanics and variational integrators (Marsden and West 2001)
to derive both an integrator for the dynamics and an optimal control algorithm in a
unified manner. This is accomplished through the discretization of the Lagrange–
d’Alembert variational principle on manifolds. An integrator for the mechanics is de-
rived using a standard Lagrangian function and virtual work done by control forces,
while control optimality conditions are derived using a special Lagrangian defined on
a higher dimensional space which encodes the dynamics and a desired cost function.
The resulting integration and optimization schemes are symplectic and respect the
state-space structure and momentum evolution. These qualities are associated with
favorable numerical properties which motivate the development of practical algo-
rithms that can be applied to robotic or aerospace vehicles.

The proposed framework is general and applies to unconstrained systems, as
well as systems with symmetries, underactuation, and nonholonomic constraints.
In particular, our construction is appropriate for controlled Lagrangian systems that
evolve on a general tangent bundle T Q with associated discrete state space Q × Q,
where Q is a differentiable manifold (Marsden and West 2001; Ober-Blöbaum et al.
2011). We also focus on systems evolving on a Lie group G (Bloch et al. 2009;
Bobenko and Suris 1999; Hussein et al. 2006; Kobilarov and Marsden 2011;
Lee et al. 2006; Marsden et al. 1999) and consider the underactuated case (Kobilarov
and Marsden 2011) applicable for rigid body systems. Finally, the theory extends to
the more general principal bundle setting with discrete analog Q × Q × G (or more
generally (Q×Q)/G) assuming that the action of a Lie group G of symmetry leaves
the control system invariant (Cortés 2002; Ferraro et al. 2008; Kobilarov et al. 2010;
Leok 2004).

The main idea is the following: we take an approximation of the Lagrange–
d’Alembert principle for forced Lagrangian systems, which models control inputs
and external forces such as gravity or drag. The formulation permits piecewise con-
tinuous control forces that can be encountered in practical applications. We observe
that the discrete equations of motion for these types of systems are interpreted as the
discrete Euler–Lagrange equations of a new Lagrangian defined in an augmented dis-
crete phase space. Next, we apply discrete variational calculus techniques to derive
the discrete optimality conditions. After this, we recover two sequences of discrete
controls modeling a piecewise control trajectory.

Additionally, we show how to derive the equations for various reduced systems.
We specifically develop numerical methods for systems on Lie groups that lead to
practical algorithm implementation. One such example system—an underactuated
underwater vehicle—is used to illustrate the developed methodology. The resulting
algorithm is simple to implement and has the ability to quickly converge to a solution
which is close to the optimal solution and to the true system dynamics. We also
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extend our techniques to more general reduced systems like optimal control problems
in trivial principal bundles, and we show how to introduce nonholonomic constraints
in our framework.

This work provides several contributions. First, it formulates and derives numer-
ical methods for dynamics integration and optimal control of mechanical systems
in a unified discrete variational setting. Performing the optimization (via trajectory
variations) in an enlarged phase space then naturally enables the treatment of gen-
eral systems on either vector spaces or principal bundles with Lie group symmetries
and subject to underactuation, nonholonomic constraints, and discontinuous control
inputs. Second, the paper details a nonlinear root-finding algorithm for the optimal
control problem between two given initial and final states that is surprisingly easy
to construct since it is implemented similarly to an integrator with the addition of
a boundary reconstruction condition. Finally, the geometric preservation properties
of the optimal control solutions, such as symplectic-momentum preservation in the
standard case or Poisson bracket and momentum preservation for reduced systems,
are automatically guaranteed using the results in Marsden and West (2001), Marrero
et al. (2006).

The developed optimization methods inherit the backward error analysis proper-
ties of standard variational integrators. Yet, while backward error analysis explains
the long-time properties of standard integrators, its significance in the context of op-
timal control problems with finite horizon and fixed final boundary state requires fur-
ther study. In addition, while symplecticity is linked to favorable behavior in dynam-
ics time stepping, the symplecticity of the higher dimensional optimal control system
is likely to have further implications that remain to be studied. Finally, as with any
other local optimization method for nonlinear systems, the proposed approach does
not have global convergence guarantees.

The paper is organized as follows. Section 2 introduces variational integrators.
Section 3 formulates optimal control problems for Lagrangian systems defined on
tangent bundles, in continuous and discrete settings, and for both fully and underac-
tuated systems. A simple control problem for a mechanical Lagrangian on R

n illus-
trates these developments. In Sect. 4, discrete mechanics on Lie groups is introduced.
Specifically, discrete Euler–Poincaré equations and their Hamiltonian version, the
discrete Lie–Poisson equations, are obtained. Sections 5 and 6 develop the discretiza-
tion procedure and the numerical aspects of the proposed approach. The developed
algorithm is illustrated with an application to an unmanned underwater vehicle evolv-
ing on SE(3). Finally, Sect. 7 deals with reduced systems on a trivial principal bundle,
using nonholonomic mechanics.

2 Discrete Mechanics and Variational Integrators

Let Q be an n-dimensional differentiable manifold with local coordinates (qi), 1 ≤
i ≤ n. Denote by T Q its tangent bundle with induced coordinates (qi, q̇i). Given a
Lagrangian function L : T Q → R the Euler–Lagrange equations are

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, 1 ≤ i ≤ n. (1)
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These equations are a system of implicit second order differential equations. In the

sequel, we will assume that the Lagrangian is regular, that is, the matrix ( ∂2L
∂q̇i∂q̇j )

is nonsingular. It is well known that the origin of these equations is variational (see
Abraham and Marsden 1978; Marsden and Ratiu 1999).

Variational integrators retain this variational character and also some of the key
geometric properties of the continuous system, such as symplecticity and momen-
tum conservation (see Hairer et al. 2002 and references therein). In the following
we will summarize the main features of this type of numerical integrator (Marsden
and West 2001). A discrete Lagrangian is a map Ld : Q × Q → R, which may be
considered as an approximation of the integral action defined by a continuous La-
grangian L : T Q → R: Ld(q0, q1) ≈ ∫ h

0 L(q(t), q̇(t))dt , where q(t) is a solution of
the Euler–Lagrange equations for L, and where q(0) = q0 and q(h) = q1 and h > 0
is sufficiently small.

Remark 2.1 The Cartesian product Q×Q is equipped with an interesting differential
structure, termed a Lie groupoid, which allows the extension of variational calculus
to various settings (see Marrero et al. 2006 for more details).

Define the action sum Sd : QN+1 → R, corresponding to the Lagrangian Ld by
Sd = ∑N

k=1 Ld(qk−1, qk), where qk ∈ Q for 0 ≤ k ≤ N , and N is the number of
steps. The discrete variational principle states that the solutions of the discrete system
determined by Ld must extremize the action sum given fixed endpoints q0 and qN . By
extremizing Sd over qk , 1 ≤ k ≤ N − 1, we obtain the system of difference equations

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) = 0, (2)

or, in coordinates,

∂Ld

∂xi
(qk, qk+1) + ∂Ld

∂yi
(qk−1, qk) = 0,

where 1 ≤ i ≤ n, 1 ≤ k ≤ N − 1, and x, y denote the n-first and n-second variables
of the function L, respectively.

These equations are usually called the discrete Euler–Lagrange equations. Under
some regularity hypotheses (the matrix (D12Ld(qk, qk+1)) is regular), it is possible to
define a (local) discrete flow ΥLd : Q × Q → Q × Q, by ΥLd(qk−1, qk) = (qk, qk+1)

from (2). Define the discrete Legendre transformations associated to Ld as

F
−Ld : Q × Q → T ∗Q

(q0, q1) �−→ (
q0,−D1Ld(q0, q1)

)
,

F
+Ld : Q × Q → T ∗Q

(q0, q1) �−→ (
q1,D2Ld(q0, q1)

)
,

and the discrete Poincaré–Cartan 2-form ωd = (F+Ld)
∗ωQ = (F−Ld)

∗ωQ, where
ωQ is the canonical symplectic form on T ∗Q. The discrete algorithm determined by
ΥLd preserves the symplectic form ωd, i.e., Υ ∗

Ld
ωd = ωd. Moreover, if the discrete
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Lagrangian is invariant under the diagonal action of a Lie group G, then the discrete
momentum map Jd : Q × Q → g∗ defined by

〈
Jd(qk, qk+1), ξ

〉 = 〈
D2Ld(qk, qk+1), ξQ(qk+1)

〉

is preserved by the discrete flow. Therefore, these integrators are symplectic-
momentum preserving. Here, ξQ denotes the fundamental vector field determined
by ξ ∈ g, where g is the Lie algebra of G. (See Marsden and West 2001 for more
details.)

3 Discrete Optimal Control on Tangent Bundles

Consider a mechanical system whose configuration space is an n-dimensional dif-
ferentiable manifold Q and whose dynamics is determined by a Lagrangian L :
T Q → R. The control forces are modeled as a mapping f : T Q×U → T ∗Q, where
f (vq,u) ∈ T ∗

q Q, vq ∈ TqQ, and u ∈ U , where U is the control space. Observe that
this last definition also covers configuration- and velocity-dependent forces such as
dissipation or friction (see Ober-Blöbaum et al. 2011). For greater generality we con-
sider control variables that are only piecewise continuous to account for impulsive
controls.

The motion of the mechanical system is described by applying the principle of
Lagrange–D’Alembert, which requires that the solutions q(t) ∈ Q must satisfy

δ

∫ T

0
L

(
q(t), q̇(t)

)
dt +

∫ T

0
f

(
q(t), q̇(t), u(t)

)
δq(t)dt = 0, (3)

where (q, q̇) are the local coordinates of T Q and where we consider arbitrary vari-
ations δq ∈ Tq(t)Q with δq(0) = 0 and δq(T ) = 0 (since we are prescribing fixed
initial and final conditions (q(0), q̇(0)) and (q(T ), q̇(T ))).

Given that we are considering an optimal control problem, the forces f must be
chosen, if they exist, as the ones that extremize the cost functional

∫ T

0
C

(
q(t), q̇(t), u(t)

)
dt, (4)

where C : T Q × U → R.
The optimal equations of motion can now be derived using the Pontryagin max-

imum principle. Generally, it is not possible to explicitly integrate these equations;
consequently, it is necessary to apply a numerical method. In this work, using discrete
variational techniques, we will first discretize the Lagrange–d’Alembert principle and
then the cost functional. We obtain a numerical method that preserves some geomet-
ric features of the original continuous system, as we will see in the sequel.

To discretize this problem, we replace the tangent space T Q by the Cartesian
product Q × Q and the continuous curves by sequences q0, q1, . . . , qN (we are using
N steps, with time step h fixed, so that tk = kh and Nh = T ). The discrete Lagrangian



398 J Nonlinear Sci (2013) 23:393–426

Ld : Q × Q → R is constructed as an approximation of the action integral in a single
time step (see Marsden and West 2001), that is,

Ld(qk, qk+1) ≈
∫ (k+1)h

kh

L
(
q(t), q̇(t)

)
dt.

We choose the following discretization for the external forces: f ±
k : Q × Q × U →

T ∗Q, where U ⊂ R
m, m ≤ n, such that

f −
k

(
qk, qk+1, u

−
k

) ∈ T ∗
qk

Q,

f +
k

(
qk, qk+1, u

+
k

) ∈ T ∗
qk+1

Q.

Observe that, as mentioned above, we have introduced the discrete controls as two
different sequences, {u−

k } and {u+
k }. In the notation followed throughout this paper,

the time interval [kh, (k + 1)h] is referred to as the k-th interval, while the controls
immediately before and after time tk+1 = (k + 1)h are denoted by u+

k and u−
k+1,

respectively. This choice allows us to model piecewise continuous controls, admitting
discrete jumps at every time tk . The notation is also depicted in the following figure:

Moreover, we have that

f −
k

(
qk, qk+1, u

−
k

)
δqk + f +

k

(
qk, qk+1, u

+
k

)
δqk+1

≈
∫ (k+1)h

kh

f
(
q(t), q̇(t), u(t)

)
δq(t)dt

where (f −
k (qk, qk+1, u

−
k ), f +

k (qk, qk+1, u
+
k )) ∈ T ∗

qk
Q × T ∗

qk+1
Q (see Marsden and

West 2001).
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Therefore, we derive a discrete version of the Lagrange–D’Alembert principle
given in (3):

δ

N−1∑
k=0

Ld(qk, qk+1) +
N−1∑
k=0

(
f −

k

(
qk, qk+1, u

−
k

)
δqk + f +

k

(
qk, qk+1, u

+
k

)
δqk+1

) = 0,

for all variations {δqk}k=0,...,N with δqk ∈ Tqk
Q such that δq0 = δqN = 0. From this

principle it is easy to derive the system of difference equations:

D2Ld(qk−1, qk) + D1Ld(qk, qk+1)

+ f +
k−1

(
qk−1, qk, u

+
k−1

) + f −
k

(
qk, qk+1, u

−
k

) = 0, (5)

where k = 1, . . . ,N − 1. Equations (5) are called the forced discrete Euler–Lagrange
equations (see Ober-Blöbaum et al. 2011).

We can also approximate the cost functional (4) in a single time step h by

Cd
(
qk,u

−
k , qk+1, u

+
k

) ≈
∫ (k+1)h

kh

C
(
q(t), q̇(t), u(t)

)
dt,

yielding the discrete cost functional

N−1∑
k=0

Cd
(
qk,u

−
k , qk+1, u

+
k

)
.

Observe that Cd : Q × U × Q × U → R.

3.1 Fully Actuated Systems

In this section we assume the following condition.

Definition 3.1 (Fully Actuated Discrete System) The discrete mechanical control
system is fully actuated if the mappings

f −
k

∣∣
(qk,qk+1)

: U → T ∗
qk

Q, f −
k

∣∣
(qk,qk+1)

(u) = f −
k (qk, qk+1, u),

f +
k

∣∣
(qk,qk+1)

: U → T ∗
qk+1

Q, f +
k

∣∣
(qk,qk+1)

(u) = f +
k (qk, qk+1, u),

are both diffeomorphisms.

Define the momenta

pk = −D1Ld(qk, qk+1) − f −
k

(
qk, qk+1, u

−
k

)
, (6)

pk+1 = D2Ld(qk, qk+1) + f +
k

(
qk, qk+1, u

+
k

)
. (7)

Since both f ±
k |(qk,qk+1) are diffeomorphisms, we can express u±

k in terms of
(qk,pk, qk+1,pk+1) using (6) and (7). Next, we define a new Lagrangian Ld :
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T ∗Q × T ∗Q → R by

Ld(qk,pk, qk+1,pk+1)

= Cd
(
qk,

(
f −

k

∣∣
(qk,qk+1)

)−1
(−D1Ld − pk), qk+1,

(
f +

k

∣∣
(qk,qk+1)

)−1
(−D2Ld + pk+1)

)
. (8)

The system is fully actuated; consequently, the Lagrangian Ld is well defined on
the entire discrete space T ∗Q × T ∗Q.

Now the discrete phase space is the Cartesian product T ∗Q × T ∗Q of two copies
of the cotangent bundle. The definition (6), (7) gives us a matching of momenta (see
Marsden and West 2001), which automatically implies

D2Ld(qk−1, qk) + f +
k−1

(
qk−1, qk, u

+
k−1

) = −D1Ld(qk, qk+1) − f −
k

(
qk, qk+1, u

−
k

)
,

k = 1, . . . ,N − 1, which are the forced discrete Euler–Lagrange equations (5). In
other words, the matching condition enforces that the momentum at time k should
be the same when evaluated from the lower interval [k − 1, k] or the upper interval
[k, k + 1]. Consequently, along a solution curve there is a unique momentum at each
time tk , which can be called pk .

The discrete Euler–Lagrange equations of motion for the Lagrangian Ld : T ∗Q ×
T ∗Q → R are

D3 Ld(qk−1,pk−1, qk,pk) + D1 Ld(qk,pk, qk+1,pk+1) = 0, (9)

D4 Ld(qk−1,pk−1, qk,pk) + D2 Ld(qk,pk, qk+1,pk+1) = 0. (10)

Assuming the regularity of the matrix
(

D13 Ld D14 Ld
D23 Ld D24 Ld

)
,

and then applying the implicit Function theorem, the two discrete Legendre transfor-
mations

F
−Ld(qk,pk, qk+1,pk+1) = (qk,pk,−D1 Ld,−D2 Ld),

F
+Ld(qk,pk, qk+1,pk+1) = (qk+1,pk+1,D3 Ld,D4 Ld),

are local diffeomorphisms. In many cases, such as if Q is a vector space, it may
be that both discrete Legendre transformations are global diffeomorphisms. In that
case we say that Ld is hyperregular and can define the discrete Hamiltonian map
F̃d

.= F
+Ld ◦ (F−Ld)

−1 : T ∗(T ∗Q) −→ T ∗(T ∗Q). From the standard properties of
discrete variational calculus (Marsden and West 2001), we deduce that the discrete
Hamiltonian map will preserve the canonical symplectic form on T ∗(T ∗Q) and the
canonical momentum maps in the case of invariance of Ld by a Lie group of symme-
tries (see the following subsections for further discussions).

In summary, we have obtained the discrete equations of motion for a fully actuated
mechanical optimal control problem as the discrete Euler–Lagrange equations for a
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Lagrangian defined on the product of two copies of the cotangent bundle and derive
its preservation properties.

3.2 Example: Optimal Control Problem for a Mechanical Lagrangian with
Configuration Space R

n

Consider the case Q = R
n and assume that M is an n × n constant and sym-

metric matrix. The mechanical Lagrangian L : R
2n → R is defined by L(x, ẋ) =

1
2 ẋT Mẋ − V (x), where V : R

n → R is the potential function and x ∈ R. The system
is fully actuated and there exist no velocity constraints. The optimal control problem
is typically given in terms of boundary conditions (x(0), ẋ(0)) and (x(T ), ẋ(T )) for
a given final time T . Note that in the continuous setting we can define the momen-
tum by the continuous Legendre transformation FL : T Q → T ∗Q, (q, q̇) �→ (q,p):
p = ∂L

∂ẋ
, i.e., p(t) = ẋT (t)M . In consequence, we can also define boundary con-

straints in the phase space: (x(0),p(0) = ẋ(0)T M) and (x(T ),p(T ) = ẋ(T )T M).
We employ a trapezoidal discretization for the Lagrangian (see Hairer et al. 2002),

that is, Ld(xk, xk+1) = h
2 L(xk,

xk+1−xk

h
) + h

2 L(xk+1,
xk+1−xk

h
) where, as above, h is

the fixed time step and x1, x2, . . . , xN is a sequence of elements on R
n. The discrete

Lagrangian then becomes

Ld(xk, xk+1) = 1

2h
(xk+1 − xk)

T M(xk+1 − xk) − h

2

(
V (xk) + V (xk+1)

)
.

The control forces are f −
k (xk, xk+1, u

−
k ) ∈ T ∗

xk
R

n and f +
k (xk, xk+1, u

+
k ) ∈ T ∗

xk+1
R

n.

For clarity, we will fix the control forces in the following manner: f ±(xk, xk+1, u
±
k ) =

u±
k . Using (6) and (7) it is straightforward to obtain the associated momenta pk and

pk+1, namely,

pk = 1

h
(xk+1 − xk)

T M + h

2
Vx(xk)

T − u−
k ,

pk+1 = 1

h
(xk+1 − xk)

T M − h

2
Vx(xk+1)

T + u+
k .

Let Cd = h
4

∑N−1
k=0 [(u−

k )2 + (u+
k )2] be a discrete approximation of the cost function.

Consequently, the Lagrangian over T ∗
R

n × T ∗
R

n is

Ld(xk,pk, xk+1,pk+1)

= 1

4

N−1∑
k=0

(
pk −

(
xk+1 − xk

h

)T

M − h

2
Vx(xk)

T

)2

+ 1

4

N−1∑
k=0

(
pk+1 −

(
xk+1 − xk

h

)T

M + h

2
Vx(xk+1)

T

)2

,
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where Vx represents the derivative of V with respect to the variable x. Applying (9)
and (10) to Ld we obtain the following equations:

pk −
(

xk+1 − xk−1

2h

)T

M = 0, (11)

(
pk −

(
xk+1 − xk

h

)T

M − h

2
Vx(xk)

T

)(
M − h2

2
Vxx(xk)

T

)

−
(

pk −
(

xk − xk−1

h

)T

M + h

2
Vx(xk)

T

)(
M − h2

2
Vxx(xk)

T

)
= 0, (12)

where both sets of equations are defined for k = 1, . . . ,N − 1. Note that it is possible
to remove the dependence on pk in (12). However, we prefer to keep it to stress that
the discrete variational Euler–Lagrange equations (9) and (10) are defined in T ∗Q ×
T ∗Q (T ∗

R
n × T ∗

R
n in the particular case we are considering in this example).

Expressions (11) and (12) give 2(N − 1)n equations for the 2(N + 1)n unknowns
{xk}Nk=0, {pk}Nk=0. The boundary conditions

x0 = x(0), p0 = p(0),

xN = x(T ), pN = p(T ),

contribute 4n extra equations that convert (11) and (12) in a nonlinear root-finding
problem of 2(N + 1)n and the same amount of unknowns.

3.3 Underactuated Systems

In this section, we examine the case of underactuated systems defined as follows.

Definition 3.2 (Underactuated Discrete System) A discrete mechanical control sys-
tem is underactuated if the mappings

f −
k

∣∣
(qk,qk+1)

: U → T ∗
qk

Q, f −
k

∣∣
(qk,qk+1)

(u) = f −
k (qk, qk+1, u),

f +
k

∣∣
(qk,qk+1)

: U → T ∗
qk+1

Q, f +
k

∣∣
(qk,qk+1)

(u) = f +
k (qk, qk+1, u),

are both embeddings.

Under this hypothesis we deduce that M−
(qk,qk+1)

= f −
k |(qk,qk+1)(U), M+

(qk,qk+1)
=

f +
k |(qk,qk+1)(U) are submanifolds of T ∗

qk
Q and T ∗

qk+1
Q, respectively. Therefore,

f ±
k |(qk,qk+1) are diffeomorphisms onto its image. Moreover, dim M−

(qk,qk+1)
=

dim M+
(qk,qk+1)

= dimU .

The set of admissible forces is restricted to the space M−
(qk,qk+1)

× M+
(qk,qk+1)

⊂
T ∗

qk
Q × T ∗

qk+1
Q. As a consequence, the set of admissible momenta defined in (6)

and (7) satisfy
(
qk,−D1Ld(qk, qk+1) − pk

) ∈ M−
(qk,qk+1)

⊂ T ∗
qk

Q,
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(
qk+1,−D2Ld(qk, qk+1) + pk+1

) ∈ M+
(qk,qk+1)

⊂ T ∗
qk+1

Q.

Thus, the Lagrangian function defined in (8) is restricted to these points only. It is then
necessary to apply constrained variational calculus typically performed by means of
constraint functions Φ−

α ,Φ+
α : T ∗Q × T ∗Q → R, 1 ≤ α ≤ n − dimU . Therefore,

the solutions of the optimal control problem are now viewed as the solutions of the
discrete constrained problem determined by an extended Lagrangian Ld and the con-
straints Φ±

α . Since f ±|(qk,qk+1) are embeddings, as established in definition (3.2), the
number of constraints is determined by n minus the dimension of U . Note that the
total number of constraints, Φ±

α , is therefore 2(n − dimU).
To solve this problem we introduce Lagrange multipliers (λ−

k )α, (λ+
k )α and con-

sider discrete variational calculus using the augmented Lagrangian

L̃d
(
qk,pk, λ

−
k , qk+1,pk+1, λ

+
k

)
= Ld(qk,pk, qk+1,pk+1) + (

λ−
k

)α
Φ−

α (qk,pk, qk+1,pk+1)

+ (
λ+

k

)α
Φ+

α (qk,pk, qk+1,pk+1).

Observe that, even though the constraints are functions of the Cartesian product of
two copies of the cotangent bundle, i.e., Φ±

α : T ∗Q×T ∗Q → R, Φ−
α does not depend

on pk+1, nor Φ+
α on pk . The discrete Euler–Lagrange equations give us the solutions

of the underactuated problem.
Typically, the underactuated systems appear in an affine way, that is,

f −
k

(
qk, qk+1, u

−
k

) = A−
k (qk, qk+1) + B−

k (qk, qk+1)
(
u−

k

)
f +

k

(
qk, qk+1, u

+
k

) = A+
k (qk, qk+1) + B+

k (qk, qk+1)
(
u+

k

)
,

where A−
k (qk, qk+1) ∈ T ∗

qk
Q, A+

k (qk, qk+1) ∈ T ∗
qk+1

Q. Moreover, B−
k (qk, qk+1) ∈

Lin(U,T ∗
qk

Q) and B+
k (qk, qk+1) ∈ Lin(U,T ∗

qk+1
Q) are linear maps (we assume that

U is a vector space and Lin(E1,E2) is the set of all linear maps between E1 and E2).
In consequence, B−

k (qk, qk+1)(u
−
k ) ∈ T ∗

qk
Q and B+

k (qk, qk+1)(u
+
k ) ∈ T ∗

qk+1
Q.

Then the constraints are deduced using the compatibility conditions:

rankB−
k = rank

(
B−

k ;−D1Ld(qk, qk+1) − pk − A−
k (qk, qk+1)

)
,

rankB+
k = rank

(
B+

k ;−D2Ld(qk, qk+1) + pk+1 − A+
k (qk, qk+1)

)
,

which imply constraints in (qk, qk+1,pk) and (qk, qk+1,pk+1), respectively. Fur-
thermore, the fact that f ±

k |(qk,qk+1) are both embeddings implies that rankB−
k =

rankB+
k = dimU .

Since we are dealing with a discrete constrained variational problem, the geomet-
ric preservation properties are deduced by directly applying the results in Marrero et
al. (2011).

4 Discrete Optimal Control on Lie Groups

The case when the configuration space is a Lie group G is studied next. Variational
integrators for such systems were developed in Marsden et al. (1999b), Bobenko and
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Suris (1999), and the corresponding discrete variational optimal control problems
were studied in Lee et al. (2006), Bloch et al. (2009), Kobilarov and Marsden (2011),
Burnett et al. (2011). Our approach, employing the developments in Kobilarov and
Marsden (2011), is to reduce the second order Euler–Lagrange equations on G to
first order equations on the Lie algebra g and to perform optimization in this reduced
unconstrained space.

Following the developments in Sect. 2, assume that the Lagrangian defined by
Ld : G × G → R is invariant, so that

Ld(gk, gk+1) = Ld(ḡgk, ḡgk+1)

for any element ḡ ∈ G and (gk, gk+1) ∈ G × G. According to this, we can define a
reduced Lagrangian ld : G → R by

ld(Wk) = Ld
(
e, g−1

k gk+1
)
,

where Wk = g−1
k gk+1 and e is the identity of the Lie group G.

The reduced action sum is given by

Sd : GN−1 → R

(W0, . . . ,WN−1) �−→
N−1∑
k=0

ld(Wk).

Taking variations of Sd and noting that

δWk = −g−1
k (δgk)g

−1
k gk+1 + g−1

k δgk+1 = −ηkWk + Wkηk+1,

where ηk = g−1
k δgk , we obtain the discrete Euler–Poincaré equations

(
r∗
Wk

dld
)
(Wk) − (

l∗
Wk−1

dld
)
(Wk−1) = 0, k = 1, . . . ,N − 1,

where l : G × G → G and r : G × G → G are, respectively, the left and the right
translations of the group (see also Bobenko and Suris 1999).

If we denote μk = (r∗
Wk

dld)(Wk), then the discrete Euler–Poincaré equations are
rewritten as

μk+1 = Ad∗
Wk

μk, (13)

where Ad : G × g → g is the adjoint action of G on g. Typically, these equations are
known as the discrete Lie–Poisson equations (see Bobenko and Suris 1999; Marsden
et al. 1999a, 1999b).

Consider a mechanical system determined by a Lagrangian l : g → R, where g is
the Lie algebra of a Lie group G, which also is an n-dimensional vector space. The
continuous external forces are defined as follows: f : g×U → g∗. The motion of the
mechanical system is described by applying the following principle:

δ

∫ T

0
l
(
ξ(t)

)
dt +

∫ T

0

〈
f

(
ξ(t), u(t)

)
, η(t)

〉
dt = 0, (14)
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for all variations δξ(t) of the form δξ(t) = η̇(t) + [ξ(t), η(t)], where η(t) is an arbi-
trary curve on the Lie algebra with η(0) = 0 and η(T ) = 0 (see Marsden and Ratiu
1999). In addition, 〈·, ·〉 is the natural pairing between g and g∗. These equations give
us the controlled Euler–Poincaré equations:

d

dt

(
δl

δξ

)
= ad∗

ξ

(
δl

δξ

)
+ f,

where adξ η = [ξ, η].
The optimal control problem consists of minimizing a given cost functional:

∫ T

0
C

(
ξ(t), u(t)

)
dt, (15)

where C : g × U −→ R.
Now, we consider the associated discrete problem. First we replace the Lie algebra

g by the Lie group G and the continuous curves by sequences W0,W1, . . . ,WN (since
the Lie algebra is the infinitesimal version of a Lie group, its proper discretization is
consequently that Lie group Marsden et al. 1999b; Marsden and West 2001).

The discrete Lagrangian ld : G → R is constructed as an approximation of the
action integral, that is,

ld(Wk) ≈
∫ (k+1)h

kh

l
(
ξ(t)

)
dt.

Let define the discrete external forces in the following way: f ±
k : G×U → g∗, where

U ⊂ R
m for m ≤ n = dimg. Consequently,

〈
f −

k

(
Wk,u

−
k

)
, ηk

〉 + 〈
f +

k

(
Wk,u

+
k

)
, ηk+1

〉 ≈
∫ (k+1)h

kh

〈
f

(
ξ(t), u(t)

)
, η(t)

〉
dt,

where (f −
k (Wk,u

−
k ), f +

k (Wk,u
+
k )) ∈ g∗ × g∗ and ηk ∈ g, for all k. In addition, η0 =

ηN = 0 and 〈·, ·〉 is the natural pairing between g and g∗.
For simplicity we will sometimes omit the dependence on G × U of both f +

k and
f −

k .
Taking all of this into account, we derive a discrete version of the Lagrange–

D’Alembert principle for Lie groups:

δ

N−1∑
k=0

ld(Wk) +
N−1∑
k=0

(〈
f −

k , ηk

〉 + 〈
f +

k , ηk+1
〉) = 0, (16)

for all variations {δWk}k=0,...,N−1 verifying the relation δWk = −ηkWk + Wkηk+1

with {ηk}k=1,...,N−1 an arbitrary sequence of elements of g which satisfies η0, ηN = 0
(see Lee et al. 2006; Kobilarov and Marsden 2011).

From this principle it is easy to derive the system of difference equations:

l∗
Wk−1

dld(Wk−1) − r∗
Wk

dld(Wk) + f +
k−1

(
Wk−1, u

+
k−1

) + f −
k

(
Wk,u

−
k

) = 0, (17)
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for k = 1, . . . ,N − 1; these are called the controlled discrete Euler–Poincaré equa-
tions.

The cost functional (15) is approximated by

Cd
(
u−

k ,Wk,u
+
k

) ≈
∫ (k+1)h

kh

C
(
ξ(t), u(t)

)
dt, (18)

yielding the discrete cost functional:

J =
N−1∑
k=0

Cd
(
u−

k ,Wk,u
+
k

)
. (19)

Observe that now Cd : U × G × U → R.

4.1 Fully Actuated Systems

In the fully actuated case the mappings f ±
k |W : U → g∗ defined by f ±

k |
W

(u) =
f ±

k (W,u) are diffeomorphisms for all W ∈ G; therefore, we can construct the La-
grangian Ld : g∗ × G × g∗ −→ R by

Ld(νk,Wk, νk+1)

= Cd
((

f −
k

∣∣
Wk

)−1(
r∗
Wk

dld(Wk) − νk

)
,Wk,

(
f +

k

∣∣
Wk

)−1(−l∗
Wk

dld(Wk) + νk+1
))

,

(20)

where the variables νk, νk+1 ∈ g∗ are defined by

νk = r∗
Wk

dld(Wk) − f −
k

(
Wk,u

−
k

)
,

νk+1 = l∗Wk
dld(Wk) + f +

k

(
Wk,u

+
k

)
.

(21)

The discrete phase space g∗ × G × g∗ is now a mixture of two copies of the Lie
algebra g∗ and a Lie group G. This is also an example of a Lie groupoid (Marrero et
al. 2006).

The discrete optimal control problem defined in (16) and (18) has been reduced
to a Lagrangian one, with Lagrangian function Ld : g∗ × G × g∗ → R. Thus, we are
able to apply discrete variational calculus to obtain the discrete equations of motion
in the phase space g∗ × G × g∗.

Let us show how to derive these equations from a variational point of view (see
Marrero et al. 2006 for further details). Define first the discrete action sum

Sd =
N−1∑
k=0

Ld(νk,Wk, νk+1).

Consider sequences of the type {(νk,Wk, νk+1)}k=0,...,N−1 with boundary conditions
ν0, νN and the composition W̄ = W0W1 · · ·WN−2WN−1 fixed. Therefore, an arbitrary
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variation of this sequence has the form
{
νk(ε), h

−1
k (ε)Wkhk+1(ε), νk+1(ε)

}
k=0,...,N−1,

with ε ∈ (−δ, δ) ∈ R (both ε and δ > 0 are real parameters) and ν0(ε) = ν0, νk(0) =
νk , νN(ε) = νN , hk(ε) ∈ G, and h0(ε) = hN(ε) = e, for all ε. Additionally, hk(0) = e

for all k.
The critical points of the discrete action sum subjected to the previous boundary

conditions are characterized by

0 = d

dε

∣∣∣∣
ε=0

(
N−1∑
k=0

Ld
(
νk(ε), h

−1
k (ε)Wkhk+1(ε), νk+1(ε)

))

= d

dε

∣∣∣∣
ε=0

{
Ld

(
ν0,W0h1(ε), ν1(ε)

) + Ld
(
ν1(ε), h

−1
1 (ε)W1h2(ε), ν2(ε)

)

+ · · · + Ld
(
νN−2(ε), h

−1
N−2(ε)WN−2hN−1(ε), νN−1(ε)

)
+ Ld

(
νN−1(ε), h

−1
N−1(ε)WN−1, νN

)}
.

Taking derivatives, we obtain

0 =
N−1∑
k=1

[
l∗
Wk−1

dLd|(νk−1,νk)(Wk−1) − r∗
Wk

dLd|(νk,νk+1)(Wk)
]
δhk

+
N−1∑
k=1

[
D2 Ld|(Wk−1)(νk−1, νk) + D1 Ld|(Wk)(νk, νk+1)

]
δνk,

where Ld|(W) : g∗ × g∗ → R and Ld|(ν,ν′) : G → R are defined by Ld|(W)(ν, ν′) =
Ld|(ν,ν′)(W) = Ld(ν,W,ν′), where W ∈ G and ν, ν′ ∈ g∗. Since δhk (which is de-
fined as dhk

dε
|ε=0) and δνk (which is defined as dνk

dε
|ε=0), k = 1, . . . ,N −1 are arbitrary,

we deduce the following discrete equations of motion:

l∗
Wk−1

dLd|(νk−1,νk)(Wk−1) − r∗
Wk

dLd|(νk,νk+1)(Wk) = 0,

D2 Ld|(Wk−1)(νk−1, νk) + D1 Ld|(Wk)(νk, νk+1) = 0,
(22)

for k = 1, . . . ,N − 1. Similarly to Sect. 3.1 we obtain the control inputs u−
k and u+

k

using (21).
Define the following discrete Legendre transformations:

F
−Ld : g∗ × G × g∗ −→ g∗ × T ∗g∗,

(νk−1,Wk−1, νk) �−→ (
r∗
Wk−1

dLd|(νk−1,νk)(Wk−1),−D1 Ld|(Wk−1)(νk−1, νk)
)
,

and

F
+Ld : g∗ × G × g∗ −→ g∗ × T ∗g∗,

(νk−1,Wk−1, νk) �−→ (l∗
Wk−1

dLd|(νk−1,νk)(Wk−1),D2 Ld|(Wk−1)(νk−1, νk).



408 J Nonlinear Sci (2013) 23:393–426

These relationships implicitly define the discrete Hamiltonian evolution operator

γ̄Ld : g∗ × T ∗g∗ −→ g∗ × T ∗g∗,(
r∗
Wk−1

dLd|(νk−1,νk),−D1 Ld|(Wk−1)

) �−→ (
l∗
Wk−1

dLd|(νk−1,νk),D2 Ld|(Wk−1)

)
,

which verifies

γ̄ ∗
Ld

{F,G}g∗×T ∗g∗ = {
γ̄ ∗

Ld
F, γ̄ ∗

Ld
G

}
g∗×T ∗g∗ .

The Poisson bracket is specified in canonical coordinates (zi, yi,p
i) on g∗ × T ∗g∗

by

{zi, zj }g∗×T ∗g∗ = −Ck
ij zk,

{zi, yj }g∗×T ∗g∗ = {
zi,p

j
}
g∗×T ∗g∗ = {yi, yj }g∗×T ∗g∗ = {

pi,pj
}
g∗×T ∗g∗ = 0,

{
yi,p

j
}
g∗×T ∗g∗ = δ

j
i ,

where Ck
ij are the structure constants of the Lie algebra g fixed a basis {ei}, 1 ≤ i ≤

dimg. Here, we denote by zi and yi the induced coordinates on g∗, and by (yi,pi)

the coordinates on T ∗g∗.

4.2 Underactuated Systems

The underactuated case can now be considered by adding constraints. Similarly to
Sect. 3.3 underactuation restricts the control forces to lie in a subspace spanned by
vectors {es} of the basis {es, eσ } of g∗, where {s, σ } = 1, . . . , n. Then

f −
k

(
Wk,u

−
k

) = a−
k (Wk) + (

b−
k

(
Wk,u

−
k

))
s
es,

f +
k

(
Wk,u

+
k

) = a+
k (Wk) + (

b+
k

(
Wk,u

+
k

))
s
es,

where a−
k (Wk), a

+
k (Wk) ∈ g∗ and (b−

k (Wk,u
−
k ))s, (b

+
k (Wk,u

+
k ))s ∈ R, for all s. Ad-

ditionally, the embedding condition implies that rankb−
k = rankb+

k = dimU . Then,
taking the dual basis {es, eσ }, we induce the following constraints:

Φ−
σ (νk,Wk, νk+1) = 〈

r∗
Wk

dld(Wk) − νk − a−
k (Wk), eσ

〉 = 0, (23a)

Φ+
σ (νk,Wk, νk+1) = 〈

νk+1 − l∗
Wk

dld(Wk) − a+
k (Wk), eσ

〉 = 0. (23b)

Observe in (23a), (23b), that, even though the constraints are functions Φ±
σ : g∗ ×

G × g∗ → R, Φ−
σ does not depend on νk+1, nor Φ+

σ on νk . Once we have defined
the constraints, we can implement the Lagrangian multiplier rule in order to solve the
underactuated problem. Namely, we define the extended Lagrangian as

L̃d
(
νk, λ

−
k ,Wk, νk+1, λ

+
k

)
= Ld(νk,Wk, νk+1) + (

λ−
k

)σ
Φ−

σ (νk,Wk, νk+1)

+ (
λ+

k

)σ
Φ+

σ (νk,Wk, νk+1). (24)
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Defining the discrete action sum

S under
d =

N−1∑
k=0

L̃d
(
νk, λ

−
k ,Wk, νk+1, λ

+
k

)
,

we obtain the underactuated discrete equations of motion

l∗
Wk−1

dLd|(νk−1,νk)(Wk−1) − r∗
Wk−1

dLd|(νk,νk+1)(Wk)

+ l∗
Wk−1

((
λ−

k−1

)σ dΦ−
σ |(νk−1,νk)(Wk−1) + (

λ+
k−1

)σ dΦ+
σ |(νk−1,νk)(Wk−1)

)
− r∗

Wk−1

((
λ−

k

)σ dΦ−
σ |(νk,νk+1)(Wk) + (

λ+
k

)σ dΦ+
σ |(νk,νk+1)(Wk)

) = 0,

D2 Ld|(Wk−1)(νk−1, νk) + D1 Ld|(Wk)(νk, νk+1) + [(
λ+

k−1

)σ − (
λ−

k

)σ ]
eσ = 0,

Φ−
σ (νk,Wk, νk+1) = 0,

Φ+
σ (νk,Wk, νk+1) = 0,

(25)

where the subscripts (Wk−1), (Wk), (νk−1, νk), (νk, νk+1) denote variables that are
fixed.

5 Numerical Methods for Systems on Lie Groups

We now put the discrete optimal control equations (22) and (25) into a form suitable
for algorithmic implementation. The numerical methods are constructed using the
following guidelines:

(1) good approximation of the dynamics and optimality,
(2) avoidance of issues with local coordinates,
(3) guarantee of numerical robustness and convergence,
(4) numerical efficiency.

The algorithm developed in this section will be derived from a trapezoidal quadra-
ture and will approximate the dynamics and optimality conditions to at least second
order (Marsden and West 2001) (requirement 1). We will also satisfy requirement 2
for systems on Lie groups by lifting the optimization to the Lie algebra through a
retraction map that will be defined in this section. The resulting algorithms are nu-
merically robust in the sense that there are no issues with coordinate singularities and
the dynamics and optimality conditions remain close to their continuous counterparts
even at big time steps. Yet, as with any other nonlinear optimization scheme, it is
difficult to formally claim that the algorithm will always converge (requirement 3).
Nevertheless, in practice there are only isolated cases for underactuated systems that
fail to converge. A remedy for such cases has been suggested in Kobilarov and Mars-
den (2011). In general, the resulting algorithms require a small number of iterations,
e.g., between 10 and 20 to converge (requirement 4).

Note that the discrete mechanics approach provides an accurate approximation of
the dynamics associated with its momentum and symplectic form (or Poisson bracket)
preservation and good energy behavior. However, long-time stability becomes less



410 J Nonlinear Sci (2013) 23:393–426

important for optimal control problems with short time horizon T . Yet, the notion of
symplectic optimality conditions for two-point boundary value problems likely has
deeper implications, e.g., related to the region of attraction and numerical stability of
the associated root-finding numerical procedure. Such directions are not explored in
this work and require further study.

The optimization variables Wk are regarded as small displacements on the Lie
group. Thus, it is possible to express each term through a Lie algebra element that
can be regarded as the averaged velocity of this displacement. This is accomplished
using a retraction map τ : g → G which is an analytic local diffeomorphism around
the identity such that τ(ξ)τ (−ξ) = e, where ξ ∈ g. Two standard choices for τ are
employed in this work: the exponential map and the Cayley map.

Regarding ξ as a velocity, we set the discrete Lagrangian ld : G → R to

ld(Wk) = hl(ξk),

where ξk = τ−1(g−1
k gk+1)/h = τ−1(Wk)/h. The difference g−1

k gk+1 ∈ G, which is
an element of a nonlinear space, can now be represented by the vector ξk in order to
enable unconstrained optimization in the linear space g for optimal control purposes.

The variational principle will now be expressed in terms of the chosen map τ . The
resulting discrete mechanics will thus involve the derivatives of the map, which we
define next (see also Bou-Rabee and Marsden 2009; Iserles et al. 2005; Kobilarov
2008; Kobilarov and Marsden 2011).

Definition 5.1 Given a map τ : g → G, its right trivialized tangent dτξ : g → g and
its inverse dτ−1

ξ : g → g are such that, for g = τ(ξ) ∈ G and η ∈ g, the following
holds:

∂ξ τ (ξ)η = dτξ ητ(ξ),

∂ξ τ
−1(g)η = dτ−1

ξ

(
ητ(−ξ)

)
.

Using these definitions, variations δξ and δg are constrained by

δξk = dτ−1
hξk

(−ηk + Adτ(hξk)ηk+1)/h,

where ηk = g−1
k δgk , which is obtained by straightforward differentiation of ξk =

τ−1(g−1
k gk+1)/h.

The retraction map τ choices are the following:
(a) The exponential map exp : g → G, defined by exp(ξ) = γ (1), with γ : R → G

in the integral curve through the identity of the vector field associated with ξ ∈ g

(hence, with γ̇ (0) = ξ ). The right trivialized derivative and its inverse are defined by

d expx y =
∞∑

j=0

1

(j + 1)!adj
xy,

d exp−1
x y =

∞∑
j=0

Bj

j ! adj
xy,
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where Bj are the Bernoulli numbers (see Hairer et al. 2002). Typically, these expres-
sions are truncated in order to achieve a desired order of accuracy.

(b) The Cayley map cay : g → G is defined by cay(ξ) = (e − ξ
2 )−1(e + ξ

2 ) and is
valid for a general class of quadratic groups (see Hairer et al. 2002) that include the
groups of interest in this paper (e.g., SO(3), SE(2), and SE(3)). Its right trivialized
derivative and inverse are defined by

dcayxy =
(

e − x

2

)−1

y

(
e + x

2

)−1

,

dcay−1
x y =

(
e − x

2

)
y

(
e + x

2

)
.

Next, the discrete forces and cost function are defined through a trapezoidal ap-
proximation, i.e.,

f ±
k

(
ξk, u

±
k

) = h

2
f

(
ξk, u

±
k

)
,

and

Cd
(
u−

k , ξk, u
+
k

) = h

2
C

(
ξk, u

−
k

) + h

2
C

(
ξk, u

+
k

)
,

respectively. With the choice of a retraction map and the trapezoidal rule, the equa-
tions of motion (13) become

μk − Ad∗
τ(hξk−1)μk−1 = h

2
f

(
ξk, u

−
k

) + h

2
f

(
ξk−1, u

+
k−1

)
,

μk = (
dτ−1

hξk

)∗
∂ξ l(ξk),

gk+1 = gkτ(hξk),

while the momenta defined in (21) take the form

νk = μk − h

2
f

(
ξk, u

−
k

)
, (26)

νk+1 = Ad∗
τ(hξk)

μk + h

2
f

(
ξk, u

+
k

)
. (27)

Finally, define the Lagrangian �d : g∗ × g × g∗ → R such that

�d
(
ν, ξ, ν′) = Ld

(
ν, τ (hξ), ν′).

Note that the Lagrangian is well defined only on g∗ × U × g∗, where U ⊂ g is an
open neighborhood around the identity for which τ is a diffeomorphism. To make the
notation as simple as possible, we retain the Lagrangian definition to the full space
g∗ × g × g∗.

The optimality conditions corresponding to (22) become

(
dτ−1

−hξk−1

)∗ d�d|(νk−1,νk)(ξk−1) − (
dτ−1

hξk

)∗ d�d|(νk,νk+1)(ξk) = 0, (28)
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D2�d|(ξk−1)(νk−1, νk) + D1�d|(ξk)(νk, νk+1) = 0, (29)

for k = 0, . . . ,N − 1. Here, �d|(ξ)(ν, ν′) = �d|(ν,ν′)(ξ) = �d(ν, ξ, ν′). Equations (28)
and (29) can also be obtained from (22), employing Lemma 9.2 and Lemma 9.3 in
Appendix.

In the underactuated case we define

�̃d
(
ν, ξ, ν′, λ−, λ+) = Ld

(
ν, τ (hξ), ν′) + (

λ−)σ
Φ−

σ

∣∣
(ν,ν′)

(
τ(hξ)

)
+ (

λ+)σ
Φ+

σ |(ν,ν′)
(
τ(hξ)

)
, (30)

and from (25) obtain the equations

(
dτ−1

−hξk−1

)∗ d�̃d|(νk−1,νk,λ
±
k−1)

(ξk−1) − (
dτ−1

hξk

)∗ d�̃d|(νk,νk+1,λ
±
k )(ξk) = 0,

D2 Ld|τ(hξk−1)(νk−1, νk) + D1 Ld|τ(hξk)(νk, νk+1) + λ+
k−1 − λ−

k = 0,

Φ−
σ

(
νk, τ (hξk), νk+1

) = 0,

Φ+
σ

(
νk, τ (hξk), νk+1

) = 0,

(31)

where we employed the notation λ± := (λ±)σ eσ .

Boundary Conditions Establishing the exact relationship between the discrete and
continuous momenta, μk and μ(t) = ∂ξ l(ξ(t)), respectively, is particularly impor-
tant for properly enforcing boundary conditions that are given in terms of continuous
quantities. The following equations relate the momenta at the initial and final times
t = 0 and t = T and are used to transform between the continuous and discrete rep-
resentations:

μ0 − ∂ξ l
(
ξ(0)

) = h

2
f

(
ξ(0), u−

0

)
,

∂ξ l
(
ξ(T )

) − Ad∗
τ(hξN−1)μN−1 = h

2
f

(
ξ(T ),u+

N

)
,

which also corresponds to the relations ν0 = ∂ξ l(ξ(0)) and νN = ∂ξ l(ξ(T )). These
equations can also be regarded as structure-preserving velocity boundary conditions,
i.e., for given fixed velocities ξ(0) and ξ(T ).

The exact form of the previous equations depends on the choice of τ . This choice
will also influence the computational efficiency of the optimization framework when
the above equalities are enforced as constraints. The numerical procedure to compute
the trajectory is summarized as follows.

Algorithm 5.2 (Optimal Control) Data: group G; mechanical Lagrangian l; control
functions a, b; cost function C; final time T ; number of segments N .

(1) Input: boundary conditions (g(0), ξ(0)) and (g(T ), ξ(T )).
(2) Set momenta ν0 = ∂ξ l(ξ(0)) and νN = ∂ξ l(ξ(T ))
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(3) Solve for (ξ0, . . . , ξN−1, ν1, . . . , νN−1, λ
±
1 , . . . , λ±

N−1) the relations:

{
Equations (31) forall k = 1, . . . ,N − 1,

τ−1(τ (hξN−1)
−1 . . . τ (hξ0)

−1 g(0)−1g(T )) = 0

(4) Output: optimal sequence of velocities ξ0, . . . , ξN−1.
(5) Reconstruct path g0, . . . , gN by gk+1 = gkτ(hξk) for k = 0, . . . ,N − 1.

The solution is computed using a root-finding procedure such as Newton’s method.
If the initial guess does not satisfy the dynamics, we recommend using a Levenberg–
Marquardt algorithm, which has slower but more robust convergence.

5.1 Example: Optimal Control Effort

Consider a Lagrangian consisting of the kinetic energy only,

l(ξ) = 1

2

〈
I(ξ), ξ

〉
,

full unconstrained actuation, no potential or external forces, and no velocity con-
straint. The map I : g → g∗ is called the inertia tensor and is assumed full rank.

In the fully actuated case we have f (ξk, u
±
k ) ≡ u±

k . We consider a minimum effort
control problem, i.e.,

C(ξ,u) = 1

2
‖u‖2.

The optimal control problem for fixed initial and final states (g(0), ξ(0)) and
(g(T ), ξ(T )) can now be summarized as follows.

Compute: ξ0:N−1, u
±
0:N,

minimizing:
h

4

N−1∑
k=0

(∥∥u−
k

∥∥2 + ∥∥u+
k

∥∥2)
,

subject to: μ0 − I
(
ξ(0)

) = h

2
u−

0 ,

μk − Ad∗
τ(hξk−1)

μk−1 = h
(
u−

k + u+
k−1

)
, k = 1, . . . ,N − 1,

I
(
ξ(T )

) − Ad∗
τ(hξN−1)

μN−1 = h

2
u+

N,

μk = (
dτ−1

hξk

)∗
I(ξk),

gk+1 = gkτ(hξk), k = 0, . . . ,N − 1,

τ−1(g−1
N g(T )

) = 0.
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The optimality conditions for this problem are derived as follows. The Lagrangian
becomes

�d(νk, ξk, νk+1) = 1

4h

N−1∑
k=0

(∥∥νk − (
dτ−1

hξk

)∗
I(ξk)

∥∥2 + ∥∥νk+1 − (
dτ−1

−hξk

)∗
I(ξk)

∥∥2)
,

where the momentum has been computed according to

νk = 1

2

((
dτ−1

hξk

)∗
I(ξk) + (

dτ−1
−hξk−1

)∗
I(ξk−1)

)
. (32)

Thus the optimality conditions become

(
dτ−1

hξk

)∗ d�d|(νk,νk+1)(ξk) − (
dτ−1

−hξk−1

)∗ d�d|(νk−1,νk)(ξk−1) = 0,

k = 1, . . . ,N − 1,

τ−1(τ(hξN−1)
−1 . . . τ (hξ0)

−1g−1
0 g(T )

) = 0.

It is important to note that these last two equations define N n equations in the N n un-
knowns ξ0:N−1. A solution can be found using nonlinear root finding. Once ξ0:N have
been computed, it is possible to obtain the final configuration gN by reconstructing
the curve by these velocities. Also, the boundary condition g(T ) is enforced through
the relation τ−1(g−1

N g(T )) = 0 without the need to optimize over any of the configu-
rations gk .

5.2 Extension: The Configuration-Dependent Case

The developed framework can be extended to a configuration-dependent Lagrangian
L : G × g → R, for instance, defined in terms of a kinetic energy K : g → R and a
potential energy V : G → R according to

L(g, ξ) = K(ξ) − V (g),

where g ∈ G and ξ ∈ g. The controlled Euler–Poincaré equations are, in this case,

μ̇ − ad∗
ξμ = −g∗∂gV (g) + f,

μ = ∂ξK(ξ),

ġ = gξ,

where the external forces are defined as f : G × g × U → g∗. Our discretization
choice Ld : G × G → R will be (recall that ξk = τ−1(g−1

k gk+1)/h)

Ld(gk, gk+1) = h

2
L(gk, ξk) + h

2
L(gk+1, ξk)

= hK(ξk) − h
V (gk) + V (gk+1)

2
,
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while the G-dependent discrete forces now become

f −
k

(
gk, ξk, u

−
k

) = h

2
f

(
gk, ξk, u

−
k

)
, f +

k

(
gk+1, ξk, u

+
k

) = h

2
f

(
gk+1, ξk, u

+
k

)
.

This leads to the discrete equations

μk − Ad∗
τ(hξk−1)

μk−1 = −hg∗
k ∂gV (gk) + h

2
f

(
gk, ξk, u

−
k

) + h

2
f

(
gk, ξk−1, u

+
k−1

)
,

μk = (
dτ−1

hξk

)∗
∂ξK(ξk),

gk+1 = gkτ(hξk).

The momenta become

νk = μk + h

2
g∗

k ∂gV (gk) − h

2
f

(
gk, ξk, u

−
k

)
,

νk+1 = Ad∗
τ(hξk)

μk − h

2
g∗

k+1∂gV (gk+1) + h

2
f

(
gk+1, ξk, u

+
k

)
.

In consequence, we can define a discrete Lagrangian

Ld : g∗ × G × g × g
∗ → R,

depending on the variables (νk, gk, ξk, νk+1), whose discrete equations of motion will
be a mixture between (22) and (28), (29), namely,

D2Ld|(gk−1,ξk−1)(νk−1, νk) + D1Ld|(gk,ξk)(νk, νk+1) = 0,(
l∗
gk−1

dLd|(νk−1,ξk−1,νk)(gk−1) + r∗
gk

dLd|(νk,ξk,νk+1)(gk)
)

+ ((
dτ−1

−hξk−1

)∗ dLd|(νk−1,gk−1,νk)(ξk−1) − (
dτ−1

hξk

)∗ dLd|(νk,gk,νk+1)(ξk)
) = 0.

6 Applications

6.1 Underwater Vehicle

We illustrate the developed algorithm with an application to a simulated unmanned
underwater vehicle. Figure 1 shows the model equipped with five thrusters which
produce forces and torques in all directions but the body-fixed “y” axis. Since the
input directions span only a five-dimensional subspace, the problem is solved through
the underactuated framework.

The vehicle configuration space is G = SE(3). We make the identification SE(3) ∼
SO(3) × R

3 using elements R ∈ SO(3) and x ∈ R
3 through

g =
(

R x

01×3 1

)
, g−1 =

(
RT −RT x

01×3 1

)
,
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Fig. 1 An underwater vehicle model (a) and various computed optimal trajectories between chosen
states (b). Only a few frames along the path are shown for clarity

where g ∈ SE(3). Elements of the Lie algebra ξ ∈ se(3) are identified with body-fixed
angular and linear velocities denoted ω ∈ R

3 and v ∈ R
3, respectively, through

ξ =
(

ω̂ v

01×3 0

)
,

where the map ·̂ : R
3 → so(3) is defined by

ω̂ =
⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

⎞
⎠ . (33)

The algorithm is thus implemented in terms of vectors in R
6 rather than matrices in

se(3).
The map τ = cay : se(3) → SE(3) is chosen, instead of the exponential, since it

results in more computationally efficient implementation. It is defined by

cay(ξ) =
(

cay(ω̂) dcayωv

0 1

)
,

where cay : so(3) → SO(3) is given1 by

cay(ω̂) = I3 + 4

4 + ‖ω‖2

(
ω̂ + ω̂2

2

)
, (34)

where In is the n × n identity matrix and dcay : R
3 → R

3 is defined by

dcayω = 2

4 + ‖ω‖2
(2I3 + ω̂). (35)

1Note that cay denotes a map to either SO(3) or SE(3), which should be clear from its argument.



J Nonlinear Sci (2013) 23:393–426 417

Fig. 2 Details of the computed optimal path for the reconfiguration maneuver given in Fig. 1

The matrix representation of the right trivialized tangent inverse dτ−1
(ω,v) : R

3 ×R
3 →

R
3 × R

3 becomes

[
dcay−1

(ω,v)

] =
[

I3 − 1
2 ω̂ + 1

4ωωT 03

− 1
2 (I3 − 1

2 ω̂)̂v I3 − 1
2 ω̂

]
. (36)

The vehicle inertia tensor I is computed assuming cylindrical mass distribution
with mass m = 3 kg. The control basis vectors are {es}5

s=1 = {e1, e2, e3, e4, e6}, while
the non-actuated direction is eσ = e5, where ei is the i-th standard basis vector of R

6.
The control functions take the form

b(W,u)1 = d(u5 − u4),

b(W,u)2 = c
(
(u1 + u2)/2 − u3

)
,

b(W,u)3 =
(

c sin
π

3

)
(u2 − u1),

b(W,u)4 = u1 + u2 + u3,

b(W,u)5 = u4 + u5,

a(W) = Hτ−1(W),

where H is a negative definite viscous drag matrix and the constants c, d are the
lengths of the thrusting torque moment arms (see Fig. 1).

We are interested in computing a minimum control effort trajectory between two
given boundary states, i.e., conditions on both the configurations and velocities. Such
a cost function is defined in Sect. 5.1. The optimal control problem is solved us-
ing (31). The computation is performed using Algorithm 5.2. Figure 2 shows the
computed velocities and controls for the “reconfiguration” trajectory shown in Fig. 1.
The algorithm requires between 10–20 iterations depending on the boundary condi-
tions and when applied to N = 32 segments.

6.2 Discontinuous Control

One of the advantages of employing the discrete variational framework is the treat-
ment of discontinuous control inputs as illustrated in Sect. 3. The nature of the control
curve depends on the cost function. In the standard squared control effort case (i.e.,
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Fig. 3 An optimal trajectory of an underactuated rigid body on SO(3) (a). The body is controlled using
two force inputs around the body-fixed x and y axes. A discontinuous optimal trajectory (b) which our
algorithm can handle

the L2 control curve norm employed in Sect. 6.1), the resulting control is smooth.
Another cost function of interest is

∫ T

0 ‖u(t)‖dt , which is typically imposed along
with the constraints umin ≤ u(t) ≤ umax. This case results in a discontinuous optimal
control curve. Our formulation can handle such problems easily, since the terms u+

k−1
and u−

k are regarded as the forces before and after time tk , respectively. A computed
scenario of a rigid body actuated with two control torques around its principal axes
of inertia (Fig. 3) illustrates the discontinuous case.

7 Extensions

The methods developed in the previous sections are easily adapted to other cases
which are of interest in practical applications. In particular, this section will be de-
voted to the discussion of two important extensions: the case of optimal control prob-
lems for Lagrangians of the type l : T M × g → R (that is, reduction by symmetries
on a trivial principal fiber bundle) and the case of nonholonomic systems. Here, M

denotes a smooth manifold. Observe that the phase space T M × g unifies the previ-
ously studied cases of a tangent bundle and a Lie algebra.

The notion of a principal fiber bundle is present in many locomotion and robotic
systems (Bullo and Lewis 2005; Bloch et al. 1996; Marsden and Ostrowski 1998).
When the configuration manifold is Q = M × G, there exists a canonical splitting
between variables describing the position and variables describing the orientation of
the mechanical system. Then, we distinguish the pose coordinates g ∈ G (the ele-
ments in the Lie algebra will be denoted by ξ ∈ g), and the variables describing the
internal shape of the system, that is, x ∈ M (in consequence (x, ẋ) ∈ T M). Observe
that the Lagrangians of the type l : T M × g → R mainly appear as reductions of La-
grangians of the type L : T (M × G) → R, which are invariant under the action of
the Lie group G. Under the identification T (M ×G)/G ≡ T M × g we obtain the re-
duced Lagrangian l. We first develop the discrete optimal control problem for systems
in an unconstrained principal bundle setting in Sect. 7.1. Nonholonomic constraints
are then added to treat the more general case of locomotion systems in Sect. 7.2.
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7.1 Discrete Optimal Control on Principal Bundles

The discrete case is modeled by a Lagrangian ld : M × M × G → R which is an
approximation of the action integral in one time step:

ld(xk, xk+1,Wk) �
∫ h(k+1)

hk

l
(
x(t), ẋ(t), ξ(t)

)
dt,

where (xk, xk+1) ∈ M × M and Wk ∈ G. Again, we define the discrete control forces
according to f ±

k : M × M × G × U → T ∗M × g∗, where U ⊂ R
m:

f −
k

(
xk, xk+1,Wk,u

−
k

) = (
f̄ −

k

(
xk, xk+1,Wk,u

−
k

)
, f̂ −

k

(
xk, xk+1,Wk,u

−
k

))
,

f +
k

(
xk, xk+1,Wk,u

+
k

) = (
f̄ +

k

(
xk, xk+1,Wk,u

+
k

)
, f̂ +

k

(
xk, xk+1,Wk,u

+
k

))
.

Here f −
k ∈ T ∗

xk
M × g∗ and f +

k ∈ T ∗
xk+1

M × g∗ (more concretely f̄ −
k ∈ T ∗

xk
M , f̄ +

k ∈
T ∗

xk+1
M , f̂ −

k ∈ g∗, f̂ +
k ∈ g∗).

Similarly to the developments in Sects. 3 and 4.1, we can formulate the discrete
Lagrange–D’Alembert principle:

δ

N−1∑
k=0

ld(xk, xk+1,Wk) +
N−1∑
k=0

〈
f −

k , (δxk, ηk)
〉

+
N−1∑
k=0

〈
f +

k , (δxk+1, ηk+1)
〉 = 0,

which can be rewritten as

δ

N−1∑
k=0

ld(xk, xk+1,Wk) +
N−1∑
k=0

f̄ −
k δxk +

N−1∑
k=0

f̄ +
k δxk+1

+
N−1∑
k=0

〈
f̂ −

k , ηk

〉 +
N−1∑
k=0

〈
f̂ +

k , ηk+1
〉 = 0,

for all variations {δxk}Nk=0 with δxk ∈ Txk
M and δx0 = δxN = 0. Also, {δWk}Nk=0

with δWk ∈ Tgk
G, such that δWk = −ηkWk + Wkηk+1, {ηk}Nk=0 being a sequence of

independent elements of g such that η0 = ηN = 0.
Applying variations in the last expression and rearranging the sum, we finally

obtain the complete set of forced discrete Euler–Lagrange equations:

D1ld(xk, xk+1,Wk) + D2ld(xk−1, xk,Wk−1) + f̄ −
k + f̄ +

k−1 = 0, (37)

l∗Wk−1
D3ld(xk−1, xk,Wk−1) − r∗

Wk
D3ld(xk, xk+1,Wk) + f̂ −

k + f̂ +
k−1 = 0, (38)

with k = 1, . . . ,N − 1. Since we are dealing with an optimal control problem, we
introduce a discrete cost function Cd : M × G × M × U × U → R. As in previous
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cases, our objective is to extremize the following sum:

N−1∑
k=0

Cd
(
xk,Wk, xk+1, u

−
k , u+

k

)
,

subjected to (37) and (38). Let us initially restrict our attention to the case of fully
actuated systems.

Definition 7.1 (Fully Actuated Discrete System) We say that the discrete mechanical
control system is fully actuated if the mappings

f −
k

∣∣
(x0,x1,W1)

: U → T ∗
x0

M × g
∗, f −

k

∣∣
(x0,x1,W1)

(u) = f −
k (x0, x1,W1, u),

f +
k

∣∣
(x0,x1,W1)

: U → T ∗
x1

M × g
∗, f +

k

∣∣
(x0,x1,W1)

(u) = f +
k (x0, x1,W1, u),

are both diffeomorphisms.

According to (37) and (38), we can introduce the momenta by means of the fol-
lowing discrete Legendre transforms:

pk = −D1ld(xk, xk+1,Wk) − f̄ −
k ,

pk+1 = D2ld(xk, xk+1,Wk) + f̄ +
k ,

μk = r∗
Wk

D3ld(xk, xk+1,Wk) − f̂ −
k ,

μk+1 = l∗Wk
D3ld(xk, xk+1,Wk) + f̂ +

k .

In the fully actuated case, is possible to find the value of all control forces in terms of
xk, xk+1,Wk,pk,pk+1,μk,μk+1, that is,

u−
k = u−

k (xk, xk+1,Wk,pk,μk), (39)

u+
k = u+

k (xk, xk+1,Wk,pk+1,μk+1). (40)

Replacing (39) and (40) in Cd, we finally obtain the discrete Lagrangian that com-
pletely describes our system:

Ld : T ∗M × g
∗ × G × g

∗ × T ∗M −→ R.

The associated discrete cost functional is

Jd =
N−1∑
k=0

Ld(xk,pk,μk,Wk,μk+1, xk+1,pk+1). (41)

As usual, we now take variations in (41) in order to obtain the discrete Euler–
Lagrange equations for our optimal control problem (with some abuse of notation

we denote Q̂k = (xk,pk,μk,Wk,μk+1, xk+1,pk+1) the whole set of coordinates in
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the new phase space):

D6 Ld(Q̂k−1) + D1 Ld(Q̂k) = 0,

D7 Ld(Q̂k−1) + D2 Ld(Q̂k) = 0,

D5 Ld(Q̂k−1) + D3 Ld(Q̂k) = 0,

l∗Wk−1
D4 Ld(Q̂k−1) − r∗

Wk
D4 Ld(Q̂k) = 0,

together with the forced discrete Euler–Lagrange equations (37) and (38).
Typically, actuation is achieved by controlling only a subset of the shape variables.

In our setting this can be regarded as underactuation—the mappings in Definition 7.1
become embeddings. If this is the case, it is necessary to introduce constraints and
apply constrained variational calculus as in Sects. 3.2 and 4.1.

7.2 Discrete Optimal Control of Nonholonomic Systems

Optimal control subject to nonholonomic constraints such as that in robotic vehicles
is considered next. In the following we will expose the theoretical framework, leaving
for future research the application to concrete examples.

A controlled discrete nonholonomic system on M ×M ×G is given by the follow-
ing quadruple (see Iglesias et al. 2008; Kobilarov et al. 2010 and Ferraro et al. 2008;
Jay 2009 for alternative approaches):

(i) A regular discrete Lagrangian ld : M × M × G → R.
(ii) A discrete constraint embedded submanifold Mc of M × M × G.

(iii) A constraint distribution, Dc, which is a vector subbundle of the vector bundle
τ

T M×g
: T M ×g → M , such that dim Mc = dim Dc. Typically, there is a relation

between the constraint distribution and the discrete constraint, since from Mc
we induce for every x ∈ M , the subspace Dc(x) of TxM × g given by

Dc(x) = T(x,x,e)Mc ∩ (TxM × g),

where we are identifying TxM ×g ≡ 0x ×TxM ×TeG, with e being the identity
element of the Lie group G.

(iv) The discrete control forces f ±
k : Mc × U → T ∗M × }∗ where U ⊂ R

m (again,
forces f ±

k split into f̄ ±
k and f̂ ±

k as in the previous section).

We have the following discrete version of the Lagrange–D’Alembert principle for
controlled nonholonomic systems:

δ

N−1∑
k=0

ld(xk, xk+1,Wk) +
N−1∑
k=0

〈
f −

k , (δxk, ηk)
〉

+
N−1∑
k=0

〈
f +

k , (δxk+1, ηk+1)
〉 = 0,

for all variations {δxk}Nk=0, with δx0 = δxN = 0; and {δWk}Nk=0, such that δWk =
−ηkWk + Wkηk+1, with {ηk}Nk=0, verifying (δxk, ηk) ∈ Dc(xk) ⊆ Txk

M × g such that
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η0 = ηN = 0. Moreover, (xk, xk+1,Wk) ∈ Mc, k = 0, . . . ,N − 1 (see Iglesias et al.
2008).

Take a basis of sections {(Xa, η̃a)} of the vector bundle τDc : Dc −→ M , where
Xa ∈ X(M) and η̃a ∈ g for a = 1, . . . , rank(Dc). Hence, the equations of motion de-
rived from the discrete Lagrange–D’Alembert principle for controlled nonholonomic
systems are:

0 = 〈
D1ld(xk, xk+1,Wk) + D2ld(xk−1, xk,Wk−1) + f̄ −

k + f̄ +
k−1,X

a(xk)
〉

+ 〈
l∗Wk−1

D3ld(xk−1, xk,Wk−1) − r∗
Wk

D3ld(xk, xk+1,Wk) + f̂ −
k + f̂ +

k−1, η̃
a
〉
,

(42)

0 = Ψ α(xk, xk+1,Wk), (43)

where Ψ α(xk, xk+1,Wk) = 0 are the constraints which locally determine Md.
In a more geometric way, we can write (42) and (43) as follows:

0 = (iDc)
∗(D1ld(xk, xk+1,Wk) + D2ld(xk−1, xk,Wk−1) + f̄ −

k + f̄ +
k−1,

l∗Wk−1
D3ld(xk−1, xk,Wk−1) − r∗

Wk
D3ld(xk, xk+1,Wk) + f̂ −

k + f̂ +
k−1

)
,

where (xk, xk+1,Wk) ∈ Mc and iDc : Dc ↪→ T M × g is the canonical inclusion.
Given a discrete cost function Cd : U × Mc ×U −→ R, the optimal control prob-

lem is to minimize the action sum

N−1∑
k=0

Cd
(
u−

k , xk,Wk, xk+1, u
+
k

)
,

subject to (42) and (43) and to some given boundary conditions. We next distinguish
between the fully and underactuated case using the following definition.

Definition 7.2 (Fully Actuated Nonholonomic Discrete System) We say that the dis-
crete nonholonomic mechanical control system is fully actuated if the mappings

F−
k

∣∣
(x0,x1,W1)

: U → D∗
c , F−

k

∣∣
(x0,x1,W1)

(u) = (iDc)
∗(f −

k (x0, x1,W1, u)
)
,

F+
k

∣∣
(x0,x1,W1)

: U → D∗
c , F+

k

∣∣
(x0,x1,W1)

(u) = (iDc)
∗(f +

k (x0, x1,W1, u)
)
,

are both diffeomorphisms for all (x0, x1,W1) ∈ Mc.

Regarding (42) and its geometric redefinition just below, let us introduce the fol-
lowing momenta:

πk = (iDc)
∗(−D1ld(xk, xk+1,Wk), r

∗
Wk

D3ld(xk, xk+1,Wk) − f −
k

)
,

πk+1 = (iDc)
∗(D2ld(xk, xk+1,Wk), l

∗
Wk

D3ld(xk, xk+1,Wk) + f +
k

)
,

where both πk and πk+1 belong to D∗
c . In the fully actuated case, the value of all con-

trol forces can be completely determined in terms of xk, xk+1,Wk,πk,πk+1, where



J Nonlinear Sci (2013) 23:393–426 423

the coordinates (xk, xk+1,Wk) always belong to Mc. Therefore, we can re-express
the cost function in terms of these variables and, consequently, derive the discrete
Lagrangian

Ld : (D∗
c

)
τD∗

c
×pr1(Mc)pr2×τ∗

Dc

(
D∗

c

) → R,

where pri : Md ⊆ M × M × G → M are the projections onto the first and second
arguments and τD∗

c
: D∗

c → M the canonical projection.
Observe that we can consider this case as a constrained discrete variational prob-

lem taking an extension

L̃d : D∗
c × G × D∗

c → R

of Ld subjected to the constraints Ψ α(xk, xk+1,Wk) = 0.
Therefore, denoting Q̂k = (xk,πk,Wk, xk+1,πk+1) as the whole set of coordinates

of the new phase space D∗
c × G × D∗

c , we deduce that the equations of motion are

D4 L̃d(Q̂k−1) + D1 L̃d(Q̂k)

= λk−1
α D2Ψ

α(xk−1, xk,Wk−1) + λk
αD1Ψ

α(xk, xk+1,Wk),

D5 L̃d(Q̂k−1) + D2 L̃d(Q̂k) = 0,

l∗Wk−1
D3 L̃d(Q̂k−1) − r∗

Wk
D3 L̃d(Q̂k)

= λk−1
α l∗Wk−1

D3Ψ
α(xk−1, xk,Wk−1) − λk

αr∗
Wk

D3Ψ
α(xk, xk+1,Wk),

Ψ α(xk, xk+1,Wk) = 0,

where λk
α are the Lagrange multipliers of the new constrained problem. The under-

actuated case can be handled by adding new constraints and applying discrete con-
strained variational calculus similarly to Sect. 4.

Finally, note that these constructions can be simplified by expressing the optimal
control problems more compactly through the Lie groupoid framework (Marrero et
al. 2006), which naturally generalizes the systems studied in this paper such as vec-
tor spaces, Lie groups, and principal bundles. In particular, the examples studied in
this paper can be equivalently modeled using Lie groupoid techniques (Jiménez and
Martín de Diego 2010) adapted to our proposed formalism. Future work will explore
these connections.

8 Conclusions

This paper develops numerical methods for optimal control of Lagrangian mechan-
ical systems defined on tangent bundles, Lie groups, trivial principal bundles, and
nonholonomic systems. The proposed approach preserves the geometry and varia-
tional structure of mechanics through the discretization of the variational principles
on manifolds. The key point is to solve the optimal control through discrete mechan-
ics, i.e., by formulating the optimization as the solution of an action principle of a
higher dimensional system in a new Lagrangian phase space: T ∗Q × T ∗Q in the
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general case and g∗ × G × g∗ in the Lie group case. The optimal control algorithm
is then derived as a variational integrator subject to boundary conditions. We thus
expect that both the dynamics and optimal control solutions will have accurate and
stable numerical behavior (due to symplectic-momentum preservation), even at large
time steps (which allows for improved run-time efficiency).

Simulations of an underactuated underwater vehicle illustrate an application of
the method. Yet, further numerical studies and comparisons are necessary to exactly
quantify the advantages and the limitations of the proposed algorithm. An important
future direction is thus to study the convergence properties of the optimal control sys-
tem. Convergence for general nonlinear systems is a complex issue. In this respect,
it is interesting to note that the discrete mechanics and optimal control on Lie groups
such as those used in the example in Sect. 6 using the Cayley map result in a polyno-
mial form without further approximation or Taylor series truncation. A useful future
direction is then to study the regions of attraction of the numerical continuation using
tools from algebraic geometry.

More generally, the theoretical framework introduced in Sect. 7 can serve as a
basis for deriving algorithms for control systems such as multi-body locomotion sys-
tems or robotic vehicles with nonholonomic constraints. Furthermore, the developed
classes of systems can be unified through the recently developed groupoid frame-
work (Weinstein 1996; Iglesias et al. 2008; Martínez 2007). Each of the considered
product spaces (e.g., Q × Q) can be regarded as a single groupoid space with equa-
tions of motion resulting from a single generalized discrete variational principle. This
will enable the automatic solution of optimal control problems for various complex
systems and a convenient unified framework for implementing practical optimiza-
tion schemes such as (Ober-Blöbaum et al. 2011; Bloch et al. 2009; Lee et al. 2006;
Kobilarov and Marsden 2011). More importantly, this viewpoint can be used to ap-
ply standard discrete Lagrangian regularity conditions (e.g., Marsden and West 2001)
to optimal control problems evolving on the groupoid space. This would provide a
deeper insight into the solvability of the resulting optimization schemes.
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Appendix: Lemmae

Lemma 9.1 (See Marsden and Ratiu 1999) Let g ∈ G, λ ∈ g, and δf denote the
variation of a function f with respect to its parameters. Assuming λ is constant, the
following identity holds:

δ(Adg λ) = −Adg

[
λ,g−1δg

]
,

where [·, ·] : g × g → R denotes the Lie bracket operating or equivalently [ξ, η] ≡
adξ η, for given η, ξ ∈ g.
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Lemma 9.2 (See Bou-Rabee and Marsden 2009) The following identity holds:

dτξ η = Adτ(ξ) dτ−ξ η,

for any ξ, η ∈ g.

Lemma 9.3 (See Bou-Rabee and Marsden 2009) The following identity holds:

dτ−1
ξ η = dτ−1

−ξ (Adτ(−ξ)η),

for any ξ, η ∈ g.
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