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Abstract We study boundary value problems posed in a semistrip for the elliptic
sine-Gordon equation, which is the paradigm of an elliptic integrable PDE in two
variables. We use the method introduced by one of the authors, which provides a sub-
stantial generalization of the inverse scattering transform and can be used for the anal-
ysis of boundary as opposed to initial-value problems. We first express the solution in
terms of a 2 × 2 matrix Riemann–Hilbert problem whose “jump matrix” depends on
both the Dirichlet and the Neumann boundary values. For a well posed problem one
of these boundary values is an unknown function. This unknown function is charac-
terised in terms of the so-called global relation, but in general this characterisation is
nonlinear. We then concentrate on the case that the prescribed boundary conditions
are zero along the unbounded sides of a semistrip and constant along the bounded
side. This corresponds to a case of the so-called linearisable boundary conditions,
however, a major difficulty for this problem is the existence of non-integrable sin-
gularities of the function qy at the two corners of the semistrip; these singularities

Communicated by P. Newton.

A.S. Fokas
Department of Applied Mathematics and Theoretical Physics, Cambridge University, Cambridge
CB3 0WA, UK
e-mail: t.fokas@damtp.cam.ac.uk

J. Lenells
Department of Mathematics, Baylor University, Waco, TX 76798, USA
e-mail: Jonatan_Lenells@baylor.edu

B. Pelloni (�)
Department of Mathematics, University of Reading, Reading RG6 6AX, UK
e-mail: b.pelloni@reading.ac.uk

mailto:t.fokas@damtp.cam.ac.uk
mailto:Jonatan_Lenells@baylor.edu
mailto:b.pelloni@reading.ac.uk


242 J Nonlinear Sci (2013) 23:241–282

are generated by the discontinuities of the boundary condition at these corners. Mo-
tivated by the recent solution of the analogous problem for the modified Helmholtz
equation, we introduce an appropriate regularisation which overcomes this difficulty.
Furthermore, by mapping the basic Riemann–Hilbert problem to an equivalent mod-
ified Riemann–Hilbert problem, we show that the solution can be expressed in terms
of a 2 × 2 matrix Riemann–Hilbert problem whose “jump matrix” depends explicitly
on the width of the semistrip L, on the constant value d of the solution along the
bounded side, and on the residues at the given poles of a certain spectral function
denoted by h(λ). The determination of the function h remains open.

Keywords Elliptic sine-Gordon · Boundary value problems · Integrable PDEs

Mathematics Subject Classification 35J60 · 35J65 · 35P25

1 Introduction

A method for solving initial-boundary value problems for linear and integrable non-
linear PDEs was introduced in Fokas (1997, 2000) and developed by several authors,
see the survey Fokas (2008) and the references therein. This method has already been
used for:

(a) linear and integrable nonlinear evolution PDEs formulated on the half line and
on a finite interval (Bona and Fokas 2008; Boutet de Monvel et al. 2004;
Dujardin 2009; Flyer and Fokas 2008; Fokas 2002a, 2002b; Fokas and Its 1996,
2004; Fokas et al. 2005; Fokas and Lenells 2010; Fokas and Pelloni 2005;
Pelloni 2005a, 2004; Treharne and Fokas 2008);

(b) linear and integrable nonlinear hyperbolic PDEs (Fokas and Menyuk 1999;
Pelloni 2005b; Pelloni and Pinotsis 2008);

(c) linear elliptic PDEs (Antipov and Fokas 2005; ben Avraham and Fokas 2001;
Crowdy and Fokas 2004; Dassios and Fokas 2005; Fokas 2001; Fokas and Spence
2009; Fokas and Zyskin 2002; Smitheman et al. 2010; Spence and Fokas 2010a,
2010b).

The aim of this paper is to implement this method in the case of the prototypical
integrable nonlinear elliptic PDE, namely the celebrated elliptic sine-Gordon equa-
tion. This equation was first analysed in Lipovskii and Nikulichev (1988) (see also
Borisov and Kiseliev 1989; Gutshabash and Lipovskii 1994); simple boundary value
problems for this equation, using the method of Fokas (1997), have been considered
in Pelloni (2009), Pelloni and Pinotsis (2010). For the case of nonlinear elliptic PDEs
in cylindrical coordinates, see Lenells (2011), Lenells and Fokas (2011).

We will consider the sine-Gordon equation in the form

qxx + qyy = sinq, q = q(x, y), (1.1)

and we will analyse boundary value problems posed in the semi-infinite strip

S = {0 < x < ∞, 0 < y < L}, (1.2)
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Fig. 1 The semistrip S

where L is a positive finite constant. The sides {y = L,0 < x < ∞}, {x = 0,

0 < y < L} and {y = 0,0 < x < ∞} will be referred to as side (1), (2) and (3),
respectively, see Fig. 1.

Suppose that (1.1) is supplemented with appropriate, compatible boundary con-
ditions on the boundary of the semistrip S , so that there exists a unique solution
q(x, y). It will be shown in Sect. 2 that this solution can be expressed in terms of
the solution of a 2 × 2 matrix Riemann–Hilbert (RH) problem with a jump on the
union of the real and imaginary axis of the λ complex plane. The “jump matrix” is
expressed in terms of certain functions, called spectral functions, which will be de-
noted by {aj (λ), bj (λ)}, j = 1,2,3. These functions can be uniquely characterised
via the solution of certain linear Volterra integral equations, in terms of the Dirichlet
and Neumann boundary values. Namely, {a1, b1}, {a2, b2} and {a3, b3} are uniquely
determined in terms of {q(x,L), qy(x,L)}, {q(0, y), qx(0, y)} and {q(x,0), qy(x,0)}
respectively. However, for a well posed problem only a subset of these boundary val-
ues are prescribed as boundary conditions. Thus, in order to compute the spectral
functions in terms of the given boundary conditions, one must first determine the un-
known boundary values, i.e. one must characterise the Dirichlet to Neumann map.
The solution of this problem, which makes crucial use of the so-called global rela-
tion, yields in general a nonlinear map, see Boutet de Monvel et al. (2003), Fokas
(2005), Fokas and Lenells (2012), Lenells and Fokas (2012a, 2012b).

In the case of integrable nonlinear evolution PDEs, it has been shown in Fokas
(2002a, 2004), Fokas et al. (2005), Fokas and Lenells (2010), Lenells and Fokas
(2009) that there exists a particular class of boundary conditions, called linearisable,
for which it is possible to avoid the above nonlinear map. The main result of the
present paper is the analysis of a particular case of linearisable boundary conditions
for the sine-Gordon equation on the semi-infinite strip. In particular, the following
boundary conditions will be investigated in detail:

q(x,L) = q(x,0) = 0, 0 < x < ∞; q(0, y) = d, 0 < y < L, (1.3)

where d is a finite constant. We assume that 0 < d < π . These boundary conditions
are discontinuous at the corners (0,0) and (0,L) of the domain. This implies that
qy(x, y) has a non-integrable singularity at the two corners of the semistrip. Using
an appropriate gauge transformation, which is motivated by the recent solution of the
analogous problem for the modified Helmholtz equation (Ashton and Fokas 2012, see
also Appendix), we are able to overcome this difficulty and introduce well-defined
spectral functions. Furthermore, we show that the basic Riemann–Hilbert problem
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can be mapped to a simpler Riemann–Hilbert problem whose jump matrix, instead of
depending on the six unknown spectral functions {aj (λ), bj (λ)}3

1, depends explicitly
on the given constant d , on the width L of the semistrip, and on the residues at the
given poles of a certain spectral function, denoted by h(λ). The rigorous analysis for
the determination of h remains open.

This result, as well as the analogous result valid for the elliptic version of the Ernst
equation (Lenells 2011; Lenells and Fokas 2011), imply that the method of Fokas
(1997) provides a powerful tool for analysing effectively a large class of interesting
boundary conditions.

2 Spectral Analysis Under the Assumption of Existence

In what follows we assume that (1.1) is supplemented with appropriate boundary
conditions on the boundary of the semistrip S , compatible at the corners of the do-
main, so that the existence of a unique, smooth solution q(x, y) can be assumed.
Furthermore, we assume the following:

q(x,L), qy(x,L), q(x,0), qy(x,0) ∈ L1(
R

+)
,

xq(x,L), xqy(x,L), xq(x,0), xqy(x,0) ∈ L1(
R

+)
, (2.1)

q(0, y), qx(0, y), yq(0, y), yqx(0, y) ∈ L1([0,L]).
The sine-Gordon equation is the compatibility condition of the following Lax pair
(Lax 1968) for the 2 × 2 matrix-valued function Ψ (x, y,λ), λ ∈ C:

Ψx + Ω(λ)

2
[σ3,Ψ ] = Q(x,y,λ)Ψ, (2.2)

Ψy + ω(λ)

2
[σ3,Ψ ] = iQ(x,y,−λ)Ψ, (2.3)

where

Ω(λ) = 1

2i

(
λ − 1

λ

)
, ω(λ) = 1

2

(
λ + 1

λ

)
, (2.4)

Q(x,y,λ) = i

4

(
1
λ
(1 − cosq) qx − iqy + i sinq

λ

qx − iqy − i sinq
λ

− 1
λ
(1 − cosq)

)

, q = q(x, y). (2.5)

Equations (2.2) and (2.3) can be written as the single equation

d
(
e(Ω(λ)x+ω(λ)y)

σ̂3
2 Ψ (x, y,λ)

) = W(x,y,λ), (2.6)

where the differential form W is given by

W(x,y,λ) = e(Ω(λ)x+ω(λ)y)
σ̂3
2
(
Q(x,y,λ)Ψ (x, y,λ)dx

+ iQ(x,y,−λ)Ψ (x, y,λ)dy
)
, (2.7)
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Fig. 2 The functions Ψ1, Ψ2 and Ψ3

and σ̂3 acts on a 2 × 2 matrix A by

σ̂3A = [σ3,A].

Remark 2.1 Note that

Ω(λ̄) = −Ω(λ) = Ω

(
1

λ

)
, ω(λ̄) = ω(λ) = ω

(
1

λ

)
.

2.1 Bounded and Analytic Eigenfunctions

We define three solutions Ψj (x, y,λ), j = 1,2,3, of (2.6) by

Ψj (x, y,λ) = I +
∫ (x,y)

(xj ,yj )

e−(Ω(λ)x+ω(λ)y)
σ̂3
2 W(ξ,η,λ), (2.8)

where

(x1, y1) = (∞, y), (x2, y2) = (0,L), (x3, y3) = (0,0). (2.9)

Since the differential form W is exact, the integral on the right-hand side of (2.8)
is independent of the path of integration. We choose the particular contours shown in
Fig. 2. This choice implies the following inequalities on the contours:

(x1, y1) → (x, y) : ξ − x ≥ 0,

(x2, y2) → (x, y) : ξ − x ≤ 0, η − y ≥ 0,

(x3, y3) → (x, y) : ξ − x ≤ 0, η − y ≤ 0.

The first inequality above implies that the exponential appearing in the second (first)
column of the right-hand side of the equation defining Ψ1 is bounded and analytic
for Im(λ) < 0 (Im(λ) > 0). Similar considerations are valid for Ψ2 and Ψ3. Hence we
denote the matrices Ψj as follows:

Ψ1 = (
Ψ

(12)
1 ,Ψ

(34)
1

)
, Ψ2 = (

Ψ
(4)
2 ,Ψ

(2)
2

)
, Ψ3 = (

Ψ
(3)
3 ,Ψ

(1)
3

)
,

where the superscript (12) denotes the union of the first and second quadrants of the λ

complex plane, and similarly for the other superscripts. The function Ψ
(12)
1 is analytic



246 J Nonlinear Sci (2013) 23:241–282

for Im(λ) > 0 and it has essential singularities at λ = ∞ and λ = 0; furthermore,

Ψ
(12)
1 =

(
1
0

)
+ O

(
1

λ

)
, λ → ∞, Im(λ) ≥ 0. (2.10)

Similar considerations are valid for the column vectors Ψ
(34)
1 , Ψ

(3)
3 and Ψ

(1)
3 . The

function Ψ2 is an analytic function in the entire complex plane, except at λ = ∞ and
λ = 0, where it has essential singularities. In addition,

Ψ
(4)
2 =

(
1
0

)
+ O

(
1

λ

)
, λ → ∞,

3π

2
≤ arg(λ) ≤ 2π,

(2.11)

Ψ
(2)
2 =

(
0
1

)
+ O

(
1

λ

)
, λ → ∞,

π

2
≤ arg(λ) ≤ π.

2.2 Spectral Functions

Any two solutions Ψ , Ψ̃ of (2.6) are related by an equation of the form

Ψ (x, y,λ) = Ψ̃ (x, y,λ)e−(Ω(λ)x+ω(λ)y)
σ̂3
2 C(λ). (2.12)

We introduce the notations

S1(λ) = Ψ1(0,L,λ), S2(λ) = Ψ2(0,0, λ), S3(λ) = Ψ1(0,0, λ). (2.13)

Then (2.12) implies the following equations:

Ψ1(x, y,λ) = Ψ2(x, y,λ)e−(Ω(λ)x+ω(λ)y)
σ̂3
2 e

ω(λ)
2 Lσ̂3S1(λ), λ ∈ R, (2.14)

Ψ2(x, y,λ) = Ψ3(x, y,λ)e−(Ω(λ)x+ω(λ)y)
σ̂3
2 S2(λ), λ ∈ C \ {0}, (2.15)

Ψ1(x, y,λ) = Ψ3(x, y,λ)e−(Ω(λ)x+ω(λ)y)
σ̂3
2 S3(λ), λ ∈ (

R
−,R

+)
. (2.16)

The notation λ ∈ (R−,R
+) means that the equation for the first column vector in

(2.16) is valid for λ ∈ R
−, while the equation for the second vector is valid for R

+.
Equations (2.13)–(2.16) suggest the following definitions:

S1(λ) = Φ1(0, λ), Φ1(x,λ) = I −
∫ ∞

x

eΩ(λ)(ξ−x)
σ̂3
2 Q(ξ,L,λ)Φ1(ξ, λ)dξ,

λ ∈ (
C

+,C
−)

, 0 < x < ∞, (2.17)

S2(λ) = Φ2(0, λ), Φ2(y,λ) = I − i
∫ L

y

eω(λ)(η−y)
σ̂3
2 Q(0, η,−λ)Φ2(η,λ)dη,

λ ∈ C, 0 < y < L, (2.18)

S3(λ) = Φ3(0, λ), Φ3(x,λ) = I −
∫ ∞

x

eΩ(λ)(ξ−x)
σ̂3
2 Q(ξ,0, λ)Φ3(ξ, λ)dξ,

λ ∈ (
C

+,C
−)

, 0 < x < ∞. (2.19)
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The matrix Q satisfies the symmetry properties

Q(λ)22 = Q(−λ)11, Q(λ)12 = Q(−λ)21. (2.20)

Hence the matrices Φi , i = 1, . . . ,3, can be represented in the form

Φ1 =
(

A1(x,λ) B1(x,−λ)

B1(x,λ) A1(x,−λ)

)
, Φ2 =

(
A2(y,λ) B2(y,−λ)

B2(y,λ) A2(y,−λ)

)
,

Φ3 =
(

A3(x,λ) B3(x,−λ)

B3(x,λ) A3(x,−λ)

)
,

and therefore

Si(λ) =
(

ai(λ) bi(−λ)

bi(λ) ai(−λ)

)
, i = 1,2,3.

The spectral functions {a1(λ), b1(λ)}, {a2(λ), b2(λ)} and {a3(λ), b3(λ)} are de-
fined in terms of {q(x,L), qy(x,L)}, {q(0, y), qx(0, y)} and {q(x,0), qy(x,0)}, re-
spectively, through (2.17)–(2.19).

These functions have the following properties:

• a1(λ), b1(λ) are analytic and bounded in C
+.

a1(λ)a1(−λ) − b1(λ)b1(−λ) = 1, λ ∈ R.
a1(λ) = 1 + O( 1

λ
), b1(λ) = O( 1

λ
) as λ → ∞, Im(λ) ≥ 0.

• a2(λ), b2(λ) are analytic functions of λ for all λ ∈ C, except for essential singular-
ities at λ = ∞ and λ = 0.
a2(λ)a2(−λ) − b2(λ)b2(−λ) = 1, λ ∈ C \ {0}.
a2(λ) = 1 + O( 1

λ
), b2(λ) = O( 1

λ
) as λ → ∞, 3π

2 ≤ arg(λ) ≤ 2π .
• a3(λ), b3(λ) are analytic and bounded in C

+.
a3(λ)a3(−λ) − b3(λ)b3(−λ) = 1, λ ∈ R.
a3(λ) = 1 + O( 1

λ
), b3(λ) = O( 1

λ
) as λ → ∞, Im(λ) ≥ 0.

These properties follow from the analogous properties of the matrix-valued func-
tions Φj , j = 1,2,3, from the condition of unit determinant, and from the large λ

asymptotics of these functions.

2.3 The Global Relation

Evaluating (2.15) and (2.16) at x = 0, y = L, we find

I = Ψ3(0,L,λ)e− ω(λ)
2 Lσ̂3S2(λ)

and

S1(λ) = Ψ3(0,L,λ)e− ω(λ)
2 Lσ̂3S3(λ).

Eliminating Ψ3(0,L,λ) we obtain

e
ω(λ)

2 Lσ̂3S1(λ) = S2(λ)−1S3(λ). (2.21)
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The first column vector of this equation yields the following global relations:

a1(λ) = a2(−λ)a3(λ) − b2(−λ)b3(λ), λ ∈ C
+, (2.22a)

b1(λ)e−ω(λ)L = a2(λ)b3(λ) − a3(λ)b2(λ), λ ∈ C
+. (2.22b)

2.4 The Riemann–Hilbert Problem

Equations (2.14)–(2.16), relating the various analytic eigenfunctions, can be rewrit-
ten in a form that determines the jump conditions of a 2×2 RH problem, with unitary
jump matrices on the real and imaginary axes. This involves tedious but straightfor-
ward algebraic manipulations. The final form is

M−(x, y,λ) = M+(x, y,λ)J (x, y,λ), λ ∈ R ∪ iR, (2.23)

where the matrices M± and J are defined as follows (see Fig. 3):

M+ =
(

Ψ
(12)
1 ,

1

a3(λ)
Ψ

(1)
3

)
, arg(λ) ∈

[
0,

π

2

]
,

M− =
(

Ψ
(12)
1 ,

1

a1(λ)
Ψ

(2)
2

)
, arg(λ) ∈

[
π

2
,π

]
,

(2.24)

M+ =
(

1

a3(−λ)
Ψ

(3)
3 ,Ψ

(34)
1

)
, arg(λ) ∈

[
π,

3π

2

]
,

M− =
(

1

a1(−λ)
Ψ

(4)
2 ,Ψ

(34)
1

)
, arg(λ) ∈

[
3π

2
,2π

]
,

J (x, y,λ) = Jα(x, y,λ), if arg(λ) = α, α = 0,
π

2
, π,

3π

2
, (2.25)

where, using the global relations (2.22a), (2.22b) we find

J 0 =
⎛

⎝

a2(λ)
a1(−λ)a3(λ)

b3(−λ)
a3(λ)

e−θ(x,y,λ)

− e−ω(λ)Lb1(λ)
a1(−λ)

eθ(x,y,λ) 1

⎞

⎠ ,

J π/2 =
(

1 b2(−λ)
a1(λ)a3(λ)

e−θ(x,y,λ)

0 1

)

, J 3π/2 =
(

1 0
b2(λ)

a1(−λ)a3(−λ)
eθ(x,y,λ) 1

)

and

Jπ = J 3π/2(J 0)−1
Jπ/2, (2.26)

where

θ(x, y,λ) = Ω(λ)x + ω(λ)y. (2.27)

All the matrices Jα have unit determinant: for Jπ/2 and J 3π/2 this is immediate,
whereas for J 0 we find

det
(
J 0) = a2(λ) + e−ω(λ)Lb1(λ)b3(−λ)

a1(−λ)a3(λ)
= a1(−λ)a3(λ)

a1(−λ)a3(λ)
= 1,
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Fig. 3 The bounded
eigenfunctions and the
Riemann–Hilbert problem

where we have used the equation

a2(λ) = a1(−λ)a3(λ) − b3(−λ)b1(λ)e−ω(λ)L, λ ∈ R, (2.28)

which is a consequence of the global relations (2.22a), (2.22b).
The solution M(x,y,λ) of this RH problem is a sectionally meromorphic function

of λ. The possible poles of this function are generated by the zeros of the function
a1(λ) in the region {arg(λ) ∈ [π

2 ,π]}, by the zeros of a3(λ) in the region {arg(λ) ∈
[0, π

2 ]}, and by the corresponding zeros of a1(−λ), a3(−λ).

We assume

• The possible zeros of a1 in the region {arg(λ) ∈ (π
2 ,π)} are simple;

these zeros are denoted λj , j = 1, . . . ,N1

• The possible zeros of a3 in the region {arg(λ) ∈ (0, π
2 )} are simple;

these zeros are denoted ζj , j = 1, . . . ,N3

(2.29)

The residues of the function M at the corresponding poles can be computed using
(2.14)–(2.16). Indeed, (2.16) yields

Ψ
(12)
1 = a3Ψ

(3)
3 + b3eθ(x,y,λ)Ψ

(1)
3 ,

hence

Resζj

Ψ
(1)
3

a3
= Ψ

(1)
3 (ζj )

ȧ3(ζj )
= Ψ

(12)
1 (ζj )

ȧ3(ζj )b3(ζj )
e−θ(x,y,ζj ), (2.30)

where ȧ3(λ) denotes the derivative of a3 with respect to λ.
Similarly, using (2.14),

Resλj

Ψ
(2)
2

a1
= Ψ

(2)
2 (λj )

ȧ1(λj )
= Ψ

(12)
1 (λj )

ȧ1(λj )b1(λj )e−ω(λj )L
e−θ(x,y,λj ). (2.31)

Using the notation [M]1 for the first column and [M]2 for the second column
of the solution M of the RH problem (2.23), (2.30) and (2.31) imply the following
residue conditions:
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Resζj

[
M(x,y,λ)

]
2 = e−θ(x,y,ζj )

ȧ3(ζj )b3(ζj )

[
M(x,y, ζj )

]
1, 0 < argλ <

π

2
,

(2.32)

Resλj

[
M(x,y,λ)

]
2 = e−θ(x,y,λj )

ȧ1(λj )b1(λj )e−ω(λj )L

[
M(x,y,λj )

]
1,

π

2
< argλ < π.

Similar residue conditions are obtained in C
− by letting λ → −λ.

2.4.1 The Inverse Problem

Rewriting the jump condition, we obtain

M+ − M− = M+ − M+J = M+(I − J ) ⇒ M+ − M− = M+J̃ , (2.33)

where J̃ = I − J . The asymptotic conditions (2.10)–(2.11) imply

M(x,y,λ) = I + M∗(x, y)

λ
+ O

(
1

λ2

)
, |λ| → ∞, λ ∈ C \ (R ∪ iR). (2.34)

Equation (2.33) and the condition (2.34) yield the following integral representation
for the function M :

M(x,y,λ) = I + 1

2π i

∫

Γ

M+(x, y,λ′)J̃ (x, y,λ′)
λ′ − λ

dλ′, λ ∈ C \ Γ, (2.35)

where

Γ = R ∪ iR.

Equations (2.34) and (2.35) imply

M∗ = − 1

2π i

∫

Γ

M+(x, y,λ)J̃ (x, y,λ)dλ. (2.36)

Using (2.34) in the first ODE in the Lax pair (2.2), we find

− i

4

[
σ3,M

∗] = i
qx − iqy

4
σ1 ⇒ qx − iqy = 2

(
M∗)

21 = 2 lim
λ→∞(λM21), (2.37)

where σ1, σ3 denote the usual Pauli matrices.
In order to obtain an expression in terms of q rather than its derivatives, we con-

sider the coefficient in (2.2) of the term λ−1. The (1, 1) element of this coefficient
yields

cosq(x, y) = 1 + 4i
(
M∗

x

)
11 + 2

(
M∗)2

21. (2.38)

3 Spectral Theory Assuming the Validity of the Global Relation

3.1 The Spectral Functions

The above analysis motivates the following definitions for the spectral functions.



J Nonlinear Sci (2013) 23:241–282 251

3.1.1 The Spectral Functions at the y = 0 and y = L Boundaries

Definition 3.1 Given the functions q(x,L), qy(x,L) satisfying conditions (2.1), de-
fine the map

S1 : {q(x,L), qy(x,L)
} → {

a1(λ), b1(λ)
}

by
(

a1(λ)

b1(λ)

)
= [

Φ1(0, λ)
]

1, λ ∈ C
+,

where [Φ1(x,λ)]1 denotes the first column vector of the unique solution Φ1(x,λ) of
the Volterra linear integral equation

Φ(x,λ) = I −
∫ ∞

x

eΩ(λ)(ξ−x)
σ̂3
2 Q(ξ,L,λ)Φ(ξ,λ)dξ, (3.1)

and Q(x,L,λ) is given in terms of q(x,L) and qy(x,L) by (2.5).

In what follows, we also assume that the function a1(λ) may have N1 simple poles
λj in C

+. Similarly for a3(λ).

Proposition 3.1 The spectral functions a1(λ), b1(λ) have the following properties.

(i) a1(λ), b1(λ) are continuous and bounded for Im(λ) ≥ 0, and analytic for
Im(λ) > 0.

(ii) a1(λ) = 1 + O( 1
λ
), b1(λ) = O( 1

λ
) as λ → ∞, Im(λ) ≥ 0.

(iii) a1(λ) = cos q(0,L)
2 + O(λ), b1(λ) = i sin q(0,L)

2 + O(λ) as λ → 0, Im(λ) ≥ 0.
(iv) a1(λ)a1(−λ) − b1(λ)b1(−λ) = 1, λ ∈ R.
(v) The map Q1 : {a1, b1} → {q(x,L)qy(x,L)}, inverse to S1, is given

cosq(x,L) = 1 + 4i lim
λ→∞(λMx)11 + 2

(
lim

λ→∞(λM)21

)2
,

qy(x,L) = −iqx(x,L) + 2i lim
λ→∞(λM)21,

where M is the solution of the following Riemann–Hilbert problem:

• The function

M(x,λ) =
{

M+(x,λ), λ ∈ C
+,

M−(x,λ), λ ∈ C
−

is a sectionally meromorphic function of λ ∈ C.
• M = I + O( 1

λ
) as λ → ∞, and

M−(x,λ) = M+(x,λ)J1(x,λ), λ ∈ R,
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where

J1(x,λ) =
⎛

⎝
1 − b1(−λ)

a1(λ)
e−Ω(λ)x

b1(λ)
a1(−λ)

eΩ(λ)x 1
a1(λ)a1(−λ)

⎞

⎠ , λ ∈ R. (3.2)

• Let [M]i denote the ith column vector of M , 1 = 1,2. The possible poles of
M+ occur at λj , and the possible poles of M− occur at −λj in C

−, and the
associated residues are given by

Resλj

[
M(x,λ)

]
2 = e−Ω(λj )x

ȧ1(λj )b1(λj )

[
M(x,λj )

]
1,

(3.3)

Res−λj

[
M(x,λ)

]
1 = eΩ(λj )x

ȧ1(−λj )b1(−λj )

[
M(x,−λj )

]
2.

The spectral functions {a3, b3} are defined similarly:

Definition 3.2 Given the functions q(x,0), qy(x,0), satisfying conditions (2.1), de-
fine the map

S3 : {q(x,0), qy(x,0)
} → {

a3(λ), b3(λ)
}

by
(

a3(λ)

b3(λ)

)
= [

Φ3(0,0)
]

1, λ ∈ C
+,

where [Φ3(x,0)]1 denotes the first column vector of the unique solution Φ3(x,0) of
the Volterra linear integral equation

Φ(x,λ) = I −
∫ ∞

x

eΩ(λ)(ξ−x)
σ̂3
2 Q(ξ,0, λ)Φ(ξ,λ)dξ, (3.4)

and Q(x,0, λ) is given in terms of q(x,0) and qy(x,0) by (2.5).

Proposition 3.2 The spectral functions a3(λ), b3(λ) have the properties (i)–(v) of
Proposition 3.1, provided a1 is replaced by a3, b1 is replaced by b3, S1 is replaced
by S3 and L is replaced by 0 in all expressions.

3.1.2 The Spectral Functions at the x = 0 Boundary

Definition 3.3 Given the functions q(0, y), qx(0, y), satisfying conditions (2.1), de-
fine the map

S2 : {q(0, y), qx(0, y)
} → {

a2(λ), b2(λ)
}

by
(

a2(λ)

b2(λ)

)
= [

Φ2(0,0)
]

1, λ ∈ C
+,
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where [Φ2(0, y)]1 denotes the first column vector of the unique solution Φ2(0, y) of
the Volterra linear integral equation

Φ(y,λ) = I − i
∫ L

y

eω(λ)(η−y)
σ̂3
2 Q(0, η,−λ)Φ(η,λ)dη, (3.5)

and Q(0, y, λ) is given in terms of q(0, y) and qx(0, y) by (2.5).

Proposition 3.3 The spectral functions a2(λ), b2(λ) have the following properties.

(i) a2(λ), b2(λ) are analytic functions of λ, except for essential singularities at
λ = 0 and λ = ∞, bounded for Re(λ) ≥ 0.

(ii) a2(λ) = 1 + O( 1
λ
), b2(λ) = O( 1

λ
) as λ → ∞,Re(λ) ≥ 0.

(iii) a2(λ) = cos q(0,0)
2 + O(λ), b2(λ) = i sin q(0,0)

2 + O(λ) as λ → 0,Re(λ) ≥ 0.
(iv) a2(λ)a2(−λ) − b2(λ)b2(−λ) = 1, λ ∈ C.
(v) The map Q2 : {a2, b2} → {q(0, y) qy(0, y)}, inverse to S2, is given by

cosq(0, y) = 1 − 4 lim
λ→∞(λMy)11 − 2

(
lim

λ→∞(λM)21

)2
,

qx(0, y) = iqy(0, y) + 2 lim
λ→∞(λM)21,

where M is the solution of the following Riemann–Hilbert problem:

• The function

M(y,λ) =
{

M+(y,λ), Reλ ≥ 0,

M−(y,λ), Reλ ≤ 0

is a sectionally meromorphic function of λ ∈ C.
• M = I + O( 1

λ
) as λ → ∞, and

M−(y,λ) = M+(y,λ)J2(y,λ), λ ∈ iR,

where

J2(y,λ) =
(

1 − b2(−λ)
a2(λ)

e−ω(λ)x

b2(λ)
a2(−λ)

eω(λ)x 1
a2(λ)a2(−λ)

)

, λ ∈ iR.

• M satisfies appropriate residue conditions at the zeros of a2(λ).

3.1.3 Proof of Propositions 3.1–3.3

The proof of properties (i)–(iv) follows from the discussion in Sect. 2.2. In particular,
property (iii) follows from the asymptotic behaviour at λ → 0, which can be derived
by analyzing equations (2.2)–(2.3) (see Pelloni 2009), and is given by

Ψ = Ψ0 + O(λ), |λ| → 0, Ψ0(x, y) =
(

cos q(x,y)
2 i sin q(x,y)

2

i sin q(x,y)
2 cos q(x,y)

2

)

. (3.6)
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To prove (v), we note that the function Φ1(x,λ) given by (2.17) is the unique
solution of the ODE

Φx + Ω(λ)

2
σ̂3Φ = Q(x,L,λ)Φ(x,λ),

lim
x→∞Φ(x,λ) = I.

Furthermore, Φ3(x,λ) given by (2.19) is the solution of the same ODE problem, with
Q(x,L,λ) replaced by Q(x,0, λ).

Similarly, Φ2(y,λ) given by (2.18) is the unique solution of the ODE

Φy + ω(λ)

2
σ̂3Φ = iQ(0, y,−λ)Φ(y,λ),

Φ(L,λ) = I.

The spectral analysis of the above ODEs yields the desired result.
Regarding the rigorous derivation of the above results, we note the following:

If {q(x,L), qy(x,L)}, {q(x,0), qy(x,0)} and {q(y,0), qx(y,0)} are in L1, then the
Volterra integral equations (3.1), (3.4) and (3.5), respectively, have a unique solu-
tion, and hence the spectral functions {aj , bj }, j = 1, . . . ,3, are well defined. More-
over, under the assumption (2.1) the spectral functions belong to H1(R), hence the
Riemann–Hilbert problems that determine the inverse maps can be characterised
through the solutions of a Fredholm integral equation, see Deift (2000) and Zhou
(1989).

3.2 The Riemann–Hilbert Problem

Theorem 3.1 Suppose that a subset of the boundary values {q(x,L), qy(x,L)},
{q(x,0), qy(x,0)}, 0 < x < ∞, and {q(y,0), qx(y,0)}, 0 < y < L, satisfying (2.1),
are prescribed as boundary conditions. Suppose that these prescribed boundary con-
ditions are such that the global relations (2.22a), (2.22b) can be used to characterise
the remaining boundary values.

Define the spectral functions {aj , bj }, j = 1, . . . ,3, by definitions (3.1)–(3.3). As-

sume that the possible zeros {λj }N1
j=1 of a1(λ) and {ζj }N3

j=1 of a3(λ) are as in assump-
tion (2.29).

Define M(x,y,λ) as the solution of the following 2 × 2 matrix Riemann–Hilbert
problem:

• The function M(x,y,λ) is a sectionally meromorphic function of λ away from
R ∪ iR.

• The possible poles of the second column of M occur at λ = ζj , j = 1, . . . ,N3,
in the first quadrant and at λ = λj , j = 1, . . . ,N1, in the second quadrant of the
complex λ plane.

The possible poles of the first column of M occur at λ = −λj (j = 1, . . . ,N1)
and λ = −ζj (j = 1, . . . ,N3).

The associated residue conditions satisfy the relations (2.32).
• M = I + O( 1

λ
) as λ → ∞, and

M−(x, y,λ) = M+(x, y,λ)J (x, y,λ), λ ∈ R ∪ iR,
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where M = M+ for λ in the first or third quadrant, and M = M− for λ in the
second or fourth quadrant of the complex λ plane, and J is defined in terms of
{aj , bj } by (2.26).

Then M exists and is unique, provided that the H1 norm of the spectral functions
is sufficiently small.

Define q(x, y) is terms of M(x,y,λ) by

qx − iqy = 2 lim
λ→∞(λM)21, (3.7)

cosq(x, y) = 1 + 4i
(

lim
λ→∞(λMx)11

)
+ 2

(
lim

λ→∞(λM)21

)2
. (3.8)

Then q(x, y) solves (1.1). Furthermore, q(x, y) evaluated at the boundary, yields the
functions used for the computation of the spectral functions.

Proof Under the assumptions (2.1), the spectral functions are in H1.
In the case when a1(λ) and a3(λ) have no zeros, the Riemann–Hilbert problem is

regular and it is equivalent to a Fredholm integral equation. However, we have not
been able to establish a vanishing lemma, hence we require a small norm assumption
for solvability.

If a1(λ) and a3(λ) have zeros, the singular RH problem can be mapped to a regular
one coupled with a system of algebraic equations (Fokas and Its 1996). Moreover, it
follows from standard arguments, using the dressing method (Zakharov and Shabat
1974, 1979), that if M solves the above RH problem and q(x, y) is defined by (3.7)–
(3.8), then q(x, y) solves (1.1). The proof that q evaluated at the boundary yields
the functions used for the computation of the spectral functions follows arguments
similar to the ones used in Fokas et al. (2005). �

4 Linearisable Boundary Conditions

We now concentrate on the particular boundary conditions (1.3). We note that these
boundary conditions are symmetric with respect to the line y = L

2 . Hence, if q(x, y)

is a solution, so is q(x,L−y). Assuming that the solution is unique, we can conclude
that

q(x, y) = q(x,L − y), 0 < x < ∞,0 < y < L. (4.1)

These boundary conditions are not compatible at the corners of the domain, and
therefore introduce a discontinuity at each corner. It turns out that these discontinu-
ities imply that if q(x, y) is the solution of the resulting boundary value problem, then
the function qy(x,0) = −qy(x,L) is not integrable near x = 0. Similarly, qx(0, y) is
not integrable near y = 0 and y = L. Hence we cannot guarantee that the results of
Propositions 3.1–3.3 hold. In particular, the spectral functions as given by (2.17)–
(2.19) and the resulting Riemann–Hilbert problem are not well defined.
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To overcome this lack of regularity, we will employ a gauge transformation to de-
fine a modified Lax pair. This transformation is motivated by the recent analysis of the
linearised problem (Ashton and Fokas 2012), which we summarise in Appendix. For
the linear case, it can be shown that the behaviour of the boundary function qy(x,0)

as x → 0 is given by qy(x,0) ∼ 2d
πx

. The contribution of this term can be eliminated
by an appropriate gauge transformation. The advantage of the new Lax pair we define
below by adapting the linear gauge transformation to the nonlinear setting, is that the
spectral functions and the Riemann–Hilbert problem are well defined, indicating that
in the nonlinear case, as in the linear, the singular behaviour introduced by the terms
qy(x,0) and qx(0, y) is eliminated.

4.1 A New Lax Pair

The linearised version of the elliptic sine-Gordon equation, namely the modified
Helmholtz equation, with the boundary conditions (1.3), is discussed in Appendix,
where we show how, by incorporating appropriately in the differential form associ-
ated with the linear equation the term

κ(x, y) = −1

4

∫ ∞

x

qy(ξ, y)dξ, (4.2)

the spectral problem is regularised.
Motivated by the linear analysis, we now introduce a new eigenfunction Φ via the

gauge transformation

gΦ = Ψ, g(x, y) := eκ(x,y)σ1 =
(

coshκ(x, y) sinhκ(x, y)

sinhκ(x, y) coshκ(x, y)

)

, (4.3)

where Ψ denotes the solution of the Lax pair (2.2)–(2.3) and κ(x, y) is given by (4.2).
Note that

κx(x, y) = 1

4
qy(x, y), κy(x, y) = −1

4

∫ ∞

x

sinq(ξ, y)dξ − 1

4
qx(x, y).

The transformation matrix g(x, y) has unit determinant, and is chosen to satisfy the
property

g−1gx = gxg
−1 = 1

4

(
0 qy(x, y)

qy(x, y) 0

)
.

Let the function Φ satisfy the Lax pair

Φx + Ω(λ)

2
[σ3,Φ] = V1(x, y,λ)Φ, (4.4)

Φy + ω(λ)

2
[σ3,Φ] = V2(x, y,λ)Φ, (4.5)

with
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V1(x, y,λ) = −g−1gx + g−1Q(x,y,λ)g − Ω(λ)

2
g−1[σ3, g]

= i

⎛

⎝
cosh(2κ)λ2−λ2−cosh(2κ−iq)+1

4λ
sinh(2κ)λ2+qxλ−sinh(2κ−iq)

4λ

− sinh(2κ)λ2+qxλ+sinh(2κ−iq)
4λ

− cosh(2κ)λ2+λ2+cosh(2κ−iq)−1
4λ

⎞

⎠ ,

(4.6)

V2(x, y,λ)

= −g−1gy + g−1iQ(x,y,−λ)g − ω(λ)

2
g−1[σ3, g]

=
⎛

⎝
− cosh(2κ)λ2−λ2+cosh(2κ−iq)−1

4λ

sinh(2κ)λ2+(
∫ ∞
x sinq dξ+iqy)λ+sinh(2κ−iq)

4λ

− sinh(2κ)λ2−(
∫ ∞
x sinq dξ+iqy)λ+sinh(2κ−iq)

4λ

cosh(2κ)λ2−λ2+cosh(2κ−iq)−1
4λ

⎞

⎠ . (4.7)

We now use the eigenfunctions determined by the Lax pair (4.4)–(4.5) to define new
spectral functions. Namely, in analogy with (2.17)–(2.19), we define

S1(λ) = ϕ1(0, λ), ϕ1(x,λ) = I −
∫ ∞

x

eΩ(λ)(ξ−x)
σ̂3
2 V1(ξ,L,λ)ϕ1(ξ, λ)dξ,

λ ∈ (
C

+,C
−)

, 0 < x < ∞, (4.8)

S2(λ) = ϕ2(0, λ), ϕ2(y,λ) = I −
∫ L

y

eω(λ)(η−y)
σ̂3
2 V2(0, η, λ)ϕ2(η,λ)dη,

λ ∈ C, 0 < y < L, (4.9)

S3(λ) = ϕ3(0, λ), ϕ3(x,λ) = I −
∫ ∞

x

eΩ(λ)(ξ−x)
σ̂3
2 V1(ξ,0, λ)ϕ3(ξ, λ)dξ,

λ ∈ (
C

+,C
−)

, 0 < x < ∞. (4.10)

Note that V1 does not involve qy(x, y), and V2 does not involve qx(x, y), the terms,
respectively, responsible, at least in the linear case, for the non-integrable behaviour.

Note also that, since the symmetry relation (2.20) holds for V1, V2 in place of Q,
we can represent the matrices ϕi in the form

ϕ1 =
(

A1(x,λ) B1(x,−λ)

B1(x,λ) A1(x,−λ)

)
, ϕ2 =

(
A2(y,λ) B2(y,−λ)

B2(y,λ) A2(y,−λ)

)
,

ϕ3 =
(

A3(x,λ) B3(x,−λ)

B3(x,λ) A3(x,−λ)

)
, (4.11)

and set

Si(λ) =
(

ai(λ) bi(−λ)

bi(λ) ai(−λ)

)
, i = 1,2,3. (4.12)
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The rest of the general construction of Sects. 2.3–3.2 is formally valid with the
spectral functions aj (λ), bj (λ), j = 1,2,3 as defined by (4.12), except for the state-
ment (i)–(iii) and (v) of Propositions 3.1–3.3.

4.1.1 Symmetry Conditions

Given the boundary conditions (1.3), (4.8)–(4.10) are written explicitly as follows:

ϕ1(x,λ) = I − Ω(λ)

2

∫ ∞

x

eΩ(λ)(ξ−x)
σ̂3
2

×
(

1 − cosh 2κ − sinh 2κ

sinh 2κ cosh 2κ − 1

)
(ξ,L)ϕ1(ξ, λ)dξ,

0 < x < ∞, λ ∈ (
C

+,C
−)

, (4.13)

ϕ2(y,λ) = I −
∫ L

y

eω(λ)(η−y)
σ̂3
2

×
⎛

⎝
− cosh(2κ)λ2−λ2+cosh(2κ−id)−1

4λ

− sinh(2κ)λ2+λ
∫ ∞
x sinq dξ−sinh(2κ−id)

4λ

sinh(2κ)λ2+λ
∫ ∞
x sinq dξ+sinh(2κ−id)

4λ
cosh(2κ)λ2−λ2+cosh(2κ−id)−1

4λ

⎞

⎠

× (0, η)ϕ2(η,λ)dη,

0 < y < L, λ ∈ C, (4.14)

ϕ3(x,λ) = I − Ω(λ)

2

∫ ∞

x

eΩ(λ)(ξ−x)
σ̂3
2

(
1 − cosh 2κ − sinh 2κ

sinh 2κ cosh 2κ − 1

)

× (ξ,0)ϕ3(ξ, λ)dξ,

0 < x < ∞, λ ∈ (
C

+,C
−)

. (4.15)

Using that κ(x,0) = −κ(x,L), we can immediately conclude that
(

A1(x,λ)

B1(x,λ)

)
=

(
A3(x,λ)

−B3(x,λ)

)
=⇒ a1(λ) = a3(λ), b1(λ) = −b3(λ), (4.16)

where Ai , B1, ai , bi are as in (4.11)–(4.12).
In (4.13) and (4.15), the only dependence on λ is through Ω(λ). Thus, since

Ω(− 1
λ
) = Ω(λ), it follows that the vector functions (A1,B1) and (A3,B3) satisfy

the same symmetry properties. Hence,

aj

(
−1

λ

)
= aj (λ), bj

(
−1

λ

)
= bj (λ), j = 1,3, Im(λ) ≥ 0. (4.17)

It turns out that the vector function (A2,B2) also satisfies a certain symmetry condi-
tion, as stated in the following proposition.

Proposition 4.1 Let qx(0, y) be a sufficiently smooth function. Then the vector so-
lution of the linear Volterra integral equation (4.14) satisfies the following symmetry
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conditions:

A2

(
y,

1

λ

)
= A2(y,λ) − F(λ)B2(y,λ) + F(λ)eω(λ)(y−L)B2(y,−λ)

1 − F(λ)2

− F(λ)2eω(λ)(y−L)A2(y,−λ)

1 − F(λ)2
,

(4.18)

B2

(
y,

1

λ

)
= B2(y,λ) − F(λ)A2(y,λ) + F(λ)eω(λ)(y−L)A2(y,−λ)

1 − F(λ)2

− F(λ)2eω(λ)(y−L)B2(y,−λ)

1 − F(λ)2
,

0 < y < L, λ ∈ C,

where the function F(λ) is defined by

F(λ) = i
1 − λ2

1 + λ2
tan

d

2
. (4.19)

Proof Define a function φ2(y,λ) by

ϕ2(y,λ) = φ2(y,λ)e
ω(λ)

2 σ3(y−L), (4.20)

where ϕ2 is defined by (4.14). It follows that φ2 satisfies the ODE

(φ2)y = V φ2, (4.21)

φ2(L,λ) = I, 0 < y < L,

where

V (y,λ) = V2(0, y, λ) − ω(0, y, λ)

2
σ3. (4.22)

We seek a nonsingular matrix R(λ), independent of y, such that

V

(
y,

1

λ

)
= R(λ)V (y,λ)R(λ)−1. (4.23)

It can be verified that such a matrix is given by

R(λ) =
(

1 −F(λ)

−F(λ) 1

)
, (4.24)

where F is defined by (4.19).
Replacing in (4.21) λ by 1

λ
, and using (4.23), we find the following equation:

(
R(λ)−1φ2

(
y,

1

λ

))

y

= V (y,λ)

(
R(λ)−1φ2

(
y,

1

λ

))
,
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hence

R(λ)−1φ2

(
y,

1

λ

)
= φ2(y,λ)C(λ),

where C is a y-independent matrix. Using the second of (4.21), it follows that C =
R−1, and therefore

φ2

(
y,

1

λ

)
= R(λ)φ2(y,λ)R(λ)−1.

This equation and (4.20) imply

ϕ2

(
y,

1

λ

)
= R(λ)ϕ2(y,λ)

(
e−ω(λ)

σ̂3
2 (y−L)R(λ)−1). (4.25)

The first column vector of this equation implies (4.18). �

Remark 4.1 Recalling that a2(λ) = A2(0, λ), and b2(λ) = B2(0, λ), equations (4.18)
immediately imply the following important relations:

a2

(
1

λ

)
= a2(λ) − F(λ)b2(λ) + F(λ)e−ω(λ)Lb2(−λ) − F(λ)2e−ω(λ)La2(−λ)

1 − F(λ)2
,

b2

(
1

λ

)
= b2(λ) − F(λ)a2(λ) + F(λ)e−ω(λ)La2(−λ) − F(λ)2e−ω(λ)Lb2(−λ)

1 − F(λ)2
,

λ ∈ C \ {0}.
(4.26)

In summary, the basic equations characterizing the spectral functions are:

(a) the symmetry relations (4.16), (4.17) and (4.26);
(b) the global relations (2.22a), (2.22b);
(c) the conditions of unit determinant.

In the next lemma, we collect some important consequences of these conditions.
For simplicity, we will use the notations

f := f (λ), f̂ := f (−λ).

Lemma 4.1 The spectral functions satisfy the following relations:

a3â3 − b3b̂3 = 1, λ ∈ R, (4.27)

â3b3 − a3b̂3 = G, λ ∈ R, (4.28)

b2 = (
1 + e−ω(λ)L

)
â3b3, λ ∈ R, (4.29)

where the function G(λ) is defined by

G(λ) := F(λ) tanh

(
Lω

2

)
= i tan

(
d

2

)
1 − λ2

1 + λ2

eω(λ)L − 1

eω(λ)L + 1
. (4.30)
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Proof Equation (4.27) is just the condition of unit determinant.
Using the symmetry condition (4.16) to eliminate a1 and b1 from the global rela-

tions (2.22a), (2.22b), we find

a3[â2 − 1] = b̂2b3, λ ∈ R, (4.31a)

b3
[
e−ω(λ)L + a2

] = a3b2, λ ∈ R. (4.31b)

Equations (4.31a), (4.31b) together with the equations obtained by letting λ → −λ

in (4.31a), (4.31b) are four equations which can be solved for the four functions
{a2, b2, â2, b̂2} with the result that

a2 = (
1 + e−ω(λ)L

)
a3â3 − e−ω(λ)L, λ ∈ R, (4.32a)

b2 = (
1 + e−ω(λ)L

)
â3b3, λ ∈ R. (4.32b)

This proves (4.29).
Replacing λ by −1/λ in (4.31a), (4.31b) and using the symmetry (4.17), we find

a3(λ)

[
a2

(
1

λ

)
− 1

]
= b2

(
1

λ

)
b3(λ), λ ∈ R, (4.33a)

b3(λ)

[
eω(λ)L + a2

(
−1

λ

)]
= a3(λ)b2

(
−1

λ

)
, λ ∈ R. (4.33b)

Consider the two equations (4.33a), (4.33b) together with the two equations obtained
by letting λ → −λ in (4.33a), (4.33b). We can eliminate a2(± 1

λ
) and b2(± 1

λ
) from

these four equations by using the symmetry relations (4.26) as well as the symmetry
relations obtained by letting λ → −λ in (4.26). The resulting four equations can then
be solved for the four functions {a2, b2, â2, b̂2} with the result that

a2 = (a3F + b3)(â3F − b̂3)e−Lω − (a3 − b3F)(â3 + b̂3F)

F 2 − 1
, (4.34a)

b2 = (a3 + b3F)(â3F − b̂3)e−Lω − (a3 − b3F)(â3F + b̂3)

F 2 − 1
. (4.34b)

Comparing (4.32a) with (4.34a), we find (4.28). �

The functions a3(λ) and b3(λ) are defined by (4.12) only for λ in the upper half-
plane. However, (4.29) implies that a3(λ) and b3(λ) can be analytically extended to
the whole complex plane. Indeed, (4.29) provides the analytic continuation of a3(λ)

into C
−:

a3(−λ) = b2(λ)

b3(λ)[1 + e−ω(λ)L] , λ ∈ C
+. (4.35)

Similarly, (4.29) with λ replaced with −λ provides the analytic continuation of b3(λ)

into C
−:

b3(−λ) = b2(−λ)

a3(λ)[1 + eω(λ)L] , λ ∈ C
+. (4.36)
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Adopting these extended definitions of a3(λ) and b3(λ), analytic continuation im-
plies that the relations (4.27)–(4.29) and the global relations (4.31a), (4.31b) are valid
in the whole complex plane.

Proposition 4.2 The spectral functions satisfy the equations

a3â3 − b3b̂3 = 1, λ ∈ C, (4.37)

â3b3 − a3b̂3 = G, λ ∈ C, (4.38)

b2 = (
1 + e−ω(λ)L

)
â3b3, λ ∈ C, (4.39)

as well as the global relations

a3[â2 − 1] = b̂2b3, λ ∈ C, (4.40a)

b3
[
e−ω(λ)L + a2

] = a3b2, λ ∈ C, (4.40b)

where the known function G(λ) is given by (4.30).

5 Spectral Theory in the Linearisable Case

In Appendix we give the solution of the linear case. In this case, the dependence
on the unknown spectral function B(λ) is resolved by mapping the basic Riemann–
Hilbert problem to an equivalent but simpler one. To define this mapping, in the linear
case, it is convenient to employ the two equations (A.19) and (A.20).

For the nonlinear problem, we will use the following equations, which provide the
nonlinear analogues of (A.19) and (A.20):

b3(λ)

a3(λ)h(λ)
− b3(−λ)

a3(λ)
= G(λ)

h(λ)
, λ ∈ C, (5.1)

and

b2(λ)

a3(−λ)2
− (

1 + e−ω(λ)L
) b3(−λ)

a3(−λ)h(−λ)
= (

1 + e−ω(λ)L
) G(λ)

h(−λ)
, λ ∈ C, (5.2)

where the unknown function h(λ) is defined by

h(λ) = a3(λ)2 − b3(λ)2, λ ∈ C, (5.3)

and the known function G(λ) is defined by (4.30). Note that from the above properties
it follows that b3(−λ)

a3(λ)
is well defined at the zeros of the function h(λ). Moreover, in

the linear limit,

b3(λ) → B3(λ), a3(λ) → 1, h(λ) → 1, tan
d

2
→ d

2
,

and (5.1) and (5.2) become (A.19) and (A.20).
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Equations (5.1) and (5.2) are a direct consequence of (4.37)–(4.39). Indeed,

a3(λ)G(λ) = a3(λ)
[
a3(−λ)b3(λ) − a3(λ)b3(−λ)

]

= −a3(λ)2b3(−λ) + b3(λ)
[
1 + b3(λ)b3(−λ)

]

= b3(λ) − [
a3(λ)2 − b3(λ)2]b3(−λ),

which is equivalent to (5.1) (in the first and second equations above we have used
(4.38) and (4.37), respectively). Furthermore,

b2(λ)

a3(−λ)2
= (

1 + e−ω(λ)L
) b3(λ)

a3(−λ)
= (

1 + e−ω(λ)L
)[ b3(−λ)

a3(−λ)h(−λ)
− G(−λ)

h(−λ)

]
,

which, using G(−λ) = −G(λ), becomes (5.2) (in the first and second equations
above we have used the relation (4.39) and (5.1) with λ replaced by −λ).

The Properties of the Functions G(λ) and h(λ) We give a summary of some of the
properties of the function G(λ) given by (4.30) and of the unknown function h given
by (5.3).

The set of poles of G(λ), denoted by PG ⊂ C, is given by

PG = {
λ|eω(λ)L + 1 = 0

}

=
{
λn = i

L

(
π(2n + 1) ±

√
L2 + (2n + 1)2π2

)
∣∣∣∣n ∈ Z

}
. (5.4)

Note that G(λ) has no poles at λ = ±i since the term eωL −1 vanishes at these points.

Proposition 5.1 The following statements hold:

(a) G(λ) admits the symmetries G(λ) = −G(−λ) = −G(1/λ), λ ∈ C.
(b) G(λ) has essential singularities at ∞ and at 0 and a countable number of simple

poles on the imaginary axis accumulating at ±i∞ and at 0. G(λ) has no other
singularities.

(c) Each of the functions 1 ± G(λ) has a countable number of zeros. All these zeros
lie on the imaginary axis and they accumulate only at ±i∞ and at 0.

(d) The set of zeros of the function 1 − G(λ) is the disjoint union of the set of zeros
of a3(λ) − b3(λ) and the set of zeros of a3(−λ) + b3(−λ).

(e) The set of zeros of the function 1 + G(λ) is the disjoint union of the set of zeros
of a3(λ) + b3(λ) and the set of zeros of a3(−λ) + b3(−λ).

(f) The set of zeros of the function 1 − G2(λ) is the disjoint union of the set of zeros
of h(λ) and the set of zeros of h(−λ).

(g) The function h(λ) has a double pole at each point in the set PG ∩ C
−. The func-

tion h(−λ) has a double pole at each point in the set PG ∩ C
+. The functions

h(λ) and h(−λ) do not have any other poles.

Proof The proof of (a) follows from the definition (4.30). The proof of (b) follows
from the same definition and from (5.4).
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Fig. 4 (a) The graph of G(λ) for λ on the imaginary axis when L = 10 and d = 1. (b) The corresponding
picture of the poles of G(λ) and the zeros of G(λ) ± 1. The poles and zeros accumulate at the origin and
at infinity

In order to prove (c), we note that the function G is purely real for λ ∈ iR:

G(iλI ) = −1 + λ2
I

1 − λ2
I

tan

(
d

2

)
tan

(
L

λ2
I − 1

4λI

)
, λI ∈ R.

As λI increases from 0 to +∞, the argument L
λ2

I −1
4λI

increases from −∞ to ∞. It
follows that each of the functions 1 + G(λ) and 1 − G(λ) has an infinite number
of zeros on the imaginary axis, see Fig. 4. More precisely, if ip1 and ip2 are two
consecutive poles of G on the positive imaginary axis, then, unless p1 < 1 < p2,
there is exactly one zero of 1 − G(λ) and one zero of 1 + G(λ) belonging to the
interval (ip1, ip2). If p1 < 1 < p2, then there are no zeros of 1 + G(λ) in the interval
(ip1, ip2) and there are two (counted with multiplicity) or no zeros of 1 − G(λ) in
this interval depending on whether G(i) = L

2 tan(d/2) is ≤ 1 or > 1. Since the poles
of G(λ) accumulate at 0 and at ±i∞, the same is true for the zeros of 1 ±G(λ). This
proves (c).

Taking the sum and difference of (4.37) and (4.38) we find

(a3 ± b3)(â3 ∓ b̂3) = 1 ± G, λ ∈ C. (5.5)

It follows that

h(λ)h(−λ) = 1 − G2(λ), λ ∈ C. (5.6)

Equation (5.5) implies that either a3 − b3 or â3 + b̂3 vanishes whenever 1 − G =
0. Since all zeros of 1 − G are simple, the functions a3 − b3 and â3 + b̂3 cannot
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simultaneously vanish at one of these zeros. In order to prove (d), it only remains to
show that 1 − G vanishes whenever a3 − b3 or â3 + b̂3 does. Equation (5.5) suggests
that this is true; however, it is conceivable that a zero (pole) of a3 −b3 could coincide
with a pole (zero) of â3 + b̂3 in such a way that the product (a3 −b3)(â3 + b̂3) = 1−G

remains nonzero. We show now that this cannot occur.
Suppose λ0 is a zero of a3(λ) − b3(λ). The unit determinant condition (4.37) im-

plies that a3(λ) and b3(λ) cannot simultaneously vanish. Thus,

a3(λ0) = b3(λ0) �= 0.

The global relations (4.40a), (4.40b) yield

a2(−λ0) − 1 = b2(−λ0), e−ω(λ0)L + a2(λ0) = b2(λ0). (5.7)

Using these equations to eliminate b2(λ) and b2(−λ) from the determinant condition

a2(λ0)a2(−λ0) − b2(λ0)b2(−λ0) = 1,

we find

a2(λ0) − e−ω(λ0)La2(−λ0) = 1 − e−ω(λ0)L. (5.8)

If λ0 is a zero of a3(λ) − b3(λ), then, by (4.17), so is −1/λ0, and hence we also have

a2

(
− 1

λ0

)
− eω(λ0)La2

(
1

λ0

)
= 1 − eω(λ0)L. (5.9)

On the other hand, the symmetry condition (4.26) for a2(λ) implies that

a2

(
1

λ

)
+ e−ω(λ)La2

(
−1

λ

)
= a2(λ) + e−ω(λ)La2(−λ), λ ∈ C. (5.10)

Indeed, if we use (4.26) to eliminate a2(±1/λ) from the left-hand side of (5.10)
and then simplify, we find the right-hand side of (5.10). Evaluating (5.10) at λ = λ0
and using (5.8) and (5.9) to eliminate a2(−1/λ0) and a2(−λ0) from the resulting
equation, we find

a2(λ0) = a2

(
1

λ0

)
. (5.11)

In view of (5.7), (5.8), and (5.11), the symmetry equation (4.26) for a2(λ) evaluated
at λ = λ0 reduces to

0 = −1 − e−ω(λ0)L + F(λ0)
(
1 − e−ω(λ0)L

)
, i.e. G(λ0) = 1.

This shows that 1−G(λ) = 0 whenever a3(λ)−b3(λ) = 0. A similar argument shows
that 1 − G(λ) = 0 also whenever a3(−λ) + b3(−λ) = 0. This proves (d). The proof
of (e) is similar.

The statement (f) follows from (d) and (e) since h = (a3 − b3)(a3 + b3).
Since h(λ) is analytic in C

+ and h(λ) does not vanish at any point λ ∈ PG by (f),
(5.6) implies that h(−λ) has a double pole at each point in the set PG ∩ C

+. This
proves (g). �
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5.1 An Equivalent Riemann–Hilbert Problem

Using the relations (4.16) and (4.32a), the jump matrices (2.26) become

J 0(x, y,λ) =
⎛

⎝
1 + b3(λ)b3(−λ)

a3(λ)a3(−λ)
e−ω(λ)L b3(−λ)

a3(λ)
e−θ(x,y,λ)

b3(λ)
a3(−λ)

e−ω(λ)Leθ(x,y,λ) 1

⎞

⎠ ,

J π/2(x, y,λ) =
(

1 b2(−λ)

a3(λ)2 e−θ(x,y,λ)

0 1

)

,

J 3π/2(x, y,λ) =
(

1 0
b2(λ)

a3(−λ)2 eθ(x,y,λ) 1

)

,

and

Jπ = J 3π/2(J 0)−1
Jπ/2, eθ(x,y,λ) = eΩ(λ)x+ω(λ)y. (5.12)

Let M(x,y,λ) be defined by (2.24) with Ψj replaced with Φj , j = 1,2,3. Let Dj

denote the j th quadrant of the complex plane,

Dj =
{
λ ∈ C

∣∣∣∣(j − 1)
π

2
< arg(λ) < j

π

2

}
, j = 1, . . . ,4,

and let Mj denote the restriction of M to Dj .
The jump matrices (5.12) involve the unknown spectral functions b2(λ), a3(λ),

and b3(λ). We therefore seek matrices Aj(x, y,λ), j = 1, . . . ,4, defined for λ ∈ Dj ,
such that the functions {M̃j (x, y,λ)}4

1 by

M̃j (x, y,λ) = Mj(x, y,λ)Aj (x, y,λ), λ ∈ Dj, j = 1, . . . ,4, (5.13)

satisfy a modified Riemann–Hilbert problem whose jump matrices involve only
known functions. We would like Aj to be bounded and analytic (or at least mero-
morphic) for λ ∈ Dj .

The requirement that Aj is bounded in the j th quadrant implies that A1 and A2
are upper triangular, while A3 and A4 are lower triangular. The requirement that Aj

has unit determinant implies that the diagonal elements of Aj are dj and 1
dj

. The
(2,2) components of (5.18) imply that

d1 = d2 = d3 = d4.

On the other hand, the four exponential factors

e−θ(x,y,λ), e−θ(x,y,λ)eω(λ)L, eθ(x,y,λ), eθ(x,y,λ)e−ω(λ)L (5.14)

are bounded in the first, second, third and fourth quadrant of the complex λ-plane,
respectively.
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This suggests choosing the matrices Aj in the following form:

A1 =
(

1 α1(λ)e−θ(x,y,λ)

0 1

)
, λ ∈ D1, (5.15a)

A2 =
(

1 α2(λ)eω(λ)Le−θ(x,y,λ)

0 1

)

, λ ∈ D2, (5.15b)

A3 =
(

1 0

α3(λ)eθ(x,y,λ) 1

)

, λ ∈ D3, (5.15c)

A4 =
(

1 0

α4(λ)e−ω(λ)Leθ(x,y,λ) 1

)

, λ ∈ D4, (5.15d)

where αj (λ), j = 1, . . . ,4, is a scalar valued function of λ ∈ Dj .
Substituting (5.13) into the jump relations

M4 = M1J
0, M2 = M1J

π/2, M4 = M3J
3π/2, (5.16)

we find the equations

M̃4 = M̃1J̃
0, M̃2 = M̃1J̃

π/2, M̃4 = M̃3J̃
3π/2, (5.17)

provided that the matrices J̃ 0, J̃ π/2, J̃ 3π/2 satisfy the following equations:

J 0A4 = A1J̃
0, J π/2A2 = A1J̃

π/2, J 3π/2A4 = A3J̃
3π/2. (5.18)

We analyse the first of (5.18). The (2,2) element of this equation is satisfied identi-
cally and the (1,1) element is a consequence of the (1,2) and (2,1) elements, as well
as of the requirement that all matrices in (5.18) have unit determinant. Denoting the

(1,2) and (2,1) components of J̃ 0 by e−θ(x,y,λ)Ũ0(λ) and eθ(x,y,λ)e−ω(λ)LṼ 0(λ),
respectively, we find that the (1,2) and (2,1) elements of the first of equations (5.18)
yield

b3(−λ)

a3(λ)
− α1(λ) = Ũ0(λ) (5.19)

and

b3(λ)

a3(−λ)
+ α4(λ) = Ṽ 0(λ). (5.20)

Comparing (5.19) with the identity (5.1) we find that a simple choice for the func-
tion α1 (and hence for Ũ0) is α1(λ) = b3(λ)

a3(λ)h(λ)
and Ũ0(λ) = −G(λ)

h(λ)
. Note that these

functions are well defined on R since h does not have any real zero. However, with
these choices the functions α1(λ) and Ũ0(λ) have (i) poles at the (unknown) zeros of
h(λ) along the imaginary axis and (ii) poles at the (known) poles of G(λ) along the
imaginary axis. To ensure that the poles in (i) are removable singularities we define
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the function G̃(λ) as follows:

G̃(λ) = G(λ)
(
h(λ) + 1

)
. (5.21)

This function takes values 1 and −1 exactly where G(λ) does. Indeed, if h(λ) = 0,
then a3(λ) = ±b3(λ) and correspondingly, in view of (5.5), G(λ) = G̃(λ) = ±1.

The above discussion suggests that a suitable choice for the functions α1(λ) and
Ũ0(λ) is

α1(λ) = b3(λ)

a3(λ)h(λ)
− G̃(λ)

h(λ)
, Ũ0(λ) = −G(λ) − G̃(λ)

h(λ)
= G(λ). (5.22)

Similarly, (5.20) suggests

α4(λ) = − b3(−λ)

a3(−λ)h(−λ)
+ G̃(−λ)

h(−λ)
, Ṽ 0(λ) = −G(−λ) − G̃(−λ)

h(−λ)
= −G(λ).

(5.23)
We next analyse the second of equations (5.18). The (1,2) element of this equation
yields

α2(λ)eω(λ)L + b2(−λ)

a3(λ)2
= b3(λ)

a3(λ)h(λ)
− G̃(λ)

h(λ)
+ Ũπ/2(λ),

where Ũπ/2(λ)e−θ(x,y,λ) denotes the (1,2) component of J̃ π/2. Using the identity
(5.2), we find

α2eω(λ)L + eω(λ)L b3(λ)

a3(λ)h(λ)
− (

1 + eω(λ)L
)G(λ)

h(λ)
+ G̃(λ)

h(λ)
= Ũπ/2(λ).

This suggests that we define

α2(λ) = − b3(λ)

a3(λ)h(λ)
+ G̃(λ)

h(λ)
, Ũπ/2(λ) = (

1 + eω(λ)L
)
G(λ). (5.24)

A similar analysis of the third of equations (5.18) yields

α3(λ) = b3(−λ)

a3(−λ)h(−λ)
− G̃(−λ)

h(−λ)
, Ṽ 3π/2(λ) = (

1 + e−ω(λ)L
)
G(−λ), (5.25)

where V 3π/2(λ)eθ(x,y,λ) denotes the (2,1) component of J̃
3π
2 . Note that the relations

α2(λ) = α4(−λ) and α3(λ) = α1(−λ) are consistent with the symmetry (2.20).
We define the matrices Aj , j = 1, . . . ,4, by (5.15a)–(5.15d) and (5.22)–(5.25).

Henceforth, we assume that (x, y) lies in the interior of the semistrip (1.2) so that
x > 0 and 0 < y < L. Then the j th exponential factor in (5.14) has exponential decay
as λ → ∞ and λ → 0 for λ ∈ Īj . Thus, although the analysis of the linear problem
suggests that the spectral functions aj (λ), bj (λ) could have some minor growth as
λ → ∞ and λ → 0 caused by the jumps in the boundary data at the corners of the
semistrip (in the linear case this growth is logarithmic, see Appendix), this ensures
that the Aj ’s are bounded as λ → ∞ and as λ → 0 in the corresponding domains Dj .
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Fig. 5 The contour for the
modified Riemann–Hilbert
problem satisfied by M̃ . The
contour has small indentations
bypassing the poles of G(λ)

In fact, since the Aj ’s have removable singularities at the zeros of the function
h(λ) along the imaginary axis, the only remaining difficulty is that the Aj ’s have
singularities at the known poles of G(λ). To deal with these singularities, we add
small indentations to the jump contour along the imaginary axis so that it passes to the
right of the poles of G. Thus, instead of the four quadrants Dj of the complex plane,
we consider the deformed domains D̃j defined in such a way that all λ ∈ PG ∩ C

+
lie in D̃1 and all λ ∈ PG ∩ C

− lie in D̃3, see Fig. 5.
We next determine the residue conditions at these poles. Let λ∗ ∈ PG ∩ C

+
be a pole of α1 in D̃1. In what follows, we use the notation M(x,y,λ) =
([M(x,y,λ)]1, [M(x,y,λ)]2) to denote the first and second column vector of a given
matrix M(x,y,λ). Then the relation M̃1 = M1A1 implies that

[
M̃1(x, y,λ)

]
1 = [

M1(x, y,λ)
]

1,

[
M̃1(x, y,λ)

]
2 = α1(λ)e−θ(x,y,λ)

[
M1(x, y,λ)

]
1 + [

M1(x, y,λ)
]

2.

Taking the residue of the second of these equations at λ∗, we find

Resλ∗
[
M̃1(x, y,λ)

]
2 = (Resλ∗ α1)e

−θ(x,y,λ∗)
[
M1

(
x, y,λ∗)]

1

= −(Resλ∗ G)

(
1 + 1

h(λ∗)

)
e−θ(x,y,λ∗)[M̃1

(
x, y,λ∗)]

1,

where the residue of G(λ) at λ∗ is known from the definition (4.30) whereas the
number h(λ∗) remains unknown.

Similarly, the relation M̃3 = M3A3 implies that

[
M̃3(x, y,λ)

]
1 = [

M3(x, y,λ)
]

1 + α3(λ)eθ(x,y,λ)
[
M3(x, y,λ)

]
2,

[
M̃3(x, y,λ)

]
2 = [

M3(x, y,λ)
]

2.
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Taking the residue of the first of these equations at λ∗ ∈ PG ∩ C
−, we find

Resλ∗
[
M̃3(x, y,λ)

]
1 = (Resλ∗ α3)e

θ(x,y,λ∗)[M3
(
x, y,λ∗)]

2

= (Resλ∗ G)

(
1 + 1

h(−λ∗)

)
eθ(x,y,λ∗)[M̃3

(
x, y,λ∗)]

2.

In summary, we have derived the following result.

Theorem 5.1 The RH problem defined in Theorem 3.1 and characterised by the jump
matrices {Jπ/2, J 3π/2, J 0, J π } defined in (5.12), can be mapped to a new RH prob-
lem with the following jump matrices:

J̃ π/2(x, y,λ) =
(

1 (1 + eω(λ)L)G(λ)e−θ(x,y,λ)

0 1

)

,

J̃ 3π/2(x, y,λ) =
(

1 0

−(1 + e−ω(λ)L)G(λ)eθ(x,y,λ) 1

)

, (5.26)

J̃ 0(x, y,λ) =
(

1 − G2(λ)e−ω(λ)L G(λ)e−θ(x,y,λ)

−G(λ)e−ω(λ)Leθ(x,y,λ) 1

)

,

where the known function G(λ) is defined in (4.30). This is achieved by using the
matrices (5.15a)–(5.15d), with

α1(λ) = b3(λ)

a3(λ)h(λ)
− G̃(λ)

h(λ)
, α2(λ) = − b3(λ)

a3(λ)h(λ)
+ G̃(λ)

h(λ)
,

(5.27)
α3(λ) = α1(−λ), α4(λ) = α2(−λ).

where the functions h(λ) and G̃(λ) are defined by (5.3) and (5.21), respectively. The

solution M̃ of the new RH problem is a sectionally meromorphic function with simple
poles at each point in the set PG given in (5.4). At these points the following residue
conditions are valid:

Resλ∗
[
M̃(x, y,λ)

]
2 = −(Resλ∗ G)

(
1 + 1

h(λ∗)

)
e−θ(x,y,λ∗)[M̃

(
x, y,λ∗)]

1,

λ∗ ∈ PG ∩ C
+, (5.28)

Resλ∗
[
M̃(x, y,λ)

]
1 = (Resλ∗ G)

(
1 + 1

h(−λ∗)

)
eθ(x,y,λ∗)[M̃

(
x, y,λ∗)]

2,

λ∗ ∈ PG ∩ C
−. (5.29)

The solution q(x, y), x > 0, 0 < y < L, of the boundary value problem determined
by the boundary conditions (1.3) is given by

(qx − iqy)(x, y) = 2 lim
λ→∞λ(M̃)12, (5.30)
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cosq(x, y) = 1 + 4i
(

lim
λ→∞λ(M̃11)x + 2 lim

λ→∞λ(M̃)12

)2
. (5.31)

Proof We only need to show how to represent the solution q(x, y) of the boundary
value problem in terms of the solution of the RH problem characterised by the jump
matrices given by (5.26). Recall that if M(x,y,λ) denotes the solution of the RH
problem defined in Theorem 3.1 then q(x, y) is defined in terms of M by (3.7)–
(3.8). Using M̃j = AjMj in the j th quadrant, j = 1, . . . ,4, by choosing λ in the first
quadrant we obtain

(qx − iqy)(x, y) = 2 lim
λ→∞λ(M̃)12,

cosq(x, y) = 1 + 4i
(

lim
λ→∞λ

[
M̃11 − α1(λ)e−θ(x,y,λ)(M̃)21

]
x

+ 2 lim
λ→∞λ(M̃)12

)2
.

Since e−θ(x,y,λ) decays exponentially as λ → ∞ in the first quadrant, the term involv-
ing the unknown coefficient α1 does not contribute to the limit and we find (5.30)–
(5.31). �

6 Conclusions and Open Problems

We have analysed the elliptic sine-Gordon equation in a semistrip for general bound-
ary data (Sects. 2 and 3) and in the particular case of a linearisable boundary value
problem (Sects. 4 and 5). The linearisable problem has the novelty that the function
qy(x,0) possesses a non-integrable singularity as x → 0 while the function qx(0, y)

possesses a non-integrable singularity as y → 0. Motivated by the recent solution
of an analogous problem for the modified Helmholtz equation presented in Ashton
and Fokas (2012), we have been able to bypass this problem by employing a suitable
gauge transformation. Furthermore, we have shown that the RH problem character-
izing the solution q(x, y) can be mapped to a modified RH problem whose “jump
matrix” is determined only by the width L of the semistrip and the given constant
value d of the boundary condition prescribed at x = 0 (see Theorem 5.1). However,
the modified RH problem also includes residue conditions at the points λ ∈ PG, where
the set PG consists of a countable number of points on the imaginary axis. The formu-
lation of these residue conditions requires the knowledge of h(λ) for λ ∈ PG, where
h(λ) is an unknown meromorphic function defined in terms of the spectral functions.
It remains an open problem to characterise the values of h(λ) for λ ∈ PG in terms of
L and d alone; progress in this direction is likely to rely on the analyticity properties
of h(λ) as well as on relations derived from the symmetry properties of the spectral
functions, such as the relation (5.6), and the known structure of the poles of h.
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Appendix: The Modified Helmholtz Equation

The basic differential form associated with the modified Helmholtz equation

∂2u(x, y)

∂x2
+ ∂2u(x, y)

∂y2
− u(x, y) = 0,

is given by

WB(x, y,λ) = e−Ω(λ)x−ω(λ)y

4

[
i

(
ux − iuy − iu

λ

)
dx −

(
ux − iuy + iu

λ

)
dy

]
,

where Ω(λ) and ω(λ) are defined in (2.4). Indeed, it can be verified that

dWB = −e−Ω(λ)x−ω(λ)y

4
[uxx + uyy − u]dx ∧ dy.

Suppose that uy(x, y) has non-integrable singularities at (0,0) and (0,L). In order to
eliminate these singularities we consider the differential form

W(x,y,λ) = WB(x, y,λ) − d
(
e−Ω(λ)x−ω(λ)yκ(x, y,λ)

)

and choose κ in such a way that the term uy cancels. Noting that

W = e−Ωx−ωy

4

{[
iux +uy + u

λ
−4κx +4Ωκ

]
dx−

[
ux − iuy + i

u

λ
+4κy −4ωκ

]
dy

}

(A.1)
we choose κ as in (4.2):

κ(x, y,λ) = −1

4

∫ ∞

x

uy(ξ, y)dξ.

Then

W = e−Ωx−ωy

4

{[
iux + u

λ
− Ω

∫ ∞

x

uy(ξ, y)dξ

]
dx

+
[

iuy − i
u

λ
+

∫ ∞

x

u(ξ, y)dξ − ω

∫ ∞

x

uy(ξ, y)dξ

]
dy

}
(A.2)

where we have used

κy = −1

4

∫ ∞

x

uyy(ξ, y)dξ = −1

4

(∫ ∞

x

u(ξ, y)dξ + ux(x, y)

)
.

We define Φj(x, y,λ), j = 1,3,4, as the solutions of the equation

d
(
Φj e−Ωx−ωy

) = W, j = 1,3,4, (A.3)

with

Φ1(∞, y, λ) = 0, Φ3(0,0, λ) = 0, Φ4(0,L,λ) = 0; (A.4)
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Fig. 6 The contours of
integration used to define
Φj (x, y,λ), j = 1,3,4

see Fig. 6.
The difference of any two of the above functions equals eΩx+ωyρ(λ), where ρ(λ)

can be computed by evaluating the difference at any convenient point (x, y). Hence

Φ4(x, y,λ) − Φ1(x, y,λ) = −eΩx+ωye−ωLB1(λ), λ ∈ C
+,

Φ4(x, y,λ) − Φ3(x, y,λ) = eΩx+ωyB2(λ), λ ∈ C, (A.5)

Φ1(x, y,λ) − Φ3(x, y,λ) = eΩx+ωyB3(λ), λ ∈ C
+,

where

B1(λ) = Φ1(0,L,λ), B2(λ) = Φ4(0,0, λ), B3(λ) = Φ1(0,0, λ), (A.6)

and the above choice for the domains of validity with respect to λ in (A.5) will be
justified below.

Equations (A.3) and the first of equations (A.4) imply that

Φ1(x, y,λ) = −1

4

∫ ∞

x

eΩ(x−ξ)

[
iuξ + u

λ
− Ω

∫ ∞

ξ

uy

(
ξ ′, y

)
dξ ′

]
dξ, λ ∈ C

+.

(A.7)
Hence the first and the third of equations (A.6) imply that

B3(λ) = −1

4

∫ ∞

0
e−Ωξ

[
iuξ (ξ,0) + u(ξ,0)

λ
− Ω

∫ ∞

ξ

uy

(
ξ ′,0

)
dξ ′

]
dξ, λ ∈ C

+,

(A.8)

B1(λ) = −1

4

∫ ∞

0
e−Ωξ

[
iuξ (ξ,L) + u(ξ,L)

λ
− Ω

∫ ∞

ξ

uy

(
ξ ′,L

)
dξ ′

]
dξ, λ ∈ C

+.

(A.9)

In order to compute Φ4(0,0, λ) we compute Φ4 along the y-axis from (0,L) to (0,0):

Φ4(0,0, λ) = 1

4

∫ 0

L

e−ωη

[
iuη(0, η) − i

u(0, η)

λ
+

∫ ∞

0
u(ξ, η)dξ

− ω

∫ ∞

0
uη(ξ, η)dξ

]
dη. (A.10)
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The last integral of this equation is given by

ω

4

∫ L

0
e−ωη

[
∂η

∫ ∞

0
u(ξ, η)dξ

]
dη = ω

4

[
e−ωL

∫ ∞

0
u(ξ,L)dξ −

∫ ∞

0
u(ξ,0)dξ

]

+ ω2

4

∫ L

0
e−ωη

(∫ ∞

0
u(ξ, η)dξ

)
dη.

Hence, using this equation, as well as the identity Ω2 + ω2 = 1, (A.10) together with
the second of equations (A.6) yields

B2(λ) = 1

4

∫ L

0
e−ωη

[
−iuη(0, η) + iu(0, η)

λ
− Ω2

∫ ∞

0
u(ξ, η)dξ

]
dη

+ ω

4

[
e−ωL

∫ ∞

0
u(ξ,L)dξ −

∫ ∞

0
u(ξ,0)dξ

]
, λ ∈ C. (A.11)

Subtracting the second of equations (A.5) from the sum of the other two equations in
(A.5) we find the global relation

e−ω(λ)LB1(λ) − B3(λ) + B2(λ) = 0, λ ∈ C
+. (A.12)

A.1 Example

Let

u(x,0) = u(x,L) = 0, 0 < x < ∞; u(0, y) = d, 0 < y < L.

The expressions in (A.8) and (A.11) simplify as follows:

B3(λ) = Ω(λ)

∫ ∞

0
e−Ω(λ)ξf3(ξ)dξ, f3(ξ) = 1

4

∫ ∞

ξ

uy

(
ξ ′,0

)
dξ ′, λ ∈ C

+,

(A.13)

B2(λ) = id(1 − e−ω(λ)L)

2(1 + λ2)
− Ω2

∫ L

0
e−ω(λ)ηf2(η)dη,

f2(η) = 1

4

∫ ∞

0
u(ξ, η)dξ, λ ∈ C. (A.14)

Note that ω(±i) = 0, thus the first term of the right-hand side of (A.14) has removable
singularities at ±i.

The overall symmetry u(x, y) = u(x,L − y) implies

B1(λ) = −B3(λ), λ ∈ C
+. (A.15)

Thus the global relation (A.12) becomes

B2(λ) = (
1 + e−ω(λ)L

)
B3(λ), λ ∈ C

+. (A.16)
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The only dependence of B3 on λ is through Ω(λ), which remains invariant under the
transformation λ → − 1

λ
, thus

B3(λ) = B3

(
−1

λ

)
, λ ∈ C

+. (A.17)

The second term of the right-hand side of the first of equations (A.14) involves Ω2(λ)

and ω(λ), which are invariant under the transformation λ → 1
λ

. Thus we find

B2(λ) − id(1 − e−ω(λ)L)

2(1 + λ2)
= B2

(
1

λ

)
− idλ2(1 − e−ω(λ)L)

2(1 + λ2)
,

therefore

B2

(
1

λ

)
= B2(λ) − id

2

1 − λ2

1 + λ2

(
1 − e−ω(λ)L

)
, λ ∈ C. (A.18)

In summary, taking into account that B1 = −B3, it follows that the modified
Helmholtz equation in the semistrip, with the boundary conditions (1.3), involves
the two unknown spectral functions B3(λ) and B2(λ), defined in terms of the two un-
known functions f2(λ) and f3(λ) by (A.13) and (A.14). These two spectral functions
satisfy the global relation (A.16) as well as the symmetry relations (A.17) and (A.18).

In what follows, we will show that the unknown functions B2 and B3 yields a zero
contribution to the representation of the solution u(x, y). In order to prove this fact,
we need the following identities, which are a consequence of (A.16)–(A.18):

B3(λ) − B3(−λ) = G1(λ), G1(λ) = id

2

1 − λ2

1 + λ2

eω(λ)L − 1

eω(λ)L + 1
, λ ∈ R, (A.19)

B2(λ) − (
1 + e−ω(λ)L

)
B3(−λ) = G2(λ),

G2(λ) = id

2

1 − λ2

1 + λ2

(
1 − e−ω(λ)L

)
, λ ∈ C

−. (A.20)

Indeed, letting λ → 1
λ

in the global relation (A.16) we find

B2

(
1

λ

)
= (

1 + e−ω(λ)L
)
B3

(
1

λ

)
, λ ∈ C

−.

Using in the above equation the symmetry relation (A.17) with λ → −λ, as well as
the symmetry relation (A.18), we find (A.20). Subtracting (A.20) from the global
relation (A.16) we find (A.19). The functions G1(λ), G2(λ) have removable singu-
larities at λ = ±i.

The functions Φj(x, y,λ), j = 1,3,4, define a Riemann–Hilbert problem with
jumps on the real and negative imaginary axis, see Fig. 7.

In order to map this Riemann–Hilbert problem to a problem with known jump
conditions, we introduce the functions Φ̃j (x, y,λ), j = 1,3,4, through the following
equations:
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Fig. 7 The contour for the Riemann–Hilbert problem

Φ1 = Φ̃1, λ ∈ C
+,

Φ3 = Φ̃3 − eθ(x,y,λ)B3(−λ), π ≤ arg(λ) ≤ 3π

2
, (A.21)

Φ4 = Φ̃4 + eθ(x,y,λ)e−ω(λ)LB3(−λ),
3π

2
≤ arg(λ) ≤ 2π.

It is shown in Remark 7.1 at the end of this appendix that the function B3(λ) has
a logarithmic singularity as λ → 0 and λ → ∞. In particular, assuming that (x, y)

lies in the interior of the semistrip (1.2) so that x > 0 and 0 < y < L, it follows that
eθ(x,y,λ)B3(−λ) and eθ(x,y,λ)e−ω(λ)LB3(−λ) are bounded and analytic for λ in the
third and fourth quadrant of the λ plane, respectively.

Using the definitions (A.21) in (A.5), we find

Φ̃4(x, y,λ) − Φ̃1(x, y,λ) = eθ(x,y,λ)e−ω(λ)L
(
B3(λ) − B3(−λ)

)
, λ ∈ R

+,

Φ̃4(x, y,λ) − Φ̃3(x, y,λ) = eθ(x,y,λ)
(
B2(λ) − (

1 + e−ω(λ)L
)
B3(−λ)

)
, λ ∈ −iR+,

Φ̃1(x, y,λ) − Φ̃3(x, y,λ) = eθ(x,y,λ)
(
B3(λ) − B3(−λ)

)
, λ ∈ R

−.

(A.22)

Equations (A.19) and (A.20) imply that the jump conditions appearing in (A.22) can
be expressed in terms of the known functions G1 and G2.

Equation (A.3) implies that the function Φ satisfies the equation

Φx − ΩΦ = 1

4

[
iux + u

λ
− Ω

∫ ∞

x

uy(ξ, y)dξ

]
. (A.23)

This equation suggests that

Φ1(x, y,λ) = 1

4

∫ ∞

x

uy(ξ, y)dξ + O

(
1

λ

)
, λ → ∞. (A.24)

This estimate can be verified using (A.7) and integration by parts. The first of equa-
tions (A.21) shows that Φ̃1 satisfies the same estimate (A.24). Solving the Riemann–
Hilbert problem with the jump conditions (A.22) and the estimate (A.24) (for Φ̃1) we
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find

Φ̃(x, y,λ) = 1

4

∫ ∞

x

uy(ξ, y)dξ + 1

2πi

[∫ 0

−∞
eΩ(λ′)x+ω(λ′)yG1

(
λ′) dλ′

λ′ − λ

+
∫ 0

∞
eΩ(λ′)x+ω(λ′)(y−L)G1

(
λ′) dλ′

λ′ − λ

+
∫ −i∞

0
eΩ(λ′)x+ω(λ′)yG2

(
λ′) dλ′

λ′ − λ

]
, λ ∈ C, λ /∈ R ∪ iR.

(A.25)

Hence taking the limit of this equation as λ → 0 we find

lim
λ→0

[
Φ̃(x, y,λ) − 1

4

∫ ∞

x

uy(ξ, y)dξ

]

= 1

2π i

[∫ 0

−∞
eΩ(λ)x+ω(λ)yG1(λ)

dλ

λ
+

∫ 0

∞
eΩ(λ)x+ω(λ)(y−L)G1(λ)

dλ

λ

+
∫ −i∞

0
eΩ(λ)x+ω(λ)yG2(λ)

dλ

λ

]
. (A.26)

On the other hand, (A.23) implies that

u(x, y) = −2i lim
λ→0

[
Φ(x,y,λ) − 1

4

∫ ∞

x

uy(ξ, y)dξ

]
.

Noting that Φ = Φ̃ for λ ∈ C
+, we find

u(x, y) = − 1

π

[∫ 0

−∞
eΩ(λ)x+ω(λ)yG1(λ)

dλ

λ
+

∫ 0

∞
eΩ(λ)x+ω(λ)(y−L)G1(λ)

dλ

λ

+
∫ −i∞

0
eΩ(λ)x+ω(λ)yG2(λ)

dλ

λ

]
. (A.27)

In summary, the solution of the BVP obtained by taking the linear limit of (1.1) and
(1.3) is given by (A.27) where G1 and G2 are defined by (A.19) and (A.20).

In what follows we verify that the function u(x, y) defined by (A.27) satisfies the
given boundary conditions.

A.1.1 u(x,0) = 0

Evaluating (A.27) at y = 0 we find

u(x,0) = − 1

π

[∫ 0

−∞
eΩ(λ)xG1(λ)

dλ

λ
+

∫ 0

∞
eΩ(λ)xe−ω(λ)LG1(λ)

dλ

λ

+
∫ −i∞

0
eΩ(λ)xG2(λ)

dλ

λ

]
. (A.28)
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The integrands of the second and third integrals of the right-hand side of (A.28) are
bounded and analytic in the fourth quadrant of the complex λ plane. In order to map
the first integral to an integral whose integrand is also bounded and analytic in the
fourth quadrant, we replace in the first integral λ by − 1

λ
:

∫ 0

−∞
eΩ(λ)xG1(λ)

dλ

λ
= −

∫ ∞

0
eΩ(λ)xG1(λ)

dλ

λ
.

Then combining this term with the second integral we find an integral involving

(
1 + e−ω(λ)L

)
G1 = e−ω(λ)L

(
1 + eω(λ)L

)
G1.

Hence (A.28) becomes

u(x,0) = − id

2π

[∫ 0

∞
+

∫ −i∞

0

]
eΩ(λ)x 1 − λ2

1 + λ2

(
1 − e−ω(λ)L

)dλ

λ
.

By Jordan’s lemma, the right-hand side of this equation vanishes (λ = −i is a remov-
able singularity) and hence u(x,0) = 0.

A.1.2 u(x,L) = 0

Evaluating (A.27) at y = L, we find

u(x,L) = − 1

π

[∫ 0

−∞
eΩ(λ)xeω(λ)LG1(λ)

dλ

λ
+

∫ 0

∞
eΩ(λ)xG1(λ)

dλ

λ

+
∫ −i∞

0
eΩ(λ)xeω(λ)LG2(λ)

dλ

λ

]
. (A.29)

The integrands of the first and third integrals of the right-hand side of (A.29) are
bounded and analytic in the third quadrant of the complex λ plane. In order to map
the second integral to an integral whose integrand is also bounded and analytic in the
third quadrant, we replace in the second integral λ by − 1

λ
:

∫ 0

∞
eΩ(λ)xG1(λ)

dλ

λ
=

∫ 0

−∞
eΩ(λ)xG1(λ)

dλ

λ
.

Then combining this term with the first integral we find an integral involving (1 +
eω(λ)L)G1. Hence (A.29) becomes

u(x,L) = − id

2π

[∫ 0

−∞
+

∫ −i∞

0

]
eΩ(λ)x 1 − λ2

1 + λ2

(
eω(λ)L − 1

)dλ

λ
.

By Jordan’s lemma, the right-hand side of this equation vanishes; hence u(x,L) = 0.
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Fig. 8 The contour for the
Riemann–Hilbert problem

A.1.3 u(0, y) = d

Evaluating (A.27) at x = 0, we find

u(0, y) = − id

2π

[∫ 0

−∞
eω(λ)y 1 − λ2

1 + λ2

eω(λ)L − 1

eω(λ)L + 1

dλ

λ

+
∫ 0

∞
eω(λ)(y−L) 1 − λ2

1 + λ2

eω(λ)L − 1

eω(λ)L + 1

dλ

λ

+
∫ −i∞

0
eω(λ)y 1 − λ2

1 + λ2

(
1 − e−ω(λ)L

)dλ

λ

]
. (A.30)

The first and second terms of the integrand of the third integral on the right-hand side
are analytic in the third and fourth quadrant of the λ complex plane, respectively.
Before considering these terms separately, in order to take care of the singularity at
λ = −i in the denominator, we deform the contour of integration of the third integral
to the curve L depicted in Fig. 8.

Rewriting the term eω(λ)L−1
eω(λ)L+1

in the first and second integrals on the right-hand side
of (A.30) in the form, respectively,

eω(λ)L − 1

eω(λ)L + 1
= 1 − 2

eω(λ)L + 1
= −1 + 2eω(λ)L

eω(λ)L + 1

(A.30) becomes

u(0, y) = id

2π

{(∫ 0

∞
+

∫

L

)
eω(λ)(y−L) 1 − λ2

1 + λ2

dλ

λ
−

(∫ 0

−∞
+

∫

L

)
eω(λ)y 1 − λ2

1 + λ2

dλ

λ

+ 2
∫ ∞

−∞
eω(λ)y

1 + eω(λ)L

1 − λ2

1 + λ2

dλ

λ

}
. (A.31)

Jordan’s lemma implies that the first integral in the right-hand side of (A.31) vanishes.
Furthermore, the integrand of the third integral in the right-hand side of (A.31) re-
mains invariant under the transformation λ → 1

λ
, thus this integral also vanishes. The

second integral on the right-hand side of (A.31) has a pole at λ = −i with residue −1.
Hence, u(0, y) = d .
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Remark 7.1 (The asymptotics of B3(λ) as λ → 0 and λ → ∞) Using (A.27), it is
possible to show (see Ashton and Fokas 2012) that

1

4

∫ ∞

x

uy

(
x′,0

)
dx′ = − d

2π
lnx + O(1), x → 0. (A.32)

Hence, the definition (A.13) of B3(λ) implies that

B3(λ) = Ω(λ)

∫ ∞

0
e−Ω(λ)x

[
1

4

∫ ∞

x

uy

(
x′,0

)
dx′ + d

2π
lnx

]
dx

−Ω(λ)
d

2π

∫ ∞

0
e−Ω(λ)x lnx dx. (A.33)

Integration by parts implies that the first term of the r.h.s. of (A.33) is of O(1) as λ →
∞ and λ → 0. The second term in the r.h.s. of (A.33) can be computed explicitly,

∫ ∞

0
e−Ω(λ)x lnx dx = −γ + lnΩ

Ω
, Re Ω > 0.

Hence

B3(λ) = d

2π
lnΩ + O(1), λ → ∞ or λ → 0, λ ∈ C

+. (A.34)

In particular,

B3(λ) = d

2π
lnλ + O(1), λ → ∞, λ ∈ C

+, (A.35a)

and

B3(λ) = − d

2π
lnλ + O(1), λ → 0, λ ∈ C

+. (A.35b)
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