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Abstract The μ-Camassa–Holm (μCH) equation is a nonlinear integrable partial
differential equation closely related to the Camassa–Holm equation. We prove that
the periodic peaked traveling wave solutions (peakons) of the μCH equation are or-
bitally stable.

Keywords Water waves · Camassa–Holm equation · Peakons · Stability

Mathematics Subject Classification (2000) 35Q35 · 37K45

1 Introduction

The nonlinear partial differential equation

μ(ut ) − uxxt = −2μ(u)ux + 2uxuxx + uuxxx, t > 0, x ∈ S1 = R/Z, (1.1)
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where u(x, t) is a real-valued spatially periodic function and μ(u) = ∫
S1 u(x, t)dx

denotes its mean, was recently introduced in Khesin et al. (2008) as an integrable
equation arising in the study of the diffeomorphism group of the circle. It describes
the propagation of self-interacting, weakly nonlinear orientation waves in a massive
nematic liquid crystal under the influence of an external magnetic field. The closest
relatives of (1.1) are the Camassa–Holm equation (Camassa and Holm 1993; Fokas
and Fuchssteiner 1981)

ut − utxx + 3uux = 2uxuxx + uuxxx, (1.2)

and the Hunter–Saxton (Hunter and Saxton 1991) equation

−utxx = 2uxuxx + uuxxx. (1.3)

In fact, each of Eqs. (1.1)–(1.3) can be written in the form

yt + uyx + 2uxy = 0, y = Au, (1.4)

where the operator A is given by A = μ − ∂2
x in the case of (1.1), A = 1 − ∂2

x in the
case of (1.2), and A = −∂2

x in the case of (1.3). Following Lenells et al. (2010), we
will refer to Eq. (1.1) as the μ-Camassa–Holm (μCH) equation.

Equations (1.1)–(1.3) share many remarkable properties. (a) They are all com-
pletely integrable systems with a corresponding Lax pair formulation, a bi-Hamilton-
ian structure, and an infinite sequence of conservation laws; see Camassa and Holm
(1993), Constantin and McKean (1999), Hunter and Zheng (1994), Khesin et al.
(2008). (b) They all arise geometrically as equations for geodesic flow in the con-
text of the diffeomorphism group of the circle Diff(S1) endowed with a right-
invariant metric (Khesin et al. 2008; Khesin and Misiołek 2003; Kouranbaeva 1999;
Misiołek 1998; Shkoller 1998). (c) They are all models for wave breaking (each equa-
tion admits initially smooth solutions which break in finite time in such a way that the
wave remains bounded while its slope becomes unbounded); see Camassa and Holm
(1993), Constantin (1997), Constantin and Escher (1998, 2000) Constantin and McK-
ean (1999), Hunter and Saxton (1991), Khesin et al. (2008), Misiołek (2002).

A particularly interesting feature of the Camassa–Holm equation is that it admits
peaked soliton solutions (Camassa and Holm 1993). These solutions (called peakons)
are traveling waves with a peak at their crest, and they occur in both the periodic and
the nonperiodic setting. It was noted in Lenells et al. (2010) that the μCH equation
also admits peakons: For any c ∈ R, the peaked traveling wave u(x, t) = cϕ(x − ct),
where (see Fig. 1)

ϕ(x) = 1

26

(
12x2 + 23

)
for x ∈ [−1/2,1/2] (1.5)

and ϕ is extended periodically to the real line, is a solution of (1.1). Note that the
height of the peakon cϕ(x − ct) is proportional to its speed.

If waves such as the peakons are to be observable in nature, they must be stable
under small perturbations; therefore, the stability of the peakons is of great interest.
Since a small change in the height of a peakon yields another one traveling at a dif-
ferent speed, the correct notion of stability here is that of orbital stability: A periodic
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Fig. 1 The periodic peakon
ϕ(x) of the μCH equation

wave with an initial profile close to a peakon remains close to some translate of it for
all later times. That is, the shape of the wave remains approximately the same for all
times.

The Camassa–Holm peakons are orbitally stable in the nonperiodic setting (Con-
stantin and Strauss 2000) as well as in the periodic case (Lenells 2004a). In this paper,
we show that the periodic μCH peakons given by (1.5) are also orbitally stable.

Theorem 1.1 The periodic peakons of Eq. (1.1) are orbitally stable in H 1(S1).

An outline of the proof of Theorem 1.1 is given in Sect. 2, while a detailed proof
is presented in Sect. 3. We conclude the paper with Sect. 4 where we discuss some
results on the existence of solutions to (1.1).

2 Outline of Proof

There are two standard methods for studying the stability of a solution of a disper-
sive wave equation. The first method consists of linearizing the equation around the
solution. In many cases, nonlinear stability is governed by the linearized equation.
However, for the μCH and CH equations, the nonlinearity plays a dominant role
rather than being a higher order perturbation of the linear terms. Thus, it is not clear
how to prove nonlinear stability of the peakons using the linearized problem. More-
over, the peakons cϕ(x − ct) are continuous but not differentiable, which makes it
hard to analyze the spectrum of the operator linearized around cϕ.

The second method is variational in nature. In this approach, the solution is re-
alized as an energy minimizer under appropriate constraints. Stability follows if the
uniqueness of the minimizer can be established (otherwise one only obtains the sta-
bility of the set of minima). A proof of the stability of the Camassa–Holm peakons
using the variational approach is given in Constantin and Molinet (2001) for the case
on the line and in Lenells (2004b) for the periodic case.

In this paper, we prove the stability of the peakon (1.5) using a method that is dif-
ferent from the two described above. Taking c = 1 for simplicity, our approach can be
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described as follows. To each function w : S1 → R, we associate a real-valued func-
tion Fw(M,m) of two real variables (M,m) in such a way that the correspondence
w �→ Fw has the following properties:

• If u(x, t) is a solution of (1.1) with maximal existence time T > 0, then

Fu(t)(Mu(t),mu(t)) ≥ 0, t ∈ [0, T ), (2.1)

where Mu(t) = maxx∈S1{u(x, t)} and mu(t) = minx∈S1{u(x, t)} denote the maxi-
mum and minimum of u at time t , respectively.

• For the peakon, we have Fϕ ≡ Fϕ(·) = Fϕ(·−t) and Fϕ(M,m) ≤ 0 for all (M,m)

with equality if and only if (M,m) = (Mϕ,mϕ); see Fig. 1.
• If w : S1 → R is such that Hi[w] is close to Hi[ϕ], i = 0,1,2, where H0,H1,H2

are the conservation laws of (1.1) given by

H0[u] =
∫

udx, H1[u] = 1

2

∫
yudx,

H2[u] =
∫ (

μ(u)u2 + 1

2
uu2

x

)

dx,

(2.2)

then the function Fw is a small perturbation of Fϕ .

Using the correspondence w �→ Fw , the stability of the peakon is proved as follows. If
u is a solution starting close to the peakon ϕ, the conserved quantities Hi[u] are close
to Hi[ϕ], i = 0,1,2, and hence Fu(t) is a small perturbation of Fϕ for any t ∈ [0, T ).
This implies that the set where Fu(t) ≥ 0 is contained in a small neighborhood of
(Mϕ,mϕ) in R

2 for any t ∈ [0, T ). We conclude from (2.1) that (Mu(t),mu(t)) stays
close to (Mϕ,mϕ) for all times. The proof is completed by noting that if the maximum
of u stays close to the maximum of the peakon, then the shape of the whole wave
remains close to that of the peakon.

Our proof is inspired by Lenells (2004a), where the stability of the periodic
peakons of the Camassa–Holm equation is proved.1 The approach here is similar,
but there are differences. The main difference is that in Lenells (2004a) the func-
tion Fu associated with a solution u(x, t) could be chosen to be independent of time,
whereas here the function Fu(t) depends on time. Indeed, our definition of the func-
tion Fu(t)(M,m) involves the L2-norm ‖u(t)‖L2(S1), which is not conserved in time.
However, since this norm is controlled by the conservation law H1, we can ensure
that it remains bounded for all times. This turns out to be enough to ascertain that the
function Fu(t), despite its time dependence, remains close to Fϕ for all t ∈ [0, T ).

3 Proof of Stability

We will identify S1 with the interval [0,1) and view functions on S1 as periodic
functions on the real line of period one. For an integer n ≥ 1, we let Hn(S1) denote

1The proof in Lenells (2004a) is in turn inspired by the proof of stability of the Camassa–Holm peakons
on the line presented in Constantin and Strauss (2000).
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the Sobolev space of all square integrable functions f ∈ L2(S1) with distributional
derivatives ∂i

xf ∈ L2(S1) for i = 1, . . . , n. The norm on Hn(S1) is given by

‖f ‖2
Hn(S1)

=
n∑

i=0

∫

S1

(
∂i
xf

)2
(x)dx.

Equation (1.1) can be rewritten in the following form:

ut + uux + A−1∂x

(

2μ(u)u + 1

2
u2

x

)

= 0, (3.1)

where A = μ − ∂2
x is an isomorphism between Hs(S1) and Hs−2(S1); see Khesin

et al. (2008). By a weak solution u of (1.1) on [0, T ) with T > 0, we mean a function
u ∈ C([0, T );H 1(S1)) such that (3.1) holds in the distributional sense and the func-
tionals Hi[u], i = 0,1,2, defined in (2.2) are independent of t ∈ [0, T ). The peakons
defined in (1.5) are weak solutions in this sense (Lenells et al. 2010). Our aim is to
prove the following precise reformulation of the theorem stated in the introduction.

Theorem 3.1 For every ε > 0 there is a δ > 0 such that if u ∈ C([0, T );H 1(S1)) is
a weak solution of (1.1) with

∥
∥u(·,0) − cϕ

∥
∥

H 1(S1)
< δ

then
∥
∥u(·, t) − cϕ

(· − ξ(t) + 1/2
)∥
∥

H 1(S1)
< ε for t ∈ [0, T ),

where ξ(t) ∈ R is any point where the function u(·, t) attains its maximum.

The proof of Theorem 3.1 will proceed through a series of lemmas. The first
lemma summarizes the properties of the peakon. For simplicity, we henceforth take
c = 1.

Lemma 3.2 The peakon ϕ(x) is continuous on S1 with peak at x = ±1/2. The ex-
trema of ϕ are

Mϕ = ϕ(1/2) = 1, mϕ = ϕ(0) = 23

26
.

Moreover,

lim
x↑1/2

ϕx(x) = 6

13
, lim

x↓−1/2
ϕx(x) = − 6

13
,

and

H0[ϕ] = 12

13
, H1[ϕ] = max

x∈S1
ϕx = 6

13
, H2[ϕ] = 9024

10985
.
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Proof These properties follow easily from the definition (1.5) of ϕ and the defini-
tion (2.2) of {Hi}3

1. For example,

H0[ϕ] =
∫ 1/2

−1/2

12x2 + 23

26
dx = 12

13
. �

We define the μ-inner product 〈·, ·〉μ and the associated μ-norm ‖ · ‖μ by

〈u,v〉μ = μ(u)μ(v) +
∫

S1
uxvx dx, ‖u‖2

μ = 〈u,u〉μ = 2H1[u],

u, v ∈ H 1(S1), (3.2)

and consider the expansion of the conservation law H1 around the peakon ϕ in the
μ-norm. The following lemma shows that the error term in this expansion is given by
12/13 times the difference between ϕ and the perturbed solution u at the point of the
peak.

Lemma 3.3 For every u ∈ H 1(S1) and ξ ∈ R,

H1[u] − H1[ϕ] = 1

2

∥
∥u − ϕ(· − ξ)

∥
∥2

μ
+ 12

13

(
u(ξ + 1/2) − Mϕ

)
.

Proof We compute

1

2

∥
∥u − ϕ(· − ξ)

∥
∥2

μ
= H1[u] + H1

[
ϕ(· − ξ)

] − μ(u)μ(ϕ) −
∫

S1
ux(x)ϕx(x − ξ)dx

= H1[u] + H1[ϕ] − μ(u)μ(ϕ) +
∫

S1
u(x + ξ)ϕxx(x)dx.

Since

ϕxx = 12

13
− 12

13
δ(x − 1/2), (3.3)

we find
∫

S1
u(x + ξ)ϕxx(x)dx = 12

13

∫

S1
u(x)dx − 12

13
u(ξ + 1/2).

Using that H0[ϕ] = μ(ϕ) = 12
13 , we obtain

1

2

∥
∥u − ϕ(· − ξ)

∥
∥2

μ
= H1[u] − H1[ϕ] + 12

13

(
1 − u(ξ + 1/2)

)
.

This proves the lemma. �

Remark 3.4 For a wave profile u ∈ H 1(S1), the functional H1[u] represents ki-
netic energy. Lemma 3.3 implies that if a wave u ∈ H 1(S1) has energy H1[u] and
height Mu close to the peakon’s energy and height, then the whole shape of u is
close to that of the peakon. Another physically relevant consequence of Lemma 3.3
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is that, among all waves of fixed energy, the peakon has maximal height. Indeed,
if u ∈ H 1(S1) ⊂ C(S1) is such that H1[u] = H1[ϕ] and u(ξ) = maxx∈S1 u(x), then
u(ξ) ≤ Mϕ .

The peakon ϕ satisfies the differential equation

ϕx =

⎧
⎪⎨

⎪⎩

− 12
13

√
13
6 (ϕ − mϕ), −1/2 < x ≤ 0,

12
13

√
13
6 (ϕ − mϕ), 0 ≤ x < 1/2.

(3.4)

Let u ∈ H 1(S1) ⊂ C(S1) and write M = Mu = maxx∈S1{u(x)}, m = mu =
minx∈S1{u(x)}. Let ξ and η be such that u(ξ) = M and u(η) = m. Inspired by (3.4),
we define the real-valued function g(x) by

g(x) =

⎧
⎪⎨

⎪⎩

ux + 12
13

√
13
6 (u − m), ξ < x ≤ η,

ux − 12
13

√
13
6 (u − m), η ≤ x < ξ + 1,

and extend it periodically to the real line. We compute

∫

S1
g2(x)dx =

∫ η

ξ

(

ux + 12

13

√
13

6
(u − m)

)2

dx

+
∫ ξ+1

η

(

ux − 12

13

√
13

6
(u − m)

)2

dx

=
∫ η

ξ

u2
x dx + 24

13

∫ η

ξ

ux

√
13

6
(u − m)dx + 144

169

∫ η

ξ

13

6
(u − m)dx

+
∫ ξ+1

η

u2
x dx − 24

13

∫ ξ+1

η

ux

√
13

6
(u − m)dx

+ 144

169

∫ ξ+1

η

13

6
(u − m)dx.

Notice that

d

dx

[

8

√
2

39
(u − m)3/2

]

= 24

13
ux

√
13

6
(u − m).

Hence,
∫ η

ξ

ux

√
13

6
(u − m)dx = −

∫ ξ+1

η

ux

√
13

6
(u − m)dx

and

24

13

∫ η

ξ

ux

√
13

6
(u − m)dx =

[

8

√
2

39
(u − m)3/2

]η

ξ

= −8

√
2

39
(M − m)3/2.
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We conclude that

1

2

∫

S1
g2(x)dx = H1[u] − 1

2
μ(u)2 − 8

√
2

39
(M − m)3/2 + 12

13

(
μ(u) − m

)
. (3.5)

In the same way, we compute
∫

S1
ug2(x)dx

=
∫ η

ξ

u

(

ux + 12

13

√
13

6
(u − m)

)2

dx +
∫ ξ+1

η

u

(

ux − 12

13

√
13

6
(u − m)

)2

dx

=
∫ η

ξ

uu2
x dx + 24

13

∫ η

ξ

uux

√
13

6
(u − m)dx + 144

169

∫ η

ξ

u
13

6
(u − m)dx

+
∫ ξ+1

η

uu2
x dx − 24

13

∫ ξ+1

η

uux

√
13

6
(u − m)dx + 144

169

∫ ξ+1

η

u
13

6
(u − m)dx.

Since

d

dx

[
8

5

√
2

39
(u − m)3/2(2m + 3u)

]

= 24

13
uux

√
13

6
(u − m),

we find that
∫ η

ξ

uux

√
13

6
(u − m)dx = −

∫ ξ+1

η

uux

√
13

6
(u − m)dx

and

24

13

∫ η

ξ

uux

√
13

6
(u − m)dx = −8

5

√
2

39
(M − m)3/2(2m + 3M).

Therefore,

1

2

∫

S1
ug2(x)dx = H2[u] −

(

H0[u] − 12

13

)∫

S1
u2 dx − 12

13
mH0[u]

− 8

5

√
2

39
(M − m)3/2(2m + 3M). (3.6)

Combining (3.6) with (3.5), we obtain

H2[u] = 1

2

∫

S1
ug2(x)dx +

(

H0[u] − 12

13

)∫

S1
u2 dx + 12

13
mH0[u]

+ 8

5

√
2

39
(M − m)3/2(2m + 3M)

≤ M

2

∫

S1
g2(x)dx +

(

H0[u] − 12

13

)∫

S1
u2 dx + 12

13
mH0[u]
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+ 8

5

√
2

39
(M − m)3/2(2m + 3M)

= M

[

H1[u] − 1

2
μ(u)2 − 8

√
2

39
(M − m)3/2 + 12

13

(
μ(u) − m

)
]

+
(

H0[u] − 12

13

)∫

S1
u2 dx + 12

13
mH0[u]

+ 8

5

√
2

39
(M − m)3/2(2m + 3M). (3.7)

We have actually proved the following lemma.

Lemma 3.5 For any positive u ∈ H 1(S1), define a function

Fu : {(M,m) ∈ R
2 : M ≥ m > 0

} → R

by

Fu(M,m) = M

[

H1[u] − 1

2
H0[u]2 − 8

√
2

39
(M − m)3/2 + 12

13

(
H0[u] − m

)
]

+
(

H0[u] − 12

13

)∫

S1
u2 dx + 12

13
mH0[u]

+ 8

5

√
2

39
(M − m)3/2(2m + 3M) − H2[u].

Then

Fu(Mu,mu) ≥ 0,

where Mu = maxx∈S1{u(x)} and mu = minx∈S1{u(x)}.

Note that the function Fu depends on u only through the three conservation laws
H0[u], H1[u], and H2[u], and the L2-norm of u.

The next lemma highlights some properties of the function Fϕ(M,m) associated
to the peakon. The graph of Fϕ(M,m) is shown in Fig. 2.

Lemma 3.6 For the peakon ϕ, we have

Fϕ(Mϕ,mϕ) = 0,

∂Fϕ

∂M
(Mϕ,mϕ) = 0,

∂Fϕ

∂m
(Mϕ,mϕ) = 0,

∂2Fϕ

∂M2
(Mϕ,mϕ) = −12

13
,

∂2Fϕ

∂M∂m
(Mϕ,mϕ) = 0,

∂2Fϕ

∂m2
(Mϕ,mϕ) = −12

13
.

Moreover, (Mϕ,mϕ) is the unique maximum of Fϕ .
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Fig. 2 The graph of the function Fϕ(M,m) near the point (Mϕ,mϕ)

Proof It follows from (3.4) that the function g(x) corresponding to the peakon is
identically zero. Thus the inequality (3.7) is an equality in the case of the peakon.
This means that Fϕ(Mϕ,mϕ) = 0.

On the other hand, differentiation gives

∂Fu

∂M
=

[

H1[u] − 1

2
H0[u]2 − 8

√
2

39
(M − m)3/2 + 12

13

(
H0[u] − m

)
]

− 12

√
2

39
M(M − m)1/2 + 12

5

√
2

39
(M − m)1/2(2m + 3M)

+ 24

5

√
2

39
(M − m)3/2

=
[

H1[u] − 1

2
H0[u]2 − 8

√
2

39
(M − m)3/2 + 12

13

(
H0[u] − m

)
]

,

and

∂Fu

∂m
= 12

√
2

39
M(M − m)1/2 − 12

13
M + 12

13
H0[u]

+ 8

5

√
2

39

[

−3

2
(M − m)1/2(2m + 3M) + 2(M − m)3/2

]

= 12

13

(
H0[u] − M

) + 8

√
2

39
(M − m)3/2.

Further differentiation yields

∂2Fu

∂M∂m
= −12

13
+ 12

√
2

39
(M − m)1/2,



J Nonlinear Sci (2013) 23:97–112 107

∂2Fu

∂M2
= ∂2Fu

∂m2
= −12

√
2

39
(M − m)1/2.

To compute the derivatives of Fϕ at (Mϕ,mϕ), take Fu = Fϕ , M = Mϕ , and m = mϕ

in the above expressions for the partial derivatives of F and use Lemma 3.2.
Next we show that (Mϕ,mϕ) is the unique maximum of Fϕ . First we have the

following expression for Fϕ(M,m):

Fϕ(M,m) =
(

150

169
− 12

13
m

)

M + 144

169
m − 16

5

√
2

39
(M − m)5/2 − 9024

10985
,

which has a unique critical point (M,m) = (Mϕ,mϕ). Hence it suffices to show that
Fϕ < 0 on the boundary of its domain.

On {M = m > 0},

Fϕ(M,M) = −12

13

(

M − 49

52

)2

− 81

43940
< 0.

On {m = 0},

Fϕ(M,0) = −16

5

√
2

39
M5/2 + 150

169
M − 9024

10985
,

which has a maximum at M = 15·51/3

26·22/3 with the value < −0.49.
When M → ∞ it is obvious that Fϕ(M,m) → −∞. Therefore the lemma is

proved. �

Lemma 3.7 We have

max
x∈S1

∣
∣f (x)

∣
∣ ≤

√
13

12
‖f ‖μ, f ∈ H 1(S1), (3.8)

where the μ-norm is defined in (3.2). Moreover,
√

13
12 is the best constant, and equality

holds in (3.8) if and only if f = cϕ(· − ξ + 1/2) for some c, ξ ∈ R, i.e., if and only if
f has the shape of a peakon.

Proof For x ∈ S1, by (3.2) and (3.3), we have

13

12

〈
ϕ(· − x + 1/2), f

〉
μ

= 13

12
μ

(
ϕ(· − x + 1/2)

)
μ(f )

+ 13

12

∫

S1
ϕ′(y − x + 1/2)f ′(y)dy

= 13

12

∫

S1

(
μ − ∂2

y

)
ϕ(y − x + 1/2)f (y)dy

=
∫

S1
δ(y − x)f (y)dy = f (x).
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Thus, since

H1[ϕ] = 1

2
‖ϕ‖2

μ = 6

13
,

we get

f (x) = 13

12

〈
ϕ(· − x + 1/2), f

〉
μ

≤ 13

12
‖ϕ‖μ‖f ‖μ =

√
13

12
‖f ‖μ, (3.9)

with equality if and only if f and ϕ(· − x + 1/2) are proportional. Taking the maxi-
mum of (3.9) over S1 proves the lemma. �

Remark 3.8 Lemma 3.7 again indicates that, among all traveling waves of fixed
energy, the peakon has maximal height (see also Constantin and Strauss 2000;
Lenells 2004a).

The next lemma shows that the μ-norm is equivalent to the H 1(S1)-norm.

Lemma 3.9 Every u ∈ H 1(S1) satisfies

‖u‖2
μ ≤ ‖u‖2

H 1(S1)
≤ 3‖u‖2

μ. (3.10)

Proof The first inequality holds because (by Jensen’s inequality)

μ(u)2 ≤
∫

S1
u2 dx, u ∈ H 1(S1).

The second inequality holds because, by Lemma 3.7,

‖u‖2
H 1(S1)

≤ max
x∈S1

∣
∣u(x)

∣
∣2 +

∫

S1
u2

x dx ≤
(

13

12
+ 1

)

‖u‖2
μ. �

Remark 3.10 The previous two lemmas can also be proved directly using a Fourier
series argument. Indeed, for every f ∈ H 3(S1) and ε > 0, we have (cf. the proof of
Lemma 2 in Constantin 2000)

max
x∈S1

f 2(x) ≤ ε + 2

24

∫

S1
f 2

x dx + ε + 2

ε
μ(f )2. (3.11)

The inequality (see Lemma 2.6 in Lenells 2004a)

max
x∈S1

∣
∣f (x)

∣
∣2 ≤ cosh(1/2)

2 sinh(1/2)
‖f ‖2

H 1(S1)
, f ∈ H 1(S1), (3.12)

implies that the map f �→ maxx∈S1 f (x) is continuous from H 1(S1) to R. Thus,
since H 3 is dense in H 1, Eq. (3.11) also holds for f ∈ H 1(S1). It follows that, for
every u ∈ H 1(S1) and every ε > 0,

‖u‖2
μ ≤ ‖u‖2

H 1(S1)
≤ ε + 2

ε
μ2(u) + ε + 26

24

∫

S1
u2

x dx. (3.13)
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In particular, we have (taking ε = 1)

‖u‖2
μ ≤ ‖u‖2

H 1(S1)
≤ 3μ2(u) + 27

24

∫

S1
u2

x dx ≤ 3‖u‖2
μ, (3.14)

again showing the equivalence of the two norms.
On the other hand, letting ε = 24 in (3.11), we recover (3.8). However, the proof

we give in Lemma 3.7 provides a better idea concerning the best constant.

Lemma 3.11 (Lenells 2004a, Lemma 2.8) If u ∈ C([0, T );H 1(S1)), then

Mu(t) = max
x∈S1

u(x, t) and mu(t) = min
x∈S1

u(x, t)

are continuous functions of t ∈ [0, T ).

Lemma 3.12 Let u ∈ C([0, T );H 1(S1)) be a solution of (1.1). Given a small neigh-
borhood U of (Mϕ,mϕ) in R

2, there is a δ > 0 such that

(Mu(t),mu(t)) ∈ U for t ∈ [0, T ) if
∥
∥u(·,0) − ϕ

∥
∥

H 1(S1)
< δ. (3.15)

Proof Lemma 3.6 says that Fϕ(Mϕ,mϕ) = 0 and that Fϕ has a critical point with
negative definite Hessian at (Mϕ,mϕ). By continuity of Fϕ along with its Hessian,
there is a neighborhood V ⊂ D ⊂ R

2 around (Mϕ,mϕ), where D is the domain of Fu

given in Lemma 3.5, such that Fϕ is concave downward with curvature bounded away
from zero. This together with the boundary values of Fϕ indicates that Fϕ(M,m) ≤
−α < 0 on D\V for some positive constant α only depending on V .

Suppose w ∈ H 1(S1) is a small perturbation of ϕ such that Hi[w] = Hi[ϕ] + εi ,
i = 0,1,2. Then

Fw(M,m) = Fϕ(M,m) + M

[

ε1 − H0[ϕ]ε0 − 1

2
ε2

0 + 12

13
ε0

]

+ ε0

∫

S1
w2 dx + 12

13
mε0 − ε2.

Suppose ε1 < 6/13 so that H1[w] ≤ 2H1[ϕ]. Then, by Lemma 3.9,
∫

S1
w2 dx ≤ ‖w‖2

H 1 ≤ 3‖w‖2
μ = 6H1[w] ≤ 12H1[ϕ]. (3.16)

The point is that
∫
S1 w2 dx is bounded. Thus, Fw is a small perturbation of Fϕ . The

effect of the perturbation near the point (Mϕ,mϕ) can be made arbitrarily small by
choosing the εi ’s small, that is,

Fw(M,m) = Fϕ(M,m) + O(εi).

Therefore, choosing εi so small that |O(εi)| < α, we can conclude that the set where
Fw ≥ 0 will be contained in V .
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Now let U be given as in the statement of the lemma. Shrinking U if necessary, we
infer the existence of a δ′ > 0 (depending on U ) such that for u ∈ C([0, T );H 1(S1))

with
∣
∣Hi[u] − Hi[ϕ]∣∣ < δ′, i = 0,1,2, (3.17)

it holds that the set where Fu(t) ≥ 0 is contained in U for each t ∈ [0, T ). By
Lemma 3.5 and Lemma 3.11, Mu(t) and mu(t) are continuous functions of t ∈ [0, T )

and Fu(t)(Mu(t),mu(t)) ≥ 0 for t ∈ [0, T ). We conclude that for u satisfying (3.17),
we have

(Mu(t),mu(t)) ∈ U for t ∈ [0, T ) if (Mu(0),mu(0)) ∈ U .

However, the continuity of the conserved functionals Hi : H 1(S1) → R, i = 0,1,2,
shows that there is a δ > 0 such that (3.17) holds for all u with

∥
∥u(·,0) − ϕ

∥
∥

H 1(S1)
< δ.

Moreover, in view of the inequality (3.12), taking a smaller δ if necessary, we may
also assume that (Mu(0),mu(0)) ∈ U if ‖u(·,0) − ϕ‖H 1(S1) < δ. This proves the
lemma. �

Proof of Theorem 3.1 Let u ∈ C([0, T );H 1(S1)) be a solution of (1.1) and suppose
we are given an ε > 0. Pick a small neighborhood U of (Mϕ,mϕ) such that |M −
Mϕ | < 13ε2

144 if (M,m) ∈ U . Choose a δ > 0 as in Lemma 3.12 so that (3.15) holds.
Taking a smaller δ if necessary we may also assume that

∣
∣H1[u] − H1[ϕ]∣∣ <

ε2

12
if

∥
∥u(·,0) − ϕ

∥
∥

H 1(S1)
< δ.

Applying Lemma 3.9 and Lemma 3.3, we conclude that

∥
∥u(·, t) − ϕ

(· − ξ(t)
)∥∥2

H 1(S1)

≤ 3
∥
∥u(·, t) − ϕ

(· − ξ(t)
)∥∥2

μ

= 6
(
H1[u] − H1[ϕ]) + 72

13
(Mϕ − Mu(t)) < ε2, t ∈ [0, T ),

where ξ(t) ∈ R is any point where u(ξ(t)+1/2, t) = Mu(t). This completes the proof
of the theorem. �

Remark 3.13 Note that our proof of stability applies to any u ∈ C([0, T );H 1(S1))

such that Hi[u], i = 0,1,2, are independent of time. The fact that u satisfies (3.1) in
the distributional sense was actually never used.

4 Comments

Some classical solutions of (1.1) exist for all time, while others develop into break-
ing waves (Fu et al. 2010; Khesin et al. 2008; Lenells et al. 2010). If u0 ∈ H 3(S1),
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then there exists a maximal time T = T (u0) > 0 such that (1.1) has a unique so-
lution u ∈ C([0, T );H 3(S1)) ∩ C1([0, T );H 2(S1)) with H0,H1,H2 conserved. For
u0 ∈ Hr(S1) with r > 3/2, it is known (Lenells et al. 2010) that (1.1) has a unique
strong solution u ∈ C([0, T );Hr(S1)) for some T > 0, with H0,H1,H2 conserved.
However, the peakons do not belong to the space Hr(S1) for r > 3/2. Thus, to de-
scribe the peakons one has to study weak solutions of (1.1). The question of existence
and uniqueness of weak solutions to (1.1) is still open at this point. Therefore, close
to a peakon, there may exist profiles that develop into breaking waves and profiles
that lead to globally existing waves. Our stability theorem is applicable in both cases
up to breaking time.
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