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Abstract The mathematical theory of pattern formation in electrically coupled net-
works of excitable neurons forced by small noise is presented in this work. Using the
Freidlin–Wentzell large-deviation theory for randomly perturbed dynamical systems
and the elements of the algebraic graph theory, we identify and analyze the main
regimes in the network dynamics in terms of the key control parameters: excitabil-
ity, coupling strength, and network topology. The analysis reveals the geometry of
spontaneous dynamics in electrically coupled network. Specifically, we show that
the location of the minima of a certain continuous function on the surface of the
unit n-cube encodes the most likely activity patterns generated by the network. By
studying how the minima of this function evolve under the variation of the coupling
strength, we describe the principal transformations in the network dynamics. The
minimization problem is also used for the quantitative description of the main dy-
namical regimes and transitions between them. In particular, for the weak and strong
coupling regimes, we present asymptotic formulas for the network activity rate as
a function of the coupling strength and the degree of the network. The variational
analysis is complemented by the stability analysis of the synchronous state in the
strong coupling regime. The stability estimates reveal the contribution of the network
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connectivity and the properties of the cycle subspace associated with the graph of the
network to its synchronization properties. This work is motivated by the experimental
and modeling studies of the ensemble of neurons in the Locus Coeruleus, a nucleus
in the brainstem involved in the regulation of cognitive performance and behavior.

Keywords Pattern formation · Neuronal network · Excitable system · Noise ·
Network topology · Synchronization

Mathematics Subject Classification 34F05 · 34F10 · 92C20

1 Introduction

Direct electrical coupling through gap-junctions is a common way of communication
between neurons, as well as between cells of the heart, pancreas, and other physiolog-
ical systems (Connors and Long 2004). Electrical synapses are important for synchro-
nization of the network activity, wave propagation, and pattern formation in neuronal
networks. A prominent example of a gap-junctionally coupled network, whose dy-
namics is thought to be important for cognitive processing, is a group of neurons in
the Locus Coeruleus (LC), a nucleus in the brainstem (Aston-Jones and Cohen 2005;
Berridge and Waterhouse 2003; Sara 2009). Electrophysiological studies of the ani-
mals performing a visual discrimination test show that the rate and the pattern of ac-
tivity of the LC network correlate with the cognitive performance (Usher et al. 1999).
Specifically, the periods of the high spontaneous activity correspond to the periods
of poor performance, whereas the periods of low synchronized activity coincide with
good performance. Based on the physiological properties of the LC network, it was
proposed that the transitions between the periods of high and low network activity are
due to the variations in the strength of coupling between the LC neurons (Usher et
al. 1999). This hypothesis motivates the following dynamical problem: to study how
the dynamics of electrically coupled networks depends on the coupling strength. This
question is the focus of the present work.

The dynamics of an electrically coupled network depends on the properties of
the attractors of the local dynamical systems and the interactions between them.
Following Usher et al. (1999), we assume that the individual neurons in the LC
network are spontaneously active. Specifically, we model them with excitable dy-
namical systems forced by small noise. We show that, depending on the strength of
electrical coupling, there are three main regimes of the network dynamics: uncorre-
lated spontaneous firing (weak coupling), formation of clusters and waves (interme-
diate coupling), and synchrony (strong coupling). The qualitative features of these
regimes are independent from the details of the models of the individual neurons
and network topology. Using the center-manifold reduction (Chow and Hale 1982;
Guckenheimer and Holmes 1983) and the Freidlin–Wentzell large-deviation theory
(Freidlin and Wentzell 1998), we derive a variational problem, which provides a use-
ful geometric interpretation for various patterns of spontaneous activity. Specifically,
we show that the location of the minima of a certain continuous function on the sur-
face of the unit n-cube encodes the most likely activity patterns generated by the
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network. By studying the evolution of the minima of this function under the variation
of the control parameter (coupling strength), we identify the principal transformations
in the network dynamics. The minimization problem is also used for the quantitative
description of the main dynamical regimes and transitions between them. In partic-
ular, for the weak and strong coupling regimes, we present asymptotic formulas for
the activity rate as a function of the coupling strength and the degree of the network.
The variational analysis is complemented by the stability analysis of the synchronous
state in the strong coupling regime. In analyzing various aspects of the network dy-
namics, we pay special attention to the role of the structural properties of the network
in shaping its dynamics. We show that in weakly coupled networks, only very rough
structural properties of the underlying graph matter, whereas in the strong coupling
regime, the finer features, such as the algebraic connectivity and the properties of the
cycle subspace associated with the graph of the network, become important. There-
fore, this paper presents a comprehensive analysis of electrically coupled networks
of excitable cells in the presence of noise. It complements existing studies of related
deterministic networks of electrically coupled oscillators (see, e.g., Coombes 2008;
Gao and Holmes 2007; Lewis and Rinzel 2003; Medvedev and Kopell 2001;
Medvedev 2011a and references therein).

The outline of the paper is as follows. In Sect. 2, we formulate the biophysical
model of the LC network. Section 3 presents numerical experiments elucidating the
principal features of the network dynamics. In Sect. 4, we reformulate the problem in
terms of the bifurcation properties of the local dynamical systems and the properties
of the linear coupling operator. We then introduce the variational problem, whose
analysis explains the main dynamical regimes of the coupled system. In Sect. 5, we
analyze the stability of the synchronous dynamics in the strong coupling regime,
using fast–slow decomposition. The results of this work are summarized in Sect. 6.

2 The Model

2.1 The Single Cell Model

According to the dynamical mechanism underlying action potential generation,
conductance-based models of neurons are divided into Type I and Type II classes
(Rinzel and Ermentrout 1989). The former assumes that the model is near the
saddle-node bifurcation, while the latter is based on the Andronov–Hopf bifurca-
tion. Electrophysiological recordings of the LC neurons exhibit features that are
consistent with the Type I excitability. The existing biophysical models of LC neu-
rons use a Type I action potential generating mechanism (Alvarez et al. 2002;
Brown et al. 2004). In accord with these experimental and modeling studies, we use
a generic Type I conductance-based model to simulate the dynamics of the individual
LC neuron:

Cv̇ = −Iion(v,n) + σẇ, (2.1)

ṅ = n∞(v) − n

τ(v)
. (2.2)
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Fig. 1 (a) The phase plane for (2.1) and (2.2): nullclines plotted for the deterministic model (σ = 0) and
a trajectory of the randomly perturbed system (σ > 0). The trajectory spends most of the time in a small
neighborhood of the stable fixed point. Occasionally, it leaves the basin of attraction of the fixed point to
generate a spike. (b) The voltage timeseries, v(t), corresponding to the spontaneous dynamics shown in
plot (a)

Here, dynamical variables v(t) and n(t) are the membrane potential and the activation
of the potassium current, IK, respectively. C stands for the membrane capacitance.
The ionic currents Iion(v,n) are modeled using the Hodgkin–Huxley formalism (see
the Appendix for the definitions of the functions and parameter values used in (2.1)
and (2.2)). A small Gaussian white noise is added to the right hand side of (2.1) to
simulate random synaptic input and other possible fluctuations affecting the system’s
dynamics. Without noise (σ = 0), the system is in the excitable regime. For σ > 0, it
exhibits spontaneous spiking. The frequency of the spontaneous firing depends on the
proximity of the deterministic system to the saddle-node bifurcation and on the noise
intensity. A typical trajectory of (2.1) and (2.2) stays in a small neighborhood of the
stable equilibrium most of the time (Fig. 1a). Occasionally, it leaves the vicinity of
the fixed point to make a large excursion in the phase plane and then returns to the
neighborhood of the steady state (Fig. 1a). These versions of the dynamics generate
a train of random spikes in the voltage time series (Fig. 1b).

In neuroscience, the (average) firing rate provides a convenient measure of activity
of neural cells and neuronal populations. It is important to know how the firing rate
depends on the parameters of the model. In this paper, we study the factors deter-
mining the rate of firing in electrically coupled network of neurons. However, before
setting out to study the network dynamics, it is instructive to discuss the behavior of
the single neuron model first. To this end, we use the center-manifold reduction to
approximate (2.1) and (2.2) by a 1D system:

ż = −U ′(z) + σ̃ ẇt , U(z) = μz − 1

3
z3 + 2

3
μ3/2, (2.3)

where z(t) is the rescaled projection of (v(t), n(t)) onto a 1D slow manifold, μ > 0
is the distance to the saddle-node bifurcation, and σ̃ > 0 is the noise intensity after
rescaling. We postpone the details of the center-manifold reduction until we analyze
a more general network model in Sect. 4.1.

The time between two successive spikes in voltage time series corresponds to the
first time the trajectory of (2.3) with initial condition z(0) = z0 <

√
μ overcomes
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Fig. 2 The numerical
approximation of the density of
the time between the successive
spikes in the voltage timeseries
v(t), obtained by integration
(2.1) and (2.2). The interspike
intervals are distributed
approximately exponentially

potential barrier U(
√

μ) − U(−√
μ). The large-deviation estimates (cf. Freidlin and

Wentzell 1998) yield the logarithmic asymptotics of the first crossing time τ :

lim
σ̃→0

σ̃ 2 ln Ez0τ = 2U(
√

μ) = 4μ3/2

3
⇒ Ez0τ � exp

{
4μ3/2

3σ̃ 2

}
, (2.4)

where Ez0 stands for the expected value with respect to the probability generated by
the random process z(t) with initial condition z(0) = z0. Throughout this paper, we
use � to denote logarithmic asymptotics. It is also known that the first exit time τ is
distributed exponentially as shown in Fig. 2 (cf. Day 1983).

Equation (2.4) implies that the statistics of spontaneous spiking of a single cell is
determined by the distance of the neuronal model (2.1) and (2.2) to the saddle-node
bifurcation and the intensity of noise. Below we show that, in addition to these two
parameters, the strength and topology of coupling are important factors determining
the firing rate of the coupled population.

2.2 The Electrically Coupled Network

The network model includes n cells, whose intrinsic dynamics is defined by (2.1) and
(2.2), coupled by gap-junctions. The gap-junctional current that Cell i receives from
the other cells in the network is given by

I (i)
c = g

n∑
i=1

aij

(
v(j) − v(i)

)
, (2.5)

where g ≥ 0 is the gap-junction conductance and

aij =
{

1, Cell i and Cell j are connected,

0, otherwise,
aii = 0, (i, j) ∈ [n]2.
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Adjacency matrix A = (aij ) ∈ R
n×n defines the network connectivity. By adding the

coupling current to the right hand side of the voltage equation (2.1) and combining
the equations for all neurons in the network, we arrive at the following model:

Cv̇(i) = −Iion
(
v(i), n(i)

)+ g

n∑
i=1

aij

(
v(j) − v(i)

)+ σẇ(i), (2.6)

ṅ(i) = n∞(v(i)) − n(i)

τ (v(i))
, (2.7)

where w(i) are n independent copies of the standard Brownian motion.
The network topology is an important parameter of the model (2.6) and (2.7).

The following terminology and constructions from the algebraic graph theory (Biggs
1993) will be useful for studying the role of the network structure in shaping its dy-
namics. Let G = (V (G),E(G)) denote the graph of interactions between the cells
in the network. Here, V (G) = {v1, v2, . . . , vn} and E(G) = {e1, e2, . . . , em} denote
the sets of vertices (i.e., cells) and edges (i.e., the pairs of connected cells), respec-
tively. Throughout this paper, we assume that G is a connected graph. For each edge
ej = (vj1, vj2) ∈ V (G) × V (G), we declare one of the vertices vj1, vj2 to be the pos-
itive end (head) of ej , and the other to be the negative end (tail). Thus, we assign
an orientation to each edge from its tail to its head. The coboundary matrix of G is
defined as follows (cf. Biggs 1993):

H = (hij ) ∈ R
m×n, hij =

⎧⎨
⎩

1, vj is a positive end of ei,

−1, vj is a negative end of ei,

0, otherwise.
(2.8)

Let G̃ = (V (G̃),E(G̃)) ⊂ G be a spanning tree of G, i.e., a connected subgraph of
G such that |V (G̃)| = n, and there are no cycles in G̃ (Biggs 1993). Without loss of
generality, we assume that

E(G̃) = {e1, e2, . . . , en−1}. (2.9)

Denote the coboundary matrix of G̃ by H̃ .
Matrix

L = H TH (2.10)

is called a graph Laplacian of G. The Laplacian is independent of the choice of ori-
entation of edges that was used in the definition of H (Biggs 1993). Alternatively, the
Laplacian can be defined as

L = D − A, (2.11)

where D = diag{deg(v1),deg(v2), . . . ,deg(vn)} is the degree map and A is the adja-
cency matrix of G.

Let

λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L)
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Fig. 3 Examples of coupling schemes: (a) nearest neighbor (cf. Example 2.1); (b) 2-nearest neighbor (cf.
Example 2.2); (c) all-to-all (cf. Example 2.3)

denote the eigenvalues of L arranged in the increasing order counting the multi-
plicity. The spectrum of the graph Laplacian captures many structural properties
of the network (cf. Biggs 1993; Bollobas 1998; Chung 1997). In particular, the
first eigenvalue of L, λ1(L) = 0, is simple if and only if the graph is connected
(Fiedler 1973). The second eigenvalue a = λ2(L) is called the algebraic connec-
tivity of G, because it yields a lower bound for the edge and the vertex connec-
tivity of G (Fiedler 1973). The algebraic connectivity is important for a variety
of combinatorial, probabilistic, and dynamical aspects of the network analysis. In
particular, it is used in the studies of the graph expansion (Hoory et al. 2006), ran-
dom walks (Bollobas 1998), and synchronization of dynamical networks (Jost 2007;
Medvedev 2011b).

Next, we introduce several examples of the network connectivity including
nearest-neighbor arrays of varying degree and a pair of degree 4 symmetric and ran-
dom graphs. These examples will be used to illustrate the role of the network topology
in pattern formation.

Example 2.1 The nearest-neighbor coupling scheme is an example of the local con-
nectivity (Fig. 3a). For simplicity, we consider a 1D array. For higher dimensional
lattices, the nearest-neighbor coupling is defined similarly. In this configuration, each
cell in the interior of the array is coupled to two nearest neighbors. This leads to the
following expression for the coupling current:

I
(j)
c = g

(
v(j+1) − v(j)

)+ g
(
v(j−1) − v(j)

)
, j = 2,3, . . . , n − 1.

The coupling currents for the cells on the boundary are given by

I (1)
c = g

(
v(2) − v(1)

)
and I (n)

c = g
(
v(n−1) − v(n)

)
.

The corresponding graph Laplacian is

L =

⎛
⎜⎜⎝

1 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . −1 1

⎞
⎟⎟⎠ . (2.12)

Example 2.2 The k-nearest-neighbor coupling scheme is a natural generalization of
the previous example. Suppose each cell is coupled to k of its nearest neighbors from
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Fig. 4 Regular versus random connectivity. Both graphs in (a) and (b) have degree 4. The graph in (a)
is formed using regular coupling scheme, whereas edges of the graph in (b) are generated using a random
algorithm (cf. Example 2.4)

each side whenever they exist or as many as possible otherwise:

I
(j)
c =

min{k,n−j}∑
i=1

g
(
v(j+i) − v(j)

)+
min{k,j}∑

i=1

g
(
v(j−i) − v(j)

)
, j = 2,3, . . . , n − 1,

(2.13)
where we use a customary convention that

∑b
j=a · · · = 0 if b < a. The coupling

matrix can be easily derived from (2.13).

Example 2.3 The all-to-all coupling features global connectivity (Fig. 3c):

I
(j)
c = g

n∑
i=1

(
v(i) − v(j)

)
, j = 1,2,3, . . . , n. (2.14)

The Laplacian in this case has the following form:

L =

⎛
⎜⎜⎝

n − 1 −1 −1 . . . −1 −1
−1 n − 1 −1 . . . −1 −1
. . . . . . . . . . . . . . . . . .

−1 −1 −1 . . . −1 n − 1

⎞
⎟⎟⎠ . (2.15)

The graphs in the previous examples have different degrees: ranging from 2 in
Example 2.1 to n − 1 in Example 2.3. In addition to the degree of the graph, the
pattern of connectivity itself is important for the network dynamics. This motivates
our next example.

Example 2.4 Consider a pair of degree-4 graphs shown schematically in Fig. 4. The
graph in Fig. 4a has symmetric connections. The edges of the graph in Fig. 4b were
selected randomly. Both graphs have the same number of nodes and equal degrees.
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Graphs with random connections like the one in the last example represent ex-
panders, a class of graphs used in many important applications in mathematics, com-
puter science and other branches of science and technology (cf. Hoory et al. 2006).
In Sect. 5 we show that dynamical networks on expanders have very good synchro-
nization properties (see also Medvedev 2011b).

Example 2.5 Let {Gn} be a family of graphs on n vertices, with the following prop-
erty:

λ2(Gn) ≥ α > 0, n ∈ N. (2.16)

Such graphs are called (spectral) expanders (Hoory et al. 2006; Sarnak 2004). There
are known explicit constructions of expanders, including the celebrated Ramanujan
graphs (Margulis 1988; Lubotzky et al. 1988). In addition, families of random graphs
have good expansion properties. In particular, it is known that

Prob
{
λ2(Gn) ≥ d − 2

√
d − 1 − ε

}= 1 − on(1) ∀ε > 0, (2.17)

where Gn stands for the family of random graphs of degree d ≥ 3 and n 
 1 (Fried-
man 2008).

3 Numerical Experiments

The four parameters controlling the dynamics of the biophysical model (2.6) and
(2.7) are the excitability, the noise intensity, the coupling strength, and the network
topology. Assuming that the system is at a fixed distance from the bifurcation, we
study the dynamics of the coupled system for sufficiently small noise intensity σ .
Therefore, the two remaining parameters are the coupling strength and the network
topology. We focus on the impact of the coupling strength on the spontaneous dy-
namics first. At the end of this section, we discuss the role of the network topology.
The numerical experiments of this section show that activity patterns generated by
the network are effectively controlled by the variations of the coupling strength.

3.1 Three Phases of Spontaneous Activity

To measure the activity of the network for different values of the control parameters,
we will use the average firing rate—the number of spikes generated by the network
per one neuron and per unit time. Figure 5a shows that the activity rate varies signif-
icantly with the coupling strength. The three intervals of monotonicity of the activ-
ity rate plot reflect three main stages in the network dynamics en route to complete
synchrony: weakly correlated spontaneous spiking, formation of clusters and wave
propagation, and synchronization. We discuss these regimes in more detail below.

Weakly Correlated Spontaneous Spiking For g > 0 sufficiently small, the activity
retains the features of spontaneous spiking in the uncoupled population. Figure 6b
shows no significant correlations between the activity of distinct cells in the weakly
coupled network. The distributions of the interspike intervals are exponential in both
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Fig. 5 The fundamental relation of the rate of spontaneous activity and the coupling strength. The
graphs in (a) are plotted for three coupling configurations: the nearest-neighbor (dashed line), the
2-nearest-neighbor coupling (solid line) and all-to-all coupling (dash-dotted line) (see Examples 2.1–2.3).
The graphs in (b) are plotted for the symmetric and random degree-4 graphs in solid and dashed lines,
respectively (see Example 2.4). (c) The firing rate plot for the model, in which the coupling is turned off
for values of the membrane potential above the firing threshold. The symmetric (solid line) and random
(dashed line) degree-4 graphs are used for the two plots in (c)

Fig. 6 Spontaneous activity in uncoupled (a) and weakly coupled (b) networks. The corresponding dis-
tributions for the time intervals between successive spikes are exponential (c, d) with a slightly heavier tail
in the latter case

cases (see Figs. 6c, d). There is an important change, however: the rate of firing goes
down for increasing values of g ≥ 0 for small g. This is clearly seen from the graphs
in Fig. 5. The decreasing firing rate for very weak coupling can also be noted from
the interspike interval distributions in Figs. 6c, d: the density in Fig. 6d has a heavier
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Fig. 7 Coherent structures in the weakly coupled network: (a) clusters and short waves, (b, c) robust
waves, (d) nearly synchronous discharge. Networks shown in Figs. 6–8 are coupled through the near-
est-neighbor scheme

tail. Thus, weak electrical coupling has a pronounced inhibitory (shunting) effect on
the network dynamics: it drains the current from a neuron developing a depolarizing
potential and redistributes it among the cells connected to it. This effect is stronger
for networks with a greater number of connections. The three plots shown in Fig. 5a
correspond to nearest-neighbor coupling, 2-nearest neighbor coupling, and all-to-all
coupling. Note that the slope at zero is steeper for networks with greater degree.

Coherent Structures For increasing values of g > 0 the system develops clusters,
short waves, and robust waves (see Fig. 7). The appearance of these spatio-temporal
patterns starts in the middle of the first decreasing portion of the firing rate plot in
Fig. 5a and continues through the next (increasing) interval of monotonicity. While
patterns in Fig. 7 feature progressively increasing role of coherence in the system’s
dynamics, the dynamical mechanisms underlying cluster formation and wave propa-
gation are distinct. Factors A and B below identify two dynamical principles under-
lying pattern formation in this regime.

Factor A At the moment when one neuron fires due to large deviations from the rest
state, neurons connected to it are more likely to be closer to the threshold and,
therefore, are more likely to fire within a short interval of time.



700 J Nonlinear Sci (2012) 22:689–725

Fig. 8 Clusters generated by the modified model, in which the electrical current from a given cell is turned
off once the cell has crossed the threshold (see text for details). These experiments show that Factor A vs.
B is responsible for forming clusters in the weak coupling regime

Factor B When a neuron fires, it supplies neurons connected to it with a depolarizing
current. If the coupling is sufficiently strong, the gap-junctional current triggers
action potentials in these cells and the activity propagates through the network.

Factor A follows from the variational interpretation of the spontaneous dynamics
in weakly coupled networks, which we develop in Sect. 4. It is responsible for the for-
mation of clusters and short waves, like those shown in Fig. 7a. To show numerically
that Factor A (vs. Factor B) is responsible for the formation of clusters, we modified
the model (2.6) and (2.7) in the following way. Once a neuron in the network has
crossed the threshold, we turn off the current that it sends to the other neurons in the
network until it gets back close to the stable fixed point. We will refer to this model
as the modified model (2.6) and (2.7). Numerical results for the modified model in
Figs. 8a, b, show that clusters are formed as the result of the subthreshold dynam-
ics, i.e., are due to Factor A. Factor B becomes dominant for stronger coupling. It
results in robust waves with constant speed of propagation. The mechanism of the
wave propagation is essentially deterministic and is well known from the studies of
waves in excitable systems (cf. Keener 1987). However, in the presence of noise, the
excitation and termination of waves become random (see Figs. 7b, c).

Synchrony The third interval of monotonicity in the graph of the firing rate vs. the
coupling strength is decreasing (see Fig. 5a). It features synchronization, the final dy-
namical state of the network. In this regime, once one cell crosses the firing threshold
the entire network fires in unison. The distinctive feature of this regime is a rapid de-
crease of the firing rate for increasing g (see Fig. 5a). The slowdown of firing in the
strong coupling regime was studied in Medvedev (2009) (see also Medvedev 2010,
2011b; Medvedev and Zhuravytska 2011). When the coupling is strong the effect of
noise on the network dynamics is diminished by the dissipativity of the coupling oper-
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Fig. 9 Spontaneous activity patterns generated by regularly (a) and randomly (b) connected degree-4 net-
works (cf. Example 2.4) for the same value of the coupling strength, g = 0.006. The randomly connected
network is already synchronized (b), while the regular network is en route to synchrony (a)

ator. The reduced effect of noise results in the decrease of the firing rate. In Sect. 5.4,
we present analytical estimates characterizing denoising by electrical coupling for
the present model.

3.2 The Role of the Network Topology

All connected networks of excitable elements (regardless of the connectivity pattern)
undergo the three dynamical regimes, which we identified above for weak, inter-
mediate, and strong coupling. The topology becomes important for quantitative de-
scription of the activity patterns. In particular, the topology affects the boundaries
between different phases. We first discuss the role of topology for the onset of syn-
chronization. The transition to synchrony corresponds to the beginning of the third
phase and can be approximately identified with the location of the point of max-
imum on the firing rate plot (see Figs. 5a, b). The comparison of the plots for 1-
and 2-nearest-neighbor coupling schemes shows that the onset of synchrony takes
place at a smaller value of g for the latter network. This illustrates a general trend:
networks with a greater number of connections tend to have better synchronization
properties. However, the degree is not the only structural property of the graph that
affects synchronization. The connectivity pattern is important as well. Figure 9 shows
that a randomly connected degree-4 network synchronizes faster than its symmetric
counterpart (cf. Example 2.4). The analysis in Sect. 4.4 shows that the point of tran-
sition to synchrony can be estimated using the algebraic connectivity of the graph a.
Specifically, the network is synchronized, if γ > a−1, where γ stands for the coupling
strength in the rescaled nondimensional model. The algebraic connectivity is easy to
compute numerically. For many graphs with symmetries including those in Exam-
ples 2.1–2.3, the algebraic connectivity is known analytically. On the other hand,
there are effective asymptotic estimates of the algebraic connectivity available for
certain classes of graphs that are important in applications, such as random graphs
(Friedman 2008) and expanders (Hoory et al. 2006). The algebraic connectivities of
the graphs in Examples 2.1–2.2 a = O(n−2) tend to zero as n → ∞. Therefore, for
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such networks one needs to increase the strength of coupling significantly to main-
tain synchrony in networks growing in size. This situation is typical for symmetric
or almost symmetric graphs. In contrast, it is known that for the random graph from
Example 2.4 the algebraic connectivity is bounded away from zero (with high proba-
bility) as n → ∞ (Friedman 2008; Hoory et al. 2006). Therefore, one can guarantee
synchronization in dynamical networks on such graphs using finite coupling strength
when the size of the network grows without bound. This counter-intuitive property is
intrinsic to networks on expanders, sparse well connected graphs (Hoory et al. 2006;
Sarnak 2004). For a more detailed discussion of the role of network topology in syn-
chronization, we refer the interested reader to Sect. 5 in Medvedev (2011b).

The discussion in the previous paragraph suggests that connectivity is important
in the strong coupling regime. It is interesting that to a large extent the dynamics
in the weak coupling regime remains unaffected by the connectivity. For instance,
the firing rate plots for the random and symmetric degree-4 networks (Example 2.5)
shown in Fig. 5b coincide over an interval in g near 0. Furthermore, the plots for the
same pair of networks based on the modified model (2.6) and (2.7) are almost iden-
tical, regardless the disparate connectivity patterns underlying these networks. The
variational analysis in Sect. 4.3 shows that, in the weak coupling regime, to leading
order the firing rate of the network depends only on the number of connections be-
tween cells. The role of the connectivity in shaping network dynamics increases in
the strong coupling regime.

4 The Variational Analysis of Spontaneous Dynamics

In this section, we analyze dynamical regimes of the coupled system (2.6) and (2.7)
under the variation of the coupling strength. In Sect. 4.1, we derive an approximate
model using the center-manifold reduction. In Sect. 4.2, we relate the activity pat-
terns of the coupled system to the minima of a certain continuous function on the
surface of an n-cube. The analysis of the minimization problem for weak, strong, and
intermediate coupling is used to characterize the dynamics of the coupled system in
these regimes.

4.1 The Center-Manifold Reduction

In preparation for the analysis of the coupled system (2.6) and (2.7), we approximate
it by a simpler system using the center-manifold reduction (Chow and Hale 1982;
Guckenheimer and Holmes 1983). To this end, we first review the bifurcation struc-
ture of the model. Denote the equations governing the deterministic dynamics of a
single neuron by

ẋ = f(x,μ), (4.1)

where x ∈ R
d and f : R

d ×R
1 → R

d is a smooth function and μ is a small parameter,
which controls the distance of (4.1) from the saddle-node bifurcation.

Assumption 4.1 Suppose that at μ = 0, the unperturbed problem (4.1) has a non-
hyperbolic equilibrium at the origin such that Df(0,0) has a single zero eigenvalue
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Fig. 10 Local system (4.1) is
near the saddle-node on an
invariant circle bifurcation

and the rest of the spectrum lies to the left of the imaginary axis. Suppose further
that at μ = 0 there is a homoclinic orbit to O entering the origin along the 1D center
manifold.

Then under appropriate nondegeneracy and transversality conditions on the local
saddle-node bifurcation at μ = 0, for μ near zero the homoclinic orbit is transformed
into either a unique asymptotically stable periodic orbit or to a closed invariant curve
Cμ having two equilibria: a node and a saddle (Chow and Hale 1982) (Fig. 10).
Without loss of generality, we assume that the latter case is realized for small positive
μ, and the periodic orbit exists for negative μ. Let μ > 0 be a sufficiently small fixed
number, i.e., (4.1) is in the excitable regime (Fig. 10). For simplicity, we assume that
the stable node near the origin is the only attractor of (4.1).

We are now in a position to formulate our assumptions on the coupled system.
Consider n local systems (4.1) that are placed at the nodes of the connected graph
G = (V (G),E(G)), |V (G)| = n, and coupled electrically:

Ẋ = F(X,μ) − g(L ⊗ J )X + σ(In ⊗ P)Ẇ , (4.2)

where X = (x(1), x(2), . . . , x(n))T ∈ R
d × · · · × R

d = R
nd , F(X,μ) = (f(x(1),μ),

f(x(2),μ), . . . , f(x(n),μ))T, In is an n×n identity matrix, P ∈ R
d×d , and L ∈ R

n×n is
the Laplacian of G. The matrix J ∈ R

d×d defines the linear combination of the local
variables engaged in coupling. In the neuronal network model above, J = diag(1,0).
Parameters g and σ control the coupling strength and the noise intensity, respec-
tively. Ẇ is a Gaussian white noise process in R

nd . The local systems are taken to
be identical for simplicity. The analysis can be extended to cover nonhomogeneous
networks.

We next turn to the center-manifold reduction of (4.2). Consider (4.2)0 (the zero
subscript refers to σ = 0) for μ = g = 0. By our assumptions on the local system
(4.1), Df(0,0) has a 1D kernel. Denote

e ∈ kerDf(0,0)/{0} and p ∈ ker
(
Df(0,0)

)T
such that pTe = 1. (4.3)

By the center-manifold theorem, there is a neighborhood of the origin in the phase
space of (4.2), B , and δ > 0 such that for |μ| < δ and |g| < δ, in B , there exists an
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attracting locally invariant n-dimensional slow manifold Mμ,g . The trajectories that
remain in B for sufficiently long time can be approximated by those lying in Mμ,g .
Thus, the dynamics of (4.2)0 can be reduced to Mμ,g , whose dimension is d times
smaller than that of the phase space of (4.2)0. The center-manifold reduction is stan-
dard. Its justification relies on the Lyapunov–Schmidt method and Taylor expansions
(cf. Chow and Hale 1982). Formally, the reduced system is obtained by projecting
(4.2)0 onto the center subspace of (4.2)0 for μ = g = 0 (see Kuznetsov 1998):

ẏ = a1y
2 − a2μ − a3gLy + O

(|y|3,μ2, g2), (4.4)

where y = (y1, y2, . . . , yn) ∈ R
n, y2 := (y2

1 , y2
2 , . . . , y2

n); provided that the following
nondegeneracy conditions hold:

a1 = 1

2

∂2

∂u2
pTf(ue,0)

∣∣∣∣
u=0

�= 0, (4.5)

a2 = − ∂

∂μ
pTf(0,μ)

∣∣∣∣
μ=0

�= 0, (4.6)

a3 = pTJe �= 0. (4.7)

Conditions (4.5) and (4.6) are the nondegeneracy and transversality conditions of the
saddle-node bifurcation in the local system (4.1). Condition (4.7) guarantees that the
projection of the coupling onto the center subspace is not trivial. All conditions are
open. Without loss of generality, assume that nonzero coefficients a1,2,3 are positive.

Next, we include the random perturbation in the reduced model. Note that near the
saddle-node bifurcation (0 < μ � 1), the vector field of (4.2)0 is much stronger in
the directions transverse to Mμ,g than in the tangential directions. The results of the
geometric theory of randomly perturbed fast–slow systems imply that the trajectories
of (4.2) with small positive σ that start close to the node of (4.2)0 remain in a small
neighborhood of Mμ,g on finite intervals of time with overwhelming probability
(see Berglund and Gentz 2006 for specific estimates). To obtain the leading order
approximation of the stochastic system (4.2) near the slow manifold, we project the
random perturbation onto the center subspace of (4.2)0 for μ = g = 0 and add the
resultant term to the reduced equation (4.4):

ẏ = a1y
2 − a2μ − a3gLy + σBẆ + · · · , B = In ⊗ (

pTP
) ∈ R

n×nd . (4.8)

We replace BẆ by identically distributed a4ẇ, where ẇ is a white noise process in
R

n and a4 = |P Tp|. Here, | · | stands for the Euclidean norm of P Tp ∈ R
d . After

rescaling the resultant equation and ignoring the higher order terms, we arrive at the
following reduced model:

ż = z2 − 1n − γLz + σẇ, (4.9)

where w stands for a standard Brownian motion in R
n and 1n = (1,1, . . . ,1) ∈ R

n.
Here, with a slight abuse of notation, we continue to use σ to denote the small pa-
rameter in the rescaled system. In the remainder of this paper, we analyze the reduced
model (4.9).
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4.2 The Exit Problem

In this subsection, the problem of identifying most likely dynamical patterns gen-
erated by (4.2) is reduced to a minimization problem for a smooth function on the
surface of the unit cube.

Consider the initial value problem for (4.9)

ż = f(z) − γLz + σẇ, L = H TH, z(0) = z0 ∈ D ⊂ R
n, (4.10)

where

f(z) = (
f (z1), f (z2), . . . , f (zn)

)
, f (ξ) = ξ2 − 1, (4.11)

and

D = {
z = (z1, z2, . . . , zn) : −2 − b < zi < 1, i ∈ [n] := {1,2, . . . , n}}, (4.12)

where auxiliary parameter b > 0 will be specified later. Let

∂+D = {
z = (z1, z2, . . . , zn) : z ∈ D̄ &

(∃i ∈ [n] zi = 1
)}

, (4.13)

denote a subset of the boundary of D, ∂D. If z(τ ) ∈ ∂+D, then at least one of the
neurons in the network is at the firing threshold. It will be shown below that the
trajectories of (4.10) exit from D through ∂+D with probability 1 as σ → 0, provided
b > 0 is sufficiently large.1 Therefore, the statistics of the first exit time

τ = inf
{
t > 0 : z(t) ∈ ∂D

}
(4.14)

and the distribution of the location of the points of exit z(τ ) ∈ ∂+D characterize the
statistics of the interspike intervals and the most probable firing patterns of (2.1) and
(2.2), respectively. The Freidlin–Wentzell theory of large deviations (Freidlin and
Wentzell 1998) yields the asymptotics of τ and z(τ ) for small σ > 0.

To apply the large-deviation estimates to the problem at hand, we rewrite (4.10) as
a randomly perturbed gradient system

ż = − ∂

∂z
Uγ (z) + σẇt , (4.15)

where

Uγ (z) = γ

2
〈Hz,Hz〉 + Φ(z), Φ(z) =

n∑
i=1

F(zi), F (ξ) = 2

3
+ ξ − 1

3
ξ3, (4.16)

where 〈·, ·〉 stands for the inner product in R
n−1. The additive constant 2/3 in the

definition of the potential function F(ξ) is used to normalize the value of the potential
at the local minimum F(−1) = 0.

The following theorem summarizes the implications of the large-deviation theory
for (4.15).

1Positive parameter b in the definition of D (cf. (4.12)) is used to exclude the possibility of exit from D

through ∂D \ ∂+D.
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Theorem 4.2 Let z̄(1), z̄(2), . . . , z̄(k), k ∈ N, denote the points of minima of Uγ (z)

on ∂D

Uγ

(
z̄(i)

)= Ū := min
z∈∂D

Uγ (z), i = 1,2, . . . , k,

and Z̄ =⋃k
i=1{z̄(i)}. Then for any z0 ∈ D and δ > 0,

(A) lim
σ→0

Pz0

{
ρ
(
z(τ ), Z̄

)
< δ

}= 1, (4.17)

(B) lim
σ→0

σ 2 ln Ez0τ = Ū , (4.18)

(C) lim
σ→0

Pz0

{
exp

{
σ−2(Ū − h)

}
< τ < exp

{
σ−2(Ū + h)

}}= 1,

∀h > 0, (4.19)

where ρ(·, ·) stands for the distance in R
n.

The statements (A)–(C) can be shown by adopting the proofs of Theorems 2.1, 3.1,
and 4.1 of Chap. 4 of Freidlin and Wentzell (1998) to the case of the action functional
with multiple minima.

Theorem 4.2 reduces the exit problem for (4.10) to the minimization problem

Uγ (z) → min, z ∈ ∂D. (4.20)

In the remainder of this section, we study (4.20) for the weak, strong, and intermedi-
ate coupling strength.

4.3 The Weak Coupling Regime

In this subsection, we study the minima of Uγ (z) on ∂D for small |γ |. First, we
locate the points of minima of the Uγ (z) for γ = 0 (cf. Lemma 4.3). Then, using the
Implicit Function Theorem, we continue them for small |γ | (cf. Theorem 4.4).

Lemma 4.3 Let b > 0 in the definition of D (4.12) be fixed. The minimum of U0(z)

on ∂+D is achieved at n points

ξ i = (
ξ i

1, ξ
i
2, . . . , ξ

i
n

)
, ξ i

j =
{

1, j = i,

−1, j �= i,
j ∈ [n]. (4.21)

The minimal value of U0(z) on ∂D is

Ū := min
z∈∂D

U0(z) = 4

3
. (4.22)

Proof Denote

∂+
i D := ∂D ∩ {z = (z1, z2, . . . , zn) ∈ R

n : zi = 1
}
,

∂−
i D := ∂D ∩ {z = (z1, z2, . . . , zn) ∈ R

n : zi = −2 − b
}
,

and ∂iD = ∂−
i D ∪ ∂−

i D, i ∈ [n].



J Nonlinear Sci (2012) 22:689–725 707

Consider the restriction of U0(z) on ∂+
1 D

Ũ0(y) := U0
(
(1, y)

)= 4

3
+

n−1∑
i=1

F(yi), (4.23)

where y = (y1, y2, . . . , yn−1). The gradient of Ũ0 is equal to

∂

∂y
Ũ0(y) = f(y) := (

f (y1), f (y2), . . . , f (yn−1)
)T

.

The definition of f (4.11) implies that U0 restricted to ∂+
1 D has a unique critical point

at z = (1,−1n−1) and U0((1,−1n−1)) = 4/3. On the other hand, on the boundary of
∂+

1 D, ∂∂+
1 D, the minimum of U0(z) satisfies

min
z∈∂∂+

1 D

U(z) >
4

3
,

for any b > 0 in (4.12).
Likewise, as follows from the definitions of F (4.16) and D (4.12), for z ∈ ∂−

1 D,
U(z) > 4/3, for any choice of b > 0 in (4.12). Thus, z = (1,−1n−1) minimizes U0

over ∂1D. The lemma is proved by repeating the above argument for the remaining
faces ∂iD, i ∈ [n] \ {1}. �

Theorem 4.4 Suppose b > 0 in (4.12) is sufficiently large. There exists γ0 > 0 such
that for |γ | ≤ γ0, on each face ∂+

i D, i ∈ [n], Uγ (z) achieves minimum

z = φi(γ ),

where φi : [−γ0, γ0] → ∂+
i D, i ∈ [n], is a smooth function such that

φi(0) = −1n−1,
d

dγ
φi(γ )

∣∣∣∣
γ=0

= −li , (4.24)

and li ∈ R
n−1 is the ith column of the graph Laplacian L after deleting the ith entry.

The equations in (4.24) are written using the following local coordinates for ∂+
i D

(y1, y2, . . . , yn−1) �→ (y1, y2, . . . , yi−1,1, yi, . . . , yn−2, yn−1) ∈ ∂+
i D ⊂ R

n.

Moreover, the minimal value of Uγ on ∂+
i D is given by

ui
γ := min

z∈∂iD
Uγ = 4

3
+ γ deg(vi) + O

(
γ 2). (4.25)

Consequently,

uγ := min
z∈∂D

Uγ = 4

3
+ γ min

k∈[n] deg(vk) + O
(
γ 2). (4.26)
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Proof Let Ũγ (y) := Uγ ((1, y)), y ∈ R
n−1 denote the restriction of Uγ on ∂+

1 D:

Ũγ (y) = γ

2

〈
Hz(y),Hz(y)

〉+
n−1∑
i=1

F(yi) + 4

3
, (4.27)

where y = (y1, y2, . . . , yn−1), z(y) := (1, y1, y2, . . . , yn−1).
Next, we compute the gradient of Ũγ :

∂

∂y
Ũγ (y) = γ

2

∂

∂y

〈
Hz(y),Hz(y)

〉− f̃(y), (4.28)

where f̃(y) = (f (y1), f (y2), . . . , f (yn−1)). Further,

∂

∂y

〈
Hz(y),Hz(y)

〉 = 2

⎛
⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1

⎞
⎟⎟⎠L

⎛
⎜⎜⎜⎜⎝

1
y1
y2
. . .

yn−1

⎞
⎟⎟⎟⎟⎠

= 2
(
L1y + l1), (4.29)

where Li , i ∈ [n], stands for the matrix obtained from L by deleting the ith row and
ith column. By plugging (4.29) in (4.28), we have

∂

∂y
Ũγ (y) = γ

(
L1y + l1)− f̃(y). (4.30)

The equation for the critical points has the following form:

R(γ, y) := γ
(
L1y + l1)− f̃(y) = 0. (4.31)

Note that

R(0,−1n−1) = 0,
∂

∂γ
R(γ, y)

∣∣∣∣
γ=0,y=−1n−1

= −L11n−1 + l1 = 2l1 �= 0.

(4.32)

Above we used the relation

−L11n−1 = l1, (4.33)

which follows from the fact that the rows of L sum to zero.2

2Note that li �= 0, i ∈ [n], as long as vi is not an isolated node of G. In particular, if G is connected then

li �= 0 ∀i ∈ [n].
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By the Implicit Function Theorem, for small |γ |, the unique solution of (4.31) is
given by the smooth function φ1 : [−γ0, γ0] → R

n−1 that satisfies

φ1(0) = −1n−1,

d

dγ
φ1(γ )

∣∣∣∣
γ=0

= −
[

∂

∂y
R(γ, y)

∣∣∣∣
γ=0,y=−1n−1

]−1[
∂

∂γ
R(γ, y)

∣∣∣∣
γ=0,y=−1n−1

]
.

(4.34)

By taking into account

∂

∂γ
R(γ, y)

∣∣∣∣
γ=0,y=−1n−1

= 2l1 and
∂

∂y
R(γ, y)

∣∣∣∣
γ=0,y=−1n−1

= 2In−1,

from (4.34) we have

d

dγ
φ1(γ )

∣∣∣∣
γ=0

= −l1. (4.35)

This shows (4.24). To show (4.25), we use the Taylor expansion of Ũγ :

Ũγ

(
φ1(γ )

) = Ũ0(−1n−1) + γ

[
∂

∂γ
Ũγ (γ, y)

+
〈

∂

∂y
Ũγ (γ, y),

d

dγ
φ1(γ )

〉]
γ=0,y=−1n−1

+ O
(
γ 2)

= 2

3
+ γ

2

〈
H(1,−1n−1),H(1,−1n−1)

〉+ O
(
γ 2)

= 4

3
+ γ deg(v1) + O

(
γ 2). (4.36)

By choosing b > 0 in (4.12) large enough one can ensure that Ũγ (φ1(γ )) for
γ ∈ [−γ0, γ0], remains smaller than the values of U(z) on the boundary z ∈ ∂+

1 D. To
complete the proof, one only needs to apply the same argument to all other faces of
∂+D, and note that on ∂−D, the values of Uγ ,γ ∈ [−γ0, γ0], can be made arbitrarily
large by choosing sufficiently large b > 0 in (4.12). �

Remark 4.5 The second equation in (4.24) shows that the minima of the potential
function lying on the faces corresponding to connected cells move toward the com-
mon boundaries of these faces, under the variation of γ > 0.

4.4 The Strong Coupling Regime

For small |γ |, the minima of Uγ (z) are located near the minima of the potential func-
tion Φ(z) (cf. (4.16)). In this subsection, we show that for larger |γ |, the minima of
Uγ (z) are strongly influenced by the quadratic term 〈Hz,Hz〉, which corresponds
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to the coupling operator in the differential equation model (4.10). To study the mini-
mization problem for |γ | 
 1, we rewrite Uγ (z) as follows:

Uγ (z) = γ

{
1

2
〈Hz,Hz〉 + 1

γ
Φ(z)

}
=: γU

1
γ (z). (4.37)

Thus, the problem of minimizing Uγ for γ 
 1 becomes the minimization problem
for

Uλ(z) := 〈Hz,Hz〉 + λΦ(z) → min, z ∈ ∂+D, |λ| � 1. (4.38)

Lemma 4.6 U0(z) attains the global minimum on ∂+D at z = 1n:

u0 := U0(1n) = 0. (4.39)

Proof U0(z) = 〈Hz,Hz〉 is nonnegative, moreover,

〈Hz,Hz〉 = 0 if and only if z ∈ kerH = span{1n}.
Finally, 1n = ker H ∩ ∂+D. �

Theorem 4.7 Let λ1(L
i), i ∈ [n], denote the smallest eigenvalue of matrix Li ,

obtained from L by deleting the ith row and the ith column. Then for 0 < λ ≤
2−1 mini∈[n] λ1(L

i), Uλ(z) achieves its minimal value on ∂D at z = 1n:

uλ := Uλ(1n) = 4λn

3
, (4.40)

provided b > 0 in the definition of D (cf. (4.12)) is sufficiently large.

Remark 4.8 By the interlacing eigenvalues theorem (cf. Theorem 4.3.8, Horn and
Johnson 1999), λ1(L

i) ≤ λ2(L), ∀i ∈ [n]. (Note that Li is not a graph Laplacian.)
Furthermore, λ1(L

i) > 0, ∀i ∈ [n], because G is connected (cf. Theorem 6.3, Biggs
1993). With these observations, Theorem 4.7 yields an estimate for the onset of syn-
chrony in terms of the eigenvalues of L:

γ ≥ 2
(

min
i∈[n]λ1

(
Li
))−1 ≥ 2

(
λ2(L)

)−1
. (4.41)

Note that (4.41) yields smaller lower bounds for the onset of synchrony for graphs
with larger algebraic connectivity. In particular, for the families of expanders {Gn}
(cf. Example 2.5), it provides bounds on the coupling strength guaranteeing synchro-
nization that are uniform in n ∈ N.

For the proof of Theorem 4.7, we need the following auxiliary lemma.

Lemma 4.9 For z ∈ ∂+D there exists i ∈ [n] such that

Uλ(z) = 1

2
yTLiy + λ

{
4

3
+

n−1∑
j=1

F(1 − yj )

}
, (4.42)
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where y = (y1, y2, . . . , yn−1)
T is defined by

yj =
{

1 − zj , j ∈ [i − 1],
1 − zj+1, j ∈ [n − 1] \ [i − 1]. (4.43)

Proof Since z = (z1, z2, . . . , zn)
T ∈ ∂+D, zi = 1 for some i ∈ [n]. Without loss of

generality, let z1 = 1. Then

z =
(

1
1n−1 − y

)
=: ỹ, y = (y1, y2, . . . , yn−1)

T ,0 ≤ yj ≤ 3 + b, j ∈ [n − 1],

and

Uλ(z) = Ũλ(y) := 1

2
Q(y) + 4λ

3
+ λ

n−1∑
j=1

F(1 − yj ),

where the quadratic function Q(y) = 〈Hỹ,H ỹ〉. Differentiating Q(y) yields

∂

∂y
Q(y) = −2

⎛
⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1

⎞
⎟⎟⎠Lỹ = 2L1y and

∂2

∂y2
Q(y) = 2L1.

Therefore,

Q(y) = yTL1y. �

Proof of Theorem 4.7 Let z ∈ ∂+D. By Lemma 4.9, for some i ∈ [n] and y defined
in (4.43), we have

Uλ(z) = 1

2
yTLiy + λ

{
4

3
+

n−1∑
j=1

F(1 − yj )

}
. (4.44)

We will use the following observations:

(a) Li is a positive definite matrix, and, therefore,

yTLiy ≥ λ1
(
Li
)
yTy.

(b) For ξ ≥ 0,

F(1 − ξ) = 4

3
− ξ2 + ξ3

3
≥ 4

3
− ξ2.

(c)

Φ(1n) = λ4n

3
.

Using (a) and (b), from (4.44), we have

Uλ(z) − Uλ(1n) ≥ (
2−1λ1

(
Li
)− λ

)
yTy ≥ 0

provided λ < 2−1λ1(L
i).
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This shows that z = 1n minimizes Uλ on ∂+D for λ < 2−1 mini∈[n] λ1(L
i). On the

other hand, on ∂−D, Uλ can be made arbitrarily large for any λ > 0 provided b > 0
in (4.12) is sufficiently large. �

4.5 Intermediate Coupling Strength: Formation of Clusters

In this subsection, we develop a geometric interpretation of the spontaneous dynamics
of (2.6) and (2.7). After introducing certain auxiliary notation, we discuss how the
spatial location of the minima of Uγ (z) on the surface of the n-cube encodes the
most likely activity patterns of (2.6) and (2.7). Then we proceed to derive a lower
bound on the coupling strength necessary for the development of coherent structures.

Let k ∈ [n],1 ≤ i1 < i2 < · · · < ik ≤ n and define a (n − k)-dimensional face of D

by

∂n−k
(i1,i2,...,ik)

D = {
(z1, z2, . . . , zn) ∈ D : zi1 = 1, zi2 = 1, . . . , zik = 1

}
. (4.45)

The union of all (n − k)-dimensional faces is denoted by

∂n−kD =
⋃

1≤i1<i2<···<ik≤n

∂n−k
(i1,i2,...,ik)

D. (4.46)

Suppose ξ is a point of minimum of Uγ (z) on ∂+D. If ξ ∈ ∂n−kD, k ≥ 2, then with
high probability the network discharges in k-clusters. The analysis in Sect. 4.3 shows
that for small |γ | there is practically no correlation between the activity of distinct
neurons. On the other hand, when the coupling is strong, all cells fire in unison (cf.
Sect. 4.4). Lemma 4.10 provides a lower bound on the coupling strength needed for
the formation of clusters.

Lemma 4.10 Let ξ ∈ ∂D be a point of global minimum of Uγ on ∂D. If ξ ∈ ∂(n−k)D

for some k ≥ 2, then

γ ≥ 2

maxj∈[n] deg(vj )
. (4.47)

Proof Suppose ẑ ∈ ∂n−2D. Without loss of generality, we assume that

ẑ = 1n −(0,0, y2, y3, . . . , yn−1) =: 1n −(0,0, ŷ), ŷ ∈ R
n−2yi ≥ 0, i ∈ [n−1]\{1}.

Denote y = (y1, y2, y3, . . . , yn−1) = (y1, ŷ), y1 ≥ 0, and z = 1n−1 − (0, y). Thus,

Uγ (z) = γ

2
yTL1y +

n−1∑
i=1

F(1 − yi) + 4

3
, (4.48)

Uγ (ẑ) = γ

2
ŷTL12ŷ +

n−1∑
i=2

F(1 − yi) + 8

3
, (4.49)
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where L12 is a matrix obtained from L by deleting the first and the second rows and
columns. The Laplacian of G can be represented as

L = diag
(
deg(v1),deg(v2), . . . ,deg(vn)

)− A,

where the adjacency matrix A is nonnegative (cf. (2.11)). Therefore, for nonnegative
y = (y1, ŷ) ∈ R

n−1,

yTL1y − ŷTL12ŷ ≤ deg(v2)y
2
2 ≤ max

k∈[n] deg(vk)y
2
2 . (4.50)

Further, for any 0 < δ < 1,

n−1∑
i=1

F(1 − yi) −
{

n−1∑
i=2

F(1 − yi) + 4

3

}
≤ −y2

2 + 1

3
y3

2 ≤ −(1 − δ)y2
2 , (4.51)

provided 0 ≤ y2 < 3δ. The combination of (4.48)–(4.51) yields

Uγ (z) ≤ Uγ (ẑ) + γ

2
max
k∈[n] deg(vk) − y2

2 + 1

3
y3

2 ≤ Uγ (ẑ)

+
(

γ

2
max
k∈[n] deg(vk) − 1 + δ

)
y2

2 , (4.52)

for y2 ∈ (0,3δ). By (4.52),

min
ẑ∈∂n−2D

Uγ (ẑ) > min
z∈∂n−1D

Uγ (z),

provided

γ <
2(1 − δ)

maxk∈[n] deg(vk)
. (4.53)

The statement of the lemma follows from the observation above by noting that δ ∈
(0,1) in (4.53) is arbitrary. �

5 An Alternative View on Synchrony

The variational analysis of the previous section shows that when the coupling is
strong (γ > (λ2(L))−1), the neurons in the network fire together (cf. Theorem 4.7). In
this section, we use a complementary approach to studying synchrony in the coupled
system. We show that strong coupling brings about the separation of the timescales
in the system’s dynamics, which defines two principal modes in the strong coupling
regime: the fast synchronization and slow large-deviation type escape from the po-
tential well. The analysis of the fast subsystem elucidates the stability of the synchro-
nization subspace. In particular, it reveals the contribution of the network topology to
the robustness of synchrony. The analysis of the slow subsystem yields the asymptotic
rate of the network activity in the strong coupling regime (cf. Theorem 4.7).
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5.1 The Slow–Fast Decomposition

Our first goal is to show that when coupling is strong the dynamics of the coupled
system (4.10) has two disparate timescales. To this end, we introduce the following
coordinate transformation:

z ∈ R
n �→ (ξ, η) ∈ R

n−1 × R,

where

ξ = H̃ z and η = n−11T
nz, (5.1)

and H̃ ∈ R
(n−1)×n is the coboundary matrix corresponding to the spanning tree G̃

of G (see (2.9)).

Lemma 5.1 Equation (5.1) defines an invertible linear transformation:

z = η1n + Sξ. (5.2)

Matrix S = (sij ) ∈ R
n×(n−1) satisfies

|sij | < 1, ∀(i, j) ∈ [n]2 and 1T
nS = 0. (5.3)

Proof Fix i ∈ [n]. For each j ∈ [n] \ {i} there exists a unique path connecting nodes
vi ∈ V (G) and vj ∈ V (G) and belonging to G̃

P (i, j) =
n−1∑
k=1

σk(i, j)ek, σk ∈ {0,±1}. (5.4)

Thus,

zj − zi =
n−1∑
k=1

σk(i, j)ξk, j ∈ [n] \ {i}, (5.5)

where ξ = (ξ1, ξ2, . . . , ξn−1). By summing n − 1 equations (5.5), adding the identity
zi = zi to the resultant equation, and dividing the result by n, we obtain

zi = η +
n−1∑
k=1

sikξk, where sik = −n−1
n−1∑
j=1

σk(i, j). (5.6)

The first inequality in (5.3) follows from the formula for sij in (5.6) and |σk(i, j)| ≤ 1.
To show the second identity in (5.3), add up equations (5.6) for i ∈ [n] and use the
definition of η:

nη = nη + 1T
nSξ ⇒ (

1T
nSξ = 0 ∀ξ ∈ R

n−1) ⇒ 1T
nS = 0. �
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Lemma 5.2 Suppose G is a connected graph and L ∈ R
n×n is its Laplacian. There

exists a unique L̂ ∈ R
(n−1)×(n−1) such that

H̃L = L̂H̃ , (5.7)

where H̃ ∈ R
(n−1)×n is the coboundary matrix of the G̃ ⊂ G, a spanning tree of G.

The spectrum of L̂ consists of all nonzero eigenvalues of L

spec(L̂) = spec(L) \ {0}. (5.8)

Proof Since G is connected and G̃ is a spanning tree of G,

rank H̃ = n − 1 and ker H̃ = ker L = span {1n}. (5.9)

The existence and uniqueness of the solution of the matrix equation (5.7), L̂, is shown
in Lemma 2.3 of Medvedev (2011b). Equation (5.8) follows from Lemma 2.5 of
Medvedev (2011b). �

We are now in a position to rewrite (4.10) in terms of (ξ, η).

Lemma 5.3 The following system of stochastic differential equations is equivalent in
form to (4.10):

ξ̇ = −γ

2
L̂ξ + Q1(ξ, η) + σH̃Ẇ , (5.10)

η̇ = f (η) + Q2(ξ) + σ√
n
ẇ, (5.11)

where

Q1(ξ, η) = 2ηξ + diag (ξ1, ξ2, . . . , ξn−1)S̃ξ, and Q2(ξ) = n−1ξTSTSξ,

S̃ =

⎛
⎜⎜⎝

Row1(S) + Row2(S)

Row2(S) + Row3(S)

. . .

Rown−1(S) + Rown(S)

⎞
⎟⎟⎠ . (5.12)

Throughout this section, Ẇ and ẇ denote the white noise processes in R
n and R,

respectively.

Proof After multiplying both sides of (4.10) by H̃ and using (5.7), we have

ξ̇ = −γ

2
L̂ξ + H̃ f(z) + σH̃Ẇt , (5.13)

where

H̃ f(z) =

⎛
⎜⎜⎝

z2
2 − z2

1

z2
3 − z2

2
. . .

z2
n − z2

n−1

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

(z1 + z2)ξ1
(z2 + z3)ξ2

. . .

(zn−1 + zn)ξn−1

⎞
⎟⎟⎠
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=

⎛
⎜⎜⎝

(2η + [Row1(S) + Row2(S)]ξ)ξ1
(2η + [Row2(S) + Row3(S)]ξ)ξ2

. . .

(2η + [Rown−1(S) + Rown(S)]ξ)ξn−1

⎞
⎟⎟⎠ .

This shows (5.10). By multiplying (4.10) by n−11T
n, using 1n ∈ ker LT, and the defi-

nition of η, we have

η̇ = f (η) + n−1
n∑

j=1

{
f
(
η + Rowj (S)ξ

)− f (η)
}+ σ√

n
ẇt .

Here, we are using the fact that the distributions of n−11T
nẆ and ∼ 1√

n
ẇ coincide.

Using the definition of f (4.11) and (5.3), we have

n∑
j=1

{
f
(
η + Rowj (A)ξ

)− f (η)
}= 2η

(
1T

nSξ
)+ Tr(Sξ)(Sξ)T = ξTSTSξ.

�

5.2 Fast Dynamics: Synchronization

For γ 
 1, the system of equations (5.10) and (5.11) has two disparate timescales.
The stable fixed point ξ = 0 of the fast subsystem (5.10) corresponds to the syn-
chronous state of (4.10):

z1 = z2 = · · · = zn.

In this section, we analyze the stability of the steady state of the fast subsystem.
Specifically, we identify the network properties that determine the rate of conver-
gence of the trajectories of the fast subsystem to the steady state and its degree of
stability to random perturbations. These results elucidate the contribution of the net-
work topology to the synchronization properties of the coupled system (4.10).

By switching to the fast time (5.10) and (5.11), we have

Ẋ = −L̂X + δQ1(X,Y ) + σ̃ H̃ Ẇ , (5.14)

Ẏ = δ
(
f (Y ) + Q2(X)

)+ σ̃√
n
ẇ, σ̃ = δ3/2σ, (5.15)

where

X(s) = ξ(δs), Y (s) = η(δs), 0 < δ = 2γ −1 � 1. (5.16)

The leading order approximation of the fast equation (5.14) does not depend on the
slow variable Y :

˙̃
X = −L̂X̃ + σ̃ H̃ Ẇ . (5.17)

The solution of (5.17) with deterministic initial condition X̃(0) = x ∈ R
n−1 is a Gaus-

sian random process. The mean vector and the covariance matrix functions

m(s) := EX̃(s) and V (s) := E
[(

X̃(s) − m(s)
)(

X̃(s) − m(s)
)T] (5.18)
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satisfy linear equations (Karatzas and Shreve 1991):

ṁ = −L̂m and V̇ = L̂V + V L̂ + σ̃ 2H̃ H̃ T. (5.19)

Recall that L̂ is a positive definite matrix, whose smallest eigenvalue λ1(L̂) is equal
to the algebraic connectivity of G, a = λ2(L) (see Lemma 5.2). By integrating the
first equation in (5.19), we find that

∣∣EX̃(s)
∣∣= ∣∣exp{−sL̂}x∣∣≤ C1 exp{−as}x → 0, s → ∞, (5.20)

for some C1 > 0. Thus, the trajectories of the fast subsystem converge in mean to
the stable fixed point X̃ = 0, which corresponds to the synchronization subspace of
(4.10). Moreover, the rate of convergence is set by the algebraic connectivity a.

Further,

TrV (s) = E
∣∣X̃(s) − m(s)

∣∣2 =
n−1∑
i=1

var X̃(s) + o(1), s 
 1, (5.21)

measures the spread of the trajectories around the synchronization subspace. By in-
tegrating the second equation in (5.19), we have

σ−2 TrV (s) = Tr

[∫ s

0
exp

{
(u − s)L̂

}
Λ exp

{
(u − s)L̂

}
du

]

= Tr

[
Λ

∫ s

0
exp{−2L̂}udu

]
→ 1

2
κ(G, G̃), s → ∞, (5.22)

where

κ(G, G̃) := Tr
{
L̂−1Λ

}
and Λ = H̃ H̃ T. (5.23)

Parameter κ(G, G̃) quantifies the mean-square stability of the synchronization sub-
space. In Sect. 5.4, we show that κ(G, G̃) depends on the properties of the cycle
subspace of G.

For small σ̃ > 0, a typical trajectory of (5.17) converges to a small neighborhood
of the stable equilibrium at the origin. However, eventually it leaves the neighborhood
of the origin under persistent random perturbations. Next, we estimate the time that
the trajectory of the fast subsystem spends near the origin.

Let ρ > 0 and Bρ = {X ∈ R
n−1 : |X| < ρ}, ρ > 0. By X̃(t) we denote the solu-

tion of (5.17) satisfying initial condition X̃(0) = x ∈ Bρ . Define the first exit time of
the trajectory of (5.17) from Bρ :

τ(X̃, ρ) = inf
t>0

{
X̃(t) = ρ

}
. (5.24)

Using the large-deviation estimates (cf. Freidlin and Wentzell 1998), we have

lim
σ̃→0

Px

{
exp

{
σ̃−2(V0(ρ) − h

)}
< τ(x,ρ) < exp

{
σ̃−2(V0(ρ) + h

)}}= 1, ∀h > 0,

(5.25)
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where

V0(ρ) = min|x|=ρ

1

2
〈Lx,x〉 = aρ2

2
(5.26)

is the minimum of the positive definite quadratic form 2−1〈Lx,x〉 on the boundary
of Bρ .

By combining (5.25) and (5.26) we obtain the logarithmic asymptotics of the first
exit time from Bρ :

τ(X̃, ρ) � exp

{
aρ2

σ̃ 2

}
. (5.27)

For small δ > 0 (i.e., for large γ 
 1), (5.27) applies to the fast equation (5.14).
Switching back to the original time, we rewrite the estimate for the first exit time for
the fast equation (5.10):

τ(ξ, ρ) � exp

{
aγ 3ρ2

8σ 2

}
. (5.28)

Finally, choosing ρ := γ
−3+ι

2 for an arbitrary fixed 0 < ι < 3
2 , we have

τ(ξ, ρ) � exp
{
O
(
σ−2γ ι

)}
, γ 
 1, 0 < σ � 1. (5.29)

5.3 The Slow Dynamics: Escape from the Potential Well

We recap the results of the analysis of the fast subsystem. The trajectories of the

fast subsystem (5.10) enter an O(γ
−3+ι

2 ) neighborhood of the stable equilibrium
ξ = 0 (corresponding to the synchronization subspace of the full system) in time
O(γ −1 lnγ ) and remain there with overwhelming probability over time intervals
O(exp{O(σ−2γ ι)}. During this time, the dynamics is driven by the slow equation
(5.11), which we analyze next.

While the trajectory of the fast subsystem stays in the O(γ
−3+ι

2 ) neighborhood
of the equilibrium, the quadratic term in (5.11) Q2(ξ) = O(γ −3+ι) is small. Thus,
the leading order approximation of the slow equation is independent of ξ on time
intervals O(exp{O(σ−2)})

˙̃η = f (η̃) + σ√
n
ẇ. (5.30)

Equation (5.30) has a stable fixed point at the origin, where the potential function
F(η) attains its minimum value (see (4.16)). The escape of the trajectories of (5.30)
from the potential well, defined by F(η) corresponds to spontaneous synchronized
discharge of the coupled subsystem. Suppose η̃(0) = η0 < 1 and define

τ(η) = inf
{
t > 0 : η(t) = 1

}
. (5.31)

By the large-deviation theory, we have

τ(η) � exp

{
2�Fn

σ 2

}
, �F := F(1) − F(0) = 4

3
. (5.32)
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Equation (5.32) provides the estimate for the frequency of spontaneous activity
in the strong coupling regime. Note that (5.32) is consistent with the estimate in
Theorem 4.7 derived using the variational argument. Therefore, the analysis in this
section yields the dynamical interpretation for the minimization problem for (4.20)
in the strong coupling regime.

We summarize the results of the slow–fast analysis. In the strong coupling regime,
the dynamics splits into two modes: fast synchronization and slow synchronized fluc-
tuations leading to large-deviation type discharges of the entire network. By analyz-
ing the fast subsystem, we obtain estimates of stability of the synchronization sub-
space. The analysis of the slow subsystem yields the asymptotic estimate of the firing
rate in the strong coupling regime.

5.4 The Network Topology and Synchronization

The stability analysis in Sect. 5.2 provides interesting insights into what structural
properties of the network are important for synchronization. In this subsection, we
discuss the implications of the stability analysis in more detail.

First, we rewrite (5.20) and (5.22), using the original time
∣∣Eξ̃ (t)

∣∣ ≤ C1 exp
{−2−1

aγ −1t
}
x, (5.33)

E
∣∣ξ̃ (t)

∣∣2 → 8γ −3σ 2κ(G, G̃), t → ∞, (5.34)

where ξ̃ (t) = X̃(δ−1t). (5.33) shows that the rate of convergence to the synchronous
state depends on the coupling strength, γ , and the algebraic connectivity of the net-
work, a. The convergence is faster for stronger coupling and larger a. This, in par-
ticular, implies that the rate of convergence to synchrony in networks on spectral
expanders (cf. Example 2.5) remains O(1), as the size of the network grows without
bound. In particular, the families of the random graphs (cf. Example 2.4) have this
property. In contrast, for many networks with symmetries (cf. Example 2.2) the al-
gebraic connectivity a = o(1) as n → ∞, and, therefore, by (5.33), synchronization
requires longer time, if the size of the network grows. For a more detailed discus-
sion of the synchronization properties of the networks on expanders, we refer the
interested reader to Medvedev (2011b).

Next, we turn to (5.34), which characterizes the dispersion of the trajectories
around the synchronization subspace. E|ξ̃ |2 may be viewed as a measure of robust-
ness of synchrony to noise or, more generally, to constantly acting perturbations. By
(5.34), the synchrony is more robust for stronger coupling, because the asymptotic
value of E|ξ̃ (t)|2 → 0 as γ → ∞. The contribution of the network topology to the
mean-square stability of the synchronous state is reflected in κ(G, G̃). Trajectories
of the networks with smaller κ(G, G̃) are more tightly localized around the synchro-
nization subspace.

To explain the graph-theoretic interpretation of κ(G, G̃), we review the structure
of the cycle subspace of G. Recall that the edge set of the spanning tree G̃ consists
of the first n − 1 edges (see (2.9)):

E(G̃) = {e1, e2, . . . , en−1}.
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If G is not a tree, then

E(G) \ E(G̃) = {en, en+1, . . . , en+c−1},
where c is the corank of G. To each edge en+k, k ∈ [c], there corresponds a unique
cycle Ok of length |Ok|, such that it consists of ek and the edges from E(G̃). The
following lemma relates the value of κ(G, G̃) to the properties of the cycles {Ok}ck=1.

Lemma 5.4 (Medvedev 2011b) Let G = (V (G),E(G)), |V (G)| = n, be a con-
nected graph:

(A) If G is a tree then

κ(G, G̃) = n − 1. (5.35)

(B) Otherwise, let G̃ ⊂ G be a spanning tree of G a and {Ok}ck=1 be the correspond-
ing independent cycles.
(B.1) Denote

μ = 1

n − 1

c∑
k=1

(|Ok| − 1
)
.

Then

1

1 + μ
≤ κ(G, G̃)

n − 1
≤ 1, (5.36)

(B.2) If 0 < c < n − 1 then

1 − c

n − 1

(
1 − 1

M

)
≤ κ(G, G̃)

n − 1
≤ 1, (5.37)

where

M = max
k∈[c]

{
|Ok| +

∑
l �=k

|Ok ∩ Ol |
}
.

(B.3) If Ok, k ∈ [c] are disjoint. Then

κ(G, G̃)

n − 1
= 1 − c

n − 1

(
1 − 1

c

c∑
k=1

|Ok|−1

)
. (5.38)

In particular,

κ(G, G̃)

n − 1
≤ 1 − c

n − 1

(
1 − 1

mink∈[c] |Ok|
)

and

κ(G, G̃)

n − 1
≥ 1 − c

n − 1

(
1 − c∑

k∈[c] |Ok|
)

≥ 1 − c

n − 1

(
1 − 1

maxk∈[c] |Ok|
)

.



J Nonlinear Sci (2012) 22:689–725 721

The asymptotic estimate of the mean-square stability of the synchronization sub-
space in (5.34) combined with the estimates of κ(G, G̃) in Lemma 5.4 show how the
structure of the cycle subspace of G translates into the stability of the synchronous
state. In Medvedev (2011b), one can also find an estimate of the asymptotic stability
of the synchronization subspace in terms of the effective resistance of the graph G.
These results show how the structural properties of the network shape synchroniza-
tion properties of the coupled system.

6 Discussion

In this paper, we presented a variational method, which reduces the problem of pattern
formation in electrically coupled networks of neurons to the minimization problem
for the potential function Uγ (z) on the surface of a unit n-cube, ∂D. The variational
problem provides geometric interpretation for the spontaneous dynamics generated
by the network. Specifically, the location of the points of minima of the constrained
potential function Ũγ (z) = Uγ (z ∈ ∂D) corresponds to the most likely patterns of
network activity.

The variational formulation has several important implications for the analysis of
the dynamical problem. First, the minimization problem has an intrinsic bifurcation
structure. By the bifurcation of the problem (4.20), it is natural to call the value of
the parameter γ = γ ∗ corresponding to the structural changes in the singularity set of
Ũγ (z). For example, the number of the minima of Ũγ (z) can change due to collisions
of the singularities with each other or with the boundaries of the faces of a given
co-dimension (a border collision bifurcation). In either case, the qualitative change
in the configuration of the points of minima of Ũγ (z) signals the transformation of
the attractor of the randomly perturbed system (4.10). The study of the constrained
minimization problem (4.20) identified three main regimes in the network dynamics
for weak, intermediate, and strong coupling. These results hold for any connected
network. We expect that under certain assumptions on the network topology (e.g., in
the presence of symmetries, or alternatively in networks with random connections), a
more detailed description of the bifurcation events preceding complete synchroniza-
tion should be possible.

The analysis of the variational problem has also helped to obtain quantitative es-
timates for the network dynamics. For both weak and strong coupling, we derive the
asymptotic formulas for the dependence of the firing rate as a function of the cou-
pling strength (see (4.26) and (4.40)). Surprisingly, in each of these cases, the firing
rate does not depend on the structure of the graph of the network beyond its degree
and order. In particular, the networks of equal degree with connectivity patterns as
different as symmetric and random exhibit the same activity rate (see Fig. 5c).

The geometric interpretation of the spontaneous dynamics yields a novel mecha-
nism of the formation of clusters. It shows that the network fires in k-clusters, when-
ever Uγ (z) has a minimum on a co-dimension k ∈ [n] face of ∂D. In particular, the
network becomes completely synchronized, when the minimum of Uγ (z) reaches
1n ∈ ∂+D ∩ ker(H). This observation allows one to estimate the onset of synchro-
nization (cf. Theorem 4.7) and cluster formation (cf. Lemma 4.10). Furthermore, we
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Fig. 11 The responses to stimulation of the two networks at different values of the coupling strength:
g = 0 (left column) and g = 0.02 (right column). The networks shown in (a) and (b) generate different
spatio-temporal patterns. However, the firing rates corresponding to these activity patterns are close (see
(c) and (d)). When 10 neurons in the middle of each of these networks receive a current pulse, the network
responses differ (see (e) and (f)). The firing rate in the first network during the stimulation changes very
little (see (g)), while the response of the second network is clearly seen from the firing rate plot (see (h))
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show that in the strong coupling regime, the network dynamics has two disparate
timescales: fast synchronization is followed by an ultra-slow escape from the poten-
tial well. The analysis of the slow–fast system yields estimates of stability of the
synchronous state in terms of the coupling strength and structural properties of the
network. In particular, it shows the contribution of the network topology to the syn-
chronization properties of the network.

We end this paper with a few concluding remarks about the implications of this
work for the LC network. The analysis of the conductance-based model of the LC net-
work in this paper agrees with the study of the integrate-and-fire neuron network in
Usher et al. (1999) and confirms that the assumptions of spontaneously active LC neu-
rons coupled electrically with a variable coupling strength are consistent with the ex-
perimental observations of the LC network. Following the observations in Usher et al.
(1999) that stronger coupling slows down network activity, we have studied how the
firing rate depends on the coupling strength. We show that strong coupling results in
synchronization and significantly decreases the firing rate (see also Medvedev 2009;
Medvedev and Zhuravytska 2011). Surprisingly, we found that the rate can be effec-
tively controlled by the strength of interactions already for very weak coupling. We
show that the dependence of the firing rate on the strength of coupling is nonmono-
tone. This has an important implication for the interpretation of the experimental
data. Because two distinct firing patterns can have similar firing rates, the firing rate
alone does not determine the response of the network to external stimulation. This
situation is illustrated in Fig. 11. We choose parameters such that two networks, the
spontaneously active (Fig. 11a) and the nearly synchronous one (Fig. 11b), exhibit
about the same activity rates (see Figs. 11c, d). However, because the activity pat-
terns generated by these networks are different, so are their responses to stimulation
(Figs. 11e, f). The network in the spontaneous firing regime produces a barely no-
ticeable response (Fig. 11g), whereas the response of the synchronized network is
pronounced (Fig. 11h). Network responses similar to these were observed experi-
mentally and are associated with the good (Fig. 11h) and poor (Fig. 11g) cognitive
performance (Usher et al. 1999). Our analysis suggests that the state of the network
(i.e., the spatio-temporal dynamics), rather than the firing rate, determines the re-
sponse of the LC network to afferent stimulation.

The main hypotheses used in our analysis are that the local dynamical systems
satisfy Assumption 4.1 and interact through electrical coupling. The latter means that
the coupling is realized through one of the local variables, interpreted as voltage, and
is subject to the two Kirchhoff’s laws for electrical circuits. In this form our assump-
tions cover many biological, physical, and technological problems, including power
grids, sensor and communication networks, and consensus protocols for coordination
of autonomous agents (see Medvedev 2011b and references therein). Therefore, the
results of this work elucidate the principles of pattern formation in an important class
of problems.
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Table 1 Parameter values

ECa 120 mV gK 8 s−1 EK −84 mV ν2 18 mV gCa 4 s−1 φ 0.067

gl 2 s−1 El −60 mV C 20 µF/cm2 ν1 −1.2 mV ν3 12 mV ν4 17.4 mV

Appendix: The Parameter Values Used in the Biophysical Model (2.1) and (2.2)

To emphasize that the results of this study do not rely on any specific features of the
LC neuron model, in our numerical experiments we used the Morris–Lecar model, a
common Type I biophysical model of an excitable cell (Rinzel and Ermentrout 1989).
This model is based on the Hodgkin–Huxley paradigm. The function on the right
hand side of the voltage equation (2.1), Iion = ICa + IK + Il, models the combined
effect of the calcium and sodium currents, ICa, the potassium current, IK, and a small
leak current, Il,

ICa(v) = gCam∞(v)(v − ECa),

IK(v,n) = gKn(v − EK),

Il(v) = gl(v − El).

The constants ECa, EK, and El stand for the reversal potentials and gCa, gK, and gl
denote the maximal conductances of the corresponding ionic currents. The activation
of the calcium and potassium channels are modeled using the steady-state functions

m∞(v) = 0.5

(
1 + tanh

(
v − ν1

ν2

))
and n∞(v) = 0.5

(
1 + tanh

(
v − ν3

ν4

))
,

and the voltage-dependent time constant

τ(v) =
(

cosh

(
v − ν3

2ν4

))−1

.

The parameter values are summarized in the Table 1.
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