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Abstract We analyze the singularities of the equations of motion and several types
of singular solutions of the n-body problem in spaces of positive constant curvature.
Apart from collisions, the equations encounter noncollision singularities, which oc-
cur when two or more bodies are antipodal. This conclusion leads, on the one hand,
to hybrid solution singularities for as few as three bodies, whose orbits end up in a
collision-antipodal configuration in finite time; on the other hand, it produces nonsin-
gularity collisions, characterized by finite velocities and forces at the collision instant.
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1 Introduction

Consider the curved n-body problem, the natural extension of the planar Newtonian
n-body problem to surfaces of nonzero constant curvature: the unit sphere S, for
positive curvature, and the hyperbolic plane H?, for negative curvature. In Diacu et
al. (2012), henceforth called Part I, we derived the equations of motion for n > 2,
initiated the study of relative equilibria, and outlined the importance of the problem.
We also showed that singularities occur at collisions, on both surfaces, and at antipo-
dal configurations, in S? alone. Here we provide a first study of the singularities and
of the singular solutions of the equations. A continuation of this research appears in
Diacu (2011).

The set of singularities in S? has a dynamical structure. When three bodies move
along a geodesic, solutions close to binary collisions and far from antipodal singular-
ities end up in collision, so binary collisions are attractive. But antipodal singularities
are repulsive in the sense that no matter how close two bodies are to an antipodal
singularity, they never reach it if the third body is far from a collision with any of
them.

It is natural to ask whether the antipodal singularities of the equations of motion
occur because of the coordinates we use. This answer is no. The equations in intrinsic
coordinates (Pérez-Chavela and Reyes Victoria 2012) preserve these singularities,
which thus characterize the curved n-body problem in 8% and cannot be dismissed as
artificial.

Another issue is that of solution singularities, which arise naturally when the an-
alytic extension of the solution relative to time is impossible up to infinity. These
singularities are due to collision or antipodal configurations. The main result of this
paper proves the existence of hybrid singular solutions in the 3-body problem in S?
that end up in finite time in a collision-antipodal singularity. But, depending on the
masses and the initial data, these configurations may be unreachable or may not be
singularities at all. If other types of noncollision singularities exist, such as pseu-
docollisions (Painlevé 1897), this remains an open question. The reason why this
problem is not easy to answer involves the nonexistence of the linear-momentum and
center-of-mass integrals (see Part I), as proved in Diacu (2012).

2 Equations of Motion

Consider the masses my, ..., m, > 0in R3, whose positions are given by the vectors
qi = (xj, vi,zi), i =1,n,andletq = (qq, . .., q,) be the configuration of the system.
The Hamiltonian function describing their motion on the unit sphere S? is

H(q,p)=T(q,p) — U(q),

where T (q, p) = % Yo mi_1 (pi - Pi)(q; - q;) is the kinetic energy and

T .
U(q) = — j j ]
W 2 iz_;j_lz;#i [(qi - 9:)(q; - q;) — (q; - q;)%]'/? ()
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is the force function, —U representing the potential energy (in Part I we showed how
this expression of U follows from the cotangent potential). The Hamiltonian form of
the equations of motion is given by the system

{fli =m; ' p;, @)
pi =Vq U@ —mi(q; - q))q;, i=1,n,

where the gradient of the force function has the expression

n

VQi U(Q = Z
j=1
JF#i

mim;(q;-q;)[(q; - 9:)q; — (q; - q;)9;]
[(q; - 9i)(q; - q;) — (q; - q;)*]*/?

, i=Ln. (3

The motion is confined to the sphere, i.e. (q,q) € T*(S?)", where T*(S?)" is the
cotangent bundle of the configuration space (S?)". The constraints q; - q; = 1 im-
ply that q; - q; = 0, so system (2) has dimension 4n. The Hamiltonian provides the
integral of energy,

H(q,q) =h,

where & is the energy constant. Equations (2) also have the integrals of the angular
momentum,

n
Y migi x g =c, “
i=1

where c is a constant vector. Unlike in the Euclidean case, there are no integrals of the
center of mass and linear momentum (Diacu 2012), so the phase space is (4n — 4)-
dimensional.

3 Singularities of the Equations
System (2) is undefined in the set A := U1§i<j§n A;j, with

Aij={qe($)" I (qi-q)* =1}

ij where

The condition (q; -qj)2 = 1 suggests that we consider the set A;; = Alf; uaA
A:; ={qe($*)"1q;-q; =1}, A= lae(8%)" 1q;i-q; =—1}.

Accordingly, we define A™ :=J;;_;, A;; and A7 :=UJ5;.j<, A;;- Then A =
AT UA™. The elements of AT correspond to collisions, whereas the elements of A~
correspond to antipodal configurations, when some bodies are at the opposite ends of
a diameter. In both cases, the forces become infinite.

In the 2-body problem, AT and A~ are disjoint. Indeed, q; - q> is 1 or —1, but not
both. But A™ N A~ is not empty for n > 3. For instance, in the 3-body problem, the
configuration in which two bodies are at collision and the third lies at the opposite
end of the corresponding diameter will be called collision-antipodal.
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The theory of differential equations regards singularities as points where the equa-
tions break down. But singularities often exhibit a dynamical role. For example, in
the rectilinear 3-body problem, the set of binary collisions is attractive in the sense
that for any given initial velocities, there are initial positions such that if two bodies
come close enough to each other, but far enough from other collisions, then the colli-
sion occurs. (Close to triple collisions, things become more complicated: two of the
bodies may form a binary, while the third is expelled at high speed, McGehee 1974.)

Something similar happens for binary collisions of the 3-body problem in S'.
Given initial velocities, we can choose initial positions that put m; and m, close
enough to a binary collision, and m3 far enough from an antipodal singularity with
either m1 or my, such that the binary collision takes place. This is indeed the case
because the attraction between m and m, can be made as large as desired by placing
the bodies close enough to each other. Since mj3 is far enough from an antipodal
position, and no comparable force can oppose the attraction between m| and my,
these bodies collide.

Antipodal singularities lead to a new phenomenon. Given initial velocities, no
matter how close we choose the initial positions near an antipodal singularity, the
corresponding solution is repelled from this singularity as long as no collision force
competes. So while binary collisions can be regarded as attractive if far away from
antipodal singularities, binary antipodal singularities can be seen as repulsive if far
away from collisions. But what happens when collision and antipodal singularities
are close to each other? As we will see in the next section, the behavior of orbits in
that region of the phase space is sensitive to the choice of masses and initial data.
In particular, we will prove the existence of hybrid singular solutions in the 3-body
problem, i.e. those that end in finite time in a collision-antipodal singularity, as well
as of solutions that reach a collision-antipodal configuration but remain analytic at
this point.

4 Solution Singularities

A is related to singularities arising from the analytic continuation of solutions. For
(q,q)(0) € T*(S?)" with q(0) ¢ A, standard results ensure the local existence and
uniqueness of an analytic solution (q, q) defined on some interval [0, tT). Since S2
is a connected set, this solution can be analytically extended to an interval [0, *),
with 0 < 1T < t* < 0o. If t* = 00, the solution is globally defined. But if * < oo, the
solution is called singular, and we say that it has a singularity at time ¢*.

There is a close connection between singular solutions and singularities of the
equations of motion. At the end of the nineteenth century, Painlevé pointed out
this connection in the Euclidean case. In his Stockholm lectures (Painlevé 1897),
he showed that every singular solution (q, ) is such that q(r) - A when t — t*,
for otherwise it would be globally defined. In flat space, A is formed by all collision
configurations, so when q tends to an element of A, the solution ends in a colli-
sion singularity. But it is also possible that q reaches A by oscillating among various
elements without ever settling for any of them. Painlevé conjectured that such pseu-
docollisions exist. In 1908, von Zeipel showed that a necessary condition for a pseu-
docollision is that the motion becomes unbounded in finite time (von Zeipel 1908;

@ Springer



J Nonlinear Sci (2012) 22:267-275 271

Fig. 1 The relative positions of (0’1)
the force acting on m while the
body is on the geodesic z =0
xZ
C P
v B
© (L0)

McGehee 1986). Xia produced the first example of this kind in 1992 (Xia 1992). His-
torical accounts of this development appear in Diacu (1993) and Diacu and Holmes
(1995).

The results of Painlevé don’t remain intact in our problem (Diacu 2002, 2011),
so whether pseudocollisions exist is not clear. Nevertheless, we can show that there
are solutions ending in, or repelled from, collision-antipodal singularities, as well as
solutions that are not singular at such configurations. To prove these facts, we need
the result stated below, which provides a criterion for determining the direction of
motion along a great circle in the framework of an isosceles problem defined in some
invariant great circle S'.

Lemma 1 Consider the n-body problem in S, and assume that a body of mass m is
at rest at time to on the geodesic 7 = 0 within its first quadrant, x, y > 0. Then, if

(a) X(tp) > 0 and y(ty) < 0, the force pulls the body towards (1, 0)

(b) X(to) <0 and ¥(ty) > 0, the force pulls the body towards (0, 1)

(¢) X(to) <0and y(ty) <0, the force pulls the body towards (1, 0) if y(t9) /X (tg) >
y(to) /x(to), towards (0, 1) if ¥(ty) /X (to) < y(to)/x(ty), but no force acts on the
body if neither inequality holds

(d) X(tp) > 0 and ¥(ty) > 0, the motion is impossible

Proof Differentiating the constraints, we obtain x¥ 4+ yj = — (> 4+ y%) <0, which
means that the force acting on m is directed along the tangent at m to the circle z =0
or inside the half-plane containing this circle. Assuming that an xy-coordinate system
is fixed at the origin of the acceleration vector, this vector lies in the half-plane below
the line of slope —x(fp)/y(fy). It is now a simple exercise to prove each point of the
theorem separately. We only detail (c), since it is a bit more involved.

If X (t9) <0and y(zp) <0, the force acting on m is a vector in the third quadrant. Its
direction depends on whether the acceleration vector lies: (i) below the line of slope
y(to)/x(to) (PB is below OP in Fig. 1); (ii) above it (PC is above OP); or (iii) on it
(on the line OP). Case (iii) includes the possibility of zero acceleration.

In case (i), the acceleration vector lies on a line whose slope is larger than
y(tg)/x(tg), i.e. y(tg)/X(to) > y(to)/x(ty), so the force pulls m towards (1,0).
In case (ii), the acceleration vector lies on a line of slope that is smaller than
y(to)/x(to), i.e. ¥(tp)/X(tg) < y(to)/x(ty), so the force pulls m towards (0, 1). In
case (iii), the acceleration vector is either zero or lies on the line of slope y(fg) /x (%),
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i.e. y(t0)/X(to) = y(to)/x(tp). But the latter alternative never happens. This fact fol-
lows from the equations of motion (2), which show that the acceleration is the differ-
ence between the gradient of the force function and a multiple of the position vector.
But according to Euler’s formula for homogeneous functions (see (3) in Part I) and
the fact that the velocities are zero, these vectors are orthogonal, so their difference
can have the same direction as one of them only if it is zero. This vectorial argu-
ment agrees with the kinematic facts, which show that if x(#g) = y(#9) = 0 and the
acceleration has the same direction as the position vector, then m doesn’t move, so
x(t) = y(t) =0, and therefore ¥ (#) = ¥(¢) = 0 for all 7. In particular, this means that
when y (tp) = X (t9) = 0, no force acts on m, so the body remains fixed. Il

5 Main Result

We next prove the existence of solutions with collision-antipodal singularities, so-
lutions repelled from collision-antipodal singularities in positive time, and solu-
tions that remain analytic at a collision-antipodal configuration. So the dynamics of
AT N A™ is more complicated than the dynamics of A™ and A~ away from the in-
tersection, since orbits can go towards or away from this set for # > 0, and can even
avoid singularities. This result represents a first example of a noncollision singularity
reached by only three bodies as well as a first example of a nonsingular collision in
celestial mechanics.

Theorem 1 Consider the 3-body problem in S* with the bodies m| and m, having
mass M > 0 and the body m3 having mass m > 0. Then

(1) there are values of m and M, as well as initial data, for which the solutions end
in finite time in a collision-antipodal singularity
(i) other choices of masses and initial data lead to solutions that are repelled from
a collision-antipodal singularity
(iii) and yet other choices of masses and initial data correspond to solutions that
reach a collision-antipodal configuration but remain analytic at this point

Proof We start with some initial data that we will refine on the way. During the re-
finement process, we will also choose suitable masses. Consider the initial positions:

x1(0) = —x(0), y1(0) = y(0), z1(0) =0,
x2(0) = x(0), ¥2(0) = y(0), 22(0) =0,
x3(0) =0, y3(0) =—1, 73(0) =0

(see Fig. 2) and zero initial velocities, where all 0 < x(¢), y(¢) < 1 are functions with
x? + y% = 1. Since all z coordinates are zero, only the equations of coordinates x and
y play a role in the motion. The symmetries imply that m3 stays fixed, the angular
momentum is zero, and it is enough to study m;. Substituting the preceding initial
conditions into the equations of motion, we obtain

y(0) M e L (M
320 <4y2<o>_m) and YO= 1) (4y2<0> m) ©)

%(0) =

@ Springer



J Nonlinear Sci (2012) 22:267-275 273

Fig. 2 The initial positions of my = M mo =: M
m1,my, and m3 on the geodesic
=0 T
=
Y
mg =:m

Several situations occur, depending on the choice of masses and initial data. Here are
two significant possibilities.

1. For M > 4m, it follows that X¥(0) < O and y(0) > O for any choices of initial
positions with 0 < x(0), y(0) < 1.
2. For M < 4m, there are initial positions for which:
(a) ¥(0) <0and y(0) >0
(b) ¥(0) > 0and y(0) <0
() X(0)=y(0)=0

In 2(c), the orbits are fixed points, such as when M = 2m and x(0) = y(0) =
\/i/ 2. Of interest for us are 1 and 2(b). In 1, m, moves from rest towards a collision
with m at (0, 1), but whether this collision takes place also depends on velocities.
In 2(b), my moves away from the same collision, and we need to see again how the
velocities alter this tendency. For arbitrary M and m, the equations of motion are

v_ M my 22 .2
Fo 2 0
§= s =2 — (243
and the energy integral is
o o h 2my MQ2y*—1
PRygro o Imy M@y D
M X 2xy
Substituting this expression for x> + y? into system (6), we obtain
v AM2m)x*2(M—=2m)x: —M+4m  h
X = > — 35X,
4x%y M 7
« MAE2M=2m)y>—4M—2m)y*  p
Y= 4xy? MY
We further focus on the first class of orbits announced in this theorem.
(i) Take M = 8m, which brings system (7) to the form
—omx® _3m _ m b
oy y x22y 8m ™’ ®)
2 3 6 h
Al S S
with the energy integral
. ) dmx  2m h
PRI G L )
y X 8m
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Then, as x — 0 and y — 1, both X and y tend to —oo, so they are ultimately negative,
a fact corresponding to Lemma 1(c). But a simple computation shows that ¥ /X tends
to zero as x — 0 and y — 1. Since y/x > 0, it follows that if (x(0), y(0)) is chosen
close enough to (0, 1), then ¥(0)/X(0) < y(0)/x(0), so according to Lemma 1(c)
the collision-antipodal configuration is reached. As the forces and the potential are
infinite at this point, using the energy relation (9) it follows that the velocities are
also infinite. Consequently the motion cannot be analytically extended beyond the
collision-antipodal configuration, which thus proves to be a singularity.
(i) Take M = 2m. Then (7) have the form

e m__h
:x_szy 2l’l‘l'x7

. A (10)
V=107 ~ 2V

with the energy integral

2 . m h
Xy 4+ — =, (11)
xy 2m
which implies that 4 > 0. Obviously, as x — 0 and y — 1, the forces and the ki-
netic energy become infinite, so the collision-antipodal configuration is a singu-
larity, if reached. But this cannot happen. Indeed, from 2(c), the initial position
x(0) = y(0) = +/2/2 corresponds to a fixed point of the equations of motion for
zero initial velocities. So we must seek the desired solution for initial conditions with
0 < x(0) < +/2/2 and the corresponding choice of y(0) > 0. Let us pick initial posi-
tions as close to the collision-antipodal singularity as we want and choose zero initial
velocities. However, for x — 0, (10) show that both X and j grow positive. But by
Lemma 1(d), this outcome is impossible, so the motion cannot come infinitesimally
close to the corresponding collision-antipodal singularity, which repels any such so-
lution.
(iii) Take M = 4m, which brings system (7) to the form

_ m(2x2—1) _ h
- y 4mx’ 12)
_ mx2y’+1) _ (
= T -y
with energy integral
2 .g  2mx h
Xy +—=— (13)
y 4m

We can compute 2 from the initial data. Thus, for initial positions x(0), y(0) and
initial velocities x (0) = y(0) = 0, the energy constant is 4 = 8m?x(0)/y(0) > 0.
Assuming that x — 0 and y — 1, (12) imply that X(t) - —m < 0 and y(t) —
—h/4m < 0, which means that the forces are finite at the collision-antipodal con-
figuration. We are thus in the case of Lemma 1(c), so to determine the direc-
tion of motion for my when it comes close to (0, 1), we need to take into ac-
count the ratio /X, which tends to h/4m? as x — 0. Since h = 8m?x(0)/y(0),
limy,0(¥/X) = 2x(0)/y(0). Then 2x(0)/y(0) < y(0)/x(0) for any x(0) and y(0)
with 0 < x(0) < 1/+/3 and the corresponding choice of y(0) > 0 given by the con-
straint x2(0) 4+ y2(0) = 1. But the inequality 2x(0)/y(0) < y(0)/x(0) is equivalent to
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the condition y(fy) /X (tg) < y(tp)/x(tp) in Lemma 1(c), according to which the force
pulls my towards (0, 1). Therefore the velocity and the force acting on m> keep this
body on the same path until the collision-antipodal configuration occurs.

It is also clear from (13) that the velocity is positive and finite at collision. Since
the distance between the initial position and (0, 1) is bounded, m, collides with m in
finite time. Therefore the choice of masses with M = 4m, initial positions x (0), y(0)
with 0 < x(0) < 1/+/3 and the corresponding value of y(0), and initial velocities
x(0) = y(0) =0, leads to a solution that remains analytic at the collision-antipodal
configuration, so the motion naturally extends beyond this point. g
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