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The Momentum Map Representation of Images

M. Bruveris · F. Gay-Balmaz · D.D. Holm ·
T.S. Ratiu

Received: 19 February 2010 / Accepted: 17 August 2010 / Published online: 25 September 2010
© Springer Science+Business Media, LLC 2010

Abstract This paper discusses the mathematical framework for designing methods
of Large Deformation Diffeomorphic Matching (LDM) for image registration in com-
putational anatomy. After reviewing the geometrical framework of LDM image regis-
tration methods, we prove a theorem showing that these methods may be designed by
using the actions of diffeomorphisms on the image data structure to define their asso-
ciated momentum representations as (cotangent-lift) momentum maps. To illustrate
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its use, the momentum map theorem is shown to recover the known algorithms for
matching landmarks, scalar images, and vector fields. After briefly discussing the use
of this approach for diffusion tensor (DT) images, we explain how to use momentum
maps in the design of registration algorithms for more general data structures. For
example, we extend our methods to determine the corresponding momentum map for
registration using semidirect product groups, for the purpose of matching images at
two different length scales. Finally, we discuss the use of momentum maps in the
design of image registration algorithms when the image data is defined on manifolds
instead of vector spaces.

Keywords Diffeomorphic matching · Registration · Momentum map · Geometric
mechanics · Multiscale matching

Mathematics Subject Classification (2000) 58E50

1 Introduction

Large deformation diffeomorphic matching methods (LDM) for image registration
are based on minimizing the sum of a kinetic energy metric, plus a penalty term. The
former ensures that the deformation follows an optimal path, while the latter ensures
an acceptable tolerance in image mismatch. The LDM approaches were introduced
and systematically developed in Trouvé (1995, 1998), Dupuis et al. (1998), Joshi
and Miller (2000), Miller and Younes (2001), Beg (2003), and Beg et al. (2005). See
Miller et al. (2002) for an extensive review of this development. The LDM approach
fits within Grenander’s (1994) deformable template paradigm for image registration.
Grenander’s paradigm, in turn, is a development of the biometric strategy introduced
by Thompson (1992) of comparing a template image I0 to a target image I1 by finding
a smooth transformation that maps the template to the target. This transformation is
assumed to belong to a Lie group G that acts on the set of images V containing
I0 and I1. The effect of the transformation on the data structure is called the action
G × V → V of the Lie group G on the set V . For example, the action of g ∈ G on
I0 ∈ V is denoted as gI0 ∈ V .

The objective of LDM is not just to determine a deformation g1 ∈ G such that the
group action g1I0 of g1 ∈ G on the template I0 ∈ V approximates the target I1 ∈ V

to within a certain tolerance. Rather, the objective of LDM is to find the optimal
path gt ∈ G continuously parameterized by time t ∈ R that smoothly deforms I0
through It = gt I0 to g1I0. The optimal path gt ∈ G is defined as the path that costs the
least in time-integrated kinetic energy for a given tolerance. Hence, the deformable
template method may be formulated as an optimization problem based on a trade-off
between the following two properties: (1) the tolerance for inexact matching between
the final deformed template g1I0 and the target template I1; and (2) the cost of time-
integrated kinetic energy of the rate of deformation along the path gt . The former
is defined by assigning a norm ‖ · ‖ : V → R to measure the mismatch ‖gt I0 − I1‖
between the two images. The latter is obtained by choosing a Riemannian metric
| · | : TG → R that defines the kinetic energy on the tangent space TG of the group G.
In this setting, a notion of distance between two images emerges that allows one
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to compare the similarity of images in terms of transformations. This is the setting
for the development of computational anatomy using the inexact template matching
approach for the registration of images. For more details and background about LDM,
see Miller and Younes (2001), Miller et al. (2002), Beg (2003), and Beg et al. (2005).

In applications of LDM to the analysis of features in biomedical images, the
optimal path gt is naturally chosen from among the diffeomorphic transformations
G = Diff(Ω) of an open, bounded domain Ω . The domain Ω will be taken to be
the ambient space in which the anatomy is located. Recall that a diffeomorphism
g ∈ Diff(Ω) is a smooth invertible map (i.e., an invertible function that maps the do-
main Ω onto itself) whose inverse is also smooth. The one-to-one property of these
transformations ensures that disjoint sets remain disjoint, so that, e.g., no fusion of
points occurs under LDM. Continuity of the diffeomorphisms ensures that connected
sets remain connected. The smoothness of these transformations ensures preservation
of the smoothness of boundaries of the anatomical objects in biomedical images. The
invertibility of diffeomorphisms and their stability under composition also allow one
to regard Diff(Ω) formally as a Lie group.

Different types of biomedical images contain various types of information that
may be represented in a number of geometrically different types of data structures.
For example, the data structures for MR images are scalar functions, or densities,
while data obtained for diffusion tensor (DT)-MRI can be represented as symmet-
ric tensor fields. Naturally, the design of image registration algorithms based on the
theory of transformations must take differences in data structure into account.

Registration of DT-MRI data—necessary for the quantitative analysis of anatomi-
cal features such as tissue geometry and local fiber orientation—is much more com-
plicated than registration of scalar image data. This complication arises because the
local fiber orientation changes under a diffeomorphic transformation, and this reori-
entation has to be included properly in the design of LDM matching algorithms for
DT-MRI. A further complication arises because it is not entirely understood how
macroscopic deformation influences microscopic properties such as fiber orientation
and diffusivity of water. Although significant efforts have been directed at scalar im-
age registration, little work has been done on matching tensor images using LDM. For
the pioneering efforts in the use of LDM with DT-MRI, see Alexander et al. (1999,
2001), Cao et al. (2005, 2006).

In summary, the LDM approach models computational anatomy as a deformation
of an initial template configuration. The images describing the anatomy are defined
on an open bounded set Ω , and the path from the template image I0 to the target
image I1 is viewed as a continuous deformation It := gt I0 under the path of diffeo-
morphic transformations gt ∈ Diff(Ω) acting on the initial template I0. Importantly,
the optimal path of diffeomorphic transformations gt depends on three main factors:
namely, how the action gt I0 is defined, and also the definitions of the kinetic energy
and the tolerance norm. Images representing different types of information may trans-
form differently under G = Diff(Ω). Hence, the optimal path gt ∈ Diff(M) sought in
the LDM approach will depend on the geometrical properties of the data structures
that represent the information in the various types of images.

In the geometrical framework for the LDM approach, the optimal transformation
path gt ∈ Diff(M) may be estimated by using the variational optimization method
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developed in Beg (2003) and Beg et al. (2005). Namely, the optimal path for the
matching diffeomorphism in this problem may be obtained from a gradient descent
algorithm based on the directional derivative of the cost functional. The cost func-
tional must balance the energy of the deformation path versus the tolerance of mis-
match, while taking proper account of the transformation properties of the image data
structure. Other promising methods besides LDM exist, such as the metamorphosis
approach discussed in Miller and Younes (2001), Trouvé and Younes (2005a), and
Holm et al. (2009). Metamorphosis is a variant of LDM that allows the evolution It

of the image template to deviate from pure deformation. It is also a promising method
in the LDM family, but its discussion is beyond our present scope.

Our aim in this paper is to show that a simple and universal property of trans-
formation theory, called the momentum map, can be used to identify and derive the
LDM algorithm corresponding to any data structure on which diffeomorphisms may
act. That is, the momentum map approach enables one to tailor the LDM algorithm
to the transformation properties of the data structure of the images to be matched.
For basic introductions to the momentum map in geometric mechanics, see Holm
(2008) or Marsden and Ratiu (1999). For more extensive treatments, see Abraham
and Marsden (1978), Ortega and Ratiu (2004).

Our interests here focus mainly on deriving the momentum maps corresponding
to the various types of data structures, rather than developing the matching dynamics
that they subsequently produce. In particular, we shall discuss how one uses the mo-
mentum map approach to cope with different data structures, such as densities, vector
fields, or tensor fields, by recognizing their shared properties in a unified geometrical
framework.

The discussion in this paper is mostly on the informal level concerning comple-
tions of the diffeomorphism group and the well-posedness of the resulting Euler–
Poincaré equation.

Plan of the Paper In Sect. 2 we begin by discussing the geometry underlying the
standard algorithm for LDM introduced in Beg et al. (2005). With this motivation we
then introduce an abstract framework in which to model registration problems. We
derive the equivalent of Beg’s formula in the abstract framework in Theorem 2.6 and
show that it has the structure of a momentum map. The end of the section is devoted
to a discussion of the EPDiff equation and the importance of the initial momentum.

After presenting the abstract framework, we apply it in Sect. 3 to a range of ex-
amples commonly encountered in computational anatomy: landmarks, scalar images,
vector fields, and symmetric tensor fields arising from DT-MRIs. We emphasize the
momentum maps in these examples as the main ingredient in our framework and
show how to recover results found in the literature.

Section 4 is devoted to a generalization of standard LDM in a different direction.
This section takes into account the presence of two different length scales in the image
and formulates a version of LDM that uses a semidirect product of two diffeomor-
phism groups, one for each length scale, to perform the registration. We show that
for images defined by scalar functions this approach yields a momentum map that is
very similar to Beg’s formula, except that we use the sum of two kernels, instead of
only one kernel.
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Besides the formulation of LDM as in Beg et al. (2005), other penalty terms have
been proposed by Beg and Khan (2007), Avants et al. (2008), and Hart et al. (2009).
We show in Sect. 5 that these other proposed penalty terms result in momentum map
structures that are similar to those in the formulation of Theorem 2.6.

Our approach can also be generalized to include data structures defined on mani-
folds that do not possess a linear structure. In Sect. 6 we consider the extensions of
the theory required to deal with data structure defined on manifolds and apply these
extensions in examples.

2 Geometry of Registration

2.1 Motivation

The optimal solution to a nonrigid template matching problem is defined as the short-
est, or least expensive, path of continuous deformations of one geometric object (tem-
plate) into another one (target). The goal is to find the path of deformations of the
template that is shortest, or costs the least, for a given tolerance in matching the tar-
get. The approach focuses its attention on the properties of the action of a Lie group
G of transformations on the set of deformable templates. The attribution of a cost
to this process is based on metrics defined on the tangent space TG of the group G,
following Grenander’s (1994) principles.

2.1.1 Formulation of LDM

In the LDM framework this template matching procedure for image registration is
formulated as follows. Suppose an image, say a medical image, is acquired using
MRI, CT, or some other imaging technique. To begin, consider the case that the in-
formation in an image can be represented as a function I : Ω → R, where Ω ⊆ R

d is
the domain of the image. We denote the data structure by writing I ∈ V = F (Ω), the
space of smooth functions encoding the information in the images. One usually deals
with planar (d = 2) or volumetric (d = 3) images. Consider the comparison of two
images, consisting of a function I0 representing the template image and I1 the target
image. The goal is to find a transformation φ : Ω → Ω , such that the transformed
image I0 ◦ φ−1 matches the target image I1 with minimal error, as measured by, say,
the L2 norm of their difference

E2(I0, I1) = ∥
∥I0 ◦ φ−1 − I1

∥
∥

2
L2 .

For this purpose, one introduces a time-indexed deformation process, that starts at
time t = 0 with the template (denoted I0), and reaches the target I1 at time t = 1. At
a given time t during this process, the current object It is assumed to be the image of
the template, I0, obtained through a sequence of deformations.

We also want the time-indexed transformation to be regular. To ensure its regu-
larity, we require the transformation to be generated as the flow of a smooth time-
dependent vector field u : [0,1] × Ω → Ω , i.e., φ = φ1 with

∂tφt = ut ◦ φt , φ0(x) = x. (2.1)
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We measure the regularity of ut via a kinetic-energy-like term

E1(ut ) =
∫ 1

0
|ut |2H dt,

where |ut |H is a norm on the space of vector fields on Ω defined in terms of a positive
self-adjoint differential operator L by

|ut |2H = 〈u,Lu〉L2 . (2.2)

The operator L is commonly chosen as Lu = u − α2�u. We denote by H this space
of vector fields.

Following Beg et al. (2005), we can cast the problem of registering I0 to I1 as a
variational problem. Namely, we seek to minimize the cost

E(ut ) =
∫ 1

0
|ut |2H dt + 1

2σ 2

∥
∥I0 ◦ φ−1

1 − I1
∥
∥

2
L2 (2.3)

over all time-dependent vector fields ut . The transformation φ1 is related to the vector
field ut via (2.1). A necessary condition for a vector field ut to be minimal is that the
derivative of the cost functional E vanish at ut , that is, DE(ut ) = 0. It is shown in
Beg et al. (2005), Theorem 2.1 and Miller et al. (2002), Theorem 4.1 that DE(ut ) = 0
is equivalent to

Lut = 1

σ 2

∣
∣detDφ−1

t,1

∣
∣
(

J 0
t − J 1

t

)∇J 0
t , (2.4)

where φt,s = φt ◦ φ−1
s and J 0

t = I0 ◦ φ−1
t,0 , J 1

t = I1 ◦ φ−1
t,1 . This condition is then used

in Beg et al. (2005) to devise a gradient descent algorithm for numerically computing
the optimal transformation φ1.

2.1.2 Geometric Reformulation of LDM

Formula (2.4) can be reformulated equivalently in a way that emphasizes its geomet-
ric nature. As we will show in Sect. 2.2, formula (2.4) is equivalent to

Lut = − 1

σ 2
(φt · I0) 
 (

φt,1 · (φ1 · I0 − I1)
�
)

. (2.5)

This formula can be understood as follows: the first factor φt · I0 is the action of the
transformation φt on the image I0 ∈ V = F (Ω). This is defined as the composition
of functions, φt · I0 = I0 ◦ φ−1

t . The flat operator � : V → V ∗ maps images in V

to the objects in V ∗ dual to scalar functions, using the inner product on V . (These
dual objects are the scalar densities.) To describe such an operator, one first needs to
choose a convenient space V ∗ in nondegenerate duality with V . We choose to identify
V ∗ with functions in F (Ω), by using the L2-pairing

〈f, I 〉 :=
∫

Ω

f (x)I (x)dx,
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where dx is a fixed volume element on Ω . With this choice, the flat operator ( � ) is
simply the identity map on functions. However, it is important that we conceptually
distinguish between elements in V and in its dual V ∗. Indeed, the action of a trans-
formation φ on an element in V ∗ is the dual action, and does not coincide with the
action on V in general.

In our example, the action on f ∈ V ∗ is

φ · f = ∣
∣detDφ−1

∣
∣
(

f ◦ φ−1). (2.6)

To see how this action arises, we need the abstract definition of a dual action, which
is

〈φ · f, I 〉 = 〈

f,φ−1 · I 〉

.

Remark 2.1 The inverse in the definition of the dual action is necessary to ensure that
we have a left action:

φ · (ψ · f ) = (φ ◦ ψ) · f.

Using this definition and the change of variables formula, we see that

〈φ · f, I 〉 = 〈

f,φ−1 · I 〉 =
∫

Ω

(I ◦ φ)f dx =
∫

Ω

I
(

f ◦ φ−1)
∣
∣detDφ−1

∣
∣dx

= 〈∣
∣detDφ−1

∣
∣
(

f ◦ φ−1), I
〉

.

Therefore, in the second factor φt,1 · (φ1 · I0 − I1)
� of (2.5), the term (φ1 · I0 − I1)

� is
interpreted as a function in V ∗. Consequently, the action is the dual action given by

φt,1 · (φ1 · I0 − I1)
� = ∣

∣detDφ−1
t,1

∣
∣
(

J 0
t − J 1

t

)

.

It remains to explain the last ingredient; namely, the diamond map in (2.5),


 : V × V ∗ → H∗. (2.7)

This is the cotangent-lift momentum map associated to the given representation of the
Lie group G on the vector space V . Such momentum maps are familiar in geometric
mechanics; see, e.g., Holm (2008) or Marsden and Ratiu (1999). The momentum
map (2.7) takes elements of V × V ∗, regarded as the cotangent bundle T ∗V of the
space of images V , to objects in H∗, dual to the vector fields in H. The map 

depends on the choice of H∗. For example, using the L2-pairing with respect to the
fixed volume element dx and relative to the Euclidean inner product ( ·) in R

d , the
momentum map (2.7) is defined for images that are scalar functions I ∈ V = F (Ω)

and densities f ∈ V ∗ = F ∗(Ω) by the relation

〈I 
 f,u〉 =
∫

Ω

−f ∇I ·udx, (2.8)

so that in this case I 
 f = −f ∇I using the L2-pairing.
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Remark 2.2 (Momentum maps)

• In geometric mechanics, momentum maps generalize the notions of linear and an-
gular momenta. For a mechanical system, whose configuration space is a manifold
M acted on by a Lie group G, the momentum map J : T ∗M → g∗ assigns to each
element of the phase space T ∗M a generalized “momentum” in the dual g∗ of the
Lie algebra g of the Lie group G. For example, the momentum map for spatial
translations is the linear momentum, and for rotations it is the angular momentum.

The importance of the momentum map in geometric mechanics is due to
Noether’s theorem. Noether’s theorem states that the generalized momentum J is
a constant of motion for the system under consideration when its Hamiltonian is
invariant under the action of G on T ∗M . This theorem enables one to turn symme-
tries of the Hamiltonian into conservation laws.

• [Notation for momentum maps: J versus 
 ] For convenience in referring to earlier
work, e.g., (Holm et al. 1998, 2009), we distinguish between the notation J for
general momentum maps J : T ∗M → g∗ and the notation 
 for the particular type
of cotangent-lift momentum maps on linear spaces, 
 : V ×V ∗ → H∗ that typically
appear in applications of Euler–Poincaré theory, as in (2.7).

Remark 2.3 (Momentum of images) Momentum maps for images have been dis-
cussed previously. In particular, the momentum map for the EPDiff equation of Holm
and Marsden (2005) produces an isomorphism between landmarks (and outlines) for
images and singular soliton solutions of the EPDiff equation. This momentum map
was shown in Holm et al. (2004) to provide a complete parameterization of the land-
marks by their canonical positions and momenta. A related interpretation of momen-
tum for images in computational anatomy was also discussed in Miller et al. (2006).

We now explain in which sense expression (2.8) is a momentum map. Even though
the cost functional (2.3) is not invariant under the action of the diffeomorphism group,
one may still define the momentum map 
 : V × V ∗ → H∗ via

〈I 
 f,u〉 = 〈f,uI 〉,
as done in geometric mechanics, see Marsden and Ratiu (1999) and Holm (2008).
The action uI is defined as uI := ∂t |t=0φt · I for a curve φt such that φ0(x) = x and
∂t |t=0φt = u. This is the infinitesimal action corresponding to the action of Diff(Ω)

on V . Although the 
-map does not provide a conserved quantity of the dynamics, it
nevertheless helps our intuition and gives us a way to structure the formulas.

Let us apply this concept to image registration for I ∈ F (Ω), the scalar functions
on the domain Ω . The infinitesimal action is given by

uI = ∂t |t=0
(

I ◦ φ−1
t

) = −∇I ·u,

and thus the momentum map in this case is

〈I 
 f,u〉V ∗×V = 〈f,−∇I ·u〉 =
∫

Ω

−(∇I ·u)f dx = 〈−f ∇I,u〉H∗×H,
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as stated in formula (2.8). The key is to reinterpret the L2-duality between the func-
tions −∇I ·u and f as the duality between the vector fields −f ∇I and u.

Using formulas (2.8) and (2.6) in (2.5), we regain the stationarity condition (2.4).

Remark 2.4 Writing the gradient of the cost functional (2.4) in the geometric
form (2.5) has several advantages. For example, it allows us to generalize an algo-
rithm that matches images as scalar functions, to cope with different data structures,
such as densities, vector fields, tensor fields, and others. Making this generalization
allows one to see the underlying common geometrical framework in which we may
unify the treatment of these various data structures. We can also keep the data struc-
ture fixed and vary the norm ‖ · ‖, and thereby alter our criteria of how we measure
the distance between two objects.

This geometric framework also enables comparison of different formulations of
LDM. For example, one may compare the approach from Beg et al. (2005) presented
here with the symmetric approach from Avants et al. (2008) and Beg and Khan (2007)
and the unbiased approach from Hart et al. (2009), in terms of their respective mo-
mentum maps.

In addition, the geometrical setting introduced here for image analysis allows us
not only to vary the data structure, but also to change the group of transformations.
We will explore this possibility in Sect. 4, when we consider image registration using
two diffeomorphism groups simultaneously.

2.2 Abstract Framework

Diffeomorphic image registration may be formulated abstractly as follows. Consider
a vector space V of deformable objects on which an inner product 〈 ·, · 〉 is defined
that allows us to measure distances between two such objects. We can think of V as
containing brain MRI images, an example frequently encountered in computational
anatomy (Miller et al. 2002). The distance between two objects can be defined as
‖I − J‖2 = 〈I − J, I − J 〉, which in the case of images is the L2-distance

∫

Ω

∣
∣I (x) − J (x)

∣
∣2 dx.

The second ingredient is a Lie group G of deformations, which acts on the space
V of deformable objects from the left

(g, I ) ∈ G × V �→ gI ∈ V.

In computational anatomy G usually is taken to be the group of diffeomorphisms
Diff(Ω) or variants of it. A diffeomorphism φ ∈ Diff(Ω) acts on images by push-
forward; that is, by pull-back by the inverse map,

φ · I := φ∗I = I ◦ φ−1 or φ · I (x) = I
(

φ−1(x)
)

.

Roughly speaking, this action corresponds to drawing the image I on a rubber canvas,
then deforming the canvas by φ and watching the image being deformed along with



124 J Nonlinear Sci (2011) 21: 115–150

the canvas. It is also the basis for the familiar Lagrangian representation of fluid
dynamics as described in Holm et al. (1998).

Given a curve t �→ gt of transformations, we define the right-invariant velocity
vector ut ∈ g as

ut = (∂tgt )g
−1
t . (2.9)

We obtain ut by taking the tangent vector of gt and right-translating it back to the
tangent space at the identity TeG = g, which is the Lie algebra of G. Rewriting (2.9)
as

∂tgt = utgt (2.10)

and specifying initial conditions at some time t = s, we obtain an ordinary differen-
tial equation (ODE). If we start with velocity vectors ut , we can solve this ODE to
reconstruct the curve gt . This corresponds to the construction of diffeomorphisms as
flows of vector fields via the equation

∂tφt = ut ◦ φt , φ0(x) = x.

Let us denote by gu
t,s the solution of the ODE (2.10) rewritten as

∂gu
t,s = utg

u
t,s , gu

s,s = e

with the initial condition that gu
t,s is the identity e at time t = s. Since the time t = 0

will play a special role, we denote gu
t := gu

t,0. Standard results for differential equa-
tions show the following properties:

gt,sgs,r = gt,r , gt,s = gtg
−1
s , g−1

t,s = gs,t

which we will use in our calculations.
Following the motivation discussed in Sect. 2.1, we define the abstract version of

the cost functional (2.3) as

E(ut ) :=
∫ 1

0

(ut )dt + 1

2σ 2

∥
∥gu

1 I0 − I1
∥
∥

2
V
, (2.11)

where the function 
 : g → R is a Lagrangian measuring the kinetic energy con-
tained in ut and ‖ · ‖ is the norm on V induced by the inner product 〈 ·, · 〉. Note that
formula (2.11) defines a matching problem for any data structure living in a vector
space V and any group of deformations G acting on V . Although it was inspired by
the concrete problem of diffeomorphically matching scalar-valued images, the cost
function (2.11) no longer contains any reference to image matching.

Next, we want to deduce (2.5) in our abstract framework. In order to compute
the derivative DE(ut ), we need to know how gu

1 behaves under variations δut of ut .
This is answered by the following lemma, the proof of which is adapted from Vialard
(2009) and Beg et al. (2005).
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Lemma 2.5 Let u : R → g, t �→ u(t) be a curve in g and ε �→ uε a variation of this
curve. Then

δgu
t,s := d

dε

∣
∣
∣
∣
ε=0

g
uε
t,s = gu

t,s

∫ t

s

(

Adgu
s,r

δu(r)
)

dr ∈ Tgu
t,s

G.

Proof For all ε we have

d

dt
g

uε
t,s = uε(t)g

uε
t,s , guε

s,s = e.

Taking the ε-derivative of this equality yields the ODE

d

dt

(
d

dε

∣
∣
∣
∣
ε=0

g
uε
t,s

)

= δu(t)gu
t,s + u(t)

(
d

dε

∣
∣
∣
∣
ε=0

g
uε
t,s

)

,

and then, using the notation δgu
t,s := d

dε
|ε=0g

uε
t,s , we compute

d

dt

((

gu
t,s

)−1
δgu

t,s

) = −(

gu
t,s

)−1
u(t)gu

t,s

(

gu
t,s

)−1
δgu

t,s

+ (

gu
t,s

)−1(
δu(t)gu

t,s + u(t)δgu
t,s

)

= gu
s,t δu(t)gu

t,s

= Adgu
s,t

δu(t).

Now we integrate both sides from s to t and multiply by gu
t,s from the left to get

δgu
t,s = gu

t,s

∫ t

s

(

Adgu
s,r

δu(r)
)

dr,

as required. �

Notation and Definitions for Cotangent Lifts As we already know from (2.5) how
the first derivative DE(ut ) of the cost functional is going to look, we want to establish
the necessary notation before we proceed with the rest of the calculation.

• The inner product on V provides a way to identify V with its dual. To I ∈ V one
associates the linear form I � := 〈I, · 〉 ∈ V ∗.

• Given an action G on V , we define the cotangent-lift action of G on π ∈ V ∗ via

〈gπ, I 〉 = 〈

π,g−1I
〉

, for all I ∈ V .

As mentioned in Remark 2.1, the inverse in this definition is necessary to make the
dual action G × V ∗ → V ∗ into a left action.

• Finally we define the cotangent-lift momentum map 
 : V × V ∗ → g∗ via

〈I 
 π,u〉 = 〈π,uI 〉,
where uI is the infinitesimal action of g on V defined by uI = ∂t |t=0gt I for a curve
gt with g0 = e and ∂t |t=0gt = u. The use of the momentum map was motivated in
Remark 2.2.
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Now we are ready to calculate the stationarity condition DE(ut ) = 0.

Theorem 2.6 Given a curve t �→ ut ∈ g, we have

DE(ut ) = 0 ⇐⇒ δ


δu
(t) = −gu

t I0 
 gu
t,1π, (2.12)

or, equivalently,

DE(ut ) = 0 ⇐⇒ δ


δu
(t) = − 1

σ 2
J 0

t 
 (

gu
t,1

(

J 0
1 − J 1

1

)�)
, (2.13)

where the quantities π , J 0
t , and J 1

t are defined as

π := 1

σ 2

(

gu
1 I0 − I1

)� ∈ V ∗, J 0
t = gu

t I0 ∈ V, J 1
t = gu

t,1I1 ∈ V.

When G acts by isometries, the stationarity condition simplifies to

DE(ut ) = 0 ⇐⇒ δ


δu
(t) = − 1

σ 2
J 0

t 
 (

J 0
t − J 1

t

)�
.

The quantity J 0
t is the template object moved forward by gt until time t , and J 1

t

is the target object moved backward in time from 1 to t .

Proof Using the notation π := 1
σ 2 (gu

1 I0 − I1)
� = 1

σ 2 (J 0
1 − J 1

1 )� ∈ V ∗, we may calcu-
late

〈

DE(u), δu
〉 = δ

(∫ 1

0


(

u(t)
)

dt + 1

2σ 2

∥
∥gu

1 I0 − I1
∥
∥

2
V

)

=
∫ 1

0

〈
δ


δu
(t), δu(t)

〉

dt +
〈

π,
d

dε

∣
∣
∣
∣
ε=0

(

g
uε

1 I0 − I1
)
〉

=
∫ 1

0

〈
δ


δu
(t), δu(t)

〉

dt + 〈

π, δgu
1 I0

〉

=
∫ 1

0

〈
δ


δu
(t), δu(t)

〉

dt +
〈

π,

(

gu
1

∫ 1

0

(

Adgu
0,s

δu(s)
)

ds

)

I0

〉

=
∫ 1

0

(〈
δ


δu
(t), δu(t)

〉

dt + 〈(

gu
1

)−1
π,

(

Adgu
0,t

δu(t)
)

I0
〉
)

dt

=
∫ 1

0

(〈
δ


δu
(t), δu(t)

〉

+ 〈

I0 
 (

gu
1

)−1
π,Adgu

0,t
δu(t)

〉
)

dt

=
∫ 1

0

(〈
δ


δu
(t) + Ad∗

gu
0,t

(

I0 
 (

gu
1

)−1
π

)

, δu(t)

〉)

dt,

which must hold for all variations δu(t). Therefore,
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δ


δu
(t) = −Ad∗

gu
0,t

(

I0 
 (

gu
1

)−1
π

)

= −gu
t I0 
 gu

t,1π

= − 1

σ 2
J 0

t 
 gu
t,1

(

J 0
1 − J 1

1

)�
.

If G acts by isometries, then the action commutes with the flat map and we obtain

δ


δu
(t) = − 1

σ 2
J 0

t 
 (

J 0
t − J 1

t

)�
.

The last expression involving the diamond is the cotangent-lift momentum map 
 :
V ×V ∗ → g∗ associated to the given representation of the Lie group G on the vector
space V . �

This theorem tells us how to compute the gradient of the cost functional for any
data structure and any group action. Just like the cost functional (2.11), it is expressed
entirely in geometric terms and contains no reference to particular examples such as
images. This makes the theorem widely applicable.

Remark 2.7 Although the momentum δ

δu

(t) at each time depends on I0 and I1, it
turns out that δ


δu
(t) obeys a dynamical equation that is independent of I0, I1. The

equation in question is the Euler–Poincaré equation on G. History and applications
of the Euler–Poincaré equation can be found in Holm et al. (1998), Marsden and
Ratiu (1999), and Marsden and Scheurle (1983).

Lemma 2.8 The momentum δ

δu

(t) satisfies

d

dt

δ


δu
(t) = − ad∗

ut

δ


δu
(t). (2.14)

This is the Euler–Poincaré equation on the Lie group G with Lagrangian 
 : TG/G �
g → R.

Proof Because the cotangent-lift momentum map is Ad∗-invariant, from Theo-
rem 2.6 we obtain

δ


δu
(t) = −gu

t I0 
 gu
t,1π

= −Ad∗
(gu

t )−1

(

I0 
 (

gu
1

)−1
π

)

.

Differentiation of Ad∗ follows the rules

∂t Ad∗
gt

η = Ad∗
gt

ad∗
ġt g

−1
t

η,

∂t Ad∗
g−1
t

η = − ad∗
ġt g

−1
t

Ad∗
gt

η.
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From this we see that

d

dt

δ


δu
(t) = − d

dt
Ad∗

(gu
t )−1

(

I0 
 (

gu
1

)−1
π

)

= ad∗
ut

Ad∗
gt

(

I0 
 (

gu
1

)−1
π

)

= − ad∗
ut

δ


δu
(t),

and so the momentum satisfies the Euler–Poincaré equation. �

Remark 2.9 (EPDiff equation) When G = Diff(M) the Euler–Poincaré equation is
the EPDiff equation for left action of the diffeomorphisms on the manifold M ,

d

dt

δ


δu
(t) = − ad∗

ut

δ


δu
(t). (2.15)

See Holm and Marsden (2005) for a detailed treatment of the EPDiff equation and
Younes et al. (2009) for interesting discussions of its various usages in computational
anatomy.

Remark 2.10 (Dependence of I0, I1 on the initial momentum) It may seem counter-
intuitive that the momentum evolves independently of the objects we are trying to
match. However, the objects I0, I1 do influence the momentum δ


δu
(t) in a significant

way. Namely, solving the Euler–Poincaré equations requires that we know the initial
momentum δ


δu
(0), and this initial momentum depends on I0, I1 through the formula

δ


δu
(0) = −I0 
 (

gu
1

)−1
π.

Alternatively, we might think of it from the viewpoint of the variational principle.
Assume that 
(u) = 1

2 |u|2 is the squared length of a vector for some inner product
〈 ·, · 〉 on g. If we have found a vector field ut and g1, which minimize

1

2

∫ 1

0
|u|2 dt + 1

2σ 2
‖g1I0 − I1‖2

V ,

then the vector field ut must also minimize

∫ 1

0
|u|2 dt,

among all vector fields ũt whose flows g̃t coincide with gt at time t = 1, i.e., g̃1 = g1.
But this means that ut must be the velocity vector field of a geodesic gt in G. Here
we have implicitly endowed G with a right-invariant Riemannian metric induced by
the inner product 〈 ·, · 〉 on g. The Euler–Poincaré equation (2.15) is just the geodesic
equation on the Lie group G with respect to this Riemannian metric.
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3 Registration Using the Group of Diffeomorphisms

3.1 The Setting

In computational anatomy the group of deformations G is usually the group of diffeo-
morphisms of some domain Ω ⊂ R

d . Different types of data used in computational
anatomy, such as landmarks, scalar-valued images, or vector fields, are deformed by
diffeomorphisms via the mathematical operations of pull-back and push-forward. In-
tuitively this corresponds to embedding the data into the domain Ω , then deforming
Ω by the diffeomorphism and observing how the data is deformed. We will go into
greater detail about how each of the data types can be registered after reviewing some
basic notions about the diffeomorphism group.

3.1.1 Diffeomorphism Group

For technical reasons, we need to consider a group of diffeomorphisms associated
to a certain Hilbert space of vector fields H. We suppose that H is a subspace of the
space of C1 vector fields vanishing at the boundary and at infinity, and such that there
exists a constant C for which

|u|1,∞ ≤ C|u|H, (3.1)

where | · |H is the inner product norm of the Hilbert space H and | · | is the norm in
W 1,∞(Ω). Such a Hilbert space defines a unique kernel K : Ω × Ω → L(Rd ,R

d)

such that

〈u,p〉L2 =
〈

u,

∫

K(·, y)p(y)dy

〉

H
.

This also defines a positive, self-adjoint differential operator L (with respect to the
L2-inner product) such that 〈u,v〉H = 〈u,Lv〉L2 .

If ut : [0,1] → H is a time-dependent vector field in L1([0,1], H), then following
Younes (2010) and Vialard (2009), we can consider the solution φt of the differential
equation

∂tφt (x) = ut ◦ φt (x), φ0(x) = x, (3.2)

and the group

GH = {

φ1 | φt is solution of (3.2) for some ut ∈ L1([0,1], H
)}

. (3.3)

We shall quickly indicate why GH is a group, following Trouvé (1995). Let φu
1 and

φv
1 be the flows at time t = 1 of the vector fields ut and vt . Let ũt := −u1−t . Then we

have the relation

φũ
t ◦ φu

1 = φu
1−t ,

since φv
t ◦ φu

1 (x) and φu
1−t (x) are both integral curves of ũt at φu

1 (x). Taking t = 1,

we obtain (φu
1 )−1 = φũ

1 ∈ GH. To prove that the composition φu
1 ◦ φv

1 is in GH, we
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consider the vector field

(u � v)t :=
{

2u2t , if t ≤ 1/2,

2v2t−1, if t > 1/2,
t ∈ [0,1].

In order to compute φu�v
1 , we first solve the ODE for t ≤ 1/2. In this case (u � v)t =

2u2t =: ūt , therefore φu�v
t = φū

t = φu
2t . We then consider the case when t becomes

larger than 1/2. In this case (u � v)t = 2v2t−1 =: v̄t and, from the situation t ≤ 1/2,
we know that at time t = 1/2 the flow φu�v

t takes the value φu
1 . Thus, we must have

φu�v
t = φv̄

t ◦ (φv̄
1/2)

−1 ◦ φu
1 . Now we observe that φv̄

t ◦ (φv̄
1/2)

−1 = φv
2t−1, since they

are both integral curves of v̄ that coincide at time t = 1/2. We thus get the formula

φu�v
t = φv

2t−1 ◦ φu
1 .

Taking t = 1, we get φv
1 ◦ φu

1 = φu�v
1 ∈ GH.

Although GH is not precisely a Lie group, it comes close enough for our purposes,
with H acting as a substitute for the Lie algebra. We can use formal analogies with the
finite-dimensional case to develop applications for computational anatomy. Details
about this construction can be found in Younes (2010) and Trouvé (1995); results
about the regularity of the diffeomorphisms thus constructed are found in Trouvé and
Younes (2005b) and in Glaunès (2005).

In the following, when we speak of the group of diffeomorphisms, we will mean
the group GH.

3.2 Example 1: Landmark Matching

The simplest kinds of objects used in computational anatomy are landmarks. Land-
marks are labeled collections I = (x1, . . . ,xn) of points xi ∈ R

d . Given two sets
(x1, . . . ,xn), (y1, . . . ,yn) of landmarks, the landmark matching problem consists of
minimizing the energy

E(ut ) = 1

2

∫ 1

0
|ut |2H dt + 1

2σ 2

n
∑

i=1

∥
∥φ1

(

xi
) − yi

∥
∥

2
. (3.4)

Our space of deformable objects is V = (Rd)n with the usual inner product

〈I, J 〉 =
n

∑

i=1

xi ·yi ,

for I = (x1, . . . ,xn), J = (y1, . . . ,yn). The action of the diffeomorphism group GH
is by push-forward:

φ · I := (

φ
(

x1), . . . , φ
(

xn
))

.

The corresponding cotangent-lift action on the dual space (Rdn)∗ ∼= R
dn is given by

φ · J � = (

Dφ
(

x1)−Ty1, . . . ,Dφ
(

xn
)−Tyn

)

,
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and the calculation

〈

I 
 J �,u
〉

H∗×H = 〈

J �,uI
〉

= 〈(

y1, . . . ,yn
)

,
(

u
(

x1), . . . , u
(

xn
))〉

=
n

∑

i=1

yi ·u(

xi
)

=
〈

n
∑

i=1

yiδxi , u

〉

H∗×H

yields the diamond operator (momentum map)

(

x1, . . . ,xn
) 
 (

y1, . . . ,yn
)� =

n
∑

i=1

yiδxi ,

where δx is the delta distribution defined by
∫

f (y)δx(y)dy = f (x) for a test function
f (y).

The condition (2.13) that a minimizing vector field ut must satisfy is

Lut = − 1

σ 2

n
∑

i=1

Dφt,1
(

φ1
(

xi
))−T(

φ1
(

xi
) − yi

)

δφt (xi ).

Consequently, the momentum Lut is concentrated only on the points φt (xi ). By us-
ing the Green’s function K(x,y) corresponding to the differential operator L, the
minimizing condition above can be rewritten for the velocity ut as

ut (x) = − 1

σ 2

n
∑

i=1

K
(

x, φt

(

xi
))[

Dφt,1
(

φ1
(

xi
))−T(

φ1
(

xi
) − yi

)]

.

3.3 Example 2: Image Matching

The large deformation diffeomorphic matching framework used in Beg et al. (2005)
seeks to match two images I0, I1 by minimizing

E(ut ) = 1

2

∫ 1

0
|ut |2H dt + 1

2σ 2

∥
∥I0 ◦ φ−1

1 − I1
∥
∥2

L2 .

This example has already been discussed in Sect. 2.1. We review it here by applying
the abstract formalism developed above. In this example the space V of deformable
objects consists of real-valued functions on Ω . We endow this space with the L2-
inner product. The group of deformations is again the group of diffeomorphisms GH,
generated by vector fields in H. The action of GH on V is by push-forward,

φ · I = φ∗I = I ◦ φ−1,
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for φ ∈ GH and I ∈ V . As we have seen, the dual action reads

φ · π = ∣
∣detDφ−1

∣
∣
(

π ◦ φ−1),

where |detDφ| denotes the absolute value of the determinant of Dφ. The diamond
map in this example is

I 
 π = −π∇I.

According to (2.13), a minimizing vector field ut must satisfy the following nec-
essary condition:

Lut = 1

σ 2

∣
∣detDφ−1

t,1

∣
∣
(

J 0
t − J 1

t

)∇J 0
t , (3.5)

where J 0
t = I0 ◦ φ−1

t,0 , J 1
t = I1 ◦ φ−1

t,1 , and φt,s is the flow of the vector field ut

∂tφt,s = ut ◦ φt,s , φs,s(x) = x.

Equation (3.5) was used in Beg et al. (2005) in devising a gradient descent scheme to
computationally find the minimizing vector field.

3.4 Example 3: Vector Fields

Diffusion tensor magnetic resonance imaging (DT-MRI) measures the anisotropic
diffusion of water molecules in biological tissues, thus enabling us to quantify the
structure of the tissue. The measurement at each voxel is a second-order symmet-
ric tensor. It was shown in Pierpaoli et al. (1996) and Scollan et al. (1998) that the
alignment of the principal eigenvector of this tensor tends to coincide with the fiber
orientation in the brain and heart.

The fiber orientation can be described by a vector field I : Ω → R
d , and matching

two vector fields can be formulated as minimizing the energy

E(ut ) = 1

2

∫ 1

0
|ut |2H dt + 1

2σ 2

∥
∥Dφ1 ◦ I0 ◦ φ−1

1 − I1
∥
∥

2
L2 . (3.6)

In this example the space of deformable objects V is the vector space of vector fields
in Ω , the deformation group is the group of diffeomorphisms GH , generated by
vector fields in H, and GH acts on V by push-forward

φ · I = φ∗I = Dφ ◦ I ◦ φ−1.

The infinitesimal action of u ∈ H on I ∈ V is given by the negative of the Jacobi–Lie
bracket whose components are

(uI)i = ∂ui

∂xj
I j − ∂I i

∂xj
uj = −[u, I ]i .

The object duals to vector fields with respect to the L2-pairing are 1-forms π ∈ V ∗ =
Ω1(Ω). The diamond map is given by

I 
 π = −£I π − div(I )π,
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where £I π denotes the Lie derivative of the one-form π along the vector field I . In
coordinates, writing I = I i ∂

∂xi and π = πi dxi , we can write the diamond map in the
form

I 
 π = −
(

πj

∂I j

∂xi
+ I j ∂πi

∂xj
+ πi

∂I j

∂xj

)

dxi.

Again, diamond denotes the momentum map 
 : V × V ∗ → g∗ for images that are
vector fields I ∈ V = X(Ω) and their duals I � := 〈I, · 〉 ∈ V ∗ = X∗(Ω) � Λ1(Ω) ×
Dens(Ω), the 1-form densities.

Using these formulas, we can write the necessary condition for a vector field ut to
minimize (3.6) as

Lut = (

£(φt )∗I0 + div
(

(φt )∗I0
))(∣

∣detDφ−1
t,1

∣
∣(φt,1)∗π

)

,

where π = 1
σ 2 ((φ1)∗I0 − I1)

� ∈ V ∗. Note that because the �-map does not commute
with pull-backs and push-forwards, i.e.,

φ∗(φ∗I )� �= I �,

this formula cannot be significantly simplified.

3.5 Diffusion Tensor MRI

Instead of matching only the fiber orientations, we could also match the entire sym-
metric 2-tensor, as was done in Alexander et al. (2001) and Cao et al. (2006). In order
to do so, we should first explain how a diffusion tensor changes under a diffeomor-
phism. In analogy to images and vector fields we could use the push-forward by the
diffeomorphism. If T is a symmetric tensor field with coordinates Tij , i.e.,

T (x) = Tij dxi ⊗ dxj

and φ ∈ GH a diffeomorphism, then the push-forward has the coordinate expression

φ∗T (x) = Tij

(

φ−1(x)
)

Bi
k(x)B

j
l (x)dxk ⊗ dxl, (3.7)

where Bi
k(x) is the coordinate matrix of Dφ−1(x).

In Alexander et al. (2001) and Cao et al. (2006) a different action was used. At
each point x ∈ Ω ⊂ R

d the orthonormal principal-axis directions e1(x), e2(x), e3(x)

of the tensor T (x) are computed, as well as their corresponding eigenvalues λ1(x) ≥
λ2(x) ≥ λ3(x). Then T can be written as T = λ1e1eT

1 +λ2e2eT
2 +λ3e3eT

3 . The princi-
pal axes are each transformed separately as vector fields under the diffeomorphisms
as in Sect. 3.4, then normalized and made orthogonal using the Gram–Schmidt
method. The results are given as

ê1 = φ∗e1

‖φ∗e1‖ ,

ê2 = φ∗e2 − 〈 ê1, φ∗e2〉̂e1

‖φ∗e2 − 〈 ê1, φ∗e2〉̂e1‖ ,

ê3 = ê1 × ê2.
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In the above lines, the first principal axis e1 is pushed forward by φ to ê1 parallel to
φ∗e1. The second principal axis e2 is mapped in such a way that ê1, ê2 span the same
plane as φ∗e1, φ∗e2 and are orthogonal to each other. The last principal axis is then
mapped to be orthogonal to the first two. The transformed tensor is defined to be

φ · T = λ1̂e1̂eT
1 + λ2̂e2̂eT

2 + λ3̂e3̂eT
3 . (3.8)

This means that we transform the principal-axis directions as described above, but we
do not change the eigenvalues. The choice of this action is motivated by the particu-
lar application. In brain DT-MRI the tensor T (x) describes the diffusivity of water in
different directions at a position x. The action by diffeomorphisms describes a macro-
scopic deformation of the brain, such as a change of orientation, a growing tumor, or
a trauma. However, the diffusivity of water is governed by the microscopic structure
of tissue, which remains unchanged under a macroscopic transformation. Therefore,
one is looking for a way to transform the tensor, while keeping its eigenvalues (the
principal diffusivities) unchanged.

It can be shown that T �→ φ · T is a left action of Diff(Ω) on the vector space of
symmetric 2-tensors. Both of these approaches to DT-MRI given by the actions (3.7)
and (3.8) have the structure of a Lie group action, and thus they may both be cast
into our momentum-map framework. We leave it to future work to study the different
momentum maps that arise for each of these actions and the implications that they
have for matching of DT-MRIs.

4 Registration Using Semidirect Products

The examples in the previous section have shown that the abstract formulation of
diffeomorphic image registration using the diamond operation (
 ) provides a math-
ematical framework that allows us to adapt easily to accommodate different data
structures. A second advantage of this framework is the ability to perform matching
using different groups. The images encountered in computational anatomy may con-
tain information on different length scales. Two images can vary in their large-scale
structure as well as in their fine details. In matching such images, it may be of ad-
vantage to have two groups at our disposal, one to match the large-scale behavior and
the other one to deal with the fine details. This is made possible in our framework
by using the concept of a semidirect product, which we will review below and then
apply in examples.

4.1 Semidirect Product of Groups

Consider a Lie group H acting on K from the left by homomorphisms,

(h, k) ∈ H × K �→ h · k ∈ K,

that is,
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h1 · (h2 · k) = (h1h2) · k left group action,

h · (k1k2) = (h · k1)(h · k2) action by group homomorphisms.

We can then form the semidirect product group G = H �K . The group multipli-
cation in G is given by

g1g2 = (h1, k1)(h2, k2) = (

h1h2, k1(h1 · k2)
)

, (4.1)

and the inverse of (h, k) is (h, k)−1 = (h−1, h−1 · k−1). The Lie algebra g is the
semidirect product g = h� k of the Lie algebras of H and K . The tangent actions on
G are given by

(ḣ1, k̇1)(h2, k2) = (

ḣ1h2, k̇1(h1 · k2) + k1(ḣ1 · k2)
)

, (4.2)

(h1, k1)(ḣ2, k̇2) = (

h1ḣ2, k1 · (h1k̇2)
)

, (4.3)

and the right-trivialization of the tangent bundle is given by

ġg−1 = (ḣ, k̇)
(

h−1, h−1 · k−1) = (

ḣh−1, k̇k−1 + k
(

ḣh−1 · k−1)).

The next lemma provides formulas for the adjoint and coadjoint actions of H �K

on itself and its Lie algebra.

Lemma 4.1 (Adjoint and coadjoint actions) We have the following formulas for the
adjoint and coadjoint actions:

Ad(h,k)(w, v) = (

Adh v,Adk(h · w) + k
(

Adh v · k−1)), (4.4)

Ad∗
(h,k)(μ, ν) = (

Ad∗
h

(

μ + J
(

k−1ν
))

, h−1 · Ad∗
k ν

)

, (4.5)

ad(v1,w1)(v2,w2) = (adv1 v2, adw1 w2 + v1 · w2 − v2 · w1), (4.6)

ad∗
(v1,w1)

(μ, ν) = (ad∗
v1

μ − w1 
 ν, ad∗
w1

ν − v1 · ν), (4.7)

where J : T ∗K → h∗ is the cotangent-lift momentum map associated to the action of
H on K ,

〈

J(αk), v
〉 = 〈αk, v · k〉,

and 
 : k × k∗ → h∗ is the cotangent-lift momentum map associated to the induced
representation of H on k,

〈w 
 ν, v〉 := 〈ν, v · w〉.
The action (v,w) ∈ h× k �→ v ·w ∈ k is defined as v ·w = ∂t |t=0(h(t) ·w) for a curve
h(t) with h(0) = e and ∂t |t=0h(t) = v.

Proof For the adjoint action (Ad) of the group on its Lie algebra, we simply perform
the multiplications
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Ad(h,k)(v,w) = (h, k)(v,w)
(

h−1, h−1 · k−1)

= (

hv, k(h · w)
)(

h−1, h−1 · k−1)

= (

hvh−1, k(h · w)k−1 + k
(

hvh−1 · k−1))

= (

Adh v,Adk(h · w) + k
(

Adh v · k−1))

and for the coadjoint action (Ad∗) on the dual Lie algebra, we pair with (a, b) ∈ h� k

to define

〈

Ad∗
(h,k)(μ, ν), (a, b)

〉 = 〈

(μ, ν),Ad(h,k)(a, b)
〉

= 〈μ,Adh a〉 + 〈

ν,Adk(h · b) + k
(

Adh a · k−1)〉

= 〈Ad∗
h μ,a〉 + 〈

h−1 · Ad∗
k ν, b

〉 + 〈

k−1ν,Adh a · k−1〉

= 〈Ad∗
h μ,a〉 + 〈

h−1 · Ad∗
k ν, b

〉 + 〈

Ad∗
h

(

J
(

k−1ν
))

, a
〉

= 〈(

Ad∗
h

(

μ + J
(

k−1ν
))

, h−1 · Ad∗
k ν

)

, (a, b)
〉

.

For the next identity we differentiate (4.4) and remark that because of h · e = e we
get v · e = 0. Thus, the adjoint action (ad) of the Lie algebra on itself is given by

ad(v1,w1)(v2,w2) = (

adv1 v2, adw1 w2 + v1 · w2 + w1(v2 · e) + adv1 v2 · e − v2 · w1
)

= (adv1 v2, adw1 w2 + v1 · w2 − v2 · w1).

For the coadjoint action (ad∗) of the Lie algebra on its dual, we pair again with
(a, b) ∈ h� k to see that

〈

ad∗
(v1,w1)

(μ, ν), (a, b)
〉 = 〈

(μ, ν), (adv1 a, adw1 b + v1 · b − a · w1)
〉

= 〈ad∗
v1

μ,a〉 + 〈ad∗
w1

ν − v1 · ν, b〉 − 〈w1 
 ν, a〉
= 〈

(ad∗
v1

μ − w1 
 ν, ad∗
w1

ν − v1 · ν), (a, b)
〉

as stated in the lemma. �

If G = H �K , the equation

∂tg
u
t,s = utg

u
t,s , gu

s,s = e,

can be written as (see (4.2))

∂t

(

hu
t,s , k

u
t,s

) = (

vth
u
t,s ,wtk

u
t,s + vt · ku

t,s

)

, hu
s,s = e, ku

s,s = e,

where ut = (vt ,wt ) ∈ h� k = g and gu
t,s = (hu

t,s , k
u
t,s) ∈ H �K . Thus, hu

t,s and ku
t,s

satisfy the equations

∂th
u
t,s = vth

u
t,s , ∂t k

u
t,s = wtk

u
t,s + vt · ku

t,s . (4.8)
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This means that hu
t,s is the flow of the vector field vt , but this is not true for ku

t,s

and the vector field wt . The corresponding relation for ku
t,s is a direct consequence

of the noncommutativity of the semidirect product. After reviewing these facts about
the semidirect product, we will apply them to form the semidirect product of two
diffeomorphism groups and use this product to perform image registration. This is
done in the next section.

4.2 Image Matching with Semidirect Product Groups

Given a space V of deformable objects, assume that two groups H , K of deforma-
tions act on V from the left. We imagine H to contain large-scale deformations and
K to contain small-scale deformations. Since a deformation that captures small struc-
tures is also able to capture large-scale ones, we will assume that H is a subgroup of
K , denoted by H ≤ K .

Let us determine the action by group isomorphisms of H on K subject to the
following two conditions:

• The formula

(h, k)I := khI (4.9)

defines an H �K-action on V . Thus h deforms I first on a large scale and then
the details are captured on a small scale by k.

• The H �K action is effective. If the action is a representation, this means that it
is faithful. This condition requires that if (h, k)I = I for all I ∈ V , then (h, k) is
the identity.

The first condition implies (h1, k1)(h2, k2)I = (h1h2, k1(h1 · k2))I for all h1, h2 ∈
H , k1, k2 ∈ K , and I ∈ V . Therefore, k1h1k2h2I = k1(h1 · k2)h1h2I for all I ∈ V

which, by the second condition, yields k1h1k2 = k1(h1 · k2)h1; that is, the action is
necessarily given by conjugation (h1 · k2) = h1k2h

−1
1 . In this sense the action by

conjugation appears naturally.
Because of the form of the action on V , the momentum map of the cotangent-lifted

action of H �K on V × V ∗ has the expression

I 
 π = (I 
1 π, I 
2 π) ∈ h
∗ × k

∗ ∼= (h� k)∗, (4.10)

where I ∈ V , π ∈ V ∗, and I 
1 π and I 
2 π denote the cotangent-lift momentum
maps of the H and K-actions on V , respectively.

Since the H -momentum map is obtained from the K-momentum map by restric-
tion, we have

ι∗(I 
2 π) = I 
1 π, (4.11)

where I ∈ V , π ∈ V ∗, ι : h ↪→ k is the inclusion, and ι∗ : k∗ → h∗ is its dual.
The matching problem using a semidirect product is to minimize the energy

E(vt ,wt ) =
∫ 1

0

(vt ,wt )dt + 1

2σ 2
‖k1h1I0 − I1‖2

V , (4.12)
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where (h1, k1) are related to (vt ,wt ) by

∂tht = vth
u
t , h0 = e

∂t kt = (vt + wt)k
u
t − ku

t vt , k0 = e

}

. (4.13)

The last equation is obtained by specializing (4.8) for s = 0 and the action equal to
conjugation.

Theorem 4.2 Given a curve t �→ (vt ,wt ) ∈ h� k, the stationarity condition
DE(vt ,wt ) = 0 for the action (4.12) is equivalent to

δ


δv
(t) = −g̃t I0 
1 g̃t,1π,

δ


δw
(t) = −g̃t I0 
2 g̃t,1π,

where π = 1
σ 2 (g̃1I0 − I1)

� and g̃t ∈ K is the solution of the equation

∂t g̃t = (vt + wt)g̃t , g̃0 = e. (4.14)

Proof Let gt = (ht , kt ) ∈ H �K be the solution of the equation ∂tgt = utgt , g0 = e,
where ut = (vt ,wt ) ∈ h� k and define g̃t := ktht ∈ K . By Theorem 2.6 and (4.10)
we get

δ


δv
= −gu

t I0 
1 gu
t,1π,

δ


δw
= −gu

t I0 
2 gu
t,1π.

Since gt I0 = ktht I0 = g̃t I0 by the definition of the H �K-action on V , this yields

δ


δv
(t) = −g̃t I0 
1 g̃t,1π,

δ


δw
(t) = −g̃t I0 
2 g̃t,1π.

It remains to show (4.14). By (4.13) we have

∂t g̃t = (∂t kt )ht + kt (∂tht ) = (vt + wt)ktht − ktvtht + ktvtht = (vt + wt)g̃t .

We have g̃0 = k0h0 = e. �

This theorem shows that when matching with two groups, the momentum δ

δv

(t)

contains no more information than δ

δw

(t), since we have

δ


δv
(t) = δ


δw
(t)

∣
∣
∣
∣
h

by (4.11). Nonetheless, this case differs from matching with only one group, since
the Euler–Poincaré equation for the semidirect product reads

d

dt

δ


δv
(t) = − ad∗

vt

δ


δv
(t) + wt 
 δ


δw
(t),

d

dt

δ


δw
(t) = − ad∗

wt

δ


δw
(t) + vt · δ


δw
(t),
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which incorporates the actions of both groups and is genuinely different from the
Euler–Poincaré equation for a single group, which is

d

dt

δ


δu
(t) = − ad∗

ut

δ


δu
(t).

4.3 Example: Semidirect Product Image Matching with Two Kernels

One way of introducing a length scale in image matching is to choose an appro-
priate kernel for the cost of the H -action. If we were to choose, for example,
Lu = u − α2�u to be the differential operator associated to the H 1-norm on H ,
then the corresponding kernel would be K(x,y) = e(−|x−y|/α), where α is a length
scale; that is, a filter width. A popular alternative choice in image registration is
the smoother Gaussian kernel K(x,y) = e(−|x−y|2/α2). Increasing the value of α in-
creases the cost of forming gradients, or curvature, and thus inhibits nearby particles
from being deformed differently, while allowing large-scale deformations of the im-
age to occur. On the other hand, sufficiently decreasing the value of α allows fine
adjustments in the image to be made without requiring much energy cost for the ve-
locity vector field.

Recall the setting of the example of image matching in Sect. 3.3. When match-
ing two images I0, I1 ∈ V := F (Ω) with one kernel, the optimizing vector field ut

satisfies

ut = 1

σ 2
K ∗ (∣

∣detDφ−1
t,1

∣
∣∇J 0

t

(

J 0
t − J 1

t

))

,

where K ∗ f = ∫

K(·, y)f (y)dy denotes convolution with the kernel of the operator
L; see (2.4).

A natural approach for distinguishing between multiple length scales would be to
use instead the sum of two kernels,

ũt = 1

σ 2
(Kα1 + Kα2) ∗ (∣

∣detDφ̃−1
t,1

∣
∣∇J̃ 0

t

(

J̃ 0
t − J̃ 1

t

))

,

with two length scales α1 and α2. We will show how this approach can be given a
geometrical interpretation.

Given two kernels Kα1 and Kα2 that correspond to the two length scales α1 > α2,
we use the diagonal Lagrangian 
(v,w) = 1

2 |v|2α1
+ 1

2 |w|2α2
to measure the energy

of the joint velocity vector (v,w). The norm | · |αi
is associated to the inner product

coming from the kernel Kαi
, i = 1,2. We assume that the associated Hilbert spaces

Hα1 ⊂ Hα2 verify the hypothesis (3.1). Let Gα1 ⊂ Gα2 be the groups associated to
Hα1 , Hα2 via (3.3). The element (ψ,η) ∈ Gα1 �Gα2 acts on V = F (Ω) by the action
(4.9); that is,

(ψ,η) · I := (η ◦ ψ) · I = I ◦ (η ◦ ψ)−1 = I ◦ ψ−1 ◦ η−1.

The matching problem with the semidirect product group Gα1 �Gα2 is to minimize
the energy

E(vt ,wt ) = 1

2

∫ 1

0
|vt |2α1

+ |wt |2α2
dt + 1

2σ 2

∥
∥I0 ◦ ψ−1

1 ◦ η−1
1 − I1

∥
∥

2
L2 .
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By Theorem 4.2, the energy is minimal if

vt = Kα1 ∗ (−φ̃t I0 
1 φ̃t,1π
)

, wt = Kα2 ∗ (−φ̃t I0 
2 φ̃t,1π
)

and

∂t φ̃t = (vt + wt) ◦ φ̃t , φ0 = id.

The example of single kernel image matching in Sect. 3.3 showed us that

−φ̃t I0 
 φ̃t,1π = 1

σ 2

∣
∣detDφ̃−1

t,1

∣
∣∇J̃ 0

t

(

J̃ 0
t − J̃ 1

t

)

,

with J̃ 0
t = I0 ◦ φ̃−1

t,0 , J̃ 1
t = I1 ◦ φ̃−1

t,1 . By denoting ũt := vt + wt the velocity vector

field of φ̃t , we see that

ũt = 1

σ 2
(Kα1 + Kα2) ∗ (∣

∣detDφ̃−1
t,1

∣
∣∇J̃ 0

t

(

J̃ 0
t − J̃ 1

t

))

. (4.15)

This computation proves the following theorem.

Theorem 4.3 Matching images with the sum of two kernels corresponds to using a
semidirect product of diffeomorphism groups.

Remark 4.4 This theorem provides a geometrical interpretation for an approach that
might have been suggested intuitively and turns out to be very effective. The sum-
of-kernels strategy for registration was recently applied successfully in Risser et
al. (2010) for measurement of the atrophy of tissues in the hippocampus due to
Alzheimer’s disease.

5 Symmetric Formulations of Image Registration

The cost functional (2.11) is not the only choice possible in the large diffeomorphism
matching framework. Other cost functionals have been proposed in the literature,
which make the registration problem symmetric. A consequence of the choice (2.11)
is that it matters whether we choose to register I0 to I1 or vice versa. In some appli-
cations it may be useful to distinguish conceptually between I0 and I1. For example,
this distinction may be appropriate when the template I0 is available in a higher res-
olution. However, in other cases one may prefer a symmetric cost functional, instead
of (2.11). Such symmetric cost functionals have been proposed in Beg and Khan
(2007), Avants et al. (2008), and Hart et al. (2009). We will show how they can be
analyzed geometrically, much as we did for the cost functional (2.11) in Sect. 2.

Example 5.1 The approach described in Avants et al. (2008) and Beg and Khan
(2007) can be abstractly described in terms of the following cost functional:

E(ut ) =
∫ 1

0

(ut )dt + 1

2σ 2
‖g 1

2
I0 − g 1

2 ,1I1‖2
V ,
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where gt,s is the flow of ut . Since we now evaluate the inexactness of the matching
in the midpoint t = 1

2 of the interval, this choice of the cost functional leads to a sym-
metric formulation of LDM. A calculation similar to that in the proof of Theorem 2.6
may be performed with π = 1

σ 2 (g 1
2
I0 − g 1

2 ,1I1)
�:

〈

DE(ut ), δut

〉

=
∫ 1

0

〈
δ


δu
(t), δu(t)

〉

dt + 〈π, δg 1
2
I0 − δg 1

2 ,1I1〉

=
∫ 1

0

〈
δ


δu
(t), δu(t)

〉

dt

+
〈

π,g 1
2

(∫ 1
2

0
Ad

g−1
t

δu(t)dt

)

I0 − g 1
2 ,1

(∫ 1
2

1
Adg1,t

δu(t)dt

)

I1

〉

=
∫ 1

0

〈
δ


δu
(t), δu(t)

〉

dt

+
∫ 1

2

0

〈

I0 
 g−1
1
2

π,Ad
g−1
t

δu(t)

〉

dt +
∫ 1

1
2

〈

I1 
 g1, 1
2
π,Adg1,t

δu(t)
〉

dt

=
∫ 1

2

0

〈
δ


δu
(t) + gt I0 
 g

t, 1
2
π, δu(t)

〉

dt +
∫ 1

1
2

〈
δ


δu
(t) + gt,1I1 
 g

t, 1
2
π, δu(t)

〉

dt.

This calculation shows that a minimizing vector field must satisfy

δ


δu
(t) = −gt I0 
 g

t, 1
2
π, t ∈ [0,1/2],

δ


δu
(t) = −gt,1I1 
 g

t, 1
2
π, t ∈ [1/2,1],

π = 1

σ 2
(g 1

2
I0 − g 1

2 ,1I1)
�.

This momentum map is very similar to that of Theorem 2.6, except that now there is
a discontinuity at time t = 1/2.

Example 5.2 Another approach to symmetrize the registration problem was consid-
ered in Beg and Khan (2007) via the cost functional

E(ut ) =
∫ 1

0

(ut )dt + 1

2σ 2

∫ 1

0
‖gt I0 − gt,1I1‖2

V dt.

Instead of minimizing the matching error at some chosen time (e.g., t = 0) for the
classical LDM or t = 1

2 as in the previous example, this approach averages the error
over the entire time interval. Using the notation πt = 1

σ 2 (gt I0 −gt,1I1)
� we can again

calculate the derivative of E(ut ):
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〈

DE(ut ), δut

〉

=
∫ 1

0

〈
δ


δu
(t), δu(t)

〉

dt +
∫ 1

0
〈πr, δgrI0 − δgr,1I1〉dr

=
∫ 1

0

〈
δ


δu
(t), δu(t)

〉

dt

+
∫ 1

0

〈

πr, gr

(∫ r

0
Ad

g−1
t

δu(t)dt

)

I0 − gr,1

(∫ r

1
Adg1,t

δu(t)dt

)

I1

〉

=
∫ 1

0

〈
δ


δu
(t), δu(t)

〉

dt

+
∫ 1

0

∫ r

0

〈

gt I0 
 gt,rπr , δu(t)
〉

dt dr +
∫ 1

0

∫ 1

r

〈

gt,1I1 
 gt,rπr , δu(t)
〉

dt dr

=
∫ 1

0

〈
δ


δu
(t), δu(t)

〉

dt

+
∫ 1

0

∫ t

1

〈

gt I0 
 gt,rπr , δu(t)
〉

dr dt +
∫ 1

0

∫ t

0

〈

gt,1I1 
 gt,rπr , δu(t)
〉

dr dt

=
∫ 1

0

〈
δ


δu
(t) +

∫ 1

0

(

gt,1I11[0,t](r) + gt I01[t,1](r)
) 
 gt,rπrdr, δu(t)

〉

dt.

This calculation yields the following necessary conditions for the minimizing vector
field:

δ


δu
(t) = −

∫ 1

0

(

gt,1I11[0,t](r) + gt I01[t,1](r)
) 
 gt,rπr dr,

πt = 1

σ 2
(gt I0 − gt,1I1)

�.

Here, 1[0,t](r) is the indicator function of the interval [0, t], i.e., 1[0,t](r) = 1 for
r ∈ [0, t] and 0 otherwise. The momentum map in this case involves an average over
time.

Example 5.3 A third approach to symmetric registration was proposed in Hart et al.
(2009). They suggested that inexactness should be allowed in both the initial and final
images, by choosing the cost functional

E(ut , I ) =
∫ 1

0

(ut )dt + 1

2σ 2
‖I − I0‖2

V + 1

2σ 2
‖g1I − I1‖2

V .

This cost functional treats I ∈ V as an additional free variable. Intuitively, this
approach means that we are looking for an energy minimal path such that both
the starting and the ending points match I0 and I1 as well as possible. Comput-
ing the necessary conditions for the pair (ut , I ) to minimize E(ut , I ) and denoting
π := 1

σ 2 (g1I − I1)
� yields
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〈

DE(ut , I ), (δut , δI )
〉

=
∫ 1

0

〈
δ


δu
(t), δu(t)

〉

dt + 1

σ 2
〈I � − I

�
0 , δI 〉 + 〈π, δg1I + g1δI 〉

=
∫ 1

0

〈
δ


δu
(t), δu(t)

〉

dt + 1

σ 2

〈

I � − I
�
0 + σ 2g−1

1 π, δI
〉

+
〈

π,g1

(∫ 1

0
Ad

g−1
t

δu(t)dt

)

I

〉

=
∫ 1

0

〈
δ


δu
(t) + gt I 
 gt,1π, δu(t)

〉

dt + 1

σ 2

〈

I � − I
�
0 + σ 2g−1

1 π, δI
〉

.

This leads to

δ


δu
(t) = −gt I 
 gt,1π,

I � = I
�
0 − σ 2g−1

1 π,

π = 1

σ 2
(g1I − I1)

�.

For images I ∈ F (Ω,R) as in Sect. 3.3, the equation for I � can be solved explicitly
to find

I = I0 + |Dφ1|I1 ◦ φ1

1 + |Dφ1| .

In this case I constitutes a weighted average of I0 and the deformed image φ−1
1 · I1

at time t = 0.

These examples all have a similar momentum map structure. The examples dif-
fered in the time point at which the inexactness of the matching was measured, or,
as in the last case, in which of the images was being compared. We have restricted
our attention primarily to only one of these possible formulations of LDM. However,
the geometric interpretations are clearly similar in all cases, and the momentum map
plays the determining role in each case.

6 Nonlinear Generalizations

We now show that the formalism developed in Sect. 2.2 generalizes easily to the
case when the set of images is not necessarily a vector space and the cost function is
not necessarily the Euclidean distance. This situation arises, for example, in the Land-
mark Matching Problem associated to points on the sphere for the study of neocortex;
see Miller et al. (2002) and references therein.

Suppose the set of images is a manifold Q on which a group of transformations G

acts on the left. As before, we denote by gI the action g ∈ G on I ∈ Q. We consider
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a cost function of the form

E(ut ) =
∫ 1

0

(ut )dt + F

(

gu
1 I0, I1

)

, (6.1)

where F is defined on Q × Q. When Q is a vector space V with inner product norm
‖ · ‖V , we recover the cost function (2.11) by choosing

F(I, J ) := 1

2σ 2
‖I − J‖2.

The next theorem establishes the stationarity condition associated to the cost
in (6.1).

Theorem 6.1 Given a curve t �→ ut in the Lie algebra g of G, we have

DE(ut ) = 0 ⇐⇒ δ


δu
(t) = −J

(

gu
t,1 ∂1F

(

J 0
1 , I1

))

,

where J : T ∗Q → g∗ is the cotangent bundle momentum map and ∂1F(J 0
1 , I1) ∈

T ∗
J 0

1
Q is the tangent map to F relative to the first variable. The momentum δ


δu
(t)

satisfies the Euler–Poincaré equation

d

dt

δ


δu
(t) = − ad∗

ut

δ


δu
(t).

Proof The proof is similar to that of Theorem 2.6. We will use the formula
〈J(αq), u〉 = 〈αq,uQ(q)〉 for the momentum map J : T ∗Q → g∗ associated to the
cotangent-lift action. Using Lemma 2.5, we calculate

〈

DE(ut ), δut

〉

= δ

(∫ 1

0


(

u(t)
)

dt + F
(

gu
1 I0, I1

)
)

=
∫ 1

0

〈
δ


δu
(t), δu(t)

〉

dt + 〈

∂1F
(

J 0
1 , I1

)

,
(

δgu
1

)

I0
〉

=
∫ 1

0

(〈
δ


δu
(t), δu(t)

〉

dt + 〈(

gu
1

)−1
∂1F

(

J 0
1 , I1

)

,
(

Adgu
0,t

δu(t)
)

Q
I0

〉
)

dt

=
∫ 1

0

(〈
δ


δu
(t), δu(t)

〉

+ 〈

J
((

gu
1

)−1
∂1F

(

J 0
1 , I1

))

,Adgu
0,t

δu(t)
〉
)

dt

=
∫ 1

0

(〈
δ


δu
(t) + Ad∗

gu
0,t

(

J
((

gu
1

)−1
∂1F

(

J 0
1 , I1

)))

, δu(t)

〉)

dt,

which must hold for all variations δu(t). Therefore,
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δ


δu
(t) = −Ad∗

gu
0,t

(

J
((

gu
1

)−1
∂1F

(

J 0
1 , I1

)))

= −J
(

gu
t,1∂1F

(

J 0
1 , I1

))

,

as required. The same proof as for Lemma 2.8 shows that the Euler–Poincaré equa-
tions are verified. �

When Q is a vector space V , this stationarity condition can be rewritten equiva-
lently by using the diamond map, (
 ), as

δ


δu
(t) = −J 0

t 
 (

gu
t,1 ∂1F

(

J 0
1 , I1

))

.

Landmark Matching on Manifolds In the case of the Landmark Matching Problem
on a Riemannian manifold Q, one chooses the cost function

F(q1, . . . , qn;p1, . . . , pn) :=
n

∑

i=1

1

2σ 2
d(qi,pi)

2,

where d is the Riemannian distance. This approach is used for imaging of the neo-
cortex, where Q is taken to be the sphere S2. The energy to minimize has the form

E(ut ) = 1

2

∫ 1

0
|ut |2H +

n
∑

i=1

1

2σ 2
d
(

φ1(qi),pi

)2
,

where qi,pi ⊂ S2 are given.

LDM Multimodal Image Matching The framework developed above allows us to
understand geometrically the model developed in Vialard (2009), §3.2. This model
also deals with a change of intensity in the image I : Ω → X. This change of intensity
can be modeled by an action η ◦ I of a diffeomorphism of the template codomain X.
In this case, the energy can have the general form

E(vt ,wt ) =
∫ 1

0

(vt ,wt )dt + F

(

η1 ◦ I0 ◦ φ−1
1 , I1

)

,

where ηt ∈ Diff(X) and φt ∈ Diff(Ω) are the flows of vt and wt , respectively. This
problem can be recast in our formulation by considering the action of the direct prod-
uct Diff(Ω) × Diff(X) on the manifold Q = F (Ω,X) given by

(φ, η) · I := η ◦ I ◦ φ−1.

For simplicity, we suppose that X is a vector space, but in general X can be an arbi-
trary manifold. The cotangent-lifted action on π reads

(φ, η) · (I,π)(x) = ∣
∣detDφ−1(x)

∣
∣Dη−1(I

(

φ(x)
))T · π(

φ−1(x)
)

,
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and the momentum map is

J(I,π) =
(

−π ·∇I,

∫

Ω

π(x)δI (x) dx

)

.

Using these formulas, the stationarity condition is

δ


δv
= πt ·∇J 0

t ,
δ


δw
= −

∫

Ω

πt (x)δJ 0
t (x) dx,

where J 0
t = ηt ◦ I0 ◦ φ−1

t and

πt (x) := ∣
∣detDφ−1

t,1 (x)
∣
∣
(

Dηt,1
(

J 0
1 (x)

))−T
∂1F

(

J 0
1 , I1

)(

φ−1
t,1 (x)

)

.

The last expression is obtained using the formula of the cotangent-lifted action and
the equality

(

Dη−1
t,1

(

J 0
t

(

φt,1(x)
)))T = Dηt,1

(

J 0
1 (x)

)−T
.

For more discussion, see Vialard (2009).

Alternative Approach We now consider an alternative approach that affects the geo-
metric shape of the image I : Ω → X, as considered in Trouvé (1995). This approach
is different from that considered above. For example we can consider the case X = S2

of images of unitary vectors in R
3. In this case the shape can be modified by letting

various groups of matrices act on S2. These matrices are, of course, allowed to de-
pend on the domain Ω . We thus need to consider the group F (Ω,G), where G is a
group acting on X. In order to also take into account the transformation on the do-
main, the semidirect product Diff(Ω)� F (Ω,G) � (φ, θ) needs to be considered as
in Trouvé (1995). This group acts in a natural way on the space F (Ω,X) of images
via the left action

(φ, θ) · I = (θI ) ◦ φ−1,

where the function θI is defined by (θI )(x) := θ(x)I (x), and in the last term we use
the G-action on X. A vector field on this Lie algebra has components (u, ν), where
u is a vector field on Ω and ν : Ω → g. Using the multiplication rule (φ, θ)(φ̄, θ̄ ) =
(φ ◦ φ̄, (θ ◦ φ̄)θ̄ ) in the semidirect product, the ODE ∂t (φt , θt ) = (ut , νt )(φt , θt ) reads

φ̇t = ut ◦ φt , θ̇t = (νt ◦ φt )θt , φ0 = e, θ0 = e.

For simplicity, we suppose that X is a vector space. The infinitesimal action on the
space of images reads (u, ν)I = νI −∇I ·u; hence, the cotangent bundle momentum
map is

J(I,π) = (−π ·∇I, I 
 π),

where I 
 π is the function with values in g∗ defined by (I 
 π)(x) = I (x) 
 π(x),
and the diamond on the right denotes the momentum map associated to the action of
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G on X. In order to formulate the stationarity condition, we also need the expression
of the cotangent-lifted action given by

(φ, θ) · (I,π) = (

(θI ) ◦ φ−1,
∣
∣detDφ−1

∣
∣(θπ) ◦ φ−1).

The cost function has the form

E(ut , νt ) =
∫ 1

0

(ut , νt )dt − F

(

(θ1I0) ◦ φ−1
1 , I1

)

.

The stationarity conditions are thus given by

δ


δu
(t) = πt ·∇J 0

t ,
δ


δν
(t) = −J 0

t 
 πt ,

where J 0
t = (φt , θt ) · I0 = (θt I0) ◦ φ−1

t and

πt = ∣
∣detDφ−1

1,t

∣
∣
(

θ1,t ∂1F
(

J 0
1 , I1

)) ◦ φ−1
1,t .

For example, when F(I, J ) = 1
2σ 2 ‖I − J‖L2 , relative to an inner product on X, then

∂1F(I, J ) = 1
σ
(I − J )� ∈ F (Ω,X∗), where � is associated to the inner product on

X. In this case, the stationarity conditions are

δ


δu
(t) = ∣

∣detDφ−1
1,t

∣
∣
(

J 0
t − J 1

t

)�∇J 0
t ,

δ


δν
= J 0

t 
 ∣
∣detDφ−1

1,t

∣
∣
(

J 0
t − J 1

t

)�
.

7 Conclusions

This paper has revealed that Beg’s algorithm from Beg (2003) and Beg et al. (2005)
for image registration in the LDM framework is the cotangent-lift momentum map
associated to the action of diffeomorphisms on scalar functions. Accordingly, the mo-
mentum map has emerged as a central organizing principle in the abstract framework
inspired by image registration. The momentum map provides a means of unifying
the LDM approach for the registration of different data structures that use different
penalty terms and different Lie groups. Different data structures summon different
group actions to define their transformations, and they will therefore produce different
momentum maps. However, once the momentum map is computed, it is straightfor-
ward to implement the corresponding gradient descent scheme for image registration.
The momentum map systematically incorporates both the specification of distance on
the space of images and the transformation properties of their data structure.

Exploring the specification of distance and dealing with other data structures has
been left for future work. For example, the pioneering work of Alexander et al. (2001)
and Cao et al. (2006) on the registration of DT-MRIs led to the action on symmetric
tensors discussed in Sect. 3.5. We plan to compare the momentum map for this action
with the usual push-forward action on tensor fields to gain further insights into the
matching procedures for tensor data structures.
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The advantage of our method in practical applications is that it systematizes the
development of algorithms for registering images in various types of data structures
by identifying the momentum map as the shared fundamental element for registration
of images in any data structure. This means, for example, that registration of multi-
channel or multimodal images can be accomplished simply by applying the present
method to the sum of momentum maps for the different types of data structures.

Images encountered in applications often contain information at several length
scales. A heuristic approach for adapting the registration procedure to take into ac-
count these length scales suggested replacing the kernel in (2.4) by the sum of two
kernels Kα1 + Kα2 , with two different length scales α1 and α2 for their correspond-
ing filters. We have shown that this strategy has a geometric interpretation. Namely,
instead of using a single diffeomorphism group to perform image registration, we
can use the semidirect product of two such groups, each associated to its own length
scale, the larger one sweeping the smaller one by semidirect-product action. The re-
sulting equations (4.15) then coincide with the sum-of-kernels strategy. Similarly, the
same result could be obtained for the sum of three and more kernels. Recently, this
sum-of-kernels strategy for registration has been applied successfully in Risser et al.
(2010) for measurement of atrophy of tissues in the hippocampus due to Alzheimer’s
disease. This result opens new perspectives in clinical applications of multiresolution
imaging.

Other formulations of LDM that were intended to make the registration symmetric,
as proposed by Avants et al. (2008), Beg and Khan (2007), and Hart et al. (2009), were
also discussed and written geometrically. We have shown that all these cases exhibit
similar momentum map structures. The main differences arise from the choice of the
time at which the momentum map is to be evaluated. Once again, the momentum
map appears as a unifying framework, allowing systematic comparisons among the
different examples.

We have also explored a natural generalization of the framework to incorporate
data structures in manifolds, which do not have the linear structures of vector fields.
Examples included landmarks on a sphere. Since in this case no norm is available to
measure distances between two images, a distance function must be chosen. Further
applications and capabilities of this nonlinear framework will be explored in future
work.
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