
J Nonlinear Sci (2009) 19: 467–496
DOI 10.1007/s00332-009-9041-6

Turing Instabilities at Hopf Bifurcation

M.R. Ricard · S. Mischler

Received: 8 October 2007 / Accepted: 16 January 2009 / Published online: 19 February 2009
© Springer Science+Business Media, LLC 2009

Abstract Turing–Hopf instabilities for reaction-diffusion systems provide spatially
inhomogeneous time-periodic patterns of chemical concentrations. In this paper we
suggest a way for deriving asymptotic expansions to the limit cycle solutions due to
a Hopf bifurcation in two-dimensional reaction systems and we use them to build
convenient normal modes for the analysis of Turing instabilities of the limit cycle.
They extend the Fourier modes for the steady state in the classical Turing approach,
as they include time-periodic fluctuations induced by the limit cycle. Diffusive insta-
bilities can be properly considered because of the non-catastrophic loss of stability
that the steady state shows while the limit cycle appears. Moreover, we shall see
that instabilities may appear even though the diffusion coefficients are equal. The
obtained normal modes suggest that there are two possible ways, one weak and the
other strong, in which the limit cycle generates oscillatory Turing instabilities near a
Turing–Hopf bifurcation point. In the first case slight oscillations superpose over a
dominant steady inhomogeneous pattern. In the second, the unstable modes show an
intermittent switching between complementary spatial patterns, producing the effect
known as twinkling patterns.
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1 Introduction

After Turing’s paper (Turing 1952) a great amount of work has been done looking
at the conditions for diffusive instability in reaction-diffusion systems and their con-
nections with pattern formation in a wide variety of applications. In this area, many
topical features have been studied in chemical systems (Schuman and Tóth 2003;
Vastano et al. 1987), but especially in the mathematical model of morphogene-
sis (Maini et al. 1997). The Hopf bifurcation (HB) arises in numerous contexts
and is widely quoted (Marsden and McCracken 1976; Kuznetsov 1998; Edelstein-
Keshet 1988). It features the sudden appearance of a small limit cycle surround-
ing the steady state when a parameter in the system varies slightly beyond a cer-
tain threshold, called the HB point. More recently, several studies have explored
the simultaneous appearance of HB and Turing instabilities in different scenarios:
chemical reactions (Yang et al. 2005), semiconductor physics (Just et al. 2001;
Meixner et al. 1997), and prey–predator systems (Baurmann et al. 2007). Diffusive
instabilities generated by the limit cycle are often called Turing–Hopf (TH) instabil-
ities or bifurcations, which eventually result in oscillatory inhomogeneous patterns.
For instance, in Baurmann et al. (2007) the behavior of a predator–prey system show-
ing oscillatory patterns as a consequence of TH instabilities in the neighborhood of a
TH point was studied and it was concluded that these instabilities can be considered
as one important mechanism for the appearance of complex spatiotemporal dynam-
ics in dynamic population models. Just et al. (2001) studies patterning phenomena
in semiconductor heterostructures, in which voltage across the heterostructure and
an internal degree of freedom play the roles of activator and inhibitor respectively.
In many applied problems applications of TH instabilities have been found, but still
show the lack of an appropriate normal modes theory.

Some questions arise naturally from the study of TH instabilities for a reaction-
diffusion system under the additional assumption that the set of parameters remains
close to a TH bifurcation point. One may consider the following: In which way do
the oscillations of the stable limit cycle impact on the formation of diffusive instabil-
ities? What are the conditions leading presumably to an intermittent behavior of the
ultimate spatiotemporal pattern? Does the oscillatory behavior of the spatiotemporal
instability have the same frequency as the limit cycle? To address these questions we
shall introduce appropriate normal modes in the stability analysis of the limit cycle.

In this paper we shall be concerned with an analytical approach to the formation
of spatiotemporal patterns at the onset of TH instabilities. To do so, we derive first an
asymptotic expansion of the limit cycle solution (u(t), v(t)) to the nonlinear reaction
system which appears via an HB. We study the onset of diffusive instabilities of the
spatially homogeneous periodic solution (u(t), v(t)) to the following system:

ut = Du�u + f (u, v;a),

vt = Dv�v + g(u, v;a)
(1)
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with Neumann boundary conditions

∂u

∂n
= ∂v

∂n
= 0 on ∂Ω. (2)

This cycle solution appears while the parameter a in the reaction part of the system
varies, considering now the fact that reactants can diffuse within the spatial (time-
independent) bounded region Ω with regular boundary. We denote the Laplacian
operator by �. It is well known that patterns will depend not only on the reaction
dynamics, but also on geometrical features of Ω including their spatial dimension. In
this paper we do not impose any restriction either to the shape or to the spatial dimen-
sion of the domain Ω , but practical limitations would arise if one looks for eigenval-
ues and eigenvectors to the Laplacian operator in general domains. At least, many
interesting inhomogeneous patterns, consisting either of squares, hexagons, stripes
or their combinations, have been studied in easy-shaped domains when dimΩ = 2.
Here u, v are the profiles of component concentrations under diffusion and a is a
(scalar or vector) parameter. For simplicity, we shall assume that f and g are analyti-
cal in a neighborhood of the isolated steady state. All parameters and variables in this
paper are considered dimensionless. For bounded spatial domains and natural bound-
ary conditions it is known from Henry (1981) and Leiva (1996) that the non-constant
spatially homogeneous periodic solution to (1) and (2) is orbitally stable if (Du,Dv)

belongs to a certain open neighborhood of the bisectrix of the first quadrant in the
Cartesian product of diffusion coefficients while the nonzero Flocquet exponent of
the linearized system is negative. But the periodic solution would be unstable for any
pair of diffusion coefficients if the nonzero Flocquet exponent were positive. Unfor-
tunately the sign of this exponent using our asymptotic expansions cannot be deter-
mined. The study of TH instabilities is frequently done by determining the region of
the parameter space at which bifurcations and instabilities coexist. In this paper we
are considering the parameters lying on a neighborhood of a codimension-two TH
point, at which the asymptotic expansion of the limit cycle and the Turing analysis
of diffusive instabilities are valid. In a natural way, we describe the diffusive linear
instabilities through modified Fourier normal modes, here called the extended nor-
mal modes, but which are identified in the following simply as the modes. They are
valid only in the presence of the limit cycle, i.e. close to an HB point. These modes,
being unstable or not, show interactions between a spatial pattern (the spatial eigen-
function) and the oscillations due to the cycle. The knowledge of such modes would
serve to get a better representation of the ultimate oscillatory patterns and the way
in which Turing instabilities and HB interact at the onset of instability. As we shall
see, these modes suggest two possible ways in which the limit cycle might generate
Turing instabilities. Naturally, it will depend on the set of parameters. In the one, the
amplified function results in a superposition of slight time-periodic oscillations, with
the same frequency of the cycle solution, over a prevalent Turing pattern given by
the spatial eigenfunction. In the second type it is amplified as an alternated switching
between “complementary” spatial patterns, with different frequency than the cycle
solution. We have conceived here the modes on the basis of the asymptotic expan-
sion, via averaging techniques, to the stable limit cycle solution via a supercritical
HB in the reaction system. As in Turing’s mathematical procedure, we can have only
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a presumption about the ultimate pattern toward which the destabilized solution con-
verges. In fact, by the techniques developed in this paper, we cannot give any proof
about whether or not the ultimate pattern is time-periodic, or about the length of time
at which the fluctuating instabilities can be observed. We assume that the ultimate
pattern emerges (see Murray 2001) due to the boundedness of the unstable modes by
the nonlinear reaction terms in (1). And, we expect that spatiotemporal oscillations
could be observed at least for a while, so that the resulting solution moves closely to
some pattern, being oscillatory or not. We hypothesize that, between all destabiliz-
ing extended modes, those that grow fastest will have a prevailing influence, relaying
their spatiotemporal structure on the resulting time-periodic inhomogeneous pattern.
One of the most widely studied models for Turing instabilities is Schnakenberg’s
model, which is based on a hypothetical mechanism of autocatalytic reactions. We
use this example to show how our modes work.

Currently, many applications of Turing instabilities have been intensively stud-
ied for singularly perturbed reaction-diffusion systems (see for instance Ward 2006;
Ward and Wei 2003; Wei and Winter 2003) but such patterns are so far from the TH
point that our modes are not valid in that context. On the other hand, the procedure
developed here leading to the construction of the extended mode, can be taken when
the non-flux conditions at the boundary are substituted with the Dirichlet, Robin or
space-periodic conditions. In the third of the above conditions the bifurcation analysis
should be done again at the spatial eigenvalue λ = 0.

The plan of the paper is as follows. In Sect. 2 we give the outline of the results.
In Sect. 3 elementary results about the stability analysis of limit cycles and steady
states can be found. Section 4 is devoted to the HB and, particularly, we have derived
there an asymptotic expansion of the limit cycle. We shall use this expansion in the
derivation of the extended modes. However, it can also be used without the ultimate
interest in the analysis of diffusive instabilities. In Sect. 5 we perform an asymptotic
treatment of Turing instabilities for the limit cycle. In this section the extended modes
are derived and, on their basis, different types of interactions between cycles and
spatial patterns near a TH point are discussed. Finally, in Sect. 6 we consider the
example of TH instabilities to Schnakenberg’s reaction-diffusion model. Conclusions
are presented in Sect. 7.

2 Outline of Results

In this paper we first suggest a simple procedure for deriving a uniform asymptotic
expansion of the limit cycle in the vicinity of the HB point for a two-dimensional
reaction system. First, we present in Proposition 1 (Sect. 4) an algorithm allowing
the reduction of the reaction system into a second order differential equation repre-
senting a weakly nonlinear oscillator in normal form. This transform of variables is,
in general, nonlinear, but we prove that it is enough to consider the linear part of this
transform to obtain the equation of the oscillator, preserving the required accuracy.
The main idea of this procedure is that the transform of variables can be taken “close”
to the appropriate linear transform in a neighborhood of the origin. Then, applying
the Krylov–Bogoliubov–Mitropolski averaging method (Bogoliubov and Mitropolski
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1961) to the oscillator, in Theorem 1 (Sect. 4) we use a discriminant function to deter-
mine the appearance of an HB, subcritical or supercritical, as in the Andronov–Hopf
normal form (Kuznetsov 1998). It can be seen in Corollary 1 that the existence of at
least one nonzero term with even degree in the expansion of the discriminant func-
tion is a necessary and sufficient condition to determine subcritical or supercritical
bifurcations, in accordance with the sign of the coefficient in the lowest even degree
nonzero term. We conclude that terms with even degree in the Taylor expansion of f

and g on the right side of (1) do not have any contribution to the appearance of an HB.
Only appropriate interactions within the terms having odd degree in the expansions
of f and g can contribute to the appearance of an HB.

Using the asymptotic expansion to the limit cycle we shall build appropriate nor-
mal modes in Proposition 5 (Sect. 5). The extended modes, which can be unstable
or not, allow the study of the central matter in this paper: the appearance of Turing
instabilities of the stable limit cycle. In the classic theory, the steady patterns are asso-
ciated with the region of positiveness of the spatial eigenfunction participating in the
unstable Fourier mode. We use the same idea to conclude in Theorem 2 (Sect. 5) that
our modes suggest two possible ways in which the limit cycle might generate Turing
instabilities. In the one, the amplified function is the product of the spatial eigenfunc-
tion by a time-periodic function with average close to one, leading to a superposition
of slight time-periodic oscillations with the same frequency of the cycle over a domi-
nant Turing pattern. In the second, the amplified function is the product of the spatial
eigenfunction by a time-periodic function with zero average, so the product alternates
the sign in each period. Consequently, an intermittent switching between the Turing
pattern and its “complementary” is expected. The frequency of these oscillations is
different from the frequency of the cycle solution.

3 Preliminaries

Let us first briefly review some basic questions about stability of periodic solutions in
the frame of ordinary and partial differential equations, and finally, about the Turing
instability of the steady state.

3.1 Stability Analysis of the Limit Cycle

For a dynamical system on the plane

Ẏ = F(Y,a) (3)

an isolated non-punctual closed orbit is called limit cycle. A source of limit cycle for-
mation is HB. The appearance of such solutions to (3) depending on a real parameter
a would happen when the parameter takes values slightly beyond a certain threshold
value a0, called the HB point (Marsden and McCracken 1976). The situation would
be sketched as follows: for a < a0 the vector steady state Y0 defined by F(Y0, a) = 0
is an unstable focus, but for a > a0 this steady state is stable focus. So, the behavior
of the solutions changes abruptly at the bifurcation value. The reader can find a re-
markable study of the HB in Marsden and McCracken (1976), or the compact version
in Edelstein-Keshet (1988).
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The question of the stability of the cycle can be reduced by the standard procedure
to the stability of the trivial solution of linear systems with periodic coefficients: more
precisely, the Flocquet theory (Verhulst 1990). Let Θ(t) be a non-trivial T -periodic
vector solution to (3). Then, making the substitution Y = Θ(t)+Z(t) and linearizing
about Θ(t) we obtain the following linear equation with a periodic matrix for the
vector perturbation:

Ż = JΘ(t)Z (4)

where JΘ(t) is the Jacobian matrix of the right side term F evaluated on the periodic
solution Θ(t). The linear periodic system in (4) has the non-trivial periodic solution
Θ̇(t), so one of the Flocquet exponents of (4) is zero. It is known that the expression
of the nonzero Flocquet exponent in terms of the mean value of the trace of the
Jacobian matrix evaluated at the cycle solution is

ρ2 = 1

T

∫ T

0

(
∂f (Θ(s))

∂y1
+ ∂g(Θ(s))

∂y2

)
ds. (5)

According to the linear theory, if the Flocquet exponent ρ2 is negative (ρ2 = −υ) and
Y(t) is a solution to (3) with initial condition Y(t0) close enough to Θ(t1), then

∥∥Y(t) − Θ(t + φ0)
∥∥ ≤ C exp(−υt)

for t > 0, being φ0 certain real constant and C > 0. Then, we say that Θ(t) is orbitally
asymptotically stable.

3.2 Orbital Stability in Parabolic PDE

Assume that (3) has a limit cycle solution Θ(t) due to HB as the parameter τa varies,
then Θ(t) is also a spatially homogeneous solution to (1) and (2). The concept of
an orbitally stable solution to the system of (1) and (2) results in a natural extension
of the precedent concept to an infinite dimensional dynamical system defined in an
appropriate Hilbert space. More exactly, given a bounded domain Ω ⊂ R

n, let A
be the non-negative self-adjoint linear operator in L2(Ω) defined in the dense sub-
set D(A) = {φ ∈ H 2(Ω)| ∂φ

∂n
= 0 on ∂Ω} by the correspondence Au = −�u. Here

H 2(Ω) is the usual Sobolev space and the boundary condition is understood in the
sense of traces. Let us consider in D(A) the equation

Yt = −DAY + F(Y ) (6)

where D represents the diagonal matrix of diffusion coefficients, and the function F

represents the reaction without diffusion. A solution to (6) is a continuous function
defined in an open subset of R with values in [D(A)]2 ⊂ H = [L2(Ω)]2, which sat-
isfy the equation in a mild sense (Leiva 1996). In what follows, we will identify a
solution to (6) as a solution to the boundary value problem of (1) and (2). Let us take
an appropriate norm in D(A), say ‖ · ‖.
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Definition 1 The spatially homogeneous periodic solution Θ(t) to (6) is orbitally as-
ymptotically stable if there are positive constants ρ, δ, μ such that, for every solution
Ψ (t) to (6) satisfying

min
t

∥∥Ψ (t0) − Θ(t)
∥∥ ≤ ρ

for some t0, then exists h ∈ R such that
∥∥Ψ (t + h) − Θ(t)

∥∥ ≤ δ exp(−μt)

for all t ≥ t0. If μ = 0, the solution Θ(t) is said to be neutrally stable. In any other
case the solution is said to be unstable.

Let us recall about a general result quoted in Leiva (1996) summarized as follows.

Theorem (Diffusive Stability) Let ρ1, ρ2 be the Flocquet exponents for the periodic
linear system of (4), with ρ1 = 0 being simple. It can be concluded that: (a) If ρ2 > 0,
then Θ(t) is unstable for (1). (b) If ρ2 < 0 and 0 ≤ |Du − Dv| is small enough, then
Θ(t) is orbitally asymptotically stable for (1).

The solution Θ(t) in the above theorem is not associated necessarily to a limit
cycle solution. We shall obtain in Sect. 4.1 an asymptotic expansion to Θ(t) at a
supercritical HB, but substituting this expansion into (5) we cannot be conclusive
about the sign of ρ2. At least, if for instance it happens that ρ2 > 0, this fact gives
us the idea that the limit cycle would generate Turing instabilities even though the
diffusion coefficients are equal.

3.3 Turing Instabilities of the Stable Steady State

In Turing’s seminal paper (Turing 1952) a stable steady state to the reaction process
without diffusion was assumed, allowing a separate analysis of the destabilizing in-
fluence of diffusion. Turing showed that dissimilar diffusion coefficients of the par-
ticipating reactants would destabilize the steady state of the reaction kinetics. Such
instabilities lead to steady spatially varying profiles in the reactant concentrations
which are called patterns. The mathematical basis for these assertions is the stability
analysis of spatially homogeneous solutions with compact orbit, so leading to spectral
analysis. The standard Turing procedure for the stability analysis is done for systems
with two chemical reactants considering normal modes of the type

Z(x, t) = exp(σ t)Uk(x)R (7)

as non-trivial solutions to the linearized equation

∂Z

∂t
= D�Z + JaZ (8)

where Uk(x) are eigenfunctions associated to the eigenvalue λk (k ∈ N) of the un-
bounded non-negative linear operator (−�) with Neumann boundary conditions
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at ∂Ω . We shall call these λk the spatial eigenvalues, and the Uk(x) are called the
spatial eigenfunctions. Perturbations in the form of (7) allow us to study the stability
on bounded domains, due to the fact that any small perturbation Z can be expanded
in terms of such basic functions

Z(x, t) =
∞∑

k=1

exp(σkt)Uk(x)Rk, (9)

that is, in Fourier series. In this series, eigenvalues are eventually repeated several
times according with their (finite) multiplicity. The Rk are determined by the Fourier
development of the initial condition. In (7) the temporal eigenvalues σ are determined
by the second degree equation

det(Ja − λkD − σI) = 0 (10)

with R being a nonzero σ -eigenvector of the matrix (Ja − λkD). Here Ja , D and
I are 2 × 2 matrixes, which are the Jacobian matrix at the spatially homogeneous
steady-state solution to (1), the diagonal matrix of diffusion coefficients and the iden-
tity matrix, respectively. Note that σ = σ(λk). Now, let us take in the rest of this
paragraph the subindex k as the wavevector, in order to simplify notations. Feasi-
ble wavevectors k in (7) are determined by the boundary conditions. For instance,
if we consider the parallelepiped Ω = [0,L1] × · · · × [0,Ln], x = (x1, . . . , xn), the
eigenfunctions in (9) can be taken as: Uk(x) = ∏n

j=1 coskjxj where k = (k1, . . . , kn)

and kj = ( π
Lj

pj ), for such pj ∈ N. The corresponding spatial eigenvalue to such an

eigenfunction will be λk = |k|2 = (k2
1 + · · · + k2

n).
As usual in this analysis, rather than to study the general shape of the neutral

stability curves on the plane of diffusion parameters, it will be most convenient to
identify the value of the ratio Dv/Du for which the steady state becomes locally
unstable. The evolution to a spatially patterned state, as Dv/Du was varied, is the
basic process generating spatial pattern in biology and chemistry (Maini et al. 1997).
It is natural to expect that the behavior of solutions near the boundary has a profound
effect on mode selection and robustness of patterning, as the spatial eigenvalues λk

will depend on the kinds of the boundary conditions and on the shape of the domain.
The Dirichlet, Robin and periodic boundary conditions also have to be considered
in pattern formation (Golubitsky et al. 2000). A quite different scenario, not treated
here, takes place when the reaction-diffusion system is considered in an unbounded
domain (van der Ploeg and Doelman 2005; Sandstede and Scheel 2001).

The appearance of Turing instabilities for a given λk corresponds to the existence
of a positive root σ to (10). In the stable steady state case we have τa < 0, hence

τT < 0 (11)

for any eigenvalue λk . Then, we require

δT < 0 (12)

to be the appearance of TI. Here

τT = trace(Ja − λkD) = τa − λk(Du + Dv), (13)



J Nonlinear Sci (2009) 19: 467–496 475

δT = det(Ja − λkD) = δa − λk

(
Duj

a
22 + Dvj

a
11

) + λ2
kDuDv (14)

are functions of the eigenvalue λk . The positive values of λk for which δT < 0 are
located in the open interval Λ = ]λ−, λ+[ where δT (λ±) = 0. They are

λ± =
(Dvj

a
11 + Duj

a
22) ±

√
(Dvj

a
11 + Duj

a
22)

2 − 4DuDvδa

2DuDv

. (15)

The interval Λ is a non-void subset of R+ only if the diffusion coefficients are dif-
ferent enough. The region in the parameter space at which diffusive instabilities are
expected (see (12)) is called the cone of negativeness of δT . Then, it will be useful to
introduce the (bifurcation) parameter

d = Dv

Du

to determine threshold diffusion ratios for the appearance of instabilities. These ratios
are given by the formula

d± = (δa − ja
12j

a
21) ± √−2δaj

a
12j

a
21

(ja
11)

2
. (16)

From (12) and (14) it can be concluded that

dja
11 + ja

22 > 0 (17)

is necessary to ∅ 	= Λ ⊂ R+. In the Fourier expansion of disturbances only the terms
corresponding to eigenvalues λk ∈ Λ can contribute to the appearance of instabili-
ties taking into account that 
eσ (λk) > 0. Further details about patterning in two-
species chemical interactions can be found in Murray (2001) or Edelstein-Keshet
(1988, Chap. 11). The end result of Turing’s method (see Murray 2003) is the as-
sumption that the small amplitude instabilities

Z(x, t) ≈
∑
λk∈Λ

exp(σkt)Uk(x)Rk

are bounded by the nonlinear terms and evolve to a spatially inhomogeneous station-
ary solution to (1) and (2), which is a Turing pattern.

4 The Hopf Bifurcation Revisited

In this section we present the HB in a general reaction system with two reactants. Let
us consider the system equation (3) whose reaction follows the law:

{
u̇ = f (u, v;a),

v̇ = g(u, v;a)
(18)
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in which f and g are assumed analytical in a vicinity of the steady state given by:

Pa = (
u0(a);v0(a)

)
(19)

so, {
f (u0(a), v0(a);a) = 0,

g(u0(a), v0(a);a) = 0.

We denote by Ja = (ja
ij ) the Jacobian matrix of (18) at the steady-state equation (19),

and

δa = det(Ja), (20)

τa = trace(Ja). (21)

We assume that the eigenvalues of Ja are complex conjugate numbers for all values
of a, so

τ 2
a − 4δa < 0 (22)

and further, we assume the existence of a bifurcation value a∗ in which the trace τa

vanishes to change in sign. Then, for any value a in some open neighborhood of a∗
we have

δa > 0. (23)

Further, if τa < 0 (respectively τa > 0) then our steady state is a stable (respectively
unstable) focus. To be more precise, we will consider τa as the intrinsic bifurcation
parameter with bifurcation value τa = 0. We will refer to a subcritical bifurcation if
the limit cycle appears for close to zero but with negative values of τa , and a super-
critical bifurcation if it appears for positive small values of τa . Throughout this paper,
any reference to a supercritical or to a subcritical HB will relate to an intrinsic one
in the above sense. Furthermore, from (22) follows ja

12 · ja
21 < 0 and we do not loose

generality assuming ja
12 > 0.

4.1 Averaging Hopf Periodic Solutions to the Reaction System

Let us rewrite (18) near the steady-state equation (19) as

Ẋ = F (X) = JaX + Ψ (X) (24)

where X = (U(t),V (t))T are the new variables in (18), representing the translation
of the steady state to the origin, and the vector function Ψ is given by the Taylor
expansion of the difference

Ψ

(
U

V

)
=

(
f (u0(a) + U,v0(a) + V ;a)

g(u0(a) + U,v0(a) + V ;a)

)
− Ja

(
U

V

)
.

Hence, Ψ (X) contains all nonlinearities. Let us do, in (24), an invertible analytical
transform of coordinates of a neighborhood of the origin onto another

Y = H(X) = Γ X + G(X) (25)
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driven by a non-singular matrix Γ , and the analytic vector function:

G(X) =
(

ϕ(U,V )

ψ(U,V )

)
=

(∑+∞
n=2

∑
i+j=n ϕijU

iV j

∑+∞
n=2

∑
i+j=n ψijU

iV j

)
(26)

which is assumed to have a positive radius of convergence. Note that, in the Inverse
Function Theorem (Rudin 1976), the existence of the inverse is warranted only be-
ing Γ non-singular and H with smooth continuous derivatives. We shall denote the
inverse

X = H−1(Y ) = Γ −1Y + K(Y ) (27)

where

K(Y ) =
(

ϕ(z, ż)

ψ(z, ż)

)
=

⎛
⎝

∑+∞
n=2

∑
i+j=n ϕ

ij
zi(ż)j∑+∞

n=2
∑

i+j=n ψ
ij
zi(ż)j

⎞
⎠ . (28)

If H is such that

Y =
(

z

ż

)
(29)

being z(t) an unknown function, the integration of the system in (18) can be reduced
to the integration of a second order differential equation in the variable z. As we
shall see, for a given vector field, rather than the exact expressions of the functions
ϕ(U,V ), ψ(U,V ), ϕ(z, ż) and ψ(z, ż) it will only be necessary to get a few appro-
priate coefficients in their Taylor developments to preserve the required accuracy.

Proposition 1 Let us assume that (22) holds. Then, there exists an invertible trans-
form of variables in (25) such that (29) holds. The matrix Γ is any non-trivial linear
combination of {(

1 0
ja

11 ja
12

)
,

(
0 1

ja
21 ja

22

)}
. (30)

The function z in (29) satisfies the following second order equation:

z̈ − τaż + δaz = G(z, ż) (31)

where the right-hand side in (31) does not involve linear terms in z, ż. More precisely,

G(z, ż) = Π2
{
Γ

(
Ja K(Y ) + Ψ

(
H−1Y

))

+ 〈gradX G, F 〉(H−1Y
)}

, (32)

Π2 being the standard projector over the second component.

Proof The proof follows directly substituting (25) into (24). H in (25) defines an
invertible transform of variables because Γ , which is the Jacobian of H at the origin,
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is assumed invertible (Rudin 1976). Further, H verifies (29) if and only if

d

dt
(Π1 H) = Π2 H. (33)

Equation (33) implies that the components γij of Γ verify the following “concor-
dance” condition with the Jacobian of the system at the steady state:

J T
a

(
γ11
γ12

)
=

(
γ21
γ22

)
. (34)

The above condition is equivalent to the fact that the matrix Γ is a linear combination
of the matrixes in (30). Furthermore, due to (22) the eigenvalues of matrix J T

a are
complex, then (γ11, γ12)

T is not an eigenvector of J T
a and it follows that detΓ 	= 0.

The generators of Γ are obtained solving the linear system of (34). For any matrix Γ

satisfying (34), we get

Γ JaΓ
−1 =

(
0 1

−δa τa

)
.

For a given ϕ(U,V ), the function ψ(U,V ) in (26) is determined from the equality

ψ(U,V ) = 〈gradXϕ, F 〉 = ∂ϕ

∂U
U̇ + ∂ϕ

∂V
V̇ , (35)

and it follows that (25) represents an invertible change of coordinates satisfying (33).
In this process, one can consider that ψ is engendered by ϕ. All the coefficients of
ψ(U,V ) are obtained in unique way if we substitute the second component in (26)
and ϕ(U,V ) into (35). Note that taking ϕ as a polynomial function, it follows that ψ

will also be a polynomial.
All the coefficients of the components of K(Y ) will be determined equating the

corresponding terms in

Y = H ◦ H−1(Y ) = Γ H−1(Y ) + G
(

H−1(Y )
)

= Y + Γ
(

K(Y )
) + G

(
H−1(Y )

)
. (36)

This procedure leads to a hierarchy of equations from which all of the required co-
efficients in the inverse transform can be determined. More precisely, for each pair
(i, j) such that i + j ≥ 2, a pair of coefficients ϕ

ij
and ψ

ij
from a linear algebraic

system with matrix Γ will be univocally determined. The functions ϕ and ψ are not

necessarily polynomials even though ϕ and ψ are, but ϕ and ψ have positive ra-

dius of convergence if ϕ and ψ have also. Finally, computing derivatives in (25) and
substituting (27) follows

Ẏ = Γ
(
JaX + Ψ (X)

) + 〈gradX G, F 〉
= (

Γ JaΓ
−1)Y + Γ

(
Ja K(Y ) + Ψ

(
H−1Y

)) + 〈gradX G, F 〉(H−1Y
)

and taking second components we get (31). �
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Remark 1 Let f and g in (18) be polynomial functions with degree M . The degree
of ϕ larger than M can be taken and the coefficients ϕij = 0 in (26) can be selected
at least while i + j ≤ M . Then, ψ is determined by (35) and consequently ψij = 0
at least while i + j ≤ M . Furthermore, from (36) follows ϕ

ij
= 0 and ψ

ij
= 0 while

i + j ≤ M . So, in a neighborhood of the origin the transform H is “close enough” to
the matrix transform Γ and the function in (32) can be approximately represented as

G(z, ż) = Π2
{
Γ

(
Ψ

(
Γ −1Y

))} + O
(‖Y‖M+1). (37)

For instance, a suitable transform is that engendered by ϕ = UM+1.

From (31) we look for an oscillation with positive and small, but finite, ampli-
tude ε. The small parameter ε will be “identified” later. Taking in (31) the change of
variables

z(t) = ες(t), (38)

follows the equation of a weakly nonlinear oscillator in normal form:

ς̈ − τaς̇ + δaς = εG(ς, ς̇; ε). (39)

Then, the cycle solution to (18) will correspond to the non-trivial periodic solution
to (39). It is known that averaging methods provide an algorithm for preparing HB
problems (Marsden and McCracken 1976, Sect. 4C), and we shall apply the Krylov–
Bogoliubov–Mitropolski averaging method (Sanders and Verhulst 1985; Bogoliubov
and Mitropolski 1961) in order to find an asymptotic expansion to the solution. So,
let us consider the new variables r = r(t) and θ = θ(t) defined as follows:

ς = r cos(t + θ), (40)

ς̇ = −r sin(t + θ); (41)

then, the corresponding averaged equations are

ṙ = − 1

2π

∫ 2π

0
sinφ

{−τar sinφ + εG(r cosφ,−r sinφ; ε)}dφ, (42)

θ̇ = − 1

2πr

∫ 2π

0
cosφ

{−τar sinφ + εG(r cosφ,−r sinφ; ε)}dφ (43)

and finally,

ṙ = r

2

{
τa − p(r; ε)}, (44)

θ̇ = q(r; ε) (45)

in which

p(r; ε) = ε

πr

∫ 2π

0
sinφG(r cosφ,−r sinφ; ε) dφ, (46)
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q(r; ε) = − ε

2πr

∫ 2π

0
cosφG(r cosφ,−r sinφ; ε) dφ. (47)

Proposition 2 Functions p(r; ε) and q(r; ε) have at least order O(ε2) or, equiva-
lently, p(r; ε)/r2 and q(r; ε)/r2 have a finite limit as r → 0. Moreover, the Taylor
expansions of p(r; ε) and q(r; ε) must not contain odd powers of r .

Proof Substituting into (46) and (47) the polynomial expansion of the function G

given in (37) we will find, in each term, factors of the form

∫ 2π

0
sinm φ cosn φ dφ (48)

which are nonzero only for some pairs (m,n) such that m + n is an even integer. In
particular, the first assertion follows from the fact that the polynomial expansion of
G(r cosφ,−r sinφ; ε) does not have linear terms and quadratic terms have projection
zero over the subspace of L2(0,π) spanned by {sinφ, cosφ}. �

Proposition 3 If the function p(r; ε) is not identically zero, there must exist a positive
integer N and a positive real number r0 such that p(r, ε) has the non-trivial Taylor
expansion:

p(r; ε) = ωε2Nr−2N
0 r2N + O

(
ε2N+2r2N+2) (49)

where ω = +1 or −1. Let us assume the existence of a positive root r to the equation

p(r; ε) − τa = 0 (50)

for positive (respectively negative) values τa sufficiently close to zero. Then, up to the
leading term, the root to (50) has the form

r = r0

( |τa|
ε2N

) 1
2N + O

(
ε2). (51)

Proof The first assertion follows directly from (46) and the polynomial expansion of
G(z, ż; ε). From (49), to the existence of a positive root to (50) in the form of (51), it
is necessary and sufficient that ω = sign τa . �

Let us now make the association between the bifurcation parameter and the small
amplitude of the periodic oscillations. From here, we will take the following

Definition 2 Let us assume the existence of the positive root to (51) either for positive
or for negative values of τa . Then, the small parameter ε, heuristically introduced
in (38), will be taken as

ε2N = |τa|. (52)
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Remark 2 From (52) it follows that the root in (51) can now be written as

r = r0 + O
(|τa| 1

N
)
. (53)

Due to Proposition 3 the function p in (46) will play the role of a “discriminant”
with respect to the HB, as we shall see in the next theorem. Let us now consider the
following approach to the well-known Hopf bifurcation theorem for the case n = 2.
We will approximate the periodic solution to (39) via (40) and (41) with the periodic
solution to the averaged equations (42) and (43), respectively. Our approach follows,
from this point, in a similar way to that in the study of the so-called Andronov–Hopf
bifurcations (Kuznetsov 1998, Chaps. 2 and 3), in which the stability and bifurcation
analysis is done by studying the separate equation for the radius in polar coordinates.

Theorem 1 (Averaging in Hopf bifurcation) Let us assume that (22) holds and that
(50) has the root to (51) for positive (respectively, negative) but sufficiently close to
zero values of the bifurcation parameter τa . Then, a limit cycle to the system in (18)
appears. This bifurcation is supercritical if the root exists for 0 < τa � 1, and sub-
critical if the root exists for 0 < −τa � 1. Furthermore, the limit cycle is orbitally
asymptotically stable (respectively, unstable) if and only if the bifurcation is super-
critical (respectively, subcritical).

Proof The existence of a positive root to (50) is equivalent to the existence of a circle
limit cycle to the averaged system equations (44) and (45). If the steady state is stable
(unstable) then the cycle must be unstable (stable). In other words, the sign of τa must
be equal to the sign of p(r; ε) being 0 < r < r0 and |τa| small enough. �

Corollary 1 Let us assume that (22) holds. A necessary (but not sufficient) condition
to the appearance of an HB is the existence of nonzero terms of odd order in the
expansion of the polynomial functions f or g.

Proof From (37) it follows that only the existence of odd-order terms in the polyno-
mials f or g having nonzero coefficients would lead to the existence of (even order)
terms having nonzero coefficients in the expansion of (49) and, consequently, to the
possible existence of a root to (50). Moreover, the condition is obviously not suffi-
cient, because the numbers in (48) are involved too. �

In Just et al. (2001) the authors derived amplitude equations using a weakly non-
linear analysis near a codimension-two TH point, provided periodic boundary condi-
tions, and considered a small parameter which has, in that context, the same mean-
ing of (τa)

1/2. They observed, for the system studied in that paper, that the HB is
solely determined by the third-order terms, and this fact agrees with our conclusion
in Corollary 1.

Remark 3 We can also conclude that, if the function G(z, ż) defined in (37) has
a polynomial expansion conformed exclusively by terms of even degree, then nei-
ther supercritical nor subcritical bifurcations will appear. Moreover, it follows that an
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HB will not appear in dimension two if the polynomial system of (18) has at most
quadratic components. Corollary 1 is in accordance with the topological normal form
for the HB (Kuznetsov 1998, Theorem 3.4). We point out that Corollary 1 only con-
cerns the HB. For instance, there are examples of quadratic dynamical systems of
two components in which a limit cycle appears, but as a consequence of a homoclinic
bifurcation (Kuznetsov 1998, Chap. 6). Corollary 1 also agrees with the more general
question of the nonexistence of limit cycles in two-species second order kinetics (see
Schuman and Tóth 2003 and references therein). Note that Wilhelm and Heinrich
(1996) gives an example of a three-dimensional system of degree two which exhibits
the HB.

Remark 4 Higher order interactions in the reaction system of (18) would lead to the
existence of more than one positive root of (50). In such cases, following the idea
in Theorem 1 one could conclude the existence of multiple limit cycles after the
HB. We point out that roots to (50) may be not properly associated with the HB,
as happens at the Bautin bifurcation normal form Kuznetsov (1998). In Hofbauer
and So (1994) one can find a reference to the evidence of multiple limit cycles as a
consequence of an HB, albeit for a 3D competitive predator–prey system. There, it
was expected that the parameter range in which several cycles coexist is rather small,
so it would be hard to find them by numerical integration. We mention that, in a quite
different context, multiple Hopf bifurcations have been reported to the Navier–Stokes
equations in rotating cylinders (Marques et al. 2003).

From (45) we will obtain the angular speed of the oscillation. Finally, going back
to the substitutions given in (38) and (25) we shall obtain the uniform asymptotic ex-
pansion of the solution to (31). We develop the periodic solution Θ(t) = (u(t), v(t))

to (18) which generates the limit cycle, by

u(t) = u0(a) + u1(t)
(|τa|

) 1
2N + O

(|τa| 1
N

)
, (54)

v(t) = v0(a) + v1(t)
(|τa|

) 1
2N + O

(|τa| 1
N

)
(55)

where (u0(a);v0(a)) are given in (19), and
(

u1(t)

v1(t)

)
= r0Γ

−1
(

cos(�t)

− sin(�t)

)
(56)

with frequency given

� = 1 + q
(
r0,

(|τa|
) 1

2N
)

(57)

and period T = 2π
�

. Note that, up to the leading terms, the expansions of the cycle

solution in (54) and (55) are uniform, as the O(|τa | 1
2N )-terms are bounded functions.

5 Turing–Hopf Instabilities

By studying the appearance of TH instabilities for the stable limit cycle solution to
the reaction system due to a supercritical HB, we implicitly are considering unstable
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the steady state. In this situation, fortunately, for any initial condition close to the
steady state the corresponding outgoing solution is bounded for all t , and so the loss
of stability is non-catastrophic. These instabilities have been extensively studied near
codimension-two bifurcations (see for instance Just et al. 2001; Meixner et al. 1997),
meaning that the analysis is done near a point at the intersection of the manifolds
δT = 0 and τa = 0 in the parameter space. Our analysis in this paper is also restricted
to this frame. In this section we shall see an asymptotic approach to the analysis of
diffusive instabilities for the stable cycle by taking into account the behavior near
the unstable steady state. So, it is reasonable to study diffusive instabilities for an
unstable steady state in the presence of a supercritical HB, because wavenumber-
zero instabilities will not be a source of unbounded solutions. We remark that the
procedure in this section does not apply for subcritical HB, because the destabilizing
effects of perturbations for the unstable limit cycle after HB or, for the unstable steady
state before HB, could introduce instabilities which are not properly related with
pattern formation.

5.1 Turing Instabilities for the Stable Limit Cycle

The analysis of Turing instabilities near the stable steady state via the normal modes
in (7) is to determine whether the growth rate σ , which is a root to (10), can ever have
a positive real part. As we shall see, we will introduce appropriate normal modes for
representing the TH instabilities and again the values of σ will determine the stability.
In the Turing analysis of the stable steady state, being τa < 0 follows that τT < 0;
hence, the condition for the appearance of instabilities is given by δT < 0. But, in
the presence of a limit cycle we have τa > 0, so according to the formula in (13)
the sign of τT would vary as λk does. Further, if τT ≤ 0, the condition for diffusive
instabilities is δT < 0. In addition, we shall consider the remaining possibility,

τT > 0. (58)

Of course, if there is a spatial eigenvalue for which (58) holds, it should be one of the
lower ones. If (58) holds, for any value of δT there is at least one root σ to (10) having
positive real part. Then, the condition of (58) itself destabilizes the system, but in
dependence of δT will do it in different ways. Now we shall study small perturbations
of the spatially homogeneous periodic solution

Θ(t) = (
u(t), v(t)

)
(59)

to (1) and (2). As before, we are denoting by Θ(t) the corresponding solution to (18)
via a supercritical HB, the components of which are given in (54) and (55). Denoting
the corresponding perturbations by capital letters, we get

u(t, x) = u(t) + U(t, x),

v(t, x) = v(t) + V (t, x),

substituting which into (1) and linearizing we get the following system with periodic
coefficients for the perturbations:

∂Z

∂t
= D�Z + JΘ(t)Z (60)
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where Z(x, t) is the column vector with components U and V satisfying (2). Substi-
tuting the development of Θ into (54) and (55) into the Jacobian JΘ(t), we get

JΘ(t) = Ja + τ
1

2N
a J1/2N(t) + O

(
τ

1
N
a

)

where

J1/2N(t) = (κij ) (61)

is a time-periodic matrix where each κij is the differential of the partial derivative of
f or g with respect to u and v evaluated at (u0;v0); u1(t), v1(t). The first subindex
concerns f and g respectively, and the second corresponds to u and v respectively.
For instance,

κ11 = ∂2f

∂u2

∣∣∣∣
(u0;v0)

u1(t) + ∂2f

∂u∂v

∣∣∣∣
(u0;v0)

v1(t)

and u1(t), v1(t) are given in (56).
Let us assume that the solutions to (60) could be asymptotically developed in the

small parameter as follows:

Z = Z0(t, x) + τ
1

2N
a Z1(t, x) + O

(
τ

1
N
a

)
. (62)

Then, substituting (62) into the system equation (60), we get a hierarchy of equations
determining Zj :

∂Z0

∂t
= D�Z0 + JaZ0, (63)

which correspond to the O(1) terms, and

∂Z1

∂t
= D�Z1 + JaZ1 + J1/2N(t)Z0 (64)

which correspond to the O(τ
1

2N
a ) terms. The functions Z0, Z1 are determined from

(63) and (64) considering homogeneous Neumann boundary conditions in both cases.
As the solution Z0 can be expanded in a Fourier series, we would focus only on terms
with the form of (7). Corresponding to such Z0 we expect the solution to (64) to be
in the form

Z1(t, x) = exp(σ t)Uk(x)Wk(t)R, (65)

where the matrix-valued function Wk(t) satisfies the equation

Ẇk = (Ek − σI)Wk + J 1
2N

(t) (66)

being

Ek = Ja − λkD,
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and σ being an eigenvalue of Ek , i.e. a root to (10). First note that

J 1
2N

(t) = K cos(�t) + L sin(�t)

where K and L are constant matrixes. Let us look for a particular solution to (66) in
the form

Wk(t) = A cos(�t) + B sin(�t) (67)

where A and B are constant matrixes. Substituting both formulae into (66) and equat-
ing the corresponding terms, a linear algebraic matrix system is obtained with a so-
lution given by

A = −(
� 2I + (Ek − σI)2)−1(

�L + (Ek − σI)K
)
, (68)

B = (
� 2I + (Ek − σI)2)−1(

�K − (Ek − σI)L
)
, (69)

because the numbers (σ ± i�) are not eigenvalues of Ek . Then, the general solution
to (66) has the form

Wk(t) = exp
(
(Ek − σI)t

)
C + Wk(t).

We are particularly interested in the solution to (66) verifying Wk(0) = 0, which is
given by

Wk(t) = − exp
(
(Ek − σI)t

)
A + Wk(t). (70)

Let us call σ̂ the other eigenvalue of Ek . The important question about the bound-
edness of the solution of (70) as t → +∞, or equivalently, the stability of the linear
equation (66), is determined by the eigenvalues of (Ek − σI), which can be easily
computed from σ and σ̂ .

Proposition 4 Let σ be a root of (10) having positive real part. The system equa-
tion (66) is stable if one of the following conditions holds: (i) τT ≤ 0 and δT < 0;
(ii) τT > 0 and δT ≤ 0; (iii) τT > 0 and δT ≥ 1

4τ 2
T . Moreover, if: (iv) τT > 0 and

0 < δT < 1
4τ 2

T , then (66) is unstable whenever σ is the lowest root of (10), and it is
stable otherwise.

Proof The proof follows from the eigenvalues of the matrix (Ek − σI), in which σ

is an eigenvalue of the matrix Ek with positive real part. In the first three referenced
cases the matrix (Ek − σI) has one eigenvalue equal to zero and the other having
non-positive real part. In (iv) (Ek − σI) has one eigenvalue zero and the other would
be either negative or positive in dependence on whether or not σ is the greatest of the
two positive eigenvalues of Ek . �

The importance of the boundedness of Wk(t) is in connection with the uniformity
in the expansion between brackets in the following result.
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Proposition 5 Let us assume the existence of a supercritical HB as in Theorem 1,
and let 0 < τa � 1. Then, the extended normal modes

Z(x, t) = exp(σ t)Uk(x)
{
I + τ

1
2N
a Wk(t) + O

(
τ

1
N
a

)}
R (71)

are asymptotic expansions of solutions to (60) or, more exactly, they are normal mode
disturbances corresponding to the spatial eigenvalue λk in the stability analysis of
Θ(t) (59) as a spatially homogeneous solution to (1) and (2).

Proof From (22) follows (23), and (39) corresponds to a weak oscillator so the pro-
cedure in Sect. 4.1 can be followed step by step. Let the solution Z0 to (63) have the
form of (7), in which the exponent σ is an eigenvalue of the matrix Ek . As the initial
datum does not depend on τa , the initial condition for Z1 must be taken equal to zero,
and it follows that the initial condition to (66) is Wk(0) = 0. Hence, the appropriate
function Wk(t) in (65) is the Wk(t) given in (70). �

Now,

Proposition 6 The expansion between brackets in (71) is uniform up to the leading
term or can be easily transformed into a uniform one.

Proof This expansion is uniform whenever Wk(t) be bounded for t > 0. On the con-

trary, the time-dependent O(τ
1

2N
a )-term in (71) shows an exponential growth that

could cause a loss of uniformity in the expansion inside the brackets. In accordance
to Proposition 4 there is only one situation at which Wk(t) is unbounded, which oc-
curs when the real roots to (10) are 0 < σ < σ̂ . However, in this last situation we
could transform (71) in order to return to the uniformity with the extraction of the
exponential as

Z(x, t) = exp(σ t)Uk(x) exp
(
(̂σ − σ)t

)

· {e(t) + τ
1

2N
a b(t) + O

(
τ

1
N
a

)}
R

= exp(̂σ t)Uk(x)
{
τ

1
2N
a b(t) + e(t) + O

(
τ

1
N
a

)}
R (72)

where e(t) and b(t) are matrix functions, the first of which has a norm tending expo-
nentially to zero and the second is convergent as t → +∞. �

As in the former Turing analysis, the appearance of instabilities depends on the
eigenvalue σ which is connected with the remaining parameters and the spatial eigen-
values through (10). The extended modes, being unstable or not, represent small dis-
turbances only for 0 < τa � 1, near an HB point. Far from the codimension-two TH
point in the parameter space different kinds of instabilities would appear (see Yang
et al. 2005; Ward 2006). We implicitly assumed the existence of a bounding domain
(see Murray 2001) in the phase space of the reaction system which simultaneously
contains the steady state, the limit cycle and the solutions when diffusion is included.
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Furthermore, if TH instabilities associated with the spatial eigenvalue λk appear, we
shall consider that the linearly unstable extended modes are bounded by the nonlin-
ear terms and from these interactions emerges the ultimate steady or spatiotemporal
pattern.

In the classical Turing analysis an essential assumption is that τa < 0, which en-
sures the stability of the steady state in the absence of diffusion. This assumption
and (17) imply together that Turing instabilities would appear only if d 	= 1. But,
we should consider 0 < τa � 1 while the limit cycle exists, so we would expect the
appearance of TH instabilities even if d = 1, i.e., even if Du = Dv . This phenom-
enon was observed in Vastano et al. (1987) in connection with the Gray–Scott model.
The sign of τT (see (13)) becomes relevant in the study of these instabilities, because
τa > 0 holds. For instance, real or even complex roots with positive real part to (10)
always appear if τT > 0, and it would be interesting to study the way in which the os-
cillations due to the limit cycle are transferred to the resulting diffusive instabilities.
We shall address this question by an analysis using the extended modes.

Definition 3 Let us assume that the reaction part in (1) admits a supercritical HB and
let 0 < τa � 1. Then, TH instabilities generated by the limit cycle arise if 
e(σ ) > 0.
We shall call this a weak TH instability if there is at least one real root σ > 0 to (10).
If the roots to (10) are complex conjugated σ = σr ± iσi with σr > 0, then we shall
call it a strong TH instability.

The following theorem shows the reason for the above definition.

Theorem 2 Let λk be a given positive spatial eigenvalue; τT and δT are given in (13)
and (14) respectively. Assume further that the reaction system has a limit cycle via
an HB. If τT ≤ 0 , δT < 0, then TH instabilities appear and they are weak. If τT > 0,
instabilities appear and they are weak provided τ 2

T −4δT ≥ 0, while they are strong if
τ 2
T − 4δT < 0. If the diffusion coefficients are equal (d = 1) or close enough to each

other, only strong TH instabilities would appear.

Proof Let us recall that the appearance of a limit cycle due to a supercritical HB
means that 0 < τa � 1, so this inequality does not necessarily contradict (17) and
we would expect instabilities even if d = 1. Furthermore, such instabilities are weak
or strong depending on whether the destabilizing σ is real and positive or complex
with positive real part. If τT ≤ 0 and δT < 0, the destabilizing values of σ are real. If
τT > 0, the values of σ would be real or complex depending on whether τ 2

T −4δT ≥ 0
or not. The last assertion is a consequence of (22) and the equation

τ 2
T − 4δT = (

τ 2
a − 4δa

) + 2λk

(
ja

11 − ja
22

)
(Dv − Du) + λ2

k(Dv − Du)
2, (73)

the right side of which is negative if λk(Dv − Du) = 0, followed with the continuity
argument. �

Then, we shall see two possible ways in which the limit cycle generates Turing
instabilities near a TH point. Weak instabilities, appearing while Wk(t) is stable,
are depicted as slight oscillations with the frequency of the cycle solution over a
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prevalent inhomogeneous pattern associated with the set of positiveness of the spatial
eigenfunction, and these oscillations become greater with the increment of the am-
plitude of the limit cycle, i.e. with the increment of τa . From (72) it can be concluded
that, with Wk(t) being unstable, the relative influence of the oscillatory behavior in
the resultant matrix between brackets dwindles with time. Further, as time passes the
reinforced function moves forward with a prevalent (but slight) steady inhomoge-
neous pattern which is not exclusively associated with the spatial eigenfunction. On
the other hand, under strong instabilities the extended modes show reinforced time-
periodic oscillations with frequency σi , like an alternate switching between the steady
pattern, associated with the set of positiveness of the eigenfunction Uk(x), and its
“complementary” pattern, associated with the set of negativeness of the same eigen-
function. In this situation, the real part of (71) can be represented asymptotically as

Z(x, t) = exp(σr t)
{
cos(σi t)Uk(x) + O

(
τ

1
2N
a

)}
R. (74)

Recall that the steady Turing pattern associated with an unstable normal mode
in (7) is conveniently depicted (see Murray 2003, §2.4) by the spatial region at which
Uk(x) > 0. Let us do the same for TH patterns on the presumption that a dominant
mode drives the behavior of the ultimate periodic inhomogeneous pattern. We suggest
to sketch in TH patterns if the instabilities are weak and Wk(t) stable, by considering
the oscillations of the function

Uk(x)
∥∥I + τ

1
2N
a Wk(t)

∥∥ (75)

having the frequency of the cycle. If TH instabilities are weak and Wk(t) is unstable,
it will be more successful to take

Uk(x)
〈(

τ
1

2N
a b(t) + e(t)

)
v, v

〉
(76)

where v is an appropriate nonzero vector (for instance, say that limt→+∞ b(t)v 	= 0)
and the brackets represents the scalar product in R

2. From (72) it can be noted that the
oscillatory behavior in this situation dwindles with time. For strong TH instabilities
we would depict the oscillatory pattern by the set of positiveness of

cos(σi t)Uk(x) (77)

oscillating with the frequency σi =
√

δT − τ 2
T /4 which is different from the fre-

quency of the limit cycle.
We conclude that weak TH instabilities, being Wk(t) stable, provide small periodic

changes in the intensity of a dominant steady Turing pattern; if Wk(t) be unstable,
from (76) one would expect that a steady inhomogeneous pattern dominated initially

(‖e(0)‖ = 1 � τ
1

2N
a ) but it were followed, after a while, with another slighter and

presumably different steady pattern. If the instabilities were strong, the set of posi-
tiveness of the resulting modes alternated in each period with its complementary set.
It can be also concluded from (58) that while τT > 0, within which the instabilities
are strong, it could be associated only with the simpler pattern structures, that is, for
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those eigenfunctions Uk(x) corresponding to lower spatial eigenvalues. For regular
tessellation patterns the analysis above can be done in each cell or in appropriate cell
structured units, under dependence of the model. For instance, in a cell of a hexagonal
lattice it is known that the lowest spatial eigenvalue is associated with a spatial pat-
tern which resembles an eye, and the eigenfunctions Uk for a hexagonal cell inscribed
within a circle of non-dimensional radius R ≈ 2 are given in Murray (2003, p. 98)
provided the spatial eigenvalues ρk = (kπ)2 for k ∈ Z. We recall that in a practical
problem a length scale is selected (for instance, S = (diffusivity × time scale)1/2)
and the spatial eigenvalues depend on the non-dimensional size of it. It can be noted
that the relation λkL

2 = λ̂kL̂
2 holds if λk and λ̂k are the spatial eigenvalues for two

similar domains with non-dimensional characteristic lengths L and L̂ respectively. If
we have a large enough non-dimensional characteristic length in Ω , the lowest posi-
tive spatial eigenvalue λ1 would be so small that τT > 0. If in addition τ 2

T − 4δT < 0
holds, then TH instabilities associated with this eigenvalue must appear inducing a
“twinkling eye” pattern like the one referenced in Yang and Epstein (2003).

Remark 5 Steady-state solutions to the reaction-diffusion problems in the limit of
one small diffusion coefficient have been thoroughly investigated (see for instance
Ward and Wei 2003; Wei and Winter 2003; Ward 2006). In this limit situation the
appearance of inner boundary layers determine finite-amplitude steady solutions fea-
tured by locally large spatial gradients which exhibit localized spatial patterns in the
form of spikes, stripes and their combinations. For instance, the spike-layer solution
is exponentially small away from its peak, so the classical method of matching ex-
pansions does not apply in this case. Further, the stability analysis for the localized
spatial patterns is usually done using a combination of asymptotic procedures and the
spectral analysis of non-local eigenvalue problems. For instance, in Yang et al. (2005)
the authors studied TH bifurcations in a reaction-diffusion system for a chemical re-
action, showing the coexistence of Turing patterns and segmented waves far from the
codimension-two points. Such TH instabilities cannot be derived from the extended
modes.

6 Turing–Hopf Instabilities to the Schnakenberg System

In this section we study Turing instabilities of the limit cycle in Schnakenberg’s
reaction kinetics (Schnakenberg 1979) following the procedure in the preceding
section. A great deal of attention has been given in the literature to patterning
for the Schnakenberg system because it has a simple structure, but it is one of
the few reaction-diffusion models in morphogenesis that exhibit patterns consistent
with those in experiments, and it has had strong influence on experimental design
(Edelstein-Keshet 1988).

6.1 The Schnakenberg Kinetics

Let us consider the Schnakenberg system
{

u̇ = u2v − u + b,

v̇ = a − u2v
(78)
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in which is included a reversible reaction. This system has a single stationary point

(u0, v0) =
(

a + b,
a

(a + b)2

)
. (79)

Here the parameters a and b are both positive, and b � a (Edelstein-Keshet 1988).
The Jacobian matrix of the right-hand side of (78) at the steady state (u0, v0) is

J0 =
(

a−b
a+b

(a + b)2

− 2a
a+b

−(a + b)2

)
=

(
ξ−1(2a − ξ) ξ2

−2aξ−1 −ξ2

)
(80)

in which we put

ξ = a + b. (81)

Hence, the Jacobian determinant will be

δ = ξ2 (82)

and, we shall consider the trace

τ = ξ−1(2a − ξ) − ξ2 (83)

as the intrinsic bifurcation parameter. Fixing a = 0.95 the bifurcation value τ = 0 is
obtained when ξ = 0.97452. Note that τ = τ(ξ) is a decreasing function for ξ > 0.

Considering the new variables (U,V ) defined by the relations

U = u − u0,

V = v − v0,

we reflect perturbations near the stationary point, and get the following system:

(
U̇

V̇

)
= J0

(
U

V

)
+

(
v0U

2 + 2u0UV + U2V

−v0U
2 − 2u0UV − U2V

)
, (84)

having the steady state at (0,0).

6.2 The Limit Cycle to the Schnakenberg System

Let us now derive the asymptotic expansion of the limit cycle to the Schnakenberg
system. From the nonlinear part in (84) it follows very naturally to consider the new
variable

z = U + V and ż = −U. (85)

The matrix

Γ =
(

1 1
−1 0

)
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satisfies (30). So, from the pair of functions (U,V ) can be determined (z, ż), and
reciprocally. Let us now consider the second-order equation for the unknown z being
equivalent to the system in (84):

z̈ − τ ż + δz = γ (ż)2 + 2ξzż − z(ż)2 − (ż)3 (86)

where δ and τ are given in (82) and (83) respectively, and γ depends on a and b.
Now, transforming (38) into (86), we obtain (39) in normal for, in which

G(ς, ς̇; ε) = (
γ (ς̇)2 + 2ξςς̇ − ες(ς̇)2 − ε(ς̇)3).

Let us consider the new variables r = r(t) and θ = θ(t) defined as in (40) and (41).
Then, from (44) and (45) we get:

⎧⎨
⎩

ṙ = r
2 (1 − 3

4 r2)τ,

θ̇ = 1
8 r2τ.

(87)

From the first equation in (87) and considering (52) follows the existence of an or-
bitally asymptotically stable limit cycle if τ > 0, corresponding to

r2 = 4

3
,

hence

θ̇ = τ

6
.

We finally obtain the following uniform asymptotic expansion in terms of the

small parameter τ
1
2 of the solution to (86):

z(t) = 2

√
τ

3
cos

(
1 + τ

6

)
t + O(τ)

and, from (85) follows

u(t) = u0 + 2

√
τ

3
sin

(
1 + τ

6

)
t + O(τ), (88)

v(t) = v0 + 2

√
τ

3

(
cos

(
1 + τ

6

)
t − sin

(
1 + τ

6

)
t

)
+ O(τ), (89)

as the components of the cycle Θ(t) = (u(t), v(t)) to (78). Here (u0, v0) is given
in (79).

6.3 Turing Instabilities for the Periodic Solution to the Schnakenberg System

Let us now consider the boundary value problem of (1) with boundary conditions
given in (2). We shall denote here by u = u(t, x) and v = v(t, x), x ∈ Ω , the un-
knowns in (1) in which the reaction part is given in (78). Suppose we are considering
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small perturbations near the periodic solution Θ(t) to (1) due to HB, which are as-
sumed to satisfy (2). Let us denote the corresponding perturbation by capital letters
Z = (U,V )T; we get

u(t, x) = u(t) + U(t, x),

v(t, x) = v(t) + V (t, x),

where u(t) and v(t) denote the components of Θ(t) given in (88) and (89) respec-
tively. From (87) it follows that Θ(t) is an orbitally asymptotically stable solution
to (78) which appears via a supercritical HB. Then, substituting (88) and (89) into
the system equation (60), we get the hierarchy of equations: (63), (64), and so on.
In (63) and (64) should be considered, instead of Ja, the Jacobian J0 given in (80).
Here we are taking the period T of the cycle as the time scale, and the length scale as
L = √

DuT , which usually is a small number. For instance, let us consider the rec-
tangle Ω = [0, l] × [0,m] in which the non-dimensional lengths are taken to satisfy
l > m in order that the smallest positive spatial eigenvalue be λ(1,0) = π2/l2.

Let us put some independent non-dimensional parameters in the first table, and the
set of dependent parameters gather in the second table.

a ξ d l

0.95 0.97199 1.5 50

τ δ τ 2 − 4δ τT δT δT − τ 2
T /4

0.01 0.94476 −3.8879 1.3040 × 10−4 0.94286 0.94286

If l < π( 1+d
τ

)1/2 = 49.673, only weak instabilities would appear, and for this rea-
son let us first take l = 50. Note that

τ − λ(1,0)(1 + d) > 0

for the lowest spatial eigenvalue, and further, δT − τ 2
T /4 > 0, so strong instabil-

ities could appear associated with λ(1,0). This means that an intermittent pattern
featured by a switching between the two half parts of the rectangle could emerge
(U1(x1, x2) = cos(πx1/l)). The frequency of this intermittence is σi = √

0.94286 =
0.97101, which is lower than the frequency � = 1 + 1.6667 × 10−3 of the cycle.

Let us take d = 6, and l = 5, keeping the parameter values a and ξ as before.
Then, τT < 0 for every spatial eigenvalue, so only weak instabilities would appear.
Further, δT = −8.6813 × 10−3, and follows a similar procedure as the one for Turing
instabilities for the steady state. Equation (15) is rewritten here in terms of ξ and d in
the form

λ± = (dξ−1(2a − ξ) − ξ2) ± √
(dξ−1(2a − ξ) − ξ2)2 − 4dξ2

2d
.

Now we have λ− = 0.36042, λ+ = 0.43688, and λ(1,0) = π2/25 ∈ Λ, so a dominant
steady pattern associated with the left half part of the rectangle could appear, with
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Fig. 1 λ+ (continuous), λ− (dots) as functions of ξ near the Hopf bifurcation

slight oscillations in its intensity. In Fig. 1 we represent λ+ (continuous line) and
λ− (dotted line) as functions of the parameter ξ (abscissa) introduced in (81), for
values d = 5; 6; 18. It is shown that the diameter of Λ increases as ξ decreases. So,
as τ increases, one would expect that more unstable modes arise. In other words, we
would expect more complex spatiotemporal patterns as the bifurcation parameter τ

increases. Additionally, it is shown that Turing instabilities could arise before or even
after the HB. For instance, in Fig. 1 it is shown that, being a = 1 and d = 5, we have
Λ 	= ∅ only for ξ < 0.96, which means that TH instabilities would appear after HB
as τ increases starting from τ > 0.16.

7 Conclusions

We suggest a method for deriving an asymptotic expansion to the limit cycle for a
reaction system exhibiting an HB. This procedure is simple and it is only necessary
to make a transform of coordinates “close enough” to an appropriate linear one to do
it. Using perturbation expansions we find appropriate normal modes which are use-
ful in the study of diffusive instabilities generated by the limit cycle at supercritical
HB. The extended modes suggest two possible ways of generation of instabilities by
the limit cycle, which have been called weak and strong TH instabilities respectively.
Weak ones are featured by dominant inhomogeneous steady patterns over which are
superposed slight time-periodic oscillations with the same frequency of the limit cy-
cle. While strong instabilities are featured by an intermittent switching between the
inhomogeneous pattern, represented by the set of positiveness of the spatial eigen-
function, with its “complementary pattern,” represented by the set of negativeness of
the eigenfunction. The frequency of these oscillations is different from the frequency
of the cycle. Moreover, the limit cycle would develop strong instabilities provided
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there are equal diffusion coefficients, if the lowest positive spatial eigenvalue is small
enough. This fact makes an important difference between the required conditions for
generation of diffusive instabilities about the stable limit cycle and those required
about the stable steady state.

In the following table we summarize the conditions for the appearance of TH
spatially inhomogeneous patterns based on the extended modes near a codimension-
two TH point (i.e., laying at the intersection of the manifolds τa = 0, and δT = 0),
and recalling that τa > 0.

Case THI type Expected patterns

1 τT ≤ 0, δT < 0, weak SO
2 τT > 0, δT ≤ 0, weak SO
3 τT > 0, 0 < δT < τ 2

T /4, weak steady or SO
4 τT > 0, δT = τ 2

T /4, weak SO

5 τT > 0, δT > τ 2
T /4, strong twinkling

(SO – slightly oscillatory)

We recall that in the former Turing analysis about the steady state it is not neces-
sary to consider variations on the sign of τT , because from τa < 0 follows τT < 0. In
Case 1 the conditions leading to TH instabilities are quite similar to the ones lead-
ing to Turing instabilities about the stable steady state, although slight oscillatory
patterns are now expected. The other Cases only appear in association with simpler
spatial structures, i.e. they corresponds to the lower eigenvalues. In Case 3, instabil-
ities are again weak, but the patterns can be identified by slight oscillations or not,
depending on whether the mode corresponds to the lowest positive root σ or not. Re-
call that in the latter subcase the ultimate pattern will presumably be different from
that determined by the spatial eigenfunction. Case 4 assembles the points in the pa-
rameter space located at a bifurcation manifold. In the Case 5, the instabilities show
intermittent spatial oscillations with frequency σi . We further recall the fact that τT is
a strictly decreasing function of λk , so different types of TH instabilities correspond-
ing to different eigenvalues would appear simultaneously. For regular tessellation
patterns the above analysis can be done in each cell or in convenient cell structured
units, depending on the model. For instance, in a cell of a hexagonal lattice, strong in-
stabilities associated with the lowest positive eigenvalue will induce “twinkling eye”
patterns, as those observed in Yang and Epstein (2003).

We cannot give a conclusive criterion to discriminate whether or not the ultimate
pattern is time-periodic. It is natural to expect that in both weak and strong insta-
bilities, oscillatory phenomena would be detected at least for a while. We assume,
as usual, that the ultimate pattern emerges due to the boundedness of the unstable
mode by the nonlinear reaction terms in (1). In weak instabilities the spatial struc-
ture prevails over the oscillatory and, presumably, such instabilities would lead to
inhomogeneous steady patterns by the interaction with the nonlinear terms. If the pa-
rameters put the system equation (1) in the Case 3, there are two possible behaviors
according to (71) or (72), and the initial conditions determine which one appears. On
the other hand, strong TH instabilities presumably lead to well-defined intermittent
spatiotemporal patterns with a frequency different from the one of the limit cycle.
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