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Abstract Recently, the Navier–Stokes–Voight (NSV) model of viscoelastic incom-
pressible fluid has been proposed as a regularization of the 3D Navier–Stokes equa-
tions for the purpose of direct numerical simulations. In this work, we prove that
the global attractor of the 3D NSV equations, driven by an analytic forcing, con-
sists of analytic functions. A consequence of this result is that the spectrum of the
solutions of the 3D NSV system, lying on the global attractor, have exponentially
decaying tail, despite the fact that the equations behave like a damped hyperbolic
system, rather than the parabolic one. This result provides additional evidence that
the 3D NSV with the small regularization parameter enjoys similar statistical prop-
erties as the 3D Navier–Stokes equations. Finally, we calculate a lower bound for
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the exponential decaying scale—the scale at which the spectrum of the solution start
to decay exponentially, and establish a similar bound for the steady state solutions
of the 3D NSV and 3D Navier–Stokes equations. Our estimate coincides with the
known bounds for the smallest length scale of the solutions of the 3D Navier–Stokes
equations, established earlier by Doering and Titi.
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Viscoelastic models · Gevrey regularity
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1 Introduction

We consider the Navier–Stokes–Voight (NSV) model of viscoelastic fluid which is
governed by the system of equations

ut − ν�u − α2�ut + (u · ∇)u + ∇p = f, (1a)

∇ · u = 0, (1b)

u(x,0) = uin(x), (1c)

in Ω = [0,L]3 ⊂ R
3, equipped with the periodic boundary conditions. u(x, t) repre-

sents the velocity field, p is the pressure, ν > 0 stands for kinematic viscosity, f is
the forcing, and finally, α is a real positive length scale parameter, for which the ratio
α2

ν
characterizes the response time that is required for the fluid to respond to the ap-

plied force. The system (1) was first studied by Oskolkov, who introduced the NSV
equations (see Oskolkov 1973, 1980) as a model of motion of linear, viscoelastic
fluid.

Recently, in Cao et al. (2006), the 3D Navier–Stokes–Voight equations were sug-
gested as a regularization model for the 3D Navier–Stokes equations, where α is
considered a small regularization parameter. First, it was recognized that the inviscid
(ν = 0) version of the NSV system (1) coincides with the inviscid simplified Bar-
dina subgrid scale model of turbulence. The viscous simplified Bardina model was
introduced and studied in Layton and Lewandowski (2006) (see also Bardina et al.
1980, and Berselli et al. 2006 for the original Bardina model). In Cao et al. (2006),
the viscous and inviscid simplified Bardina model were shown to be globally well
posed. Moreover, it was also shown that the viscous simplified Bardina model has
a finite dimensional global attractor, and the energy spectrum was investigated in
Cao et al. (2006). Viewed from the numerical analysis point of view, the authors of
Cao et al. (2006) proposed the inviscid simplified Bardina model (or equivalently the
inviscid NSV equations) as an inviscid regularization (because no additional viscosity
or hyperviscosity is introduced) of the 3D Euler equations, subject to periodic bound-
ary conditions. Motivated by this observation, the system (1) was also proposed in
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Cao et al. (2006) as a regularization, of the 3D Navier–Stokes equations for the pur-
pose of direct numerical simulations for both the periodic and the no-slip Dirichlet
boundary conditions.

The addition of the −α2�ut term has two main effects. First, it regularizes the
equation in a way that the three-dimensional system (1) becomes now globally well
posed (see Cao et al. 2006; Oskolkov 1973). On the other hand, as was noted in Kalan-
tarov and Titi (2007), it changes the parabolic character of the original Navier–Stokes
equations. Therefore, one does not observe any immediate smoothing of the solu-
tions, as expected in parabolic PDEs. We also remark that this type of inviscid reg-
ularization has been recently used for the two-dimensional surface quasi-geostropic
model (Khouider and Titi 2007). In particular, necessary and sufficient conditions for
the formation of singularity were presented in terms of regularizing parameter.

The long-time dynamics of the system (1) has been studied in Kalantarov (1986)
and Kalantarov and Titi (2007), where the existence of the finite-dimensional global
attractor of the system has been established. Moreover, upper bounds for the number
of determining modes, and the fractal dimension of the global attractor of the 3D
NSV model where derived in Kalantarov and Titi (2007). In particular, it was shown
that the attractor lies in the bounded subset of the Sobolev space H 1(Ω), whenever
the forcing term f ∈ L2(Ω).

In this work, we show that the global attractor of the 3D NSV model consists of
the real analytic functions, whenever the forcing term f is analytic. The idea is to
construct an asymptotic approximation v(x, t) to the solution u(x, t) of the system
(1) satisfying

lim
t→∞

∥
∥v(·, t) − u(·, t)∥∥

L2(Ω)
= 0,

and show that v(x, t) lies in certain Gevrey class—a subspace of the real analytic
functions. Functions belonging to Gevrey regularity class are characterized by the
exponential decay of the tail of their Fourier coefficients. Our method of the proof—
splitting of v(x, t) into higher and lower Fourier components has been used before
in the context of the weakly damped driven nonlinear Schrödinger equation in Oliver
and Titi (1998) and a model of Bénard convection in a porous medium in Oliver and
Titi (2000) (see also Goubet 1996). Recently, the authors of Chueshov et al. (2004)
followed the same methods to prove the Gevrey regularity of the global attractor
of the generalized Benjamin–Bona–Mahony equation. For different methods in the
abstract settings for wide class of equations, see Hale and Raugel (2003).

An important consequence of our result is that the solutions of the 3D NSV sys-
tem (1) lying on the global attractor posses a dissipation range, despite the fact that
the equations behave like the damped hyperbolic system, rather than the parabolic
equation. This fact provides additional evidence that (1) with the small regulariza-
tion parameter α, can indeed be used as a model to study the statistical properties of
turbulent solutions of the 3D Navier–Stokes equations, a subject of ongoing research.

Finally, we obtain bounds for the exponential decaying length scale of the general
solutions of the NSV system lying on the attractor. The obtained estimate is similar
to the bounds for the smallest length scale in the turbulent flow that was previously
calculated for the solutions of the 3D Navier–Stokes equations in Doering and Titi
(1995). In addition, using the techniques introduced in Oliver and Titi (2001), we
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estimate the exponential decaying scale of the stationary solutions of the 3D NSV
and 3D Navier–Stokes equations. Our bounds coincide with those obtained in this
paper for the general solutions of the NSV system lying on the global attractor, and
for those of the 3D Navier–Stokes equations reported in Doering and Titi (1995).

2 Preliminaries

In this paper, we will use the following notations, which are standard in the mathe-
matical theory of the Navier–Stokes equations (see, e.g., Constantin and Foias 1988;
Foias et al. 2001; Temam 2001).

Let Ω = [0,L]3. We denote by Lp(Ω), for 1 ≤ p ≤ ∞, and Hm(Ω)—the usual
Lebesgue and Sobolev spaces of the periodic functions on Ω, respectively. Let F be
the set of all vector trigonometric polynomials on the periodic domain Ω , and denote

V =
{

ϕ ∈ F : ∇ · ϕ = 0, and
∫

Ω

ϕ(x)dx = 0

}

.

We set H , and V to be the closures of V in the L2(Ω) and H 1(Ω) topology, respec-
tively.

We denote by Pσ : L2 → H—the Helmholtz–Leray orthogonal projection opera-
tor, and by A = −Pσ �—the Stokes operator subject to the periodic boundary condi-
tions with domain D(A) = (H 2(Ω))3 ∩ V . Observe that in the space-periodic case

Au = −Pσ �u = −�u, for all u ∈ D(A).

The operator A−1 is a positive definite, self-adjoint, compact operator from H into H .
We denote by 0 < ( 2π

L
)3 = λ1 ≤ λ2 ≤ · · · the eigenvalues of A, repeated according

to their multiplicities. The eigenvalues λj satisfy for some dimensionless constant
c0 > 0,

j2/3

c0
≤ λj

λ1
≤ c0j

2/3, for j = 1,2,3, . . . .

In the periodic case, this observation is simple (see, e.g., Constantin and Foias 1988);
however, in the general case, this is a result of the famous Weyl’s formula for the case
of the Stokes operator due to Métivier (see, e.g., Constantin and Foias 1988; Métivier
1978; Temam 1988).

For any s ∈ R, we can define the Hilbert spaces Vs := D(As/2) with the inner
product and norm

(u, v)s =
∑

j∈Z3

(

uj · vj |j |2s
)

, |u|2s = (u,u)s,

for every u,v ∈ Vs , where uj , vj are the corresponding Fourier coefficients of u and
v, respectively. Note that V0 = H . Moreover, we denote V = V1, and the correspond-
ing inner product and norm will be written for u,v ∈ V

(

(u, v)
) = (u, v)1, ‖u‖ = |u|1.
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For any w1,w2 ∈ V , we define the following bilinear form

B(w1,w2) = Pσ

(

(w1 · ∇)w2
)

.

It can be shown (see, e.g., Constantin and Foias 1988; Temam 2001) that B can be
extended to a continuous map B : V × V → V ′, where V ′ = V−1 is a dual space
of V . In particular, for u,v,w ∈ V , there exists a constant c > 0, depending only on
Ω , such that

∣
∣
〈

B(u, v),w
〉

V ′
∣
∣ ≤ cλ

−3/4
1 |u|1/2‖u‖1/2‖v‖‖w‖, (2)

where 〈x, y〉V ′ denotes an action of an element x ∈ V on the element of the dual
space y ∈ V ′.

Finally, using the above definitions, we write the system (1) in the following equiv-
alent functional form

u̇ + νAu + α2Au̇ + B(u,u) = f, (3a)

u(x,0) = uin(x). (3b)

To show that the solution of the problem (3) has an analytic asymptotic (in time)
approximation, we will use the concept of the Gevrey class regularity. For a given
τ > 0, and r ≥ 0, we define the Gevrey space to be

Gr
τ := D

(

Ar/2eτA1/2) =
{

u ∈ H : ∣∣Ar/2eτA1/2
u
∣
∣
2 =

∑

j∈Z3

|uj |2|j |2r e2τ |j | < ∞
}

.

The space is equipped with the corresponding inner product and norm

(u, v)r,τ = (

Ar/2eτA1/2
u,Ar/2eτA1/2

v
) =

∑

j∈Z3

uj · vj |j |2r e2τ |j |,

|u|r,τ = ∣
∣Ar/2eτA1/2

u
∣
∣,

for u,v ∈ Gr
τ . One can prove that the space of real analytic functions Cω(Ω) has the

following characterization

Cω(Ω) =
⋃

τ>0

Gr
τ ,

for any r ≥ 0 (see, e.g., Levermore and Oliver 1997). The concept of the Gevrey class
regularity for showing the analyticity of the solutions of the Navier–Stokes equations
was first introduced in Foias and Temam (1989), simplifying earlier proofs. Later this
technique was extended to the large class of analytic nonlinear parabolic equations in
Ferrari and Titi (1998).

We conclude this section by a few technical propositions that will be used in the
proof of our main results. First, we will need the following estimates for the nonlinear
term. The proof of the proposition is obtained by the standard interpolation estimates
using the Gagliardo–Nirenberg and Ladyzhenskaya inequalities (see, e.g., Constantin
and Foias 1988; Temam 2001).
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Proposition 1 The bilinear form B(u,u) satisfies:

(i) If u ∈ V , then B(u,u) ∈ V−1/2, and

∣
∣B(u,u)

∣
∣−1/2 ≤ c1λ

−3/4
1 ‖u‖2. (4)

(ii) If u ∈ V3/2, then B(u,u) ∈ H , and

∣
∣B(u,u)

∣
∣ ≤ c2λ

−3/4
1 ‖u‖|u|3/2. (5)

(iii) For any integer m ≥ 1, if u ∈ Vm+1, then B(u,u) ∈ Vm, and

∣
∣B(u,u)

∣
∣
m

≤ cmλ
−7/8
1 ‖u‖1/4|u|3/4

2 |u|m+1, (6)

where c1, c2, cm > 0 are scale invariant constants, and cm depends on m.

Let λ > 0, denote by Pλ the H -orthogonal projection onto the span of eigenfunc-
tions of A corresponding to eigenvalues of the magnitude less then or equal to λ.
Denote Qλ = I − Pλ. The following Poincaré-type inequalities hold.

Proposition 2 Let v̄ ∈ PλG
r+1
τ , and v̂ ∈ QλG

r+1
τ . Then

|v̄|r+1,τ ≤ eτλ1/2 |v̄|r+1, and |v̂|r,τ ≤ λ−1/2|v̂|r+1,τ . (7)

We will also need an estimate for the nonlinear term in the Gevrey space. Similar
inequalities can be found in Foias et al. (2001) (see also Doering and Titi 1995; Foias
and Temam 1989).

Proposition 3 For any τ > 0, u,w ∈ G2
τ , and v ∈ G1

τ , the following inequality holds

∣
∣
(

B(u, v),w
)

1,τ

∣
∣ ≤ C1λ

−3/4
1 |u|1/2

1,τ |u|1/2
2,τ |v|1,τ |w|2,τ , (8)

for some scale invariant constant C1 > 0.

It is not difficult to prove the following proposition using the Galerkin approxima-
tion procedure (see Kalantarov and Titi 2007).

Proposition 4 Let s ∈ R. Assume that g(t) ∈ L∞([0, T ],Vs−2), for some 0 < T < ∞.
Then the linear problem

zt + νAz + α2Azt = g(t), z(0) = 0,

has a unique solution z(t) ∈ C([0, T ],Vs). In addition, the following estimate holds,

∣
∣z(t)

∣
∣
s
≤ ‖g(t)‖L∞([0,T ],Vs−2)

αν
√

d0
, (9)

for all t ∈ [0, T ], and d0 = ( 1
λ1

+ α2)−1.
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We will use the following small proposition that we state here without a proof.

Proposition 5 Consider a nonnegative function ϕ(t) satisfying for all t ≥ t0, for
some t0, the following inequality

dϕ

dt
≤ −aϕ + bϕ3/2 + c, ϕ(t0) = 0,

where the positive real coefficients a, b, c obey

bc1/2 <

(
a

2

)3/2

. (10)

Then for all t ≥ t0

ϕ(t) ≤ 2C

a
.

Finally, we will need the following Lemma from Jones and Titi (1992) (see also
Foias et al. 2001).

Lemma 1 Let a(t) and b(t) be locally integrable functions on (0,∞) which satisfy
for some T > 0 the conditions

lim inf
t→∞

1

T

∫ t+T

t

a(τ ) dτ > 0,

lim sup
t→∞

1

T

∫ t+T

t

a−(τ ) dτ < ∞,

lim sup
t→∞

1

T

∫ t+T

t

b+(τ ) dτ = 0,

where a− = max{−a,0} and b+ = max{b,0}. Suppose that φ(t) is a nonnegative,
absolutely continuous function on [0,∞) that satisfies the following inequality almost
everywhere on [0,∞),

φ′(t) + a(t)φ(t) ≤ b(t).

Then φ(t) → 0, as t → ∞.

3 Asymptotic Approximation in Vm

The question of global existence and uniqueness of (1) was first studied in Oskolkov
(1973) (the inviscid case, ν = 0, was studied in Cao et al. 2006). It was shown that
for every uin ∈ V , the solution of the system (1) is globally well posed, and satisfies
u(x, t) ∈ L∞([0,∞),V ). In this section, we construct an asymptotic approximation
of the solution of (1) in the space Vm, for every m ≥ 2. The result can be stated as
follows.
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Theorem 1 Let m ≥ 2 be an integer. Consider a solution u(x, t) of the NSV sys-
tem (1), corresponding to the initial condition uin ∈ V with the forcing f ∈ Vm−2.
There exists a function

v(m)(t) ∈ L∞([0,∞),Vm

)

,

satisfying

lim
t→∞

∥
∥u(t) − v(m)(t)

∥
∥ = 0.

Proof Let us fix m ≥ 2, and let uin ∈ V . First, let us write the solution u(t) = v(t) +
w(t), where v(t) and w(t) satisfy the coupled system

vt + νAv + α2Avt = f − B(u,u), v(0) = 0, (11a)

wt + νAw + α2Awt = 0, w(0) = uin. (11b)

This decomposition has been used in Kalantarov and Titi (2007). First, by using the
fact that u(x, t) ∈ L∞([0,∞),V ), and applying subsequently the first part of Propo-
sition 1 and Proposition 4 to (11a), we conclude that

v(t) ∈ L∞([0,∞),V3/2
)

. (12)

Next, from (11b), we immediately get

∣
∣w(t)

∣
∣2 + α2

∥
∥w(t)

∥
∥2 ≤ e−νd0t

(∣
∣uin

∣
∣2 + α2

∥
∥uin

∥
∥2)

, (13)

where d0 = ( 1
λ1

+α2)−1. Therefore, v(x, t) is an asymptotic (in time) approximation
of u(x, t), namely

lim
t→∞

∥
∥u(t) − v(t)

∥
∥ = lim

t→∞
∥
∥w(t)

∥
∥ = 0.

At the next step, let us consider v(2)(x, t)—the solution of the following equation

v
(2)
t + νAv(2) + α2Av

(2)
t = f − B(v, v), v(2)(0) = 0. (14)

According to the second part of Proposition 1, the right-hand side of (14) is in
L∞([0,∞),H). Therefore, applying Proposition 4, we conclude that the unique so-
lution of (14) satisfies

v(2)(t) ∈ L∞([0,∞),V2
)

. (15)

Denote z(2) = v(2) − v, which satisfies

z
(2)
t + νAz(2) + α2Az

(2)
t = B(u,u − v) + B(u − v, v), z(2)(0) = 0. (16)

According to Proposition 4, (16) has a unique solution z(2)(t) ∈ L∞([0,∞),V3/2).
This is because u ∈ L∞([0,∞),V ), and v satisfies (12). Therefore, we can take an
inner product of (16) with z. Using inequality (2), we get
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1

2

d

dt

(∣
∣z(2)(t)

∣
∣2 + α2

∥
∥z(2)(t)

∥
∥2) + ν

∥
∥z(2)(t)

∥
∥2

= (

B
(

u(t), u(t) − v(t)
)

, z(2)(t)
) + (

B
(

u(t) − v(t), v(t)
)

, z(2)(t)
)

≤ c
∥
∥u(t) − v(t)

∥
∥
(∥
∥u(t)

∥
∥ + ∥

∥v(t)
∥
∥
)∥
∥z(2)(t)

∥
∥

≤ c2

2ν

∥
∥u(t) − v(t)

∥
∥2(∥∥u(t)

∥
∥ + ∥

∥v(t)
∥
∥
)2 + ν

2

∥
∥z(2)(t)

∥
∥2

, (17)

where the last relation follows from Young’s inequality. Finally, we get

d

dt

(∣
∣z(2)(t)

∣
∣
2 + α2

∥
∥z(2)(t)

∥
∥

2) + νd0

2

(∣
∣z(2)(t)

∣
∣
2 + α2

∥
∥z(2)(t)

∥
∥

2)

≤ c2

2ν

∥
∥u(t) − v(t)

∥
∥

2(∥
∥u(t)

∥
∥ + ∥

∥v(t)
∥
∥
)2

.

Using the fact that u(t), v(t) are bounded uniformly in time in the V norm, and that

∥
∥u(t) − v(t)

∥
∥ = ∥

∥w(t)
∥
∥ → 0, as t → ∞,

we conclude, after applying Lemma 1 that

lim
t→∞

∥
∥z(2)(t)

∥
∥ = lim

t→0

∥
∥v(t) − v(2)(t)

∥
∥ = lim

t→0

∥
∥u(t) − v(2)(t)

∥
∥ = 0.

We can continue by induction. Fix 2 ≤ n ≤ m, and assume that we have con-
structed v(j)(t) ∈ L∞([0,∞),Vj ), for j = 2,3, . . . , n − 1, such that for any j

lim
t→∞

∥
∥v(j−1)(t) − v(j)(t)

∥
∥ = lim

t→0

∥
∥u(t) − v(j)(t)

∥
∥ = 0. (18)

Let consider the following equation

v
(n)
t + νAv(n) + α2Av

(n)
t = f − B

(

v(n−1), v(n−1)
)

, v(n)(0) = 0. (19)

Then according to Proposition 4, and due to the estimates on the nonlinear term of
Proposition 1, the unique solution v(n)(t) of (19) satisfies v(n)(t) ∈ L∞([0,∞),Vn).
Moreover, denote z(n) = v(n) − v(n−1), satisfying

z
(n)
t + νAz(n) + α2Az

(n)
t = B

(

v(n−2), v(n−2) − v(n−1)
)

+B
(

v(n−2) − v(n−1), v(n−1)
)

, z(n)(0) = 0.

Taking the inner product of the last equation with z(n)(t) and using Proposition 1 and
relation (18), we can show by Lemma 1 that

lim
t→∞

∥
∥z(n)(t)

∥
∥ = lim

t→0

∥
∥v(n−2)(t) − v(n−1)(t)

∥
∥ = lim

t→0

∥
∥u(t) − v(n)(t)

∥
∥ = 0,

finishing the proof of the theorem. �
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It can be proved (see Kalantarov and Titi 2007) that the solution of the NSV equa-
tions (1) satisfies for all t ≥ 0

∥
∥u(t)

∥
∥

2 ≤ e−νd0t

α2

(
∣
∣uin

∣
∣
2 + α2

∥
∥uin

∥
∥ − |f |2−1

ν2d0

)

+ |f |2−1

α2ν2d0
. (20)

Therefore, there exists t0, depending on |uin|,‖uin‖, |f |−1, ν,α, and λ1, such that for
all t ≥ t0

∥
∥u(t)

∥
∥ ≤ M1 := 2|f |−1

αν
√

d0
. (21)

The following lemma gives similar bounds for the asymptotic (in time) approxima-
tions v(m)(x, t) in the corresponding norms.

Lemma 2 Let f ∈ Vm−2. Consider t0 ≥ 0, such that the solution of the NSV equa-
tions (1) satisfies the inequality (21) for all t ≥ t0. Then the following statements are
true:

(i) The function v(x, t) ∈ L∞([0,∞),V3/2), constructed in Theorem 1, satisfies for
all t ≥ t0

∣
∣v(t)

∣
∣
3/2 ≤ M3/2 := 1

αν
√

d0

(|f |−1/2 + c1λ
−3/4
1 M2

1

)

. (22)

(ii) The function v(2)(x, t) ∈ L∞([0,∞),V2), constructed in Theorem 1, satisfies
for all t ≥ t0

∣
∣v(2)(t)

∣
∣
2 ≤ M2 := 1

αν
√

d0

(|f | + c2λ
−3/4
1 M1M3/2

)

. (23)

(iii) Let m > 2 be an integer. The function v(m)(x, t) ∈ L∞([0,∞),Vm), constructed
in Theorem 1, satisfies for all t ≥ t0

∣
∣v(m)(t)

∣
∣
m

≤ Mm := 1

αν
√

d0

(|f |m−2 + cmλ
−7/8
1 M

1/4
1 M

3/4
2 Mm−1

)

. (24)

Proof Recall that v(t) satisfies (11), v(2)(t) satisfies (14). In general, v(m)(t), for
m > 2, satisfies (19). Therefore, the proof of the lemma is an immediate application
of Proposition 4, in particular relation (9), and the inequalities of Proposition 1. �

4 Asymptotic Approximation in the Gevrey Space G1
τ

The results of the previous section show that with a smooth enough forcing the global
attractor of the system (1) lies in C∞(Ω), whenever f is C∞(Ω). However, our goal
is to show that the global attractor is real analytic, whenever f is real analytic. For this
purpose, we use the idea of Oliver and Titi (1998, 2000), to construct the asymptotic
approximation of the solution of (1) in the Gevrey class G2

τ , for some τ > 0.
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Theorem 2 Let u(x, t) be a solution of the NSV system (1), corresponding to the
initial condition uin ∈ V with the forcing f ∈ G1

τ0
, for some τ0 > 0. Let t0 ≥ 0 be as

in Lemma 2, then there exists a function

vω(t) ∈ L∞([t0,∞),G2
τ

)

, (25)

for some τ > 0, depending only on |f |1,τ0 , ν, λ1 and α, satisfying

lim
t→∞

∥
∥u(t) − vω(t)

∥
∥ = 0. (26)

Proof Let λ > 0 to be chosen later. First, consider v(2)(x, t)—an asymptotic ap-
proximation of u(x, t), which is constructed in Theorem 1. Moreover, according to
Lemma 1, there exists a constant M2 > 0 (see relation (23)), such that

∣
∣v(2)(t)

∣
∣
2 ≤ M2, ∀t ≥ t0. (27)

Denote v̄(t) = Pλv
(2)(t), and consider v̂(t)—a solution of the following equation

v̂t + νAv̂ + α2Av̂t + QλB(v̄ + v̂, v̄ + v̂) = f̂ , v̂(t0) = 0, (28)

for t ≥ t0, where for notation simplicity, we denoted f̂ = Qλf . Equation (28) for-
mally looks like a projection of the system (1) onto the higher wavenumber compo-
nents, however, the low wavenumber modes v̄ of the advection term satisfy a slightly
different equation (see also Olson and Titi 2003 for such a construction for studying
data assimilation). Let us denote by

vω(t) = v̄(t) + v̂(t), (29)

for t ≥ t0. Our goal is to show first that there exists τ > 0 such that vω ∈ G2
τ . Observe

that v̄ is just a trigonometric polynomial, and in particular, is analytic. Therefore, we
need to show that we can choose λ large enough, such that v̂ ∈ G2

τ , for some τ > 0.
Finally, we will show that vω(x, t) is indeed an asymptotic approximation of u(x, t).

Note, that in order to prove that the solution of (28) lies in a Gevrey class of real
analytic functions, we consider the Galerkin procedure to (28). However, we omit
this standard procedure, and obtain formal a priori estimates on the solutions in the
relevant Gevrey space norm. Taking formally the inner product of (28) in G1

τ with v̂,

we obtain the following inequality:

1

2

d

dt

(|v̂|21,τ + α2|v̂|22,τ

) + ν|v̂|22,τ ≤ ∣
∣(f̂ , v̂)1,τ

∣
∣ + ∣

∣(B(v̄, v̄), v̂)1,τ

∣
∣

+ ∣
∣(B(v̄, v̂), v̂)1,τ

∣
∣ + ∣

∣(B(v̂, v̄), v̂)1,τ

∣
∣

+ ∣
∣(B(v̂, v̂), v̂)1,τ

∣
∣. (30)

Next, we estimate the terms on the right-hand side of (30). First, using subse-
quently the Cauchy–Schwartz and Young inequalities, as well as Proposition 2, we
get assuming τ ≤ τ0,

∣
∣(f̂ , v̂)1,τ

∣
∣ ≤ |f̂ |1,τ · |v̂|1,τ ≤ 5

4νλ
|f̂ |21,τ + ν

5
|v̂|22,τ . (31)
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Next, using Proposition 3, Young inequality, and the Poincaré-type inequalities of
Proposition 2, we get the following series of estimates for all t ≥ t0:

∣
∣
(

B(v̄, v̄), v̂
)

1,τ

∣
∣ ≤ C1λ

−3/4
1 |v̄|3/2

1,τ |v̄|1/2
2,τ |v̂|2,τ ≤ 5C2

1 |v̄|31,τ |v̄|2,τ

4νλ
3/2
1

+ ν

5
|v̂|22,τ

≤ 5C2
1e4τλ1/2

M3
1 M2

4νλ
3/2
1

+ ν

5
|v̂|22,τ , (32)

∣
∣
(

B(v̄, v̂), v̂
)

1,τ

∣
∣ ≤ C1λ

−3/4
1 |v̄|1/2

1,τ |v̄|1/2
2,τ |v̂|1,τ |v̂|2,τ

≤ C1e
τλ1/2

M
1/2
1 M

1/2
2

λ1/2λ
3/4
1

|v̂|22,τ , (33)

∣
∣
(

B(v̂, v̄), v̂
)

1,τ

∣
∣ ≤ C1λ

−3/4
1 |v̂|1/2

1,τ |v̂|3/2
2,τ |v̄|1,τ ≤ C1e

τλ1/2
M1

λ1/4λ
3/4
1

|v̂|22,τ , (34)

∣
∣
(

B(v̂, v̂), v̂
)

1,τ

∣
∣ ≤ C1

λ
3/4
1

|v̂|3/2
1,τ |v̂|3/2

2,τ ≤ C1

λ3/4λ
3/4
1

|v̂|32,τ

≤ C1

λ3/4λ
3/4
1 α3

(|v̂|21,τ + α2|v̂|22,τ

)3/2
. (35)

Let us set τ = min{λ−1/2, τ0}. Then, we will choose λ large enough satisfying

max

{
C1eM

1/2
1 M

1/2
2

λ1/2λ
3/4
1

,
C1eM1

λ1/4λ
3/4
1

}

≤ ν

5
. (36)

Using the last bounds, we are ready to substitute relations (31), (32), (33), (34),

and (35) into (30). After rearranging the terms, we get

1

2

d

dt

(|v̂|21,τ + α2|v̂|22,τ

) + ν

5
|v̂|22,τ

≤ C1

λ3/4λ
3/4
1 α3

(|v̂|21,τ + α2|v̂|22,τ

)3/2 + 5|f̂ |21,τ

4νλ
+ 5C2

1e4M3
1M2

4νλ
3/2
1

. (37)

Next, using Poincaré-type inequality, Proposition 2, and setting d2 = ( 1
λ

+α2)−1, we

can write

ν

5
|v̂|22,τ ≥ νd2

5

(

λ−1|v̂|22,τ + α2|v̂|22,τ

) ≥ νd2

5

(|v̂|21,τ + α2|v̂|22,τ

)

. (38)

Substituting into (37) gives us the inequality
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1

2

d

dt

(|v̂|21,τ + α2|v̂|22,τ

) ≤ −νd2

5

(|v̂|21,τ + α2|v̂|22,τ

)

+ C1

λ3/4λ
3/4
1 α3

(|v̂|21,τ + α2|v̂|22,τ

)3/2 + 5|f̂ |21,τ

4νλ

+ 5C2
1e4M3

1M2

4νλ
3/2
1

. (39)

Now we can apply Proposition 5 to the function (|v̂(t)|21,τ + α2|v̂(t)|22,τ ) satisfy-

ing inequality (39). Using relation (10), we conclude that (|v̂(t)|21,τ + α2|v̂(t)|22,τ )

is bounded for all t ≥ t0, and in particular v(t) ∈ L∞([t0,∞),G2
τ ), whenever the

following holds

C1

λ3/4λ
3/4
1 α3

(5|f̂ |21,τ

4νλ
+ 5C2

1e4M3
1 M2

4νλ
3/2
1

)1/2

<

(
νd2

10

)3/2

.

In order to satisfy the last inequality, we have to choose λ large enough, such that

α2νλ1/2λ
1/2
1 d2 >

(
C4|f̂ |21,τ

νλ
+ C5M

3
1M2

νλ
3/2
1

)1/3

, (40)

for some absolute constants C4,C5 > 0. For such choice of λ, we have v(t) ∈
L∞([t0,∞),G2

τ ), and this proves the first part of the theorem.
We are left to show that vω(x, t) is an asymptotic approximation of the solution

u(x, t) of the NSV equations (1). Let z = u − vω, and denote z̄ = Pλ(u − v(2)),
ẑ = Qλu − v̂. Clearly, by the construction and Theorem 1 that

lim
t→∞

∥
∥Pλu(t) − v̄(t)

∥
∥ = lim

t→∞
∥
∥z̄(t)

∥
∥ = 0. (41)

Therefore, to prove (26), we need to show that

lim
t→∞

∥
∥Qλu(t) − v̂(t)

∥
∥ = lim

t→∞
∥
∥ẑ(t)

∥
∥ = 0.

Observe that ẑ satisfies the equation

ẑt + νAẑ + α2Aẑt + Qλ

(

B(u, z) + B(z,u) − B(z, z)
) = 0, ẑ(t0) = Qλu(t0).

Taking an inner product of the last equation with ẑ, we get

1

2

d

dt

(|ẑ|2 + α2‖ẑ‖2) + ν‖ẑ‖2

≤ ∣
∣(B(ẑ, u), ẑ)

∣
∣ + ∣

∣Qλ

(

B(u, z̄) + B(z̄, u) − B(z, z̄), ẑ
)∣
∣. (42)

The first summand on the right-hand side of (42) can be estimated as follows. Us-
ing (2), Proposition 2, and relation (21)

∣
∣
(

B
(

ẑ(t), u(t)
)

, ẑ(t)
)∣
∣ ≤ c

∥
∥u(t)

∥
∥
∣
∣ẑ(t)

∣
∣1/2∥

∥ẑ(t)
∥
∥

3/2 ≤ cM1

λ1/4λ
3/4
1

∥
∥ẑ(t)

∥
∥

2
,
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for t ≥ t0. Plugging this inequality into (42), and using relation (38), we get

1

2

d

dt

(|ẑ|2 + α2‖ẑ‖2) + d2

(

ν − cM1

λ1/4λ
3/4
1

)
(|ẑ|2 + α2‖ẑ‖2) ≤ b(t), (43)

where

b(t) = ∣
∣
(

B
(

u(t), z̄(t)
)

, ẑ(t)
)∣
∣ + ∣

∣
(

B
(

z̄(t), u(t)
)

, ẑ(t)
)∣
∣ + ∣

∣
(

B
(

z(t), z̄(t)
)

, ẑ(t)
)∣
∣.

Applying relation (41) and using the fact that u is bounded in the V norm, we con-
clude that b(t) → 0, as t → ∞. Therefore, applying Gronwall’s Lemma 1 to (43)
yields

lim
t→∞

∥
∥ẑ(t)

∥
∥ = 0,

for λ large enough, satisfying

λ > λ3
1

(
cM1

ν

)4

. (44)

Summarizing, the statement of the theorem holds for λ large enough satisfying
relations (36), (40), and (44).

�

5 Estimating the Exponential Decaying Small Scale

As we have mentioned in the Introduction, an additional goal of this research is to
provide further support for the proposal made in Cao et al. (2006) that the NSV sys-
tem (1), with the small regularization parameter α, can be used as a numerical model
for studying the original Navier–Stokes equations, and in particular their statistical
properties. Theorem 2 actually states that the global attractor of the NSV system con-
sists of real analytic functions u(x, t), whose Fourier spectrum û(k, t) satisfies the
decay estimate

∣
∣û(k, t)

∣
∣ ≤ c|k|−2e−|k|/λ1/2

.

Therefore, following the ideas of Doering and Titi (1995) (see also Henshaw et al.
1989, 1990 for a different approach), the quantity 1/λ1/2, can be naturally identified
as the exponential decaying length scale, since the exponential decay of the spectrum
of u is effective only at high wavenumbers satisfying |k| > λ1/2.

In the case of the Navier–Stokes equations, the exponential decaying length scale,
and similarly the radius of analyticity of solutions, can be identified with the smallest
effective length scale in the turbulent flow (see, e.g., Foias et al. 2001; Doering and
Titi 1995; Henshaw et al. 1989, 1990). Classical Kolmogorov theory of turbulence
states that the smallest effective length scale in the flow is proportional to

�K =
(

ν3

ε

)1/4

,
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where

ε = ν
〈‖u‖2〉,

is the mean energy dissipation rate, and 〈·〉 denotes either the long time average, or
the ensemble average with respect to the proper invariant probability measure. In
Doering and Titi (1995), it was shown that for the solution u(t) of the 3D Navier–
Stokes equations, as long ‖u(t)‖ remains bounded uniformly on some interval of
time [0, T ], the smallest length scale of the turbulent flow satisfies

� ∼ L

(
�K

L

)4

, (45)

where in the definition of �K , instead of the usual definition of the energy dissipation
rate ε, the authors considered the largest instantaneous energy dissipation rate on the
time interval [t1, T ], on which the solution of the equations remains regular

εsup = sup
t1≤t≤T

ν
∥
∥v(t)

∥
∥2

.

In the case of the NSV system, similarly to the Navier–Stokes equations, we can
define �NSV—the exponential decaying length scale. In other words, �NSV is the
largest length scale below which an exponential decay of the spectrum of the so-
lutions of the NSV system lying on the global attractor becomes effective. In this
section, we would like to derive a lower bound for �NSV, similar to relation (45) for
the 3D Navier–Stokes equations. For other estimates on a related smallest length scale
(via computation of the radius of analyticity of the solutions) of the Navier–Stokes
equations in 2 and 3 dimensions, see Henshaw et al. (1989, 1990), and Kukavica
(1999) (see also Ilyin and Titi 2007). See also Constantin et al. (1985) and Foias et
al. (2001) for other approach to this subject.

The energy of the NSV system is defined as

E(t) = ∣
∣u(t)

∣
∣2 + α2

∥
∥u(t)

∥
∥

2
,

which satisfies the balance

1

2

d

dt
E(t) = −ν‖u‖2 + (f,u).

We denote the mean rate of dissipation of energy for the NSV system as

ε = ν
〈‖u‖2〉,

where 〈·〉 stands for the long-time average. Moreover, we have the bound

ε ≤ εsup := νM2
1 .

In order to find a lower bound for the exponentially decaying length scale of the NSV
flow, we need to estimate the value of λ, from the inequalities (36), (40), and (44) in
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the proof of Theorem 2, since λ−1/2 is a lower bound for the radius of analyticity of
the solutions of the NSV system lying on the attractor and, therefore,

�NSV ≥ λ−1/2.

First, note that the condition (44) is satisfied for

λ−1/2 ∼ ν3

L3εsup
= L

(
�K

L

)4

. (46)

Moreover, for a small viscosity ν and α, we can estimate M2, using the expressions
of Lemma 2 in the following way

M2 ∼ C6
M3

1

α2ν2λ
5/2
1

,

where C6 > 0 is an absolute constant. Therefore, the condition (36) holds if

λ−1/2 ∼ νλ
3/4
1

M
1/2
1 M

1/2
2

∼ αν2λ2
1

M2
1

∼ αν3

L4εsup
= α

(
�K

L

)4

, (47)

or, on the other hand if

λ−1/2 ∼ ν2λ
3/2
1

M2
1

∼ ν3

L3εsup
= L

(
�K

L

)4

. (48)

Finally, we are left to check when the condition (40) is satisfied. In order to do this,
let us assume, as it is conventionally done, that f̂ = 0, namely, λ is chosen large
enough such that the forcing f is supported on the modes less than λ−1. In addition,
we assume that λ > α−2, so that d2 ≥ 1

2α−2. In that case, the condition (40) becomes

λ1/2 ∼ M1M
1/3
2

ν4/3λ1
∼ M2

1

ν2α2/3λ
11/6
1

∼ L11/3α−2/3 M2
1

ν2
,

and we obtain the estimate

λ−1/2 ∼ L1/3α2/3
(

�K

L

)4

. (49)

Combining relations (46), (47), (48), and (49), we conclude that the exponential
decaying length scale of the NSV equations satisfies

�NSV ≥ min
{

L,α,L1/3α2/3} ·
(

�K

L

)4

. (50)

Note that this estimate has the same asymptotic behavior as the estimate of the char-
acteristic length scale of the 3D Navier–Stokes equations obtained in Doering and Titi
(1995), without requiring any additional assumptions on the regularity of the flow of
the system (1).
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6 Radius of Analyticity of Stationary Solutions

At the end of the previous section, we computed the exponential decaying length
scale of the NSV model by estimating the radius of analyticity of the functions lying
in the global attractor of the system. A particular example of the functions lying on
the attractor are the stationary solutions of the system. The goal of this section is to
show that lower bounds for the exponential decaying length scale of the stationary
solutions of the NSV system are the same as those obtained in the last section for
the general element of the global attractor. Observe that the NSV equations has the
same stationary solutions as the 3D Navier–Stokes equations. All calculation in this
section are formal and can be rigorously justified using the Galerkin approximation
procedure. We are following the ideas introduced in Oliver and Titi (2001).

The steady state equation of (1) has the form

νAu + B(u,u) = f. (51)

Note the identity, where τ is now a dummy variable in the interval [0, σ ]
d

dτ
‖w‖2

1,τ ≡ 2‖w‖2
3/2,τ , (52)

for every time independent function w ∈ G
3/2
σ . Taking an inner product of (51) with

A1/2e2τA1/2
u, we obtain

ν‖u‖2
3/2,τ ≤ ∣

∣
(

B(u,u),A1/2u
)

0,τ

∣
∣ + ∣

∣
(

f,A1/2u
)

0,τ

∣
∣. (53)

Let us assume that the forcing f is supported on the first Nf modes. Therefore,
we can write

∣
∣
(

f,A1/2u
)

0,τ

∣
∣ ≤ e

2τN
1/2
f N

1/2
f

∣
∣(f,u)

∣
∣ ≤ e

2σN
1/2
f N

1/2
f ν‖u‖2,

where the last inequality is the result of the energy conservation, and we chose a large
σ to be determined later. Moreover, we can estimate

∣
∣
(

B(u,u),A1/2u
)∣
∣
0,τ

≤ cλ
3/4
1 ‖u‖2

1,τ‖u‖3/2,τ ≤ c2

2ν
‖u‖4

1,τ + ν

2
‖u‖2

3/2,τ .

Let us substitute the last two inequalities into (53) to get

1

2
ν‖u‖2

3/2,τ ≤ c2λ
3/2
1

2ν
‖u‖4

1,τ + e
2σN

1/2
f N

1/2
f ν‖u‖2, (54)

which we can rewrite

‖u‖2
3/2,τ ≤ c2λ

3/2
1

ν2
‖u‖4

1,τ + 2e
2σN

1/2
f N

1/2
f ‖u‖2. (55)

Applying to the last inequality, the identity (52), we obtain

1

2

d

dτ
‖u‖2

1,τ ≤ c2λ
3/2
1

ν2
‖u‖4

1,τ + 2e
2σN

1/2
f N

1/2
f ‖u‖2.



150 J Nonlinear Sci (2009) 19: 133–152

Denote

y(τ) = 2c2λ
3/2
1

ν2
‖u‖2

1,τ , F := 2
√

2cλ
3/4
1

ν
e
σN

1/4
f N

1/4
f ‖u‖.

Therefore, y(τ) satisfies

ẏ ≤ y2 + F 2 ≤ (y + F)2.

Once again, denote, z = y + F , which satisfies

ż ≤ z2,

therefore,

z(τ ) = y(τ) + F ≤ (

z−1(0) − τ
)−1

.

“Blow-up time” is

τB > z−1(0) = 1

2c2λ
3/2
1

ν2 ‖u‖2
1,τ + 2

√
2cλ

3/4
1

ν
e
σN

1/4
f N

1/4
f ‖u‖

≥ C
ν2

λ
3/2
1 ‖u‖2

≥ L

(
�

L

)4

,

where we used the fact that u is a steady state of the system (1), and hence lies in the
global attractor. As a result, we get u ∈ G2

τ for all τ < τB. Therefore, we showed that
the exponential decaying length scale of the stationary solutions of the NSV system,
satisfies the same bound (50) as the general solution of the NSV equations lying on
the global attractor. Moreover, this bound also holds for the smallest length scales of
the stationary solutions of the Navier–Stokes equations—similar to the general bound
obtained in Doering and Titi (1995).

7 Conclusions

We prove that the elements of the global attractor of the 3D NSV equations (1) with
periodic boundary conditions, driven by an analytic forcing, are analytic. A conse-
quence of this result is that the solutions of the 3D NSV system lying on the global
attractor have exponentially decaying spectrum, despite the fact that the addition of
the −α2�ut term changes the parabolic character of the original Navier–Stokes equa-
tion, which now starts to behave similar to a damped hyperbolic system.

An important consequence of our result is that the solutions of the 3D NSV sys-
tem (1) lying on the global attractor posses a dissipation range—an exponentially
decaying spectrum. This fact provides additional evidence that (1) with the small reg-
ularization parameter α enjoys similar statistical properties of the 3D Navier–Stokes
equations, a fact that was first suggested in Cao et al. (2006).

Finally, following the ideas of Oliver and Titi (2001), we have computed a lower
bound of the radius of analyticity of the steady state solution of the NSV and Navier–
Stokes equations. The bound coincides with the one obtained for the general solutions
of the system (1) lying on the global attractor.
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