
J Nonlinear Sci (2008) 18: 343–390
DOI 10.1007/s00332-008-9026-x

Numerical Continuation of Hamiltonian Relative
Periodic Orbits

Claudia Wulff · Andreas Schebesch

Received: 3 May 2006 / Accepted: 12 October 2007 / Published online: 10 July 2008
© Springer Science+Business Media, LLC 2008

Abstract The bifurcation theory and numerics of periodic orbits of general dynam-
ical systems is well developed, and in recent years, there has been rapid progress in
the development of a bifurcation theory for dynamical systems with structure, such
as symmetry or symplecticity. But as yet, there are few results on the numerical com-
putation of those bifurcations. The methods we present in this paper are a first step
toward a systematic numerical analysis of generic bifurcations of Hamiltonian sym-
metric periodic orbits and relative periodic orbits (RPOs). First, we show how to
numerically exploit spatio-temporal symmetries of Hamiltonian periodic orbits. Then
we describe a general method for the numerical computation of RPOs persisting from
periodic orbits in a symmetry breaking bifurcation. Finally, we present an algorithm
for the numerical continuation of non-degenerate Hamiltonian relative periodic or-
bits with regular drift-momentum pair. Our path following algorithm is based on a
multiple shooting algorithm for the numerical computation of periodic orbits via an
adaptive Poincaré section and a tangential continuation method with implicit repara-
metrization. We apply our methods to continue the famous figure eight choreography
of the three-body system. We find a relative period doubling bifurcation of the planar
rotating eight family and compute the rotating choreographies bifurcating from it.
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1 Introduction

The numerical bifurcation analysis of periodic orbits of general systems is well devel-
oped, see, e.g., (Kuznetsov 2004) and references therein. Today’s challenges include
the computation of periodic orbits of partial differential equations, the computation
of homoclinic orbits and nearby periodic orbits, and the computation of degenerate
periodic orbits of high codimension. One example where highly degenerate periodic
orbits show up generically are symmetric Hamiltonian systems. This is due to the ex-
istence of various conservation laws enforced by symmetry which change the generic
behavior of periodic orbits dramatically. The development of a theory which clas-
sifies all generic local bifurcations of periodic and relative periodic orbits in sym-
metric Hamiltonian systems and the parallel development of numerical methods for
the computation of those bifurcations are open problems, and the current paper is a
contribution toward their solution.

Relative periodic orbits are ubiquitous in symmetric Hamiltonian systems. For
example, generalizations of the Moser–Weinstein theorem show that they occur
near any stable relative equilibrium (Ortega 2003). Specific examples where rela-
tive periodic orbits have been discussed or could be found near relative equilib-
ria include gravitational N -body problems, molecules, underwater vehicles, vor-
tices in ideal fluids and continuum mechanics, see, e.g, (Chenciner et al. 2005;
Marchal 2000; Marsden and Ratiu 1994; Montaldi and Roberts 1999; Wulff 2003;
Wulff and Roberts 2002) and the references therein. A relative equilibrium is an equi-
librium after symmetry reduction, and a relative periodic orbit (RPO) is a trajectory
which is periodic after symmetry reduction. Hence, RPOs are a natural generalization
of periodic orbits in non-symmetric systems. In the case of rotational symmetry, an
RPO becomes periodic in an appropriate corotating frame, and is in general, a quasi-
periodic solution in the original coordinates. If the symmetry group is discrete, then
an RPO is a periodic orbit, but its relative period (the period of the corresponding
periodic orbit in the space of group orbits) is a fraction of the period of the orbit.
In other words, the periodic orbit has in general some spatio-temporal symmetry, for
more details see Sect. 2.

A general theory of generic local bifurcations of symmetric periodic orbits and
RPOs for dissipative systems can be found in Lamb and Melbourne (1999), Lamb
et al. (2003), Wulff et al. (2001). For symmetric Hamiltonian systems, such a theory
has yet to be developed. Recent progress in the theory of persistence of Hamiltonian
RPOs to nearby energy-momentum level sets can be found, e.g., in Montaldi (1997),
Wulff (2003). As a consequence of the lack of a general bifurcation theory of Hamil-
tonian RPOs, the numerical bifurcation analysis of these solutions is also still in its
infancy.

It is well known that periodic orbits of Hamiltonian systems can be computed nu-
merically by adding an unfolding parameter to overcome the degeneracy caused by
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energy conservation, see, e.g., (Galán et al. 2002; Muñoz-Almaraz et al. 2003). In this
paper, we are concerned with the numerical continuation of symmetric Hamiltonian
periodic orbits and RPOs. We show how to numerically exploit spatio-temporal sym-
metries in the computation of Hamiltonian periodic orbits by extending correspond-
ing methods for dissipative systems (Wulff and Schebesch 2006) to Hamiltonian
systems. Moreover, in the case of continuous symmetries, we compute symmetry
breaking bifurcations of relative periodic orbits from periodic orbits and show how
to continue non-degenerate RPOs of compact group actions in the conserved quan-
tities momentum and energy, building on the persistence results from Wulff (2003).
We use the methods of unfolding parameters of Galán et al. (2002), Muñoz-Almaraz
et al. (2003), but whereas Galán et al. (2002), Muñoz-Almaraz et al. (2003) continue
Hamiltonian periodic orbits in external parameters, we focus on continuation in inter-
nal parameters, namely the conserved quantities of the Hamiltonian system. The main
issue here is to specify how unfolding parameters have to be added in order to com-
pute the whole manifold of nearby RPOs without computing symmetry-conjugate
solutions. In this approach, the exploitation of discrete spatio-temporal symmetries
of the periodic orbits and RPOs is essential.

In this paper, we do not consider reversing symmetries, but instead develop meth-
ods which are applicable to general, not necessarily reversible Hamiltonian sys-
tems and can be used to continue non-reversible periodic orbits of reversible sys-
tems. We note that if the periodic orbits to be continued are required to be re-
versible, then other methods are available which exploit the reversing symmetry and
do not require the introduction of unfolding parameters, cf. (Chenciner et al. 2005;
Muñoz-Almaraz et al. 2004).

We apply our results to the three-body problem in celestial mechanics. There is
a vast literature on this topic. Periodic orbits of the restricted three-body problem
were numerically computed by the Copenhagen team in the early twentieth cen-
tury, see, e.g., (Burrau and Strömgren 1915). Since then, periodic orbits of the re-
stricted and full three-body problem have been the subject of various numerical in-
vestigations, see, e.g., (Contopoulos and Pinotsis 1984; Davoust and Broucke 1982;
Deprit and Henrard 1967; Hadjidemetriou and Christides 1975; Hénon 1974; Mar-
chal 2000) and references therein. Chenciner and Montgomery (2000) proved the
existence of a new type of periodic orbit of the three-body problem, namely the fig-
ure eight choreography. Choreographies are special periodic orbits of the N -body
system for which all bodies travel along the same curve in configuration space. Many
other choreographies have been found numerically by Chenciner et al. (2002), Simó
(2002). The figure eight choreography has been continued, with respect to the mass of
the bodies, by Galán et al. (2002). We numerically compute three families of relative
periodic orbits which bifurcate from the famous figure eight choreography to non-
zero angular momentum. These families have been found numerically by Marchal
(2000), Chenciner et al. and Hénon, respectively, see (Chenciner et al. 2005). The ex-
istence of these rotating choreographies has been proved by Chenciner et al. (2005).
They continue the rotating figure eight solutions numerically by exploiting their re-
versibility. As mentioned above, we do not consider reversing symmetries, but we
reprove the result in Chenciner et al. (2005) on the existence of rotating eights using
reduced Poincaré maps rather than Lyapunov–Schmidt reduction on loop spaces as
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in Chenciner et al. (2005). We generalize it to N bodies and characterize it as special
case of a persistence result for RPOs from Wulff (2003). Moreover, our existence
proof directly implies convergence of the corresponding numerical method. Apply-
ing our numerical methods to the figure eight, we find a relative period doubling
bifurcation along the branch of planar rotating eights and compute the bifurcating
branch.

The paper is organized as follows: In Sect. 2, we extend the numerical continua-
tion techniques for symmetric periodic orbits of general systems which we developed
in Wulff and Schebesch (2006) to Hamiltonian systems. Then in Sect. 3, we consider
systems with continuous symmetry groups and continuation of relative periodic or-
bits. In particular, we review our persistence results for non-degenerate relative peri-
odic orbits with regular drift-momentum pair (Wulff 2003) and present an algorithm
for the continuation of such relative periodic orbits. In Sect. 4, we apply our numeri-
cal methods to rotating choreographies in the three-body problem.

2 Numerical Continuation of Symmetric Hamiltonian Periodic Orbits

In this section, we show how symmetric periodic orbits of Hamiltonian systems can
be continued numerically with respect to energy and how spatio-temporal symmetries
can be exploited. We extend the numerical methods presented in Wulff and Schebesch
(2006) for dissipative systems to Hamiltonian systems.

2.1 Periodic Orbits of Hamiltonian Systems

Mechanical systems arising, for example, in celestial mechanics or molecular dynam-
ics are examples of Hamiltonian systems (Arnold 1978; Marsden and Ratiu 1994).
A Hamiltonian system is given by

ẋ = fH (x) = J∇H(x), x ∈ X (2.1)

where X is an open subset of Rn. Here n = 2d is even, H : X → R is called the
Hamiltonian or energy of the system, J ∈ Mat(n) is a skew-symmetric, invertible
matrix and ∇H = (DH)T is the column vector containing the gradient of H . The
inverse J−1 of J is called the symplectic structure matrix and defines the symplectic
form

ω(v,w) = 〈
v,J

−1w
〉
. (2.2)

The Hamiltonian vector field fH from (2.1) is then defined by

ω
(
fH (x),w

) = DH(x)w, x ∈ X, w ∈ R
n.

In many applications, J is given by

J =
(

0 idd

−idd 0

)
, (2.3)
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and x takes the form x = (q,p) with q ∈ Rd and p ∈ Rd . Then q is called the position
and p the momentum variable. We can then rewrite (2.1) in the equivalent form

q̇ = ∇pH(p,q), ṗ = −∇qH(p,q).

One can easily check that solutions x(t) of a Hamiltonian system (2.1) conserve the
energy:

d

dt
H

(
x(t)

) = DH
(
x(t)

)
ẋ(t) = DH

(
x(t)

)
J∇H

(
x(t)

) = 0.

Let x̄ = x(0) lie on a T̄ -periodic orbit P̄ = {x(t), t ∈ R}, i.e., x(T̄ ) = x(0) or equiv-
alently �T̄ (x̄) = x̄ where �t is the flow of (2.1). With x(t) also x(t + t0), t0 ∈ R,
is a periodic solution of (2.1). To eliminate this non-uniqueness caused by time shift
symmetry, we fix a section S = Sx̄ transverse to the periodic orbit at x̄ (a Poincaré
section), e.g.,

S = x̄ + span
(
fH (x̄)

)⊥
, (2.4)

and consider the first return map � : S → S from S to S. Then � is called Poincaré
map, see, e.g., (Arnold 1978). As a consequence of energy conservation, in the case
of Hamiltonian systems, the derivative Dx�(x̄) of the Poincaré map � : S → S at
x̄ = x(0) always has an eigenvalue 1: Since H(x) = H(�t(x)), for all x ∈ Rn, t ∈ R,
we have

DH(x) = DH
(
�t(x)

)
Dx�t (x). (2.5)

Thus, in the periodic orbit, we get

DH(x̄)
(
Dx�T̄ (x̄) − id

) = 0. (2.6)

Furthermore,

d

dt
H

(
�t(x̄)

) = 0 =⇒ DH(x̄)f (x̄) = 0, (2.7)

so that DH(x̄) lies in the dual of the tangent space of the Poincaré section S and so is
a left eigenvector of Dx�(x̄) to the eigenvalue 1. We therefore restrict the Poincaré
section to

SĒ := S ∩ XĒ,

where

XĒ = {
x, H(x) = Ē

}

is the energy level set of the periodic orbit (Ē = H(x̄)) and consider the Poincaré
map �Ē : SĒ → SĒ inside this energy-level set. We can, without loss of generality,
assume that Ē = 0.

Definition 2.1 We call a periodic solution x(t) of a Hamiltonian system (2.1) through
x̄ = x(0) non-degenerate if it is a non-degenerate periodic solution inside its energy
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level XĒ , i.e., if it is a proper periodic solution (not an equilibrium) and if

D�Ē(x̄) − id

is invertible.

If P̄ is a non-degenerate periodic orbit, then 1 is a single eigenvalue of the deriv-
ative of the Poincaré map Dx�(x̄) at x̄ ∈ P̄ . In this case, there is a two-dimensional
manifold P(E) of periodic orbits parametrized by energy such that P(Ē) = P̄ , see
(Arnold 1978). The non-degeneracy condition is generically satisfied.

2.2 Hamiltonian Systems with Discrete Symmetries

We now assume that the Hamiltonian H of the Hamiltonian system (2.1) is invariant
under a finite group � ⊆ GL(n):

H(x) = H(γ x) for all γ ∈ � (2.8)

and that � acts symplectically, i.e.,

� ⊆ SP(n)

where SP(n) is the symplectic group

SP(n) = {
γ ∈ GL(n), γ T

J
−1γ = J

−1}.

We also assume that the action of � on Rn is faithful. Under these assumptions, the
Hamiltonian vector field fH from (2.1) is �-equivariant, i.e., it commutes with �:

fH (γ x) = γfH (x) ∀γ ∈ �, x ∈ X.

This condition on the vector field (2.1) implies that if x(t) is a solution of the dy-
namical system (2.1) then also γ x(t) is a solution. Hence, the flow �t(·) of (2.1) is
�-equivariant as well: �t(γ x) = γ�t(x) for all γ, x, t .

An element γ ∈ � is called a symmetry of x̄ ∈ Rn if γ x̄ = x̄; the set of all symme-
tries of x̄ (isotropy subgroup of x̄) is given by K = �x̄ = {γ ∈ � | γ x̄ = x̄}. The spa-
tial symmetries K of periodic solutions x(t) are those group elements γ ∈ � which
leave each point on the periodic orbit invariant:

K := �x(t) = {
γ ∈ � | γ x(t) = x(t) for all t ∈ R

}
.

Since the flow �t is �-equivariant, the set of spatial symmetries K of a periodic
solution x(t) does not depend on the time t . In addition to spatial symmetries, there
are also spatio-temporal symmetries which leave the periodic orbit P̄ := {x(t), t ∈ R}
invariant as a whole but not pointwise: The spatio-temporal symmetries of a periodic
orbit P̄ are given by

L := {
γ ∈ � | γ P̄ = P̄

}
.
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Each γ ∈ L corresponds to a phase shift �(γ ) T̄ of the T̄ -periodic solution x(t):

γ ∈ L =⇒ x(t) = γ x
(
t + �(γ ) T̄

)
, where �(γ ) ∈ S1 
 R/Z. (2.9)

So spatio-temporal symmetries come in pairs (γ,�(γ )) ∈ � × S1. We define an ac-
tion of the spatio-temporal symmetry group � × S1 on T̄ -periodic solutions x(t) of
(2.1) as follows:

(
(γ, θ)x

)
(t) := γ x(t + θT̄ ), (γ, θ) ∈ � × S1. (2.10)

Note that � : L → S1 is a group homomorphism with the spatial symmetries K as
kernel and that K is normal in L such that

L/K ≡ Z	 for some 	 ∈ N, (2.11)

see (Golubitzky et al. 1988).

Remark 2.2 It can be seen easily that the vector field fH of (2.1) maps the fixed point
space of K in X

Xred := FixX(K) = {
x ∈ X | γ x = x ∀γ ∈ K

}

into itself. Thus, we can restrict the differential equation (2.1) to the fixed point space
Xred which has a lower dimension nred ≤ n. This way we obtain a symmetry reduced
system fred : Xred → Rnred which can be computed symbolically (see Gatermann
and Hohmann 1991). By restriction onto the fixed point space FixX(K), the spatial
symmetries of periodic solutions can be exploited. The symmetry reduced system
fred : Xred → Rnred has symmetry group N(K)/K where N(K) is the normalizer
of K .

From now on, we assume unless stated otherwise, that the spatial symmetry K of
the periodic orbit is trivial by replacing the phase space by FixX(K) and the sym-
metry group � of the Hamiltonian system (2.1) by N(K)/K . The spatio-temporal
symmetries of the periodic orbit then form a finite cyclic group L = Z	.

In bifurcation theory, the spatio-temporal symmetry of periodic orbits is taken
into account by studying the reduced Poincaré map. It was first introduced by Fiedler
(1988). Despite being easy, this concept is essential for the classification of generic
symmetry breaking bifurcations of periodic orbits of general systems, see (Lamb and
Melbourne 1999; Lamb et al. 2003), and for the design of numerical methods for
the computation of these bifurcations. Let α ∈ L = Z	 be that element in L that
corresponds to the smallest possible non-zero phase shift T̄ /	:

αx

(
t + T̄

	

)
= x(t) ∀t. (2.12)

We call this spatio-temporal symmmetry the drift symmetry of the periodic or-
bit P̄ , cf. (Wulff 2003). For x̄ ∈ P̄, define the Poincaré section as before by S =
x̄ + span(f (x̄))⊥. Then the reduced Poincaré map �red : S → S is defined as

�red = α�̂, �̂ : S → α−1S. (2.13)
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Here, α is the drift symmetry of the periodic orbit and �̂ maps x ∈ S into the
point where the positive semi-flow through x first hits α−1 S, see (Fiedler 1988).
From (2.8), we get

DH(γ x)γ = DH(x) for all γ ∈ �, (2.14)

and this, together with (2.5), implies that

DH(x̄)
(
αDx� T̄

	

(x̄) − id
) = DH

(
α�T̄ /	(x̄)

)
αD�T̄ /	(x̄) − DH(x̄) = 0. (2.15)

Hence, because of (2.7), ∇H(x̄) is a left eigenvector of the reduced Poincaré map
�red, as in the case of non-symmetric Hamiltonian systems, cf. (2.6). As before, let
�Ē

red : SĒ → SĒ be the Poincaré map inside the energy level set XĒ of the periodic
orbit (Ē = H(x̄)).

Definition 2.3 Analogously to Definition 2.1, we call a symmetric periodic orbit of
a Hamiltonian system through x̄ non-degenerate if it is not an equilibrium and if

D�Ē
red(x̄) − id

is invertible.

If x̄ lies on a non-degenerate symmetric periodic orbit P̄ , then there is a one-
parameter family P(E), E ≈ Ē, of periodic orbits parametrized by energy E closeby
which have the same spatio-temporal symmetry as the original periodic orbit P̄ =
P(Ē).

2.3 Numerical Continuation of Symmetric Hamiltonian Periodic Orbits

In this section, we show how symmetric periodic orbits of Hamiltonian systems can
be computed numerically.

2.3.1 Single Shooting Approach

A symmetric periodic orbit of a �-equivariant dissipative system ẋ = f (x) with drift
symmetry α ∈ � of order 	 can be computed as solution of the following underdeter-
mined system (see Deuflhard 1984; Wulff and Schebesch 2006)

F(x,T ) = α�T/	(x) − x = 0. (2.16)

Here, �t(x) is the flow of (2.1). If DF(x̄, T̄ ) has full rank in the solution (x̄, T̄ ), then
the equation F(y) = 0 where y = (x, T ) can be solved by a Gauss–Newton method
(Deuflhard 1984; Wulff and Schebesch 2006):

�yk = −DF
(
yk

)+
F

(
yk

)
,

yk+1 = yk + �yk.
(2.17)
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Here, DF(yk)+ denotes the Moore–Penrose pseudo-inverse of DF(yk). Remember
that for A ∈ Mat(m,n), m ≤ n, rankA = m, x ∈ Rn, b ∈ Rm, x = A+b is defined by

Ax = b, x ⊥ker(A).

Here, ker(A) denotes the kernel of A. The Jacobian DF(x,T ) of (2.16) in the solution
(x̄, T̄ ) is given by

DF
(
x̄, T̄

) =
[
αDx�T̄ /	(x̄) − id,

1

	
αf

(
�T̄ /	(x̄)

)] =
[
αDx�T̄ /	(x̄) − id,

1

	
f (x̄)

]
.

(2.18)
Equation (2.12) implies that

(
αDx�T̄ /	(x̄) − id

)
fH (x̄) = 0. (2.19)

Therefore, a kernel vector tf of DF(ȳ) at the solution point ȳ = (x̄, T̄ ) is the tangent
tf = (f (x̄),0) to the trajectory.

Remark 2.4 This approach can be interpreted as computing periodic orbits in an
adaptive Poincaré section, which is approximately orthogonal to the periodic orbit:
Since for the kernel vectors tk = (tkx , tkT ) of DF(yk), we have tk → tf as k → ∞,
the Gauss–Newton iterate xk+1 = xk + �xk lies in the adaptive Poincaré section
Sxk = xk + span(tkx )⊥ ≈ x̄ + span(f (x̄))⊥.

Periodic orbits of Hamiltonian systems can not be computed numerically by solv-
ing (2.16) because due to conservation of energy, the Jacobian DF is singular in every
solution of (2.16) with rank defect (at least) one. This follows from the fact that in a
solution point (x̄, T̄ ) of (2.16) we have, by (2.18), (2.7), and (2.15) that

DH(x̄)DF
(
x̄, T̄

) = DH(x̄)

[
αD�T̄ /	(x̄) − id,

1

	
fH (x̄)

]

=
[

DH(x̄)
(
αDx� T̄

	

(x̄) − id
)
,

1

	
DH(x̄)fH (x̄)

]

= 0.

Periodic orbits of Hamiltonian systems are usually computed by adding an unfolding
term so that (2.1) becomes a one-parameter family of vector fields, see, e.g., (Galán
et al. 2002; Muñoz-Almaraz et al. 2003; Wulff et al. 1994): we consider the ordinary
differential equation

ẋ = f (x,λ) = fH (x) + λ∇H(x). (2.20)

For any solution x(t) of (2.20), we have

d

dt
H

(
x(t)

) = DH
(
x(t)

)(
fH

(
x(t)

)) + λ∇H
(
x(t)

) = λ
∥∥∇H

(
x(t)

)∥∥2
. (2.21)
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So if x(t) is non-stationary, then H(x(t)) is strictly monotone in t if λ �= 0. Since
for a T -periodic solution x(t) of (2.20), we have H(x(0)) = H(x(T )) it follows that
λ = 0. We can, therefore, compute symmetric periodic orbits by solving

0 = F(y) = F(x,T ,λ) = α�T/	(x;λ) − x (2.22)

where �t(·;λ) is the flow of (2.20). Moreover, we have the following convergence
theorem which generalizes corresponding results in Galán et al. (2002), Muñoz-
Almaraz et al. (2003), Wulff et al. (1994) to periodic orbits with spatio-temporal
symmetry:

Theorem 2.5 The Jacobian

DF
(
x̄, T̄ , λ

)|λ=0 =
[
αDx�T̄ /	(x̄) − id,

1

	
fH (x̄), αDλ�T̄ /	(x̄)

]
(2.23)

of (2.22) is regular in the solution point (x̄, T̄ ,0) if the T̄ -periodic orbit P̄ through
x̄ is non-degenerate in the sense of Definition 2.3. In this case, the Gauss–Newton
method (2.17) applied to (2.22) with y = (x,T ,λ) converges to a periodic orbit on
the path of periodic orbits P(E) near P̄ = P(Ē) for sufficiently close initial data
ŷ ≈ (P̄, T̄ ,0).

Proof We check that the Jacobian DF(x,T ,λ)|λ=0 has full rank in every solution
point (x̄, T̄ ,0), x̄ ∈ P̄ . We have

DH(x̄)DλF
(
x̄, T̄ , λ̄

)∣∣
λ̄=0 = DH(x̄)αDλ�T̄ /	(x̄; λ̄)|λ̄=0

= DλH
(
α�T̄ /	(x̄; λ̄)

)∣∣
λ̄=0

= DλH
(
�T̄ /	(x̄; λ̄)

)∣∣
λ̄=0

= Dλ

∫ T̄ /	

0

d

dt
H

(
�t(x̄; λ̄)

)
dt |λ̄=0

= Dλ

∫ T̄ /	

0
λ
∥∥∇H

(
�t(x̄; λ̄)

)∥∥2
dt |λ̄=0

=
∫ T̄ /	

0

∥∥∇H
(
�t(x̄)

)∥∥2 dt �= 0. (2.24)

Here, we used the �-invariance of H (see (2.8)) in the third line, and (2.21) in the
fifth line. From (2.23) and (2.24), we conclude that in a non-degenerate periodic
orbit DF(x̄, T̄ ,0) has full rank. The solution manifold of F = 0 is, therefore, two-
dimensional and locally given by the two-dimensional manifold {P(E), E ≈ Ē}. �

Remark 2.6 Note that DF(x̄, T̄ ,0) also has full rank and our numerical method con-
verges if x̄ lies on a degenerate periodic orbit which is a turning point with respect to
energy continuation.
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Remark 2.7 If a simple parametrization of constant energy level sets near the periodic
orbit is explicitly available, then the number of variables could be reduced by one
and the introduction of an unfolding parameter would not be necessary. In general,
such parametrizations are not easily available. We, therefore, prefer the widely used
method described above, where additional unfolding parameters are introduced to
take into account the energy conservation. Existing powerful continuation methods
for periodic orbits, see, e.g., (Galán et al. 2002; Muñoz-Almaraz et al. 2003; Wulff
and Schebesch 2006) and references therein, are readily applicable in our approach.

2.3.2 Continuation with Respect to Energy

At a non-degenerate symmetric periodic orbit, the equation

F(x,E) = 0, where F(x,E) : SE × R → SE is given by

F(x,E) = �E
red(x) − x, (2.25)

depends smoothly on E and can be solved by the implicit function theorem. Its solu-
tions x(E) lie on symmetric periodic orbits P(E) with energy E. In Deuflhard et al.
(1987) a tangential continuation method based on implicit reparametrization is pre-
sented to solve systems of the form f (x,λ) = 0, where f : X × R → Rn, X ⊂ Rn

open. The path following algorithm works as follows: if a solution ȳ = (x̄, λ̄) to-
gether with its continuation tangent t (ȳ), the kernel vector of Dyf (ȳ), are given a
new guess point ŷ is computed by setting ŷ = ȳ + εt (ȳ) where ε is a suitably chosen
stepsize. Then an underdetermined Gauss–Newton method as in (2.17) is used for the
iteration from the guess ŷ back to the solution path. The stepsize control is described
in Deuflhard et al. (1987).

Remark 2.8 The continuation method of Deuflhard et al. (1987), called “Moore–
Penrose continuation” in Kuznetsov (2004), and Keller’s widely used pseudoar-
clength method (Keller 1977) are based on the same idea, namely, an implicit arc-
length parametrization of the solution path. Both require the Newton corrections to
lie in hyperplanes which are approximately perpendicular to the tangent of the solu-
tion path. The only difference between the two methods is that Moore–Penrose con-
tinuation adapts this approximation during the Newton iteration back to the solution
path, whereas it remains fixed during the iteration in Keller’s method; see (Kuznetsov
2004, Sect. 10.2) for more details. In both methods, the stepsize controls the change
of the entire solution object and there is no designated continuation parameter so that
fold bifurcations cause no problems.

In principle we can apply this continuation method to (2.25). But numerically,
we rather want to compute symmetric periodic orbits by using adaptive Poincaré
sections, i.e., by solving (2.22), cf. Remark 2.4. The kernel DF of (2.22) is at least
two-dimensional and exactly two-dimensional at non-degenerate periodic orbits, see
Theorem 2.5. As continuation tangent tE = (tEx , tET , tEλ ), we choose the kernel vector
of DF which corresponds to the kernel vector tF of DF , i.e., we have to require



354 J Nonlinear Sci (2008) 18: 343–390

tEx ∈ S. As before, see (2.4), we choose S = x̄ + span(fH (x̄))⊥ at the periodic orbit
through x̄.

The continuation tangent tE can then be computed as follows: Let tλx be the gen-
eralized eigenvector of αD�T̄

	

(x̄) to the eigenvalue 1 which corresponds to the left

eigenvector DH(x̄) of αD�T̄
	

(x̄), see (2.15), i.e., DH(x̄)tλx �= 0. Then there is a con-

stant tλT such that the vector tλ = (tλx , tλT ,0) lies in the kernel of DF(ȳ) and is linearly

independent of the second kernel vector tf = (t
f
x ,0,0) of DF(ȳ) where t

f
x = fH (x̄),

see (2.19). Since DH(x̄)tλx �= 0 the parameter λ corresponds to a parametrization with
respect to energy and we will therefore frequently denote it by λE rather than λ in the
sequel. The continuation tangent tE corresponding to tF is then the kernel vector tE

of DF(ȳ) which is orthogonal to tf .

2.3.3 Fixing the Energy

If a periodic orbit with given energy E has to be computed, then we solve the system
of equations FE(x,T ,λE) = 0 where FE : X × R2 ⊆ Rn+2 → Rn+1 is given by

FE(x,T ,λE) =
(

α�T
	
(x;λE) − x

H(x) − E

)

. (2.26)

Proposition 2.9 The Jacobian DF Ē(ȳ) has full rank in the solution ȳ = (x̄, T̄ , λ̄ =
0) if the periodic orbit P̄ through x̄ with energy Ē = H(x̄) is non-degenerate in
the sense of Definition 2.3. In this case, the Gauss–Newton method (2.17) applied to
FE = 0 converges for initial data ŷ ≈ (P̄, T̄ ,0) and E ≈ Ē.

Proof Note that

DF Ē(ȳ) =
(

αD�T̄
	

(x̄) − id 1
	
fH (x̄) αDλ� T̄

	

(x̄)

DH(x̄) 0 0

)

.

Due to time shift symmetry and energy conservation the kernel of DF(ȳ) with F from
(2.22) is at least two-dimensional. If the periodic orbit P̄ = P(Ē) is non-degenerate,
then by Theorem 2.5, it is exactly two-dimensional, spanned by tf and a vector tE

with DH(x̄)tEx �= 0. Hence, tE is not in the kernel of DF Ē(ȳ) and so DF Ē(ȳ) has a
one-dimensional kernel and has full rank. The one-dimensional solution manifold of
FE = 0 is then given by the periodic orbit P(E) with energy E. �

Remarks 2.10

(a) If the Hamiltonian vectorfield depends on an external parameter λext, then (2.26)
becomes dependent on λext and can be used to continue non-degenerate periodic
orbits with fixed energy in an external parameter.

(b) Galán et al. (2002) also use introduce unfolding parameters to deal with energy
conservation and continue periodic orbits with fixed period and fixed phase in an
external parameter, see Remark 3.26 for more details.
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(c) If the periodic orbits to be continued are required to be reversible—an additional
assumption which we do not impose—then other methods are available which
exploit the reversing symmetry and do not require the introduction of unfolding
parameters, cf. (Chenciner et al. 2005; Muñoz-Almaraz et al. 2004).

2.3.4 Multiple Shooting Ansatz

In order to numerically continue symmetric periodic solutions in numerically del-
icate situations, that is, when the single shooting method is ill-conditioned, we use
the just described algorithm in the multiple shooting context, cf. (Deuflhard 1984;
Wulff and Schebesch 2006): we compute k points on a periodic orbit with spatio-
temporal symmetry L = Z	, trivial isotropy, and drift symmetry α by solving the
underdetermined equation

F(x1, . . . , xk, T ,λ) = 0, F : Xk × R
q+1 → R

M, (2.27)

where Xk × Rq+1 ⊆ RN , xj ∈ X ⊆ Rn, j = 1, . . . , k, T ∈ R, λ ∈ Rq (in this case
q = 1), and N = M + q + 1 = kn + q + 1. Moreover, 0 = s1 < · · · < sk+1 = 1 is a
partition of the unit interval, �si = si+1 − si for i = 1, . . . , k, and

Fi(x1, . . . , xk, T ,λ) =
{

��siT

	

(xi;λ) − xi+1 for i = 1, . . . , k − 1,

α��skT

	

(xk;λ) − x1 for i = k.
(2.28)

Remark 2.11 Note that the Gauss–Newton method (2.17) applied to (2.27) amounts
to using adaptive integral phase conditions, cf. also (Deuflhard 1984; Kuznetsov
2004; Wulff and Schebesch 2006).

The linear systems which arise in the Gauss–Newton method (2.17) are of the form
Jy = b, where y = (x,T ,λ) ∈ Rnk+1+q , x = (x1, . . . , xk), b = (b1, . . . , bk), and

J = DF(x,T ,λ) =

⎛

⎜⎜⎜⎜⎜
⎝

G1 −id g1 p1
G2 −id g2 p2

. . .
. . .

...
...

Gk−1 −id gk−1 pk−1
−id Gk gk pk

⎞

⎟⎟⎟⎟⎟
⎠

= [G,g,p].

(2.29)
Here, G is an (nk,nk)-matrix, g an nk-vector, p an (nk, q)-matrix, and

Gi = Dx��siT

	

(xi;λ), i = 1,2, . . . , k − 1,

Gk = αDx��skT

	

(xk;λ),

gi = DT Fi(x,T ,λ) = DT ��siT

	

(xi;λ) = �si

	
fH

(
��siT

	

(xi;λ),λ
)
,

i = 1, . . . , k − 1,

gk = α
�sk

	
fH

(
��skT

	

(xk;λ),λ
)
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pi = DλFi(x, T ) = Dλ��siT

	

(xi;λ), i = 1, . . . , k − 1,

pk = αDλ��skT

	

(xk;λ).

We have

Jy = b ⇐⇒ [G,g,p]
(

x

T

)
= b ⇐⇒ Gx = b − gT − pλ,

so we can use block Gaussian elimination to solve these linear systems. This yields
the following algorithm:

(1) Compute the condensed right-hand side

bc := C(G,b, k) = bk + Gkbk−1 + · · · + Gk · · ·G2b1. (2.30)

(2) Compute the condensed matrix

Mc := [Gc − id, gc,pc] with Gc := Gk · · ·G1, gc := C(G,g, k),

pc := C(G,p, k). (2.31)

(3) Compute a solution of the condensed system

Mc

⎛

⎝
x1
T

λ

⎞

⎠ = bc,

for example,
⎛

⎝
x1
T

λ

⎞

⎠ = M+
c bc,

by QR-decomposition.
(4) Compute x via the explicit recursion

xi = Gi−1xi−1 − bi−1 + gi−1T + pi−1λ for i = 2, . . . , k. (2.32)

We have now obtained a solution y = J−b where J− is an outer inverse of J . To
compute the solution J+b where J+ is the Moore–Penrose pseudo-inverse of J, we
have to add one more step:

(5) Compute the kernel of J . Let t = (tx, tT , tλ) be a kernel vector where tx =
(t1, t2, . . . , tk). Starting from a tangent of the condensed system which satisfies

[Gc − id, gc,pc]
⎛

⎝
t1
tT
tλ

⎞

⎠ = 0,

we obtain a tangent t of the whole system by

ti = Gi−1ti−1 + gi−1tT + pi−1tλ for i = 2, . . . , k,
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and normalization.
Assume that J has full rank and let t (1), . . . , t (q+1) be an orthonormal basis of

ker(J ). Then we project y → y − ∑q+1
i=1 〈t (i), y〉t (i).

An easy computation shows that in a solution point ȳ = (x̄, T̄ ,0), we have

[Gc − id, gc,pc] =
[
αDx� T̄

	

(x̄1) − id,
1

	
fH (x̄1),Dλ� T̄

	

(x̄1;λ = 0)

]
, (2.33)

so the condensed matrix Mc = [Gc − id, gc,pc] equals the Jacobian (2.23) of the
single shooting approach (2.22) in the first multiple shooting point x̄1. The Jacobian J

is regular iff Mc is regular. Therefore, we get the following proposition, analogously
to the single shooting case (Theorem 2.5):

Proposition 2.12 The Jacobian J from (2.29) of the multiple shooting method (2.27)
applied to the differential equation (2.20) is regular at a periodic orbit of the Hamil-
tonian system (2.1) if the periodic orbit is non-degenerate in the sense of Defini-
tion 2.3. In this case, the Gauss–Newton method (2.17) applied to (2.27) converges
for sufficiently good initial data.

Remark 2.13 In the numerical implementation of the block Gaussian elimination,
iterative refinement sweeps have to be used to stabilize this numerical method, cf.
(Deuflhard 2004, Sect. 7.1.1, Deuflhard and Bornemann 2002, Sect. 8) and the refer-
ences therein. Standard refinement methods only converge if εk(2n + k)κ[0, T /	]
� 1 where κ[t0, t] is the condition number for the initial value problem for any
interval [t0, t] and ε is the machine precision. However, κ[0, T /	] is the condition
number corresponding to the single shooting method. In contrast, the method of it-
erative refinement sweeps converges if it can be started (which is usually possible in
realistic applications, cf. Deuflhard and Bornemann 2002) and if the much weaker
condition εk(2n + k)maxj=1,...,k κ[tj , tj+1] � 1 is satisfied. Here, {tj = sjT /	,
j = 1, . . . k} is the multiple-shooting time grid. Note that the stronger condition
TOL ∗ maxj=1,...,k κ[tj , tj+1] � eps for the tolerance TOL of the initial value prob-
lem solvers in terms of the user prescribed accuracy eps has to be satisfied in the
multiple shooting method anyway.

Continuation Tangent for Energy Parametrization As continuation tangent for the
branch of periodic orbits parametrized by energy, we take the kernel vector tE of J

which is orthogonal to tf = (t
f
x ,0,0), where t

f
x = (t

f

1 , . . . , t
f
k ) and t

f
i = fH (x̄i),

i = 1, . . . , k.

2.3.5 Fixing the Energy in the Multiple Shooting Ansatz

In this case, the equation

FE(x1, . . . , xk, T ,λ) = 0 (2.34)

maps from Xk × R2 ⊆ Rnk+2 → Rnk+1, we have FE = (F1, . . . ,Fk,FE) where Fi

is as in (2.28), i = 1, . . . , k, and we choose FE as an average of the Hamiltonian over
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the multiple shooting points of the periodic orbit:

FE(x1, . . . , xk, T ,λ) = 1

k

k∑

i=1

H(xi) − E.

Another row has to be added to the derivative DF(x,T ,λ) of F from (2.29):

J = DFE(x,T ,λ) =
(

G g p

l 0 0

)
, (2.35)

where

li = 1

k
DH(xi), i = 1, . . . , k.

Let b = (bx, bl) ∈ Rkn × R. Then we have

Jy = b ⇐⇒
(

G g p

l 0 0

)⎛

⎝
x

T

λ

⎞

⎠ =
(

bx

bl

)

⇐⇒ Gx = bx − gT − pλ, lx = bl. (2.36)

We call bl the constraint right-hand side. We can solve (2.36) by adding the following
steps to the block Gaussian elimination from Sect. 2.3.4:

(1) In step 1, we compute the condensed right-hand side bc = (bc,x, bc,l): this in-
volves computing the condensed right-hand side bc,x = C(G,b, k), cf. (2.30),
and the condensed constraint right-hand side bc,l . The latter is defined as bc,l =
CS(G,b, bl, k) with

CS(G,b, bl, k) = bl + l2b1 + · · · + lk(bk−1 + · · ·Gk−1 · · ·G2b1)

= bl +
k∑

i=2

liC(G,b, i − 1).

(2) In step 2, we also compute the condensed matrix

ME
c =

(
Gc gc pc

lGc l
g
c l

p
c

)
(2.37)

where Gc , gc and pc are as in (2.31) and the condensed constraint matrices lGc ,
l
g
c , l

p
c are given by

lGc = lkGk−1 · · ·G1 + · · · + l2G1 + l1, l
g
c = CS(G,g,0, k),

l
p
c = CS(G,p,0, k).

(2.38)

The rest is now analogous to Sect. 2.3.4.
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Derivation of the Modified Block Gaussian Elimination The solution of the recur-
sion (2.32) is

xi = Gi−1 · · ·G1x1 + C(G,T g + λp − b, i − 1), i = 2, . . . , k.

Inserting this into the linear constraint equation lx = bl, we get

k∑

i=1

li
(
Gi−1 · · ·G1x1 + C(G,T g + λp − b, i − 1)

) = bl

which is equivalent to

lGc x1 + T l
g
c + λl

p
c = bc,l .

Proposition 2.14 If the periodic orbit through x̄ with energy Ē = H(x̄) is non-
degenerate, then the Gauss–Newton method (2.17) applied to (2.34) converges for
good enough initial data and energies E ≈ Ē.

Proof It suffices to show that the condensed matrix ME
c from (2.37) has full rank. By

the non-degeneracy assumption and (2.33), the kernel of Mc = [Gc − id, gc,pc] is
two-dimensional and spanned by the vectors tEc = (tE1 , tET ,0) and t

f
c = (f (x̄1),0,0)

where DH(x̄1)t
E
1 �= 0. We show that tEc is not a kernel vector of ME

c which implies
that ME

c has a one-dimensional kernel and, therefore, full rank. First, we show that
l
g
c = 0 in the periodic orbit. Since C(G,g, i − 1) = si

	
f (x̄i) in the solution and li =

1
k

DH(x̄i), we have liC(G,g, i −1) = 0, and thus l
g
c = 0. As a consequence, we need

to show that lGc tE1 �= 0. From (2.38), we conclude that in a periodic orbit

lGc = 1

k

(
DH(x̄k)D�skT̄ /	(x̄1) + · · · + DH(x̄2)D�s2T̄ /	(x̄1) + DH(x̄1)

)
.

Now, the fact that x̄i = �si T̄ /	(x1), i = 1,2, . . . , k, and (2.5) imply that lGc =
DH(x̄1). Hence, we have lGc tE1 �= 0 and ME

c has full rank. �

Remark 2.15 This method easily extends to the case of several constraint equations
and we use it to compute relative periodic orbits with fixed energy and/or momentum
in the next section.

3 Numerical Continuation of Relative Periodic Orbits

Now, we assume that the Hamiltonian system (2.1) has a continuous symmetry group
� ⊆ SP(n). We moreover assume that � is a compact group, i.e., after a coordinate
transformation of Rn, it becomes a subset of O(n). Such continuous matrix groups
are examples of Lie groups (Bröcker and Dieck 1985; Marsden and Ratiu 1994). The
easiest example of a Lie group is the group of rotations and reflections in the plane,
O(2), or in three-dimensional space, O(3), and we will encounter these groups in the
numerical continuation of periodic orbits of N -body problems, see Sect. 4.3 below.
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3.1 Momentum Maps

We first review the definition of momentum maps. The tangent space g = Tid� of
� at γ = id is called the Lie algebra of �. Its elements ξ are called infinitesimal
symmetries. By Noether’s theorem locally, there is a conserved quantity Jξ of (2.1) for
each ξ ∈ g such that Jξ is the Hamiltonian for the flow x → exp(tξ)x (Arnold 1978;
Marsden and Ratiu 1994). Moreover, Jξ is linear in ξ , so that J maps to the dual g∗ of
the Lie algebra g of �. We assume that J is defined on the whole of Rn. The function
J : Rn → g∗ is then called the momentum map of the symmetry group �.

Example 3.1 In the case of rotational symmetries � = SO(3), the space of momenta
is g∗ = so(3)∗ ≡ R3 and J : Rn → R3 is the angular momentum, see Sect. 4 below
for an example from celestial mechanics.

These additional conserved quantities imply a higher degeneracy of periodic or-
bits, and hence a higher multiplicity of the eigenvalue 1 of the derivative of the
Poincaré map. Therefore, they have to be taken into account when designing nu-
merical continuation schemes for periodic orbits.

For later reference, we now describe the symmetry properties of the momentum
map. By

γ J(x) := J(γ x), x ∈ R
n, γ ∈ �, (3.1)

a group action is defined on the space of momenta g∗ such that the momentum map J
commutes with the group action, i.e., it is �-equivariant (Marsden and Ratiu 1994).
We assume in the following that this group action on g∗ is the coadjoint action of �

on g∗ which is defined below.

Definition 3.2 The adjoint action of � on g is defined by

Adγ ξ = γ ξγ −1, γ ∈ �, ξ ∈ g,

and the coadjoint action by

γμ := (Ad∗
γ )−1μ, γ ∈ �, μ ∈ g∗, (3.2)

where

(Ad∗
γ μ)(ξ) = μ(Adγ ξ), γ ∈ �, ξ ∈ g, μ ∈ g∗.

The corresponding infinitesimal adjoint and coadjoint group actions are given by

adξ η := [ξ, η] := d

dt
Adexp(tξ) η|t=0, ξ, η ∈ g,

and

ξμ := −ad∗
ξμ where (ad∗

ξμ)(η) = μ(adξ η), ξ, η ∈ g,μ ∈ g∗. (3.3)

Note that [ξ, η] is the Lie bracket on the Lie algebra g and for matrix groups, as
considered here, it is the commutator of the matrices ξ and η: [ξ, η] = ξη − ηξ .
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Example 3.3 In the case of rotational symmetry where g = so(3) 
 R3, the adjoint
and coadjoint actions are just the usual multiplication by matrices in SO(3). Here, the
identification so(3) 
 R3 is given by the map

ξ = (ξ1, ξ2, ξ3) →
⎛

⎝
0 ξ3 −ξ2

−ξ3 0 ξ1
ξ2 −ξ1 0

⎞

⎠ . (3.4)

The Lie bracket becomes [ξ, η] = ξ × η, where ξ, η ∈ R3 
 so(3).

Note that from (3.1) and (3.2), we get

J(γ x) = (Ad∗
γ )−1J(x) for all γ ∈ �, x ∈ R

n,

and, therefore,

Jξ (γ x) = JAd−1
γ ξ (x), γ ∈ �. (3.5)

Since the symmetry group is assumed to be compact, the momentum map J can
always be chosen to be equivariant with respect to the coadjoint action of � on g∗ by
averaging. Moreover, the adjoint action is by orthogonal matrices and so adjoint and
coadjoint action coincide, see (Marsden and Ratiu 1994).

3.2 Relative Periodic Orbits

In systems with continuous symmetries, relative periodic orbits are ubiquitous. These
are orbits which are periodic after symmetry reduction, but in general are not periodic
orbits for the original system:

Definition 3.4 A point x̄ lies on a relative periodic orbit (RPO) P̄ if there exists
τ > 0 such that �τ (x̄) ∈ �x̄. The infimum τ̄ of such τ is called the relative period
of the relative periodic orbit and the element σ̄ ∈ � such that σ̄�τ̄ (x̄) = x̄ is called
a phase-shift symmetry or drift symmetry of the relative periodic orbit. The relative
periodic orbit P̄ itself is given by

P̄ = {
γ�t(x̄); t ∈ R, γ ∈ �

}
.

As in the previous section, we assume the isotropy K of the point x̄ of the relative
periodic orbit to be trivial, unless stated otherwise.

If τ̄ = 0, so that �t(x̄) ∈ �x̄ for all t ∈ R, then x̄ lies on a relative equilibrium,
i.e., it is an equilibrium in the space of group orbits. A T̄ -periodic orbit with drift
symmetry α of order 	 is an RPO with relative period τ̄ = T̄ /	.

3.2.1 Drift-Momentum Pairs and Drift Velocities of RPOs

The momentum μ̄ and drift symmetry σ̄ of a relative periodic orbit satisfy the follow-
ing relationship which is essential for studying the persistence of the relative periodic
orbit to nearby momentum level sets (see Sect. 3.5):
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Lemma 3.5 Let x̄ lie on a relative periodic orbit with drift symmetry σ̄ and momen-
tum μ̄ = J(x̄) at x̄. Then

σ̄ μ̄ = μ̄, (3.6)

where the action of � on g∗ is as in (3.2).

Proof Let, as before, τ̄ be the relative period of the RPO. The lemma then simply
follows from the fact that J is preserved by the flow, and so

σ̄ μ̄ = σ̄J(x̄) = J(σ̄ x̄) = J
(
�−τ̄ (x̄)

) = J(x̄) = μ̄. �

Definition 3.6 (Wulff 2003) We call pairs (σ,μ) ∈ � × g∗ satisfying (3.6) drift-
momentum pairs and denote the space of drift-momentum pairs by

(� × g∗)c := {
(γ,μ) ∈ � × g∗, γμ = μ

}
. (3.7)

Example 3.7 In the case � = SO(3), see Example 3.1 and 3.3, a drift-momentum
pair (σ,μ) consists of an angular momentum vector μ ∈ R3 
 so(3)∗ together with a
rotation σ ∈ SO(3) around this vector.

For later reference, we define the notion of isotropy subalgebras of drift symme-
tries σ ∈ �, momenta μ ∈ g∗ and drift-momentum pairs (σ,μ) ∈ (� × g∗)c .

Definition 3.8

(i) Let

gσ = {
ξ ∈ g, exp(tξ)σ exp(−tξ ) = σ for all t ∈ R

}

= {ξ ∈ g, Adσ̄ ξ = ξ} = Fixg(σ )

be the isotropy subalgebra of σ ∈ � or, equivalently, the fixed point space of σ

in g. Moreover, let rσ = dim gσ .
(ii) Let

gμ = {
ξ ∈ g, exp(tξ)μ = μ for all t ∈ R

} = {ξ ∈ g, ξμ = 0}
be the isotropy subalgebra of the momentum μ ∈ g∗ with respect to the coadjoint
action (3.2) and the infinitesimal coadjoint action (3.3), and let rμ = dim gμ.

(iii) Let

g(σ,μ) = {
ξ ∈ g, exp(tξ)μ = μ, exp(tξ)σ exp(−tξ ) = σ for all t ∈ R

}

= Fixgμ(σ )

be the isotropy subalgebra of the drift-momentum pair (σ,μ) ∈ (� × g∗)c and
let r(σ,μ) = dim g(σ,μ).

Let

Z(σ) := �σ = {γ ∈ �, γ σγ −1 = σ } and Z(ξ) := �ξ = {γ ∈ �, Adγ ξ = ξ}
(3.8)



J Nonlinear Sci (2008) 18: 343–390 363

denote the centralizers of σ ∈ � and ξ ∈ g and let

�μ = {γ ∈ �, γμ = μ} (3.9)

be the isotropy group of μ with respect to the coadjoint action (3.2). Note that with
this notation (σ,μ) ∈ (� × g∗)c if and only if σ ∈ �μ. Finally, let

�(σ,μ) = �σ ∩ �μ (3.10)

be the isotropy subgroup of the drift-momentum pair (σ,μ) ∈ (� × g∗)c.
The next lemma shows that relative periodic orbits of compact group actions are

periodic orbits in a comoving frame:

Lemma 3.9

(a) Any element σ of a compact group � can be decomposed as

σ = α exp(−ξ),

for some ξ ∈ g and α ∈ � such that

α	 = id for some 	 ∈ N, Adα ξ = ξ,

and such that

Z(σ) = Z(α) ∩ Z(ξ).

(b) For any relative periodic orbit with drift-momentum pair (σ̄ , μ̄) ∈ (� × g∗)c ,
trivial isotropy K and relative period τ̄, there is a frame moving with velocity
ξ̄ ∈ g(σ̄ ,μ̄), called drift velocity of the RPO with respect to x̄, and some integer
	 such that in this comoving frame the RPO becomes a periodic orbit of period
T̄ = 	τ̄ and drift symmetry α ∈ �μ̄. Moreover, σ̄ = α exp(−τ̄ ξ̄ ).

Proof

(a) Let C be the group generated by σ . The group C is abelian and, therefore, of
the form C = Z	 × Tm for some 	,m ∈ N. Here, Tm denotes an m-dimensional
torus. We choose α to be the generator of Z	 which satisfies σ ∈ αTm and choose
ξ in the Lie algebra of Tm, such that σ = α exp(−ξ). If then γ ∈ Z(σ), then

γ ∈ Z(C) :=
⋂

γC∈C

Z(γC)

and so in particular γ ∈ Z(α) ∩ Z(ξ).
(b) By Lemma 3.5, we have σ̄ ∈ �μ̄. From (a), with � replaced by �μ̄, we know that

we can decompose σ̄ = α exp(−ξ) where α ∈ �μ and ξ ∈ gμ̄ such that α and ξ

commute. Hence, ξ and σ̄ commute and so ξ ∈ g(σ̄ ,μ̄). Let ξ̄ = 1
τ̄
ξ . Then x̄ lies

on a T̄ -periodic orbit in a system moving with velocity ξ̄ . �
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Remarks 3.10

(a) Note that the decomposition σ = α exp(−ξ) in Lemma 3.9 is in general not
unique: for example, assume that the group C generated by σ is continuous. Let
η be an infinitesimal rotation in the Lie algebra of C which generates the rotation
group exp(φη) = Rφ ∈ C, φ ∈ [0,2π]. Then other possible choices for α and ξ

would be ᾱ = R2πj/	α where j ∈ Z, gcd(	, j) = 1, and ξ̄ = ξ + 2π(n + j
	
)η,

n ∈ N.
(b) If the spatial symmetry group K of the RPO is not trivial, then we can re-

strict the dynamics to Fix(K), see Remark 2.2, and replace the symmetry group
by N(K)/K . The identity component N(K)id of N(K) satisfies N(K)id =
Z(K)idK id where Z(K) denotes the centralizer of K , see, e.g., (Wulff et al.
2001) and references therein. It is, therefore, possible to choose a representa-
tive for the drift velocity ξ̄ of the RPO in g such that ξ̄ lies in the Lie algebra of
Z(K); however, α can in general not be chosen to commute with K , see (Wulff
et al. 2001).

3.2.2 Linearization along Non-degenerate RPOs

Let x̄ lie on an RPO P̄ with relative period τ̄ . We assume without loss of gener-
ality that the isotropy K of the relative periodic orbit is finite (if not, we restrict
the dynamics to Fix(K) so that K is trivial, cf. Remark 2.2). We call a section
S := Sx̄ which is transverse to the RPO at x̄, i.e., transverse to gx̄ ⊕ span(fH (x̄)), a
Poincaré section at x̄. We define the reduced Poincaré map �red : S → S analogously
to the case of discrete symmetry groups (2.13) as follows (see Wulff et al. 2001;
Wulff 2003). For x ∈ S close to x̄, there are unique γ (x) ∈ �, γ (x) ≈ σ̄ , and
τ(x) ≈ τ̄ such that γ (x)�τ(x)(x) ∈ S (this follows from the implicit function the-
orem since we assume that the isotropy K of the RPO is finite). Now define
�red(x) = γ (x)�τ(x)(x).

Definition 3.11 A relative periodic orbit of a Hamiltonian system (2.1) on the open
set X ⊆ Rn with continuous symmetry group � is called non-degenerate, if it is not

a relative equilibrium and if �
Ē,μ̄
red : SĒ,μ̄ → SĒ,μ̄ does not have an eigenvalue 1 at a

point x̄ of the relative periodic orbit. Here, Ē = H(x̄) and μ̄ = J(x̄) are the energy
and momentum of x̄, and SĒ,μ̄ is a Poincaré section transverse to the relative periodic
orbit at x̄ inside the energy-momentum level set

XĒ,μ̄ = {
x ∈ X, H(x) = Ē, J(x) = μ̄

}

of x̄.

Let x̄ lie on an RPO. Then x̄ is a fixed point of σ̄�τ̄ (x̄) = x̄. If the RPO is non-
degenerate, then the eigenspace of the derivative σ̄D�τ̄ (x̄) of the fixed point equation
σ̄�τ̄ (x̄) = x̄ to the eigenvalue 1 has the lowest possible dimension as the following
proposition shows:
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Proposition 3.12 Let x̄ lie on an RPO of (2.1) with drift symmetry σ̄ and momentum
μ̄ = J(x̄). Then the following holds true:

(a) As for Hamiltonian systems with discrete symmetries, cf. (2.19) and (2.15), we
have

σ̄D�τ̄ (x̄)fH (x̄) = fH (x̄), DH(x̄)σ̄D�τ̄ (x̄) = DH(x̄).

(b) Moreover,

σ̄D�τ̄ (x̄)ηx̄ = (Adσ̄ η)x̄, η ∈ g, (3.11)

and

DJη(x̄)σ̄D�τ̄ (x̄) = DJAd−1
σ̄ η

(x̄). (3.12)

(c) Let x̄ lie on a proper RPO (i.e., not a relative equilibrium) and let the isotropy K

of x̄ be finite. Then the following holds true:
(i) The geometric multiplicity of σ̄D�τ̄ (x̄) to the eigenvalue 1 is at least 1 + rσ̄ .

(ii) The generalized eigenspace of σ̄D�τ̄ (x̄) to the eigenvalue 1 has at least
dimension 2 + rσ̄ + r(σ̄ ,μ̄) and exactly this dimension if the RPO is non-
degenerate.

Proof Most of this proposition is implicitly contained in Wulff and Roberts (2002,
Sect. 6.2, 6.3) . For sake of completeness, we include the proof:

(a) The first relation follows from differentiating the relation σ̄�τ̄ (�t (x̄)) = �t(x̄)

with respect to t at t = 0. The second equation can be proved like (2.15) with α

replaced by σ̄ .
(b) By equivariance of �τ̄ (·) we have η�τ̄ (x̄) = D�τ̄ (x̄)ηx̄ for η ∈ g and so

σ̄D�τ̄ (x̄)ηx̄ = σ̄ η�τ̄ (x̄) = σ̄ ησ̄−1x̄ = (Adσ̄ η)x̄.

From (3.5), we get

DJη(σ̄ x)σ̄ = DJAd−1
σ̄ η

(x),

and so, with x = σ̄−1x̄,

DJη(x̄)σ̄ = DJAd−1
σ̄ η

(
σ̄−1x̄

)
.

Momentum conservation, i.e., J(x) = J(�t (x)) for all t, x, implies

DJ(x) = DJ
(
�t(x)

)
D�t(x).

Hence,

DJη(x̄)σ̄D�τ̄ (x̄) = DJAd−1
σ̄ η

(
σ̄−1x̄

)
D�τ̄ (x̄) = DJAd−1

σ̄ η

(
�τ̄ (x̄)

)
D�τ̄ (x̄)

= DJAd−1
σ̄ η

(x̄).
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(c) (i) From (3.11) and the fact that ξ x̄ �= 0 for ξ ∈ g, ξ �= 0 (as K is finite), we see
that the set {ξ x̄, ξ ∈ Fixg(σ̄ )} is a dim(Fixg(σ̄ ))-dimensional subset of the
eigenspace of σ̄D�τ̄ (x̄) to the eigenvalue 1. By part (a), fH (x̄) is an eigen-
vector to the eigenvalue 1 as well. Let ξ1, . . . , ξs , s = rσ̄ = dim Fixg(σ̄ ), be a
basis of Fixg(σ̄ ). Then the vectors fH (x̄) and ξi x̄, i = 1, . . . , s, are linearly
independent, otherwise x̄ would lie on a relative equilibrium. Therefore, the
geometric multiplicity of the eigenvalue 1 of σ̄D�τ̄ (x̄) is at least rσ̄ + 1.
This proves (i).

(ii) By (3.12) the row vectors DJξ (x̄), ξ ∈ Fixg(σ̄ ) = gσ̄ , are left eigenvectors of
σ̄D�τ̄ (x̄) to the eigenvalue 1. To compute the algebraic multiplicity of the
eigenvalue 1 of σ̄D�τ̄ (x̄), we need to determine the dimension of the vector
space formed by those left eigenvectors DJξ (x̄) which annihilate the right
eigenvectors {ηx̄, η ∈ Fixg(σ̄ )}.

Using (3.5), we compute that for ξ, η ∈ g

DJξ (x̄)ηx̄ = d

dτ
Jξ

(
exp(τη)x̄

)∣∣
τ=0= J d

dτ
Adexp(−τη) ξ |τ=0

(x̄) = J−adηξ (x̄)

= μ̄(adξ η) = ad∗
ξ μ̄(η).

Hence, DJξ (x̄) annihilates the eigenvectors ηx̄, η ∈ Fixg(σ̄ ), if and only if

ad∗
ξ μ̄|Fixg(σ̄ ) = 0. (3.13)

Note that (id−Adσ̄ )g is transverse Fixg(σ̄ ), i.e., (id−Adσ̄ )g⊕Fixg(σ̄ ) = g.
Moreover, for η ∈ g, ξ ∈ Fixg(σ̄ ), we get

ad∗
ξ μ̄

(
(id − Adσ̄ )η

) = μ̄
(
adξ

(
(id − Adσ̄ )η

)) = μ̄(adξ η) − μ̄(adξ Adσ̄ η)

= μ̄(adξ η) − μ(Adσ̄ adAd−1
σ̄ ξ

η)

= μ̄(adξ η) − μ̄(Adσ̄ adξ η)

= μ̄(adξ η) − Ad∗̄
σ μ̄(adξ η) = μ̄(adξ η) − μ̄(adξ η) = 0.

Here, we used that

adχ Adγ η = d

dt

(
exp(tχ)γ ηγ −1 exp(−tχ)|t=0

)∣∣
t=0

= d

dt

(
γ
(
γ −1 exp(tχ)γ

)
η
(
γ −1 exp(−tχ)γ )γ −1))∣∣

t=0

= Adγ

d

dt
Adexp(t Ad−1

γ χ) η|t=0 = Adγ adAd−1
γ χη,

and (3.6). So, we have ad∗
ξ μ̄|(id−Adσ̄ )g = 0 and, therefore, with (3.13), we see

that the left eigenvectors DJξ (x̄), ξ ∈ gσ̄ , of σ̄D�τ̄ (x̄) to the eigenvalue 1
annihilate the eigenvectors ηx̄, η ∈ Fixg(σ̄ ) if and only if ad∗

ξ μ̄ ≡ 0 which
is equivalent to ξ ∈ gμ̄. Hence, the algebraic multiplicity of the eigenvalue
1 of σ̄D�T̄ /	(x̄) is at least dim Fixgμ̄

(σ̄ ) + dim Fixg(σ̄ ). But due to energy
conservation and phase shift symmetry, its algebraic multiplicity is higher:
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Let ξ1, . . . , ξr , r = dim Fixgμ̄
(σ̄ ) = r(σ̄ ,μ̄), span Fixgμ̄

(σ̄ ). As we saw in
part (a), also DH(x̄) is a left eigenvector to the eigenvalue 1. Since both
momentum J(·) and energy H(·) are conserved by the flow, we have

DJ(x̄)fH (x̄) = 0, DH(x̄)fH (x̄) = 0.

Since H is �-invariant, also

DH(x̄)ξ x̄ = 0, ξ ∈ g.

Moreover, as we saw in (i), the vectors fH (x̄) and ξi x̄, i = 1, . . . , s, are lin-
early independent, and the same holds true for the vectors DH(x̄), DJξi

(x̄),
i = 1, . . . , r (otherwise x̄ would lie on a relative equilibrium or it would have
continuous isotropy K). Therefore, there are linear independent vectors tE ,
tμ1 , . . . , tμr in the generalized eigenspace of σ̄D�τ̄ (x̄) to the eigenvalue 1
with

DH(x̄)tE = 1, DJξi
(x̄)tμj = δij , i, j = 1, . . . , r,

DJξi
(x̄)tE = 0, DH(x̄)tμi = 0, i = 1, . . . , r,

tE, tμi ⊥ {ξ x̄, ξ ∈ gσ̄ }, tE, tμi ⊥ fH (x̄), i = 1, . . . , r.

(3.14)

Hence, the algebraic multiplicity of the eigenvalue 1 of σ̄D�τ̄ (x̄) is at least
2 + r + rσ̄ .

If the relative periodic orbit is non-degenerate, then there are no (general-
ized) eigenvectors of σ̄D�τ̄ (x̄) to the eigenvalue 1 in a section SĒ,μ̄ trans-
verse to the RPO at x̄ inside the energy-momentum level set of x̄. Therefore,
the dimension of the generalized eigenspace of σ̄D�τ̄ (x̄) to 1 is exactly
2 + r + rσ̄ in this case. This proves (ii). �

Remark 3.13 Proposition 3.12 (c) (ii) strengthens a related result of Muñoz-Almaraz
et al. (2003, Proposition 12). In our notation, they show that the algebraic multiplicity
ma of the eigenvalue 1 of the linearization D�T̄ (x̄) at a T̄ -periodic orbit of a �-
symmetric Hamiltonian system satisfies ma ≥ (dim� + 1) + (dimZ + 1) where Z

is the center of �. Since spatio-temporal symmetries are not considered in Muñoz-
Almaraz et al. (2003), we have σ̄ = id, and so in this case Proposition 3.12 (c) (ii)
implies that ma ≥ dim� + 2 + rμ̄ where μ̄ = J(x̄). As the Lie algebra z of Z is
contained in gμ for any μ ∈ g∗, we see that rμ̄ ≥ dimZ. Note also that our estimate
for ma is sharp for non-degenerate periodic orbits.

3.3 Numerical Continuation for One-Dimensional Symmetry Groups

In this section, we assume that the symmetry group � is one-dimensional. Denote by
ξ ∈ g the generator of the identity component �id of �.

Let, as before, x̄ lie on a relative periodic orbit with drift velocity ξ̄ ∈ g, relative
period τ̄ and phase-shift symmetry α of order 	 in the frame moving with velocity ξ̄ .
Hence, we have σ̄�τ̄ (x̄) = x̄ where σ̄ = exp(−τ̄ ξ̄ )α. By Lemma 3.5, μ̄ = σ̄ μ̄ where
μ̄ = J(x̄) is the momentum of the RPO at x̄. Since the group action on g∗ is linear and
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g∗ is one-dimensional, the fixed point space Fixg∗(σ̄ ) of σ̄ in the space of momenta
g∗ is either {0} or the whole of g∗. In the second case, σ̄ also acts trivially on g and
so we have

Adα η = η, Ad∗
α μ = μ, ad∗

ημ = 0 for all η ∈ g, μ ∈ g∗, (3.15)

and, therefore, also

J(αx) = J(x), J
(
exp(tξ)x

) = J(x) for all x ∈ R
n, t ∈ R. (3.16)

In the first case, we know that Adσ̄ η = η implies that η = 0 so that any relative
periodic orbit with drift symmetry σ̄ would actually be periodic and we do not have to
consider continuous symmetries at all. The reason for this is that by Proposition 3.12
(b) the eigenvectors of σ̄D�τ̄ (x̄) to the eigenvalue 1 which are caused by continuous
symmetries or momentum conservation correspond to infinitesimal symmetries ξ ∈ g
with Adσ̄ ξ = ξ . So, there are no such eigenvectors in this case. Therefore, from
now on, we assume that (3.16) holds (cf. Theorem 3.17 for the same trick applied to
symmetry groups of arbitrary dimension).

Consider, analogously to (2.20), the differential equation

ẋ = f (x,ω,λE,λμ) = fH (x) + λE∇H(x) + λμ∇J(x) − ωξx. (3.17)

Note that for λμ = λE = 0 the flow �t(·;ω) of (3.17) is the flow of (2.1) in a frame
moving with velocity ωξ . More precisely, �t(·;ω) is given by

�t(·;ω) = exp(−tωξ)�t (·)
where �t(·) is the flow of (2.1). Let T̄ = 	τ̄ be the period of the RPO in the
system moving with velocity ξ̄ = ω̄ξ . Then the relative periodic orbit satisfies
x̄ = σ̄�T̄ /	(x̄), and hence

α�T̄ /	(x̄; ω̄) = x̄.

3.3.1 Single Shooting Approach

To compute relative periodic orbits numerically, we solve the equation

F(x,T ,ω,λE,λμ) = α�T/	(x;ω,λE,λμ) − x = 0 (3.18)

where �t(·,ω,λE,λμ) is the flow of (3.17). Similarly as for Hamiltonian periodic
orbits, see Theorem 2.5, we have the following result:

Theorem 3.14 Let dim� = 1 and let x̄ lie on a non-degenerate RPO P̄ with trivial
isotropy K . Then the following holds true:

(a) The RPO persists to any nearby energy and momentum.
(b) Denote y = (x,T ,ω,λE,λμ). The Jacobian DyF (ȳ) of (3.18) is regular in

the solution point ȳ = (x̄, T̄ , ω̄,0,0) and, therefore, the Gauss–Newton method
(2.17) applied to (3.18) converges for initial data ŷ close to (P̄, T̄ , ω̄,0,0). Fur-
thermore, any solution y = (x,T ,ω,λμ,λE) of (3.18) close to (P̄, T̄ , ω̄,0,0)

satisfies λE = λμ = 0, and hence is an RPO of (2.1).
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Proof

(a) Denote by S = Sx̄ = x̄ + (span(ξ x̄, fH (x̄)))⊥ a Poincaré section transverse
to P̄ at x̄. Note that DH(x̄) �= 0 since x̄ is not an equilibrium and that
DH(x̄)|span(ξ x̄,fH (x̄)) = 0. Hence, DH(x̄)|S �= 0. Similarly, DJ(x̄) �= 0 as we as-
sume that the isotropy of x̄ is trivial. Since DJ(x̄)|span(ξ x̄,fH (x̄)) = 0, we conclude
that DJ(x̄)|S �= 0. Moreover, DJ(x̄) and DH(x̄) are linearly independent on Rn,

and hence also on S as x̄ does not lie on a relative equilibrium. We conclude that
the Poincaré sections

SE,μ = S ∩ {
x, H(x) = E,J(x) = μ

}

are codimension 2 submanifolds of S for any E ≈ Ē = H(x̄), μ ≈ μ̄ = J(x̄).
Consequently, �

E,μ
red : SE,μ → SE,μ is smoothly parametrized by E and μ and

the non-degenerate fixed point x̄ of �
E,μ
red for E = Ē, μ = μ̄ persists to nearby

energy-momentum levels.
(b) The proof is similar to the proof of Theorem 2.5. We have

DF
(
x̄, T̄ , ω̄,0,0

) =
[
σ̄D�T̄ /	(x̄) − id,

1

	
fH (x̄), ξ x̄,DλE

F (ȳ),DλμF (ȳ)

]

and

DλE
F

(
x̄, T̄ , ω̄, λE,0

)∣∣
λE=0 = αDλE

�T̄ /	(x̄; ω̄,0,0),

DλμF
(
x̄, T̄ , ω̄,0, λμ

)∣∣
λμ=0 = αDλμ�T̄ /	(x̄; ω̄,0,0).

By Proposition 3.12 (see also (3.14)), DJ(x) and DH(x) are left eigenvectors of
σ̄D�T̄ /	(x̄) to the eigenvalue 1 with corresponding generalized right eigenvec-

tors t
μ
x and tEx and the vectors fH (x̄) = t

f
x and ξ x̄ = t

ξ
x are right eigenvectors of

σ̄D�T̄ /	(x̄), linearly independent from t
μ
x and tEx . Under the non-degeneracy

condition, the generalized eigenspace of σ̄D�T̄ /	(x̄) to the eigenvalue 1 is

spanned by these four vectors (see Proposition 3.12(c) (ii)). So, DF(x̄, T̄ , ω̄,0,0)

has full rank if the (2,2)-matrix

B :=
(

DH(x̄)αDλE
�τ̄ (x̄; ω̄, λE,0)|λE=0 DH(x̄)αDλμ�τ̄ (x̄; ω̄,0, λμ)|λμ=0

DJ(x̄)αDλE
�τ̄ (x̄; ω̄, λE,0)|λE=0 DJ(x̄)αDλμ�τ̄ (x̄; ω̄,0, λμ)|λμ=0

)

has full rank. This can be proved similarly as (2.24): First note that �t(·;ω) :=
�t(·;ω,0,0) conserves H and J. This is true because �t(·;ω)= exp(−ωtξ)�t (·),
H(·) is �-invariant and J(·) as well by (3.16), and because the flow �t(·) of (2.1)
conserves the energy H and the momentum J. Replacing λ by λE, respectively,
λμ, exchanging H by J accordingly, replacing �t(·;λ) by �t(·; ω̄, λE,0) or
�t(·; ω̄,0, λμ) in (2.24) and replacing (2.20) by (3.17) in (2.21), we get

DH(x̄)αDλE
�τ̄ (x̄; ω̄) =

∫ τ̄

0

∥∥DH
(
�s(x̄; ω̄)

)∥∥2 ds,
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DJ(x̄)αDλμ�τ̄ (x̄; ω̄) =
∫ τ̄

0

∥∥DJ
(
�s(x̄; ω̄)

)∥∥2 ds,

DJ(x̄)αDλE
�τ̄ (x̄; ω̄)) =

∫ τ̄

0

〈
DH

(
�s(x̄; ω̄)

)
,DJ

(
�s(x̄; ω̄)

)〉
ds,

DH(x̄)αDλμ�τ̄ (x̄; ω̄) =
∫ τ̄

0

〈
DH

(
�s(x̄; ω̄)

)
,DJ

(
�s(x̄; ω̄)

)〉
ds.

Hence, for c = (cE, cμ) ∈ R2, we have

cT Bc =
∫ τ̄

0

∥∥cE∇H
(
�s(x̄; ω̄)

) + cμ∇J
(
�s(x̄; ω̄)

)∥∥2 ds.

Since �s(x̄), s ∈ R, lies on a proper RPO P̄ (not a relative equilibrium), the vec-
tors ∇H(�s(x̄)) and ∇J(�s(x̄)) are linearly independent. Hence, cT Bc �= 0 for
every c �= 0 and so B and the Jacobian DF(x̄, T̄ , ω̄,0,0) of (3.18) have full rank.
Therefore, (3.18) has a 4-dimensional solution manifold. By part (a) there is a
two-dimensional manifold of RPOs near x̄ which gives a 4-dimensional manifold
of solutions of (3.18) as well. So, both solution manifolds coincide locally, and
consequently λE = λμ = 0 for any solution of (3.18) close to (P̄, T̄ , ω̄,0,0). �

3.3.2 Continuation in Energy or Momentum

The RPO can be continued for example with respect to momentum and fixed energy
or with respect to energy and fixed momentum. Momentum or energy are fixed by
adding the constraint Fμ̄(x) = J(x) − μ̄ = 0 or FĒ(x) = H(x) − Ē = 0 to the single
shooting equation F = 0 from (3.18).

Proposition 3.15 The Gauss–Newton method (2.17) applied to the equations F Ē =
(F,FĒ) = 0 (fixed energy) and F μ̄ = (F,Fμ̄) = 0 (fixed momentum) converge under
the conditions of Theorem 3.14.

Proof The proof is analogous to the proof of Proposition 2.9. By Theorem 3.14
for a non-degenerate RPO, the eigenspace of σ̄D�T̄ /	(x̄) to the eigenvalue 1 is 4-

dimensional and DF(ȳ) has a 4-dimensional kernel in the solution ȳ = (x̄, T̄ , ω̄,0,0)

of F = 0. Let

tf = (
f (x̄),0,0,0,0

)
, tξ = (ξ x̄,0,0,0,0),

tE = (
tEx , tET , tEω ,0,0

)
, tμ = (

t
μ
x , t

μ
T , t

μ
ω ,0,0

) (3.19)

lie in the kernel of DF(ȳ) such that

tE, tμ ∈ (
span(tξ , tT )

)⊥
, DJ(x̄)tEx = 0, DH(x̄)tμx = 0,

as in (3.14). Then

DFĒ(x̄)tEx = DH(x̄)tEx �= 0, DFμ̄(x̄)tμx = DJ(x̄)tμx �= 0.
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Therefore, DF Ē(ȳ) and DF μ̄(ȳ) have full rank with one-dimensional kernels
spanned by tμ respectively tE , and so the Gauss–Newton method applied to F Ē = 0
and F μ̄ = 0 converges. �

3.3.3 Multiple Shooting Ansatz

The extension of the above single shooting technique to the multiple shooting context
is straightforward. We just replace �t(·;λ) in (2.28) by �t(·;ω,λE,λμ), see Sects.
2.3.4 and 2.3.5. We can continue in energy and fix the momentum by adding the
constraint

F μ̄(x) = 1

k

k∑

i=1

J(xi) − μ̄ = 0

or we can continue in momentum and fix the energy by adding the constraint

F Ē(x) = 1

k

k∑

i=1

H(xi) − Ē = 0.

Similarly to Proposition 2.14 and Proposition 3.15, we have:

Proposition 3.16 If the RPO through x̄ with energy Ē = H(x̄) is non-degenerate,
then the Gauss–Newton method (2.17) applied to F Ē = (F,FĒ) = 0 and F μ̄ =
(F,F μ̄) = 0 converge for sufficiently good enough initial data.

3.4 Continuing Periodic Orbits to Relative Periodic Orbits

In this section, we show how certain RPOs bifurcating from periodic orbits in systems
with symmetry group � of dimension greater than one can be continued numerically.
By imposing spatio-temporal symmetry on the relative periodic orbits to be contin-
ued, one is led back to a one-dimensional symmetry group. We use the theorem below
for the continuation of relative periodic orbits of the three-body system in Sect. 4.

Theorem 3.17 Let x̄ lie on a T̄ -periodic orbit P̄ of the Hamiltonian system (2.1)
with discrete spatio-temporal symmetry group L and momentum J(x̄) = 0. Let α be
the drift symmetry of P̄ , let K be its isotropy, let L/K = Z	 and denote by τ̄ = T̄ /	

the relative period of the periodic orbit. Let L̃ be an isotropy subgroup of the action
of L on ‘momentum space’ g∗ such that

dim Fixg∗
(
L̃

) = 1 (3.20)

and consequently also dim Fixg(L̃) = 1. Let j ∈ N be minimal such that αjγK ∈ L̃

for some γK ∈ K and let

α̃ = αjγK, K̃ := K ∩ L̃.
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Since L̃ is finite, there is some 	̃ ∈ N such that α̃	̃ ∈ K̃. Let 	̃ be minimal with this
property and denote

τ̃ = jτ, T̃ = 	̃τ̃ .

Assume that the periodic orbit through x̄ is non-degenerate in the sense of Defini-
tion 3.11 when considered as periodic orbit with drift symmetry α̃, relative period τ̃

and isotropy K̃ . Then

(a) The group L̃ is generated by K̃ and α̃, K̃ is normal in L̃ and L̃/K̃ 
 Z
	̃
.

(b) There exists a 2-parameter family of RPOs, parametrized by energy E and mo-
mentum μ ∈ Fixg∗(L̃), μ ≈ 0. This family has drift velocities in Fixg(L̃), relative
periods close to τ̃ and their spatio-temporal symmetry group at momentum 0
contains L̃.

(c) Let ξ span Fixg(L̃). Then the Gauss–Newton method (2.17) applied to (3.18)
converges for initial data close to {(exp(τξ)�t (x̄), T̄ ,0,0), t ∈ R, τ ∈ R} if α is
replaced by α̃, 	 by 	̃, if �t(·;ω,λE,λμ) is the flow of (3.17) on Fix(K̃) and if
J is replaced by Jξ . Furthermore, any solution y = (x,T ,ω,λE,λμ) of (3.18)
satisfies λE = λμ = 0.

Proof

(a) Let γ ∈ L̃. Since γ ∈ L we have γ = αj̃ γ̃K for some j̃ ∈ {0,1, . . . , 	 − 1} and
γ̃K ∈ K . By our assumption on j, we know that j̃ ≥ j and that j̃ is a multiple
of j . So, let j̃ = mj . Since K is normal in L, we have γ = α̃mγ̂K where γ̂K ∈ K .
From the group property of L̃, we conclude that γ̂K ∈ K ∩ L̃ = K̃ . Hence, L̃ is
generated by α̃ and K̃ . For γK ∈ K̃, we have γKα̃ = α̃γ̃K where γ̃K ∈ K since K

is normal in L. Consequently, γ̃K ∈ L̃ ∩ K = K̃ which proves that K̃ is a normal
subgroup of L̃. The definition of 	̃ now implies that L̃/K̃ 
 Z

	̃
.

(b) Let ξ span Fixg(L̃). First note that ξ and α̃ leave Fix(K̃) invariant since ξ com-
mutes with every element of K̃ and, by (a), α̃ ∈ N(K̃). We consider (2.1) on
Fix(K̃) and replace � by the group N(K̃)/K̃ which acts on Fix(K̃). From now
on, assume without loss of generality that K̃ is trivial and that L̃ = Z

	̃
is gener-

ated by α̃.
By Proposition 3.12, with σ̄ replaced by α̃, T by T̃ and 	 by 	̃, and because

of the assumption dim Fixg(L̃) = dim gα̃ = 1, the space of η ∈ g with ηx̄ in the
kernel of

α̃D�
T̃ /	̃

(x̄) − id

is one-dimensional and spanned by ξ . Similarly, the space of row vectors DJη(x̄),
η ∈ g, which are left eigenvectors of α̃D�τ̃ (x̄) to the eigenvalue 1 is one-
dimensional and spanned by DJξ (x̄). Hence, the periodic orbit is non-degenerate
when considered as periodic orbit with relative period τ̃ and drift symmetry α̃

when we replace � by the abelian group generated by α̃ and ξ . Now part (b)
follows from Theorem 3.14 (a).

(c) Follows from part (b) and Theorem 3.14 (b). �
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3.5 Continuation of RPOs with Regular Drift-Momentum Pairs

In this section, we consider the continuation of Hamiltonian RPOs of general compact
Lie groups � under conditions which are generically satisfied. Namely, we consider
non-degenerate RPOs with regular drift-momentum pairs.

3.5.1 Persistence of Hamiltonian RPOs with Regular Drift-Momentum Pairs

We start with a definition of regular drift-momentum pairs.

Definition 3.18 (Wulff 2003)

(i) We call a drift symmetry σ ∈ � regular if rσ = dim gσ is locally constant in �.
(ii) We call a momentum μ ∈ g∗ regular if rμ = dim gμ is locally constant in g∗.

(iii) We call a drift-momentum pair (σ,μ) ∈ (� × g∗)c regular if

r(σ,μ) = dim g(σ,μ)

is locally constant in the space of drift-momentum pairs (3.7).

Note that the space of drift-momentum pairs is in general a singular algebraic vari-
ety. As shown in Wulff (2003), a drift momentum pair (σ,μ) of a compact symmetry
group � is regular in the above sense if and only if the space of drift-momentum pairs
(� × g∗)c is a manifold near (σ,μ). Moreover, we have the following result which
we will need later on:

Lemma 3.19 Let � be compact. Then

(a) If μ is regular, then (id,μ) is a regular drift-momentum pair.
(b) If σ is regular, then (σ,0) is a regular drift-momentum pair.
(c) The pair (σ,μ) ∈ (� × g∗)c is a regular drift-momentum pair if and only if g(σ,μ)

is the Lie algebra of a Cartan subgroup and if and only if g(σ,μ) abelian.
(d) The set of regular momenta μ ∈ g∗ is generic in g∗, the set of regular drift sym-

metries is generic in � and the set of regular drift-momentum pairs are generic
in the space of drift-momentum pairs (� × g∗)c .

Proof Most of this statement is contained in Wulff (2003), only the second statement
of part (c) is not. To prove this notice that on one hand the Lie algebra of any Cartan
subgroup is abelian (see Bröcker and Dieck 1985). On the other hand, let g(σ,μ) be
abelian. Then g(σ,μ) is the Lie algebra of a torus group in the centralizer Z(σ) of
σ . Let T be the maximal torus in Z(σ) which contains this torus group. Since �

is compact, we can identify μ with an element of g, and also with an element of
g(σ,μ), see e.g. (Marsden and Ratiu 1994). Hence, any element in the Lie algebra of
T commutes with μ. Therefore, the Lie algebra of T is contained in g(σ,μ). Thus,
g(σ,μ) is the Lie algebra of a the maximal torus T in Z(σ) and is, therefore, (see
Bröcker and Dieck 1985) the Lie algebra of a Cartan subgroup. �

Example 3.20 In the case of rotational symmetry where � = SO(3), see Example 3.7,
a drift-momentum pair (σ,μ) ∈ SO(3) × so(3)∗ is regular if μ �= 0 or σ �= id.
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We are now ready to state a persistence result for RPOs with regular drift-
momentum pair. This follows from Wulff (2003, Theorem 4.2) and Wulff (2003,
Proposition 2.9) applied to the group �̃ := Z(σ̄ ).

Theorem 3.21 Let x̄ lie on a non-degenerate RPO P̄ with regular drift-momentum
pair (σ̄ , μ̄) ∈ (� × g∗)c and let r = r(σ̄ ,μ̄). Let τ̄ be its relative period, decompose
σ̄ = α exp(−τ̄ ξ̄ ) as before, and let Ē = H(x̄) = 0 be the energy of the RPO. Then
there is an (r + 1)-dimensional manifold x(E,ν) of points on RPOs P(E, ν) near
P̄ = P(0,0) with x(0,0) = x̄ and

energy E,

momentum μ̄ + ν, ν ∈ g∗
(σ̄ ,μ̄),

relative period τ(E, ν) close to τ(0,0) = τ̄ ,

drift symmetry σ(E,ν) close to σ(0,0) = σ̄ , and

drift velocity ξ(E, ν) ∈ g(σ̄ ,μ̄) close to ξ(0,0) = ξ̄

such that σ(E,ν) = α exp(−τ(E, ν)ξ(E, ν)). Moreover, all RPOs close to x̄ with
relative period close to τ̄ and drift symmetry close to σ̄ belong to this family of RPOs.

The space μ̄ + (gμ̄)⊥ is a section transverse to the momentum group orbit �μ̄

at μ̄ in momentum space g∗. Since (gμ̄)⊥ 
 g∗̄
μ we can, therefore, interpret g∗̄

μ as
transverse section to �μ̄ as well. Moreover, the elements of g∗

(σ̄ ,μ̄) = Fixg∗̄
μ
(σ̄ ) are

the momenta in the transverse section g∗̄
μ which are fixed by the drift symmetry σ̄ .

Theorem 3.21, therefore, says that near a non-degenerate RPO with regular drift-
momentum pair there is a family of RPOs parametrized by energy and those momenta
which are fixed by the drift symmetry of the original RPO in a section transverse to
the momentum group orbit of the original RPO.

Due to our assumption of non-degeneracy of the RPO P̄ , we can parametrize all
RPOs near the given RPO P̄ with relative period close to τ̄ by their energy and
by their drift-momentum pairs which in general form a singular algebraic variety.
The assumption of a regular drift-momentum pair ensures that this variety is locally
a manifold and enables us to use an implicit function type argument to prove the
existence of a manifold of RPOs near the given RPO P̄ , see (Wulff 2003) for more
details.

3.5.2 Equivalent Parametrization by Drift Velocity and Relative Period

The parametrization of the manifold of RPOs of Theorem 3.21 by energy E and
momentum μ̄ + ν, ν ∈ g∗

(σ̄ ,μ̄), is equivalent to the parametrization by velocity ξ ∈
g(σ̄ ,μ̄) and relative period τ under the assumption that the determinant of the matrix

(
∂Eξ(E, ν) ∂νξ(E, ν)

∂Eτ(E, ν) ∂ντ (E, ν)

)
(3.21)

does not vanish. This assumption is satisfied at (E, ν) = (0,0), that is, at the RPO
through x̄ if the corresponding block in the linearization σ̄D�τ̄ (x̄) of the RPO has
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full rank: Let X1 be the generalized eigenspace of M = σ̄D�τ̄ (x̄) to the eigenvalue 1
and let P1 be the corresponding spectral projection of X1 and M1 = P1M|X1 . Choose
coordinates on X1 such that g(σ̄ ,μ̄)x̄ is spanned by the first r = r(σ̄ ,μ̄) unit vectors
e1, . . . , er , such that gσ̄ x̄ is spanned by the first s = rσ̄ unit vectors e1, . . . , es and
such that fH (x̄) is parallel to es+1. Moreover, assume that eT

s+2, . . . , e
T
r+s+1 span the

space of row vectors DJξ (x̄), ξ ∈ g(σ̄ ,μ̄), and that DH(x̄) is parallel to eT
r+s+2. By

Proposition 3.12, the matrix M1 takes the form

M1 =

⎛

⎜⎜
⎝

ids 0 ∗ ∗
0 1 ∗ ∗
0 0 idr 0
0 0 0 1

⎞

⎟⎟
⎠ (3.22)

where idn is the n-dimensional identity matrix. Denote the submatrix of (3.22)
formed of the stars by B̃ and let B be the (r + 1, r + 1)-matrix B = P̃ B̃ where
P̃ is the projection onto the space spanned by e1, . . . , er , es+1. Then we obtain

Lemma 3.22 The matrix (3.21) has full rank at (E, ν) = (0,0) if the matrix B has
full rank.

Proof Differentiating the fixed point equation σ(E,ν)�τ(E,ν)(x(E, ν)) = x(E,ν) at
(E, ν) = (0,0) and applying P1, we get

0 = (M1 − id)P1D(E,ν)x(E, ν)|(E,ν)=(0,0) + D(E,ν)τ (E, ν)|(E,ν)=(0,0)(fH (x̄) − ξ̄ x̄)

− τ̄D(E,ν)ξ(E, ν)|(E,ν)=(0,0)x̄.

Let P be the projection onto X1 and then onto the span of the vectors ej , j = s +
1, . . . , r + s + 2, of X1. Then

0 = BP D(E,ν)x(E, ν)|(E,ν)=(0,0) + D(E,ν)τ (E, ν)|(E,ν)=(0,0)(fH (x̄) − ξ̄ x̄)

− τ̄D(E,ν)ξ(E, ν)|(E,ν)=(0,0)x̄.

The parametrization of the manifold of RPOs by (E, ν) from Theorem 3.21 implies
that the (r +1, r +1)-matrix P D(E,ν)x(E, ν)|(E,ν)=(0,0) has full rank. Therefore, the
(r + 1, r + 1)-matrix

(−τ̄ ∂Eξ(E, ν) − ∂Eτ(E, ν)ξ̄ −τ̄ ∂νξ(ν,E) − ∂ντ (E, ν)ξ̄

∂Eτ(E, ν) ∂ντ (E, ν)

)∣∣
(E,ν)=(0,0)

has full rank. By elementary row operations, this matrix can be transformed into the
matrix (3.21) which therefore also has full rank. �

3.5.3 Numerical Computation of RPOs with Regular Drift-Momentum Pair

Let x̄ lie on a non-degenerate RPO P̄ with relative period τ̄ and regular drift-
momentum pair (σ̄ , μ̄) ∈ � × g∗ where σ̄ = α exp(−τ̄ ξ̄ ). Let �σ = Z(σ) as in
(3.8) and define �(σ,μ) = Z(σ) ∩ �μ as in (3.10). Denote, as before, r = r(σ̄ ,μ̄), let
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ξ1, . . . , ξr be a basis of g(σ̄ ,μ̄), let s = rσ̄ , let ξ1, . . . , ξs be a basis of gσ̄ and let
ξ̄ = ∑r

i=1 ω̄iξi . Note that by Lemma 3.19(d) generically σ̄ is regular and s = r .
Define

ẋ = fH (x) + λE∇H(x) +
r∑

i=1

λμ,i∇Jξi
(x) −

s∑

i=1

ωiξi . (3.23)

Then the following theorem holds true:

Theorem 3.23 Let x̄ lie on a non-degenerate RPO P̄ with relative period τ̄ , and with
regular drift-momentum pair (σ̄ , μ̄) ∈ � × g∗ where σ̄ = α exp(−τ̄ ξ̄ ) is decomposed
as in Lemma 3.9 and let r = r(σ̄ ,μ̄), T̄ = 	τ̄ . Denote by �t(x;ω,λE,λμ) the flow
of (3.23). Then the following holds true:

(a) the Gauss–Newton method (2.17) applied to

F(x,T ,ω,λE,λμ) = α�T
	
(x;ω,λE,λμ) − x,

F : X × R
2+s+r ⊆ R

n+2+s+r → R
n

(3.24)

converges for initial values y = (x,T ,ω,λE,λμ) close to

{(
γ�t(x̄), T̄ , ω̄,0,0

)
, t ∈ R, γ ∈ �(σ̄ ,μ̄)

}
. (3.25)

(b) Any solution y = (x,T ,ω,λE,λμ) of F = 0 close to the set (3.25) satisfies
λE = 0, λμ = 0. Hence, it is an RPO of (2.1).

Proof We replace � by �σ̄ = Z(σ̄ ), and consequently look for RPOs with drift ve-
locity ξ = ∑s

i=1 ωiξi ∈ gσ̄ .

(a) The matrix

DF(x̄, T̄ , ω̄,0,0) = [DxF,DT F,DωF,DλE
F,DλμF ]

= [
σ̄D�τ̄ (x̄) − id, fH (x̄), ξ1x̄, . . . , ξs x̄,DλE

F,DλμF
]

has full rank if the (r + 1, r + 1)-matrix B with

Bij = DJξi
(x̄)Dλμ,j

F (ȳ) = DJξi
(x̄)αDλμ,j

�τ̄ (x̄; ω̄,0, λμ)|λμ=0,

i, j = 1, . . . , r,

Bi,r+1 = DJξi
(x̄)DλE

F (ȳ) = DJξi
(x̄)αDλE

�τ̄ (x̄; ω̄, λE,0)|λE=0, i = 1, . . . , r,

Br+1,i = DH(x̄)Dλμ,i
F (ȳ) = DH(x̄)αDλμ,i

�τ̄ (x̄; ω̄,0, λμ)|λμ=0,

i = 1, . . . , r,

Br+1,r+1 = DH(x̄)DλE
F (ȳ) = DH(x̄)αDλE

�τ̄ (x̄; ω̄, λE,0)|λE=0

has full rank. Since (σ̄ , μ̄) is regular the isotropy algebra g(σ̄ ,μ̄) is abelian by
Lemma 3.19(c). Consequently, �t(·;ω) = exp(−t

∑r
i=1 ωiξi)�t (·) conserves
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the momenta Jξj
, j = 1, . . . , r . Therefore, we can show that B has full rank in

the same way as in the proof of Theorem 3.14. Hence, DF(x̄, T̄ , ω̄,0,0) has full
rank and F = 0 has a (2 + r + s)-dimensional family of solutions.

Since �(σ̄ ,μ̄) ⊆ Z(σ̄ ) and Z(σ̄ ) = Z(α) ∩ Z(ξ̄) by Lemma 3.9, the points
γ�t(x̄), t ∈ R, γ ∈ Z(σ̄ ), lie on an RPO with drift velocity ξ̄ , and so the set
(3.25) consists of solutions of F = 0. By �(σ̄ ,μ̄)-equivariance and time-shift
equivariance the above convergence argument also holds true at all points in the
set (3.25), and so the Gauss-Newton method converges for initial data close to
(3.25).

(b) We proved in part (a) that the equation F = 0 has an (s + r + 2)-dimensional
solution manifold near the set (3.25). By Theorem 3.21, there is an (r + 1)-
dimensional manifold x(E,ν) of points on RPOs P(E, ν) of (2.1) near x̄ with
drift symmetries σ(E,ν) ∈ �(σ̄ ,μ̄) and period T (E,ν) = 	τ(E, ν) in a frame
moving with velocity ξ(E, ν). Let ξ(E, ν) = ∑r

i=1 ωi(E, ν)ξi . As in part (a),
we see that with x(E,ν) also (γ�t (x(E, ν)), T (E, ν),ω(E,ν),0,0), t ∈ R,
γ ∈ Z(σ̄ ), is a solution of F = 0. This gives an (r + s + 2)-dimensional man-
ifold of solutions of F = 0 which are RPOs of (2.1). Hence, the (r + s + 2)-
dimensional solution manifold of F = 0 near (3.25) consists of RPOs of (2.1)
and satisfies λE = λμ = 0. �

Remarks 3.24

(a) Theorems 3.21 and 3.23 can also be applied to compute certain bifurcating
RPOs with smaller isotropy and larger relative period (and hence smaller spatio-
temporal symmetry in a comoving frame): Let K be the isotropy of the point
x̄ of the RPO P̄ , let σ̄ be its drift symmetry, τ̄ be its relative period, let K̃ be
a subgroup of K and let N(K̃) be the normalizer of K̃ . To search for RPOs
near P̄ with isotropy subgroup K̃, we restrict the dynamics to Fix(K̃) instead
of Fix(K), cf. Remark 2.2. Decompose σ̄ = α exp(−τ̄ ξ̄ ) as in Lemma 3.9. Then
σ̄ 	 = exp(−T̄ ξ̄ ) ∈ Z(K), see Remark 3.10. Hence, there are j ∈ {1,2, . . . , 	},
γK ∈ K , such that σ jγK ∈ N(K̃). Let j > 0 be minimal with this property. We
now replace � by the symmetry group �̃ = N(K̃)/K̃ acting on Fix(K̃). Then
we can consider the RPO P̄ as RPO with drift symmetry σ̃ = σ̄ j γK and relative
period τ̃ = j τ̄ on Fix(K̃) and can apply Theorems 3.21 and 3.23 to continue it
in energy and momentum provided that the non-degeneracy condition is satis-
fied and σ̃ is a regular drift-momentum pair for �̃. The bifurcating RPOs have
isotropy containing K̃ and relative period close to τ̃ .

(b) Theorem 3.17 is a corollary of Theorems 3.21 and 3.23 and part (a) of this re-
mark: In this case, the RPO is a periodic orbit, i.e., ξ̄ = 0, σ̄ = α, with momentum
μ̄ = 0. We now treat the periodic orbit as an RPO of relative period τ̃ = j τ̄ and
drift symmetry σ̃ = α̃ = σ̄ j γK on Fix(K̃) as in a). By Lemma 3.19 (c) the pair
(α̃,0) is a regular drift-momentum pair if and only if g(α̃,0) = gα̃ is abelian. Con-
dition (3.20) implies that gα̃ is one-dimensional, and hence abelian, so (α̃,0) is a
regular drift-momentum pair and r = 1 in Theorems 3.21 and 3.23.
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3.5.4 Continuation of Branches of RPOs

By Theorem 3.21, there is an (r + 1)-dimensional manifold of RPOs near a non-
degenerate RPO with regular drift-momentum pair (σ̄ , μ̄), where r = r(σ̄ ,μ̄). Let, as
before, ξ1, . . . , ξr be a basis of g(σ̄ ,μ̄) and denote Ji = Jξi

. To select a branch of
RPOs one can for example fix r − 1 of the first r components of the momentum map
(without loss of generality the first r − 1 components) and the energy

Fμ̄i
(x) = Ji (x) − μ̄i = 0, i = 1, . . . , r − 1, FĒ(x) = H(x) − Ē = 0,

and then the RPOs are continued with respect to the conserved quantity Jr . Another
option is to fix the first r components of the momentum map and continue the RPOs
with respect to energy. These constraints have to be added to F from (3.24).

The following proposition is analogous to Proposition 3.15.

Proposition 3.25 Let the assumptions of Theorem 3.21 hold. Then the Gauss–
Newton method (2.17) applied to the equations F Ē = (F,FĒ,Fμ̄1, . . . ,

Fμ̄r−1) = 0 (continuation of RPOs in the momentum component Jr with fixed en-
ergy and fixed momentum components J1, . . . ,Jr−1) converges. The same holds true
for the Gauss–Newton method applied to the equations F μ̄ = (F,Fμ̄) = 0, where
Fμ̄ = (Fμ̄1, . . . ,Fμ̄r ) (continuation of RPOs in energy with fixed momentum).

Proof Since the RPO is non-degenerate, the Jacobian DF(ȳ) of (3.24) has a
(2+s+r)-dimensional kernel spanned by the vectors, t ξ1 , . . . , tξs , tf , tμ1, . . . , tμr , tE

where

t ξi = (ξi x̄,0,0,0,0), i = 1, . . . , r, tf = (fH (x̄),0,0,0,0)

as in (3.19). The x-components of the vectors tμi = (t
μi
x , t

μi

T , t
μi
ω ,0,0) and tE =

(tEx , tET , tEω ,0,0) can be chosen to satisfy (3.14). From (3.14), we conclude that

DFĒ(x̄)tE = 1, DFμ̄i
(x̄)t

μj
x = δij , i, j = 1, . . . , r,

DFμ̄i
(x̄)tEx = 0, DFĒ(x̄)tμi

x = 0, i = 1, . . . , r.
(3.26)

Therefore, DF Ē(ȳ) and DF μ̄(ȳ) have full rank with kernel spanned by tμr and tE,

respectively, and the Gauss–Newton method applied to F Ē = 0 and F μ̄ = 0 con-
verges. �

The extension to the multiple shooting context is straightforward.

Remark 3.26 In Galán et al. (2002), Muñoz-Almaraz et al. (2003), Galán et al. nu-
merically continue periodic orbits of symmetric Hamiltonian systems without ex-
ploiting spatio-temporal symmetries, i.e., they set α = id, ξ̄ = 0, 	 = 1. Their numer-
ical methods converge if the geometric multiplicity of the eigenvalue 1 of D�T̄ (x̄)

(where x̄ lies on a T̄ -periodic orbit) is dim� + 1 (see Muñoz-Almaraz et al. 2003,
Theorem 14). Under this condition, there is a locally unique periodic orbit through



J Nonlinear Sci (2008) 18: 343–390 379

x̄ with fixed period T̄ which can be continued with respect to an external parameter.
Numerically, they compute this periodic orbit by a Newton method as the solution of
the equation

0 = F(x,λE,λμ), F : X × R
1+g ⊆ R

n+1+g → R
n+1+g

where g = dim�, ξ1, . . . , ξg is a basis of g, and

F(x,λE,λμ) =

⎛

⎜⎜⎜⎜⎜
⎝

�T̄ (x;λE,λμ) − x

〈x − x̄, fH (x̄)〉
〈x − x̄, ξ1x̄〉

...

〈x − x̄, ξgx̄〉

⎞

⎟⎟⎟⎟⎟
⎠

.

In contrast, we allow for periodic orbits to be continued as RPOs. For our path follow-
ing method to converge, we require that the RPOs to be continued are non-degenerate,
a condition which is different from, but related to the condition that Muñoz-Almaraz
et al. require, see Proposition 3.12. Our method provides continuation in momentum
and energy as well continuation in an external parameter (cf. Remark 2.10(a)). Since
we want to continue in momentum, we need the additional condition that the drift-
momentum pair of the RPO is regular; if this condition fails then the set of RPOs near
a given RPO is not a manifold anymore, cf. (Wulff 2003).

4 Continuation of Rotating Choreographies

In this section, we show how Theorem 3.17 can be applied to periodic orbits of N -
body problems, and in particular to choreographies.

4.1 N -body Problems

We consider N identical bodies of mass 1 in R3 acted on only by the forces they
exert on each other. These forces are assumed to be given by 1

2N(N − 1) identical
copies of a potential energy function V (one for each pair of bodies) which depends
only on the distance between the bodies. Writing pj for the momenta conjugate to
the positions qj , q = (q1, . . . , qN), p = (p1, . . . , pN), the Hamiltonian is

H(q,p) = 1

2

N∑

j=1

|pj |2 +
∑

i<j

V (rij ) where rij = |qi − qj |, V (r) = −1

r
. (4.1)

Excluding collisions, the configuration space Q is

Q = {
q = (q1, . . . , qN) ∈ R

3(N−1), qi �= qj for i �= j
}

and the phase space is P = Q × R3N ⊂ R6N . The equations of motion are

q̇j = pj , ṗj =
∑

i �=j

qi − qj

r3
ij

, j = 1, . . . ,N. (4.2)
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The angular momentum is J(q,p) = ∑N
j=1 qj ∧ pj . Without loss of generality, the

center of mass of the systems can be assumed to be fixed at 0 restricting the configu-
ration space to

Q0 =
{

q ∈ Q :
N∑

j=1

qj = 0

}

with corresponding phase space P 0 = Q0 × R3(N−1) ⊆ R6(N−1).

4.2 Example: Three-Body System with Fixed Centre of Mass

As a specific example, we consider the three-body problem. The phase space is then
P 0 ⊆ R12 with x ∈ P 0 given by x = (q1, q2,p1,p2) ∈ P 0, qi ∈ R3, pi ∈ R3, i = 1,2.
The third particle satisfies q3 = −q1 −q2, p3 = −p1 −p2 because the center of mass
is fixed at 0 and so the global linear momentum vanishes (i.e., p1 + p2 + p3 = 0).
Then the Hamiltonian is given by

H 0 = 1

2

(|p1|2 + |p2|2 + |p1 + p2|2
) + V 0(q) (4.3)

where the potential V 0(q) is

V 0(q) = − 1

|q1 − q2| − 1

|q1 − (−q1 − q2)| − 1

|q2 − (−q1 − q2)|
= − 1

|q1 − q2| − 1

|2q1 + q2| − 1

|2q2 + q1| .

Inserting q3 = −q1 − q2 and p3 = −p1 − p2 into the symplectic form (2.2) the stan-
dard symplectic structure matrix from (2.3) transforms into the symplectic structure
matrix J0 with

J
0 =

(
0 J6

−J6 0

)
, where J6 = 1

3

(
2 −1

−1 2

)
⊗ id3.

The equations of motion are given by (4.2) with N = 3 and q3, p3 replaced by −q1 −
q2 and −p1 − p2, respectively:

q̇1 = p1, ṗ1 = −
(

q1 − q2

|q1 − q2|3 + 2q1 + q2

|2q1 + q2|3
)

,

q̇2 = p2, ṗ2 = −
(

q2 − q1

|q1 − q2|3 + 2q2 + q1

|2q2 + q1|3
)

.

4.3 Symmetries of N -body Problems

The N -identical-body Hamiltonian (4.1) has the following symmetries:
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1. Rotations and reflections of R3: These form the orthogonal group O(3) which acts
diagonally on the positions and velocities:

R(q1, . . . , qN ,p1, . . . , pN) = (Rq1, . . . ,RqN,Rp1, . . . ,RpN)

R ∈ O(3), qj ,pj ∈ R
3.

We define the symmetry axis of a rotational symmetry to be its usual rotation axis
and that of a reflectional symmetry to be the axis perpendicular to the reflection
plane. In the following, let κi ∈ O(3) be the reflection with symmetry axis ei , i.e.,
let κi be such that κiei = −ei , κiej = ej for j �= i, i, j = 1,2,3.

2. Permutations of identical bodies: Because we assume that all the bodies are iden-
tical, the Hamiltonian is also invariant under the action of SN , the group of all
permutations of the integers 1, . . . ,N :

π.(q1, . . . , qN , q̇1, . . . , q̇N ) = (qπ(1), . . . , qπ(N),pπ(1), . . . , pπ(N))

π ∈ SN, qj ,pj ∈ R
3.

In the following, we will frequently use the notation π = (π(1), . . . , π(N)).

Taken together these three symmetry groups give an action of

� = O(3) × SN

on P which reduces to an action on P 0 and leaves the Hamiltonian (4.1) invariant.

Remark 4.1 We call a matrix ρ ∈ GL(n) of a general Hamiltonian system (2.1) a
time-reversing symmetry of (2.1) if

H(ρx) = H(x), x ∈ X, ρJ = −Jρ.

This implies that fH (ρx) = −ρfH (x), x ∈ X, and so with x(t) also ρx(−t) is a
solution of (2.1). In addition to the symmetries listed above, the N -body system (4.2)
has the time-reversing symmetry

ρ.(q1, . . . , qN ,p1, . . . , pN) = (q1, . . . , qN ,−p1, . . . ,−pN) qj ,pj ∈ R
3

which generates a group Z2(ρ) of order 2.

Since SN is finite the Lie algebra of � is just g = so(3), the Lie algebra of SO(3),
which we can identify with R3, see (3.4). The adjoint action of O(3) on so(3) is

AdR ξ = det(R)Rξ

where on the right R ∈ O(3) is identified with a 3 × 3 orthogonal matrix and ξ with a
vector in R3. Since SN commutes with O(3) it acts trivially in the adjoint action of �

on g. As � is compact, its adjoint and coadjoint actions coincide and so the coadjoint
action of � on g∗ 
 so(3)∗ is

γμ = (R,π)μ = det(R)Rμ, γ = (R,π) ∈ � = O(3) × SN .



382 J Nonlinear Sci (2008) 18: 343–390

Note in particular that rotations and reflections in O(3) both act like rotations on
the angular velocity vectors ξ ∈ so(3), the reflections giving rotations by 180 degree
about axes perpendicular to their reflection planes in physical space.

Definition 4.2 A periodic orbit of (4.2) is a choreography if all the bodies follow
the same path in R3, separated only by a phase shift. This is equivalent to requir-
ing that the spatio-temporal symmetry group L of the periodic orbit contains an
order N cyclic permutation π ∈ SN which can always be taken to act on Q by
πq = (q2, q3, . . . , qN , q1). Similarly, a relative periodic orbit of (4.2) with angular
velocity ξ is a rotating choreography if it is a choreography in coordinates rotating
with velocity ξ .

We say that R ∈ SO(3) and R̂ ∈ O(3)\SO(3) are rotational and reflectional sym-
metries of a periodic orbit if they are spatio-temporal symmetries of this periodic
orbit.

4.4 Persistence of Rotating Choreographies

We are now ready to state the following persistence result for rotating choreogra-
phies. This result generalizes a theorem on rotating eights by Chenciner et al. (2005)
from three bodies to the case of N bodies and combines the persistence result with
the convergence of the numerical scheme. Montaldi and Roberts (1999) obtained
an analogous persistence result for relative equilibria of molecules bifurcating from
equilibria.

Corollary 4.3 Let x̄ lie on a periodic orbit P̄ of the N -body problem (4.2) in R3 with
period T̄ , energy Ē = H(x̄) = 0, and angular momentum J(x̄) = 0. Then

(a) Under some non-degeneracy assumption (see (d)) for each reflectional or ro-
tational symmetry of the periodic orbit there is a 2-parameter bifurcating
family P(E, ν) of relative periodic orbits smoothly parametrized by energy
H(x(E,ν)) = E and angular momentum ν = Jξ (x(E, ν)) such that x(E,ν) ∈
P(E, ν) and x(0,0) = x̄. The family of RPOs has angular velocity and angular
momentum parallel to the symmetry axis ξ ∈ so(3) 
 so(3)∗ 
 R3.

(b) The reflectional and rotational symmetries of the periodic orbit P̄ which also fix
the symmetry axis ξ persist as symmetries of the corresponding family of RPOs
from (a). More precisely we have:
(i) The isotropy subgroup K̃ of the family of RPOs from (a) is

K̃ = {γ ∈ K, Adγ ξ = ξ}
where K is the isotropy subgroup of the periodic orbit P̄ .

(ii) Let α be the drift symmetry of the periodic orbit through P̄ , let τ̄ be its
relative period, let K be its isotropy and choose j ∈ N minimal such that
α̃ := αjγK satisfies Adα̃ ξ = ξ for some γK ∈ K . Then the family of RPOs
from (a) has drift symmetry close to α̃ and relative period close to τ̃ = j τ̄ .

Moreover, all RPOs near P̄ with such drift symmetry, angular velocity, and rela-
tive period belong to this family.
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(c) If the periodic orbit P̄ is a choreography then the bifurcating RPOs are rotating
choreographies.

(d) The non-degeneracy condition we require is that the periodic orbit P̄ is non-
degenerate when considered as periodic orbit on Fix(K̃) with the symmetry data
from (b). Under these conditions, with these symmetry data and with 	̃ and T̃ as
in Theorem 3.17, the Gauss–Newton method (2.17) applied to (3.18) converges.

Proof Let L be the spatio-temporal symmetry group of the periodic orbit P̄ , let R ∈ L

be a reflectional or rotational symmetry of P̄ with symmetry axis ξ ∈ so(3) and let
L̃ = {γ ∈ �,Adγ ξ = ξ}. Since reflectional and rotational symmetries have a one
dimensional fixed point space in so(3)∗ there is, by Theorem 3.17, a two-parameter
family x(E,ν) of RPOs with angular momentum fixed by R. This gives part (a) and
(b). For part (c), let L contain the cyclic permutation π , i.e., let P̄ be a choreography.
Since the symmetries in SN act trivially on so(3)∗ also every isotropy subgroup L̃

for the action of L on so(3)∗ contains π . Hence, the persisting solutions are rotating
choreographies. Part (d) follows from Theorem 3.17 (c). �

4.5 Rotating Eight Solutions of the Three-Body System and their Bifurcations

In this section, we apply the persistence result Corollary 4.3 to the figure eight so-
lution of the three-body system. We reprove the existence of three types of rotating
eights. These existence results were first obtained by Chenciner et al. (2005). Numer-
ically, we find a relative period doubling bifurcation along the branch of the planar
(type III) rotating choreographies and compute the branch of rotating choreographies
bifurcating it.

4.5.1 Three Families of Rotating Eights

The figure eight is a choreography of the planar 3-identical-body system (4.2), N = 3.
However, we regard the planar system as being embedded in the three-body system in
R3 and consider the persistence of the figure eight to (in general non-planar) relative
periodic orbits.

Let {e1, e2, e3} be a fixed orthogonal set of axes in R3 and assume that the eight
lies in the plane perpendicular to e3 aligned along the e2 axis with both e2 axis and e1
axis as symmetry axis. As before, for i = 1,2,3 let κi denote the (time-preserving)
reflection with reflection axis ei . The purely spatial symmetry group of the figure
eight choreography is the group

K = Z2 = 〈κ3〉
generated by κ3, a reflection about the (x1, x2)-plane containing the figure eight. The
spatio-temporal symmetry group of the eight is the group

L = Z2 × Z6 = 〈
κ3, κ1(231)

〉
.

The drift symmetry α := κ1(231) is a reflection in the {e1, e2}-plane composed with
a cyclic permutation of the bodies and has order 	 = 6. It has the following matrix
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form in the planar reduced phase space coordinates (q1, q2,p1,p2) ∈ R8:

α :=
(

αq 0
0 αp

)
, αq = αp =

(−κ −κ

κ 0

)
, where κ =

(−1 0
0 1

)
.

There is a one-parameter family of figure eight solutions with spatio-temporal sym-
metry L close to the original figure fight, parametrized by energy. Since the three-
body problem is invariant under the scaling

x(t) = (
q(t),p(t)

) → (
cq

(
c−e/2t

)
, c−1/2p

(
c−3/2t

))
, (4.4)

the figure eight solutions of this one-parameter family are just rescalings of the orig-
inal figure eight. To obtain qualitatively new solutions, we need to continue with
respect to other parameters, e.g., momentum.

Since the permutation group S3 acts trivially on momentum space g∗ ∼= R3 the
action of L on g∗ reduces to the action of 〈κ3, κ1〉 
 Z2 ×Z2. The isotropy subgroups
of this group with one dimensional fixed point spaces on g∗ are

I. 〈κ1〉 lifting to the subgroup LI = 〈κ1(231)〉 ∼= Z6 of L

II. 〈κ1κ3〉 lifting to the subgroup LII = 〈κ1κ3(231)〉 ∼= Z6 of L

III. 〈κ3〉 lifting to the subgroup LIII = 〈κ3, (312)〉 ∼= Z3 × Z2 of L.

The initial data for the figure eight solution are (up to 5 digits of accuracy, see
Chenciner and Montgomery 2000)

q1 = −q2 = (0.97000,−0.24308,0),

p1 = p2 = (0.46620,0.43237,0), T = 6.3259.

We numerically computed the following eigenvalues of the derivative of the reduced
Poincaré map in the planar figure eight solution:

λ1,2 = 1.00, λ3,4 = −1.00, λ5,6 = −0.508 ± i0.862,

λ7,8 = 0.210 ± i0.978.

Hence, the figure eight solution is non-degenerate in the sense of Definition 3.11. It is
also non-degenerate when considered as periodic orbit with symmetry group LI , LII

and LIII, respectively. Hence, we verified numerically that the figure eight solution
satisfies the non-degeneracy assumption of Corollary 4.3 (note that λ5,6 ≈ e±i2π/3

so that the figure eight is almost degenerate when considered as T -periodic orbit
with trivial spatio-temporal symmetry). Therefore, by Corollary 4.3, there exist two-
parameter families of rotating choreographies with spatio-temporal symmetry groups
isomorphic to the groups listed above. We describe each in turn (see also Chenciner
et al. 2005):

I. The angular velocity vector ωI of the type I rotating eight is parallel to the e1
axis, and thus the eight rotates around its longer axis. The time-preserving reflec-
tion in the {e1, e2}-plane is preserved, but the reflection symmetry in the plane of
the original eight is broken. Thus, the eights in the rotating frame are no longer
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Fig. 1 Trajectories of q1(t) = (q1,1(t), q1,2(t)) of rotating figure eights of types I, II, and III for varying
angular momenta, at fixed energy H = −1.2871, in a corotating frame

planar. The drift symmetry in the rotating frame αI = κ1(231) has order 	I = 6
and the relative periods τ I (E, ν) of the bifurcating RPOs PI (E, ν) are close to
the relative period of the original figure eight, τ I (0,0) = τ̄ .

II. The angular velocity vector ωII is parallel to the e2 axis, and thus the bifurcating
eights rotate around their smaller axis. All the reflectional symmetries are broken,
but the 180 degree rotational symmetry R2 := κ1κ3 about the e2 axis is preserved.
Again, the rotating eight is fully three dimensional. The drift symmetry in the ro-
tating frame αII = κ1κ3(231) has order 	II = 6 and the relative periods τ II(E, ν)

of the bifurcating RPOs P II(E, ν) are close to the relative period of the original
figure eight, τ II(0,0) = τ̄ .

III. The angular velocity vector ωIII ||e3 is perpendicular to the (x1, x2)-plane con-
taining the original Eight and the rotating Eights also continue to lie in that plane.
In the rotating coordinates the trajectories look like eights, but with less symme-
try: the time-preserving reflection κ1 is broken. The drift symmetry in the rotat-
ing frame αIII = (312) has order 	III = 3 and the relative period τ III(E, ν) of
the family of bifurcating RPOs P III(E, ν) has doubled at the bifurcation point:
τ III(0,0) = 2τ̄ .

So, there are three families of RPOs which take the form of eights rotating about
3 perpendicular axes. Moreover, by Corollary 4.3, each of these families is locally
unique, i.e., any RPO close to the figure eight with the symmetry data as prescribed
for the families above, will belong to one of those families. These three families of
rotating eights have been computed numerically using the methods described before
in the code SYMPERCON (Schebesch 2004) and are illustrated in the corotating
frame in Fig. 1.

Remarks 4.4

(a) In Remark 4.1, we mentioned that the N -body system (4.2) also has time-
reversing symmetries. A time-reversing symmetry ρ̄ = ργ , γ ∈ �, of (4.2) is
called a time-reversing symmetry of an RPO P̄ with respect to x̄ = x(0) ∈ P̄
if ρ̄x̄ = x(t) for some t . If ρ̄x̄ = x̄, then we say that ρ̄ lies in the reversing
isotropy group Kρ of x̄. The figure eight has the reversing symmetry ρ̄ ∈ Kρ

given by ρ̄ = κ2(132)ρ, if we choose x̄ = x(0) such that the first particle lies
on the e1-axis, and the second and third particle have the same e1-component,
see (Chenciner et al. 2005; Muñoz-Almaraz et al. 2004). The reversing spatio-
temporal symmetry Lρ of the figure eight is then isomorphic to Lρ 
 D6 � Z2.
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Reversing symmetries ρ act on momenta μ ∈ g∗ and infinitesimal symmetries
ξ ∈ g as follows (see Wulff and Roberts 2002):

ρμ = −(Ad∗
ρ)−1μ, ρξ = −Adρ ξ.

Theorem 3.17 and Corollary 4.3 can be extended to include time-reversing sym-
metries by just replacing the spatio-temporal symmetry groups of the original and
bifurcating solutions with the corresponding time-reversal spatio-temporal sym-
metry groups. One can then check that the type I rotating eight at angular mo-
mentum 0 has the reversing symmetry ρI = ρκ2(132) with respect to x̄, that the
type II rotating eight has the reversing symmetry ρII = ρκ2κ3(132) and that the
type III rotating eight has the reversing symmetry ρIII = ρI . Hence, the reversing
spatio-temporal symmetries of the three types of rotating eights are isomorphic
to

LI
ρ 
 D6, LII

ρ 
 D6, LIII
ρ 
 Z2 × D3.

Chenciner et al. (2005) use these reversing symmetries to prove the existence of
the type I, type II, and type III rotating eights.

(b) Chenciner et al. (2005) continued the three families of rotating eights numerically
with respect to their rotation frequency fixing the relative period, exploiting re-
versing symmetries and using a finite difference scheme. We continue in angular
momentum, fixing the energy. They verified numerically that the parametriza-
tion by energy/momentum and relative period/velocity are equivalent for rotating
eights near the figure eight by checking that the corresponding Jordan block of
the linearization of the figure eight does not vanish, cf. Sect. 3.5.2. They also
numerically checked the nondegeneracy of the figure eight.

(c) Galán et al. (2002) also continue choreographies of the three-body system, but
they restrict attention to continuation of periodic orbits of fixed period with re-
spect to an external parameter (the mass ratio of two bodies). They do not fix the
center of mass at 0 as we do. Without this reduction, the three-body problem has a
6-dimensional symmetry group � = SO(3) � R3. They then apply the numerical
methods described in Remark 3.26 with g = dim� = 6.

4.5.2 Relative Period Doubling of Planar Rotating Eights

The third picture of Fig. 1 shows the planar (type III) family of RPOs bifurcating
from the “eight” for angular momentum near 0. For larger angular momentum, this
family of RPOs comes close to a collision, see Fig. 2. In order to continue the fam-
ily near the collision, we increased the size of the RPOs thus decreasing the energy
using the scaling symmetry (4.4) of the three body problem. Figure 2 shows the tra-
jectory of the first component p1,1 of the momentum p1 of the first body over the
first component q1,1 of the position q1 of the first body of the RPOs for different
values of the angular momentum. In the first picture, the momentum ranges between
J = 0 and J = −1.3079, the RPO in the second picture is closest to collision and has
momentum J = −2.2136, the RPO in the third picture, after the nearby collision, has
momentum J = −2.5674. On the whole branch, the condition of the condensed ma-
trix ME

c from (2.37) is never below 107, but the Jacobian J of the multiple shooting
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Fig. 2 RPOs of type III close to collision, at fixed energy H = −0.12871, in a corotating frame, see text

equation FE = 0 from (2.35) is well conditioned. This shows how well the iterative
refinement technique, see Remark 2.13, stabilizes the block Gaussian elimination.

After coming very close to a collision SYMPERCON detected a relative period
doubling bifurcation of this family of RPOs at energy H = −0.12871 and momentum
J = −6.6383, see the left picture on the first row of Fig. 3. This is an example of a
generic bifurcation of RPOs. The drift symmetry α̃ of the bifurcating family of RPOs
in the corotating frame is given by α̃ = (αIII)2 = (231) and so the bifurcating RPOs
are rotating choreographies. The initial values, the period T in the corotating frame
and the rotation frequency ω of the bifurcation point as computed by SYMPERCON
are

q1 = (1.4822,−0.34773), q2 = (−9.1785,5.8329),

p1 = (0.028466,0.11164), p2 = (0.15917,0.23685),

T = 325.86, ω = −0.00049047.

The Floquet eigenvalues are

λ1,2,3,4 = 1, λ5,6 = −1, λ7 = 20.2, λ8 = 0.0496.

Note that a similarly looking choreography, but with vanishing drift velocity and
different period, has been found by Simó (2002, left picture in row 2 of Fig. 14).

The right picture in the first row of Fig. 3 shows the bifurcating rotating choreog-
raphy at energy H = −0.12871 and momentum J = −6.6347. The initial values, the
period in the corotating frame and the rotation frequency of this rotating choreogra-
phy are

q1 = (1.5656,−0.15778), q2 = (−9.4667,5.6475),

p1 = (0.026277,0.10655), p2 = (0.15712,0.23433),

T = 651.80, ω = −0.00049461.

The Floquet eigenvalues are

λ1,2,3,4 = 1.00, λ5 = 2.32, λ6 = 0.432,

λ7 = 343, λ8 = 0.00291.
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Fig. 3 Rotating eight at the relative period doubling bifurcation and bifurcating solutions, see text

The left picture on the second row of Fig. 3 shows the bifurcating solution at energy
H = −0.12871, momentum J = −6.5733, rotation frequency ω = −0.00056945,
and period T = 653.07 in the corotating frame; the right picture on the second
row of Fig. 3 shows the bifurcating solution at energy H = −0.12871, momentum
J = −6.1795. The initial values, the period in the corotating frame and the rotation
frequency of this last RPO are

q1 = (2.1782,2.0118), q2 = (−12.478,2.4918),

p1 = (−0.0018436,0.072279), p2 = (0.10945,0.21243),

T = 663.91, ω = −0.0012216.

The Floquet eigenvalues are

λ1,2,3,4 = 1.00, λ5 = −0.531, λ6 = −1.88,

λ7 = −4.67 × 1013, λ8 = −0.000214.

In the last solution, the condition of the Jacobian J of the multiple shooting equation
F = 0 from (2.35) is computed by SYMPERCON as cond(J ) = 2.73 × 105, and the
condition of the condensed matrix ME

c from (2.37) is cond(ME
c ) = 1.61 × 1011. As

far as we are aware, this relative period doubling bifurcation of the type III family of
RPOs has not been reported in the literature before. We will describe the numerical
method we use for the detection and computation of this and other generic bifurca-
tions of RPOs and will report on other bifurcations along this branch of RPOs in a
forthcoming paper.
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5 Conclusion and Future Directions

In this paper, we have presented efficient algorithms for the continuation of non-
degenerate symmetric periodic orbits and relative periodic orbits of Hamiltonian sys-
tems with respect to energy and (in the case of a continuous symmetry group) mo-
mentum. We applied our methods to a problem from celestial mechanics. Possible
other applications which we plan to work on in the future include coupled rigid bod-
ies and robotics, underwater vehicle dynamics, dynamics of point vortices in ideal
fluids, and molecular dynamics.

We do not require the periodic orbits and RPOs to be reversible, and hence cur-
rently we do not exploit reversing symmetries in our numerical methods. For a
numerical exploitation of reversing symmetries, see, e.g., (Chenciner et al. 2005;
Muñoz-Almaraz et al. 2004; Wulff et al. 1994).

In forthcoming papers, we will describe algorithms for the detection and com-
putation of symmetry changing bifurcations of Hamiltonian RPOs building on the
theoretical results (Lamb and Melbourne 1999; Lamb et al. 2003; Wulff et al. 2001)
and numerical methods (Wulff and Schebesch 2006) for dissipative systems. We
will then extend our methods to reversible symmetric Hamiltonian systems and
design methods for the continuation of reversible RPOs and the computation of
reversing symmetry breaking bifurcations. This will also require a further devel-
opment of reversible equivariant bifurcation theory, see, e.g., (Lamb et al. 2003;
Lamb and Wulff 2002) and the references therein for some preliminary results.
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