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Abstract The interaction of two charges moving in R
3 in a magnetic field B can

be formulated as a Hamiltonian system with six degrees of freedom. Assuming that
the magnetic field is uniform and the interaction potential has rotation symmetry, we
reduce this system to one with three degrees of freedom. For special values of the con-
served quantities, choices of parameters or restriction to the coplanar case, we obtain
systems with two degrees of freedom. Specialising to the case of Coulomb interac-
tion, these reductions enable us to obtain many qualitative features of the dynamics.
For charges of the same sign, the gyrohelices either “bounce-back”, “pass-through”,
or exceptionally converge to coplanar solutions. For charges of opposite signs, we
decompose the state space into “free” and “trapped” parts with transitions only when
the particles are coplanar. A scattering map is defined for those trajectories that come
from and go to infinite separation along the field direction. It determines the asymp-
totic parallel velocities, guiding centre field lines, magnetic moments and gyrophases
for large positive time from those for large negative time. In regimes where gyrophase
averaging is appropriate, the scattering map has a simple form, conserving the mag-
netic moments and parallel kinetic energies (in a frame moving along the field with
the centre of mass) and rotating or translating the guiding centre field lines. When the
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gyrofrequencies are in low-order resonance, however, gyrophase averaging is not jus-
tified and transfer of perpendicular kinetic energy is shown to occur. In the extreme
case of equal gyrofrequencies, an additional integral helps us to analyse further and
prove that there is typically also transfer between perpendicular and parallel kinetic
energy.

Keywords Hamiltonian dynamical systems · Nonintegrability · Euclidean
symmetry · Reduction · Reconstruction · Scattering map

PACS 70F05 · 37J15 · 70H07 · 70H11 · 78A45

1 Introduction

In this paper we analyse the interaction of two charged particles moving in three-
dimensional space under the action of a uniform magnetic field and an interac-
tion potential depending only on the distance between the particles. This problem
is important for plasma physics and for atomic physics in magnetic fields. Apart
from Avron et al. (1978), where the separation of the centre of mass is treated
in the quantum-mechanical setting, attention has tended to focus on some limit-
ing regimes such as very strong magnetic field or plasmas with all the particles
of the same kind (see Anderegg et al. 1997; Driscoll et al. 2002; Dubin 1998;
Psimopoulos and Li 1992) or with one heavy particle idealised as fixed (the dia-
magnetic Kepler Problem, see Efstathiou et al. 2004; Gutzwiller 1990; Tanner et al.
1996) or the case with charges summing to zero (see Schmelcher and Cederbaum
1992, 1993). The problem of Coulomb scattering of a charged particle by a fixed
charge or two identical particles in a very strong magnetic field is treated in Tannen-
wald (1959) in the quantum-mechanical setting.

We will study the dynamics of two charged particles in a uniform magnetic field
without making restrictions on the sizes of the magnetic field, the charges or the
masses, except that we will assume that the particles behave classically and that their
velocities and accelerations are small enough that we can neglect any relativistic and
radiation effects. Although it is well known that nonuniformity of the magnetic field
introduces further significant effects, we believe that there is value in establishing
firm results for the uniform case first, which seems not yet to have been done in
detail.

In Pinheiro and MacKay (2006) we made a detailed study of the problem of the
interaction of two charged particles moving in a plane under the effect of a uniform
perpendicular magnetic field. We assumed that the interaction between the particles
was given by a potential depending on only the distance between the two particles.
The problem can be formulated as a Hamiltonian system with four degrees of free-
dom. We made extensive use of the symmetries to obtain a reduction to two degrees of
freedom. In the special case of same sign charges with equal gyrofrequencies (equal
ratio of charge to mass) or on some special submanifolds we proved that this system
is integrable. We then specialised our analysis to the most physically relevant case of
a Coulomb-like potential. Analysing the reduced systems and the associated recon-
struction maps we provided a detailed description for the regimes of parameters and
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level sets of the conserved quantities where bounded and unbounded motion are pos-
sible and we identified the cases where close approaches between the two particles are
possible. Furthermore, we identified regimes where the system is nonintegrable and
contains chaos by proving the existence of invariant subsets containing a suspension
of a nontrivial subshift.

The motion of one particle moving in three-dimensional space under the action
of a uniform magnetic field is simple. It is the composition of two motions: a drift
with constant velocity in the direction of the magnetic field and a uniform rotation
in a plane orthogonal to the field about a fixed centre—the guiding centre, with con-
stant radius—gyroradius, and angular velocity—gyrofrequency. Choosing the mag-
netic field to be vertical and oriented upwards, the motion in the circle is clockwise
if the charge is positive and anticlockwise otherwise. We sign the gyrofrequency ac-
cording to the direction of rotation. This problem can be formulated as a three de-
grees of freedom Hamiltonian system. It has symmetry under a four-dimensional
subgroup of the Special Euclidean group of R

3 (three-dimensional translations and
a one-dimensional rotation). These symmetries induce conserved quantities for this
system which is easily seen to be integrable.

One of the main goals of this paper is to study the scattering problem associated
with the interaction of the two charges in the presence of a magnetic field and a
Coulomb interaction potential

V (R) = e1e2

4πε0

1

R
, (1.1)

where R denotes the distance between the two particles, e1 and e2 denote the values
of the charges and ε0 denotes the permittivity of the vacuum. If there is a large dis-
tance between the particles, then the interaction is negligible and in this case the two
particles move freely as described. If the distance between the two particles is small,
then the strength of the interaction cannot be neglected anymore and the particles
interact. We will be looking at the situation where the particles have initially a large
vertical separation and both move freely towards each other so that the particles start
interacting when they get closer and then start moving apart until both particles move
again like free particles. The goal is to describe the changes in their trajectories due to
this interaction. For background on scattering in classical mechanics see the review
(Ott and Tél 1993) and references therein.

We start Sect. 2 by formulating our problem as a Hamiltonian system with a non-
canonical symplectic form (see Littlejohn 1979), that makes it easier to see the system
symmetries. We identify translational and rotational symmetries of the system and
the corresponding conserved quantities. Furthermore, we prove the existence of an
exceptional conserved quantity when the two particles have the same gyrofrequency.

We start Sect. 3 by proving that the problem of the interaction of two particles
in a magnetic field can be reduced to one with three degrees of freedom. Further-
more, when the two particles have the same gyrofrequency we use the exceptional
conserved quantity to reduce the system to two degrees of freedom. We also prove
that if the sum of the two charges is zero the dynamics in the zero set of the linear
momenta are described by a two degrees of freedom Hamiltonian system. We achieve
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these results by constructing a set of coordinates in which the system exhibits a re-
duction to three degrees of freedom, and two degrees of freedom when it applies.
This reduction is an extension to three-dimensional space of similar reductions ob-
tained for the planar case in Pinheiro and MacKay (2006) (and for a similar problem
in Grotta Raggazo et al. 1994). In the present paper the total change of coordinates
that exhibits the reduction is computed. This change of coordinates is just the lift of
a SE(3) subgroup that, given the base dynamics of the reduced Hamiltonian systems,
enables us to describe the full 12-dimensional dynamics. The planar case is obtained
as an invariant plane of the three-dimensional problem.

In Sect. 4, we specialize our analysis of the problem to the Coulomb poten-
tial (1.1). We give a description of the reduced Hamiltonian systems obtained in
Sect. 3 with the generic potential V replaced by the Coulomb potential. Our descrip-
tion includes:

• We recall from Pinheiro and MacKay (2006) the principal features of the dynamics
on the invariant plane associated with the interaction of two particles moving in a
plane under the action of a uniform perpendicular magnetic field.

• We prove boundedness of some of the variables on the reduced space.

Using this information we obtain a classification of the various distinct types of dy-
namical behaviour in this system, distinguishing between three main cases: dynamics
on the invariant plane, dynamics of two charges of the same sign and dynamics of two
charges of opposite sign.

We start Sect. 5 with an analysis of the scattering map associated with this problem
in the limit where the two particles’ trajectories are widely separated. We separate our
analysis into two cases: rationally independent gyrofrequencies and rationally depen-
dent gyrofrequencies. If the two particles’ gyrofrequencies are rationally independent
we obtain that the magnetic moments of the particles are adiabatic invariants and un-
der the adiabatic approximation the vertical kinetic energy in the centre of mass frame
is unchanged and the guiding centres have the following dynamics:

(i) In the case of two charges whose sum is not zero, the guiding field lines rotate
by some angle about a fixed field line during an interaction.

(ii) In the case of two charges which sum to zero, the guiding field lines translate by
some amount in a direction determined by the conserved quantities.

If the two particles’ gyrofrequencies are rationally dependent, however (or one goes
beyond the above adiabatic approximation), some transfer can occur between the
horizontal kinetic energies of the two particles; there can also be a weaker exchange
between horizontal and vertical kinetic energy. Indeed we prove both such transfers
are typically nonzero when the gyrofrequencies are equal, and the first occurs when
they sum to zero. If the gyrofrequencies differ in absolute value, we bound any such
transfer by the fourth or higher inverse power of the distance between the gyrohelices.
The results obtained in this limit agree with the more general qualitative description
provided in Sect. 4. Furthermore, we prove that in the case of “bouncing-back” be-
haviour, even if the vertical kinetic energy is conserved in the centre of mass frame,
there is a transfer of vertical kinetic energy between the particles when the vertical
centre of mass velocity is nonzero. We finish this section with a numerical study of



J Nonlinear Sci (2008) 18: 615–666 619

the scattering map without using the assumption that the two particles’ trajectories
are widely separated. We observe regular behaviour for large energies and chaotic
scattering for small positive energies.

2 Problem Formulation

We consider two particles with positive masses m1 and m2 and nonzero charges e1
and e2, respectively, moving in R

3 under the action of a uniform magnetic field B =
(0,0,B). Each of the particles is subject to a Lorentz force FL = eivi × B, where
vi = (vxi

, vyi
, vzi

) ∈ R
3 is the ith particle velocity (i ∈ {1,2}) and × denotes the

vector product between vectors of R
3. Furthermore, we assume that the two particles’

interaction is determined by a potential V (r) depending on the distance r between the
two particles (invariance under translations and horizontal rotations would suffice).

The phase space M for this problem is R
12 with the singular points of the in-

teraction potential removed (nine-dimensional planes if V is the Coulomb poten-
tial (1.1)). Let qi = (qxi

, qyi
, qzi

) ∈ R
3 denote the vector position of the ith particle

and pi = (pxi
,pyi

,pzi
) ∈ R

3 denote its (nonconjugate) momentum

pi = mvi , i ∈ {1,2}.
The motion of the two particles can be described by a Hamiltonian system, with
Hamiltonian function H : M −→ R and noncanonical symplectic form ω (see Little-
john 1979), given by

H = 1

2m1
|p1|2 + 1

2m2
|p2|2 + V

(|q1 − q2|
)
,

(2.1)
ω =

∑

i=1,2

dqxi
∧ dpxi

+ dqyi
∧ dpyi

+ dqzi
∧ dpzi

+ ki dqxi
∧ dqyi

,

where, for simplicity of notation, we introduce the constants

ki = −eiB, i ∈ {1,2}.
The Poisson bracket associated with this symplectic form, {., .} : C∞(M) ×
C∞(M) → C∞(M), is given by

{F,G} =
∑

i=1,2

∂F

∂qxi

∂G

∂pxi

− ∂G

∂qxi

∂F

∂pxi

+ ∂F

∂qyi

∂G

∂pyi

− ∂G

∂qyi

∂F

∂pyi

+ ∂F

∂qzi

∂G

∂pzi

− ∂G

∂qzi

∂F

∂pzi

− ki

(
∂F

∂pxi

∂G

∂pyi

− ∂G

∂pxi

∂F

∂pyi

)
.

The Hamiltonian system defined by (2.1) is invariant under the following families
of symmetries

φv(q1,q2,p1,p2) = (q1 + v,q2 + v,p1,p2)
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φθ (q1,q2,p1,p2) = (Rθq1,Rθq2,Rθp1,Rθp2),

where v = (vx, vy, vz) ∈ R
3 is a translation vector and Rθ is the matrix representing

a rotation in R
3 of angle θ about the z axis:

Rθ =
⎛

⎝
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞

⎠ . (2.2)

We define the (signed) gyrofrequency Ωi of each particle as

Ωi = ki

mi

, i ∈ {1,2},

and introduce the notation J and I for the 3 × 3 matrices given by

J =
⎛

⎝
0 1 0

−1 0 0
0 0 0

⎞

⎠ , I =
⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ .

Proposition 2.1 The Hamiltonian system (2.1) has the following conserved quanti-
ties:

• Linear momentum, given by

P3 = (Px,Py,Pz) = p1 + p2 + J(k1q1 + k2q2).

• Angular momentum, given by

L =
∑

i=1,2

qiJpi − ki

2
|Iqi |2.

Furthermore, if the particles have equal gyrofrequencies Ω1 = Ω2, there exists an-
other conserved quantity W , given by

W = ∣∣I(p1 + p2)
∣∣2

.

The following commutation relations hold between the above conserved quantities:

{Px,Py} = k1 + k2, {Px,Pz} = 0, {Py,Pz} = 0,

{L,Px} = Py, {L,Py} = −Px, {L,Pz} = 0,

{W,Px} = 0, {W,Py} = 0, {W,Pz} = 0, {W,L} = 0.

For a proof of a similar statement (with the two particles moving on a plane) see
Pinheiro and MacKay (2006).

We will use the notation

P = (Px,Py) ∈ R
2

for the (x, y)-components of the linear momentum P3 given in Proposition 2.1 and
will use the notation Pz when referring to its z-component.
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Remarks

(i) It is possible to treat the problem in canonical coordinates, as in Avron et al.
(1978), Schmelcher and Cederbaum (1992, 1993) for the case of charges sum-
ming to zero, but the symmetries are less clear.

(ii) The conserved quantities P3 and L are, respectively, the usual linear and angular
momenta for the two body problem with extra terms representing the presence
of the magnetic field and hence the effect of the Lorentz force on the particles.

(iii) Combining Px and Py into the conserved quantity

P = |P |2 = P 2
x + P 2

y

we obtain the following commutation relations

{P,L} = 0, {P,Pz} = 0, {P,W } = 0,

which together with the commutation relations in Proposition 2.1 show L, P ,
Pz and W to be in involution.

(iv) Corresponding to W there is a “hidden” symmetry in the case of equal gyrofre-
quencies Ω1 = Ω2, given by

q1 → q1 + 1

k1 + k2
[R2(k1+k2)φ − Id3×3]J(p1 + p2)

q2 → q2 + 1

k1 + k2
[R2(k1+k2)φ − Id3×3]J(p1 + p2)

p1 → p1 + k1

k1 + k2
[R2(k1+k2)φ − Id3×3](p1 + p2)

p2 → p2 + k2

k1 + k2
[R2(k1+k2)φ − Id3×3](p1 + p2),

where φ ∈ R, Id3×3 is the identity matrix in R
3 and R2(k1+k2)φ is of the form

(2.2) with θ replaced by 2(k1 + k2)φ.
(v) If the interaction potential in (2.1) is chosen to be the Coulomb potential (1.1)

(as we will do in Sect. 4), then the scaling transformation given by

qi = λqi , t = λ3/2t, B = λ−3/2B,

where λ > 0, transforms the Hamiltonian function and symplectic form (2.1) to
H = λ−1H and ω = λ1/2ω. We could then choose λ so that B = 1 by a rescaling
of the level sets of the Hamiltonian function in (2.1). Furthermore, choosing e1
and m1 to be units of charge and mass, respectively, we could further reduce the
number of parameters of (2.1) by two. The Hamiltonian system (2.1) would then
depend on only the charge e2, mass m2 and physical constant ε0.

(vi) If the particles were also under the action of an electric field E perpendicular
to the magnetic field B, then the centre of mass of the system would drift with
constant velocity given by

u = E × B

|B|2 .
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Changing to a frame moving with velocity u we reduce this problem to (2.1).
This point seems not to be appreciated by the large number of authors of papers
on atoms in crossed electric and magnetic fields, who assume the nucleus can be
regarded as fixed and thereby complicate the problem.

3 Reduction

In this section we provide local coordinates that exhibit the reduction of the Hamil-
tonian system (2.1) to three degrees of freedom and identify the regimes of parame-
ters and invariant subsets of R

12 where the system can be reduced to two degrees
of freedom. This reduction is valid for all potentials V that depend only on the dis-
tance between the particles (or more generally have horizontal rotation symmetry).
For simplicity of notation we introduce the combinations

M = m1 + m2, m = m1m2

m1 + m2
.

We change coordinates from positions qi and momenta pi to guiding centres Ri =
(Rxi

,Ryi
) ∈ R

2, gyroradii vector ρi = (ρxi
, ρyi

) ∈ R
2, relative vertical position qz ∈

R and a conjugate momentum pz ∈ R, vertical centre of mass Cz ∈ R and vertical
linear momentum Pz ∈ R, by making

ρi = 1

ki

J(pxi
,pyi

), Ri = (qxi
, qyi

) − ρi ,

qz = qz1 − qz2, pz = (m2pz1 − m1pz2)/M, (3.1)

Cz = (m1qz1 + m2qz2)/M, Pz = pz1 + pz2,

where J is the standard symplectic matrix in R
2, given by

J =
(

0 1
−1 0

)
.

Then, the Hamiltonian system (2.1) transforms to

H = k1Ω1

2
|ρ1|2 + k2Ω2

2
|ρ2|2 + V (R) + pz

2

2m
+ Pz

2

2M
,

(3.2)
ω =

∑

i=1,2

ki(dRxi
∧ dRyi

− dρxi
∧ dρyi

) + dqz ∧ dpz + dCz ∧ dPz,

where R = (|R1 − R2 + ρ1 − ρ2|2 + qz
2)1/2. This coordinate change reduces (2.1)

by one degree of freedom by conservation of Pz and elimination of Cz. The quantities
P , L and W are now given by

P = J(k1R1 + k2R2), L =
∑

i=1,2

ki

2

(|ρi |2 − |Ri |2
)
, W = |k1ρ1 + k2ρ2|2.

We separate our analysis into two cases: k1 + k2 �= 0 and k1 + k2 = 0.
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3.1 Case k1 + k2 �= 0

We introduce the combinations

μ = k1 + k2, e = k1k2

k1 + k2
,

and note that since k1 + k2 �= 0 then μ is nonzero and e is well defined. We in-
troduce the planar relative position q = (qx, qy) ∈ R

2 and a conjugate momentum
p = (px,py) ∈ R

2, by making the change of coordinates

q = R1 − R2 + ρ1 − ρ2 p = e

2
J(R1 − R2 − ρ1 + ρ2)

P = J(k1R1 + k2R2) f = −J(k1ρ1 + k2ρ2),

where f = (fx, fy) ∈ R
2 and P = (Px,Py) ∈ R

2. The inverse transformation is
given by

R1 = 1

μ

[
k2

2

(
q − 2

e
Jp

)
− JP

]
, R2 = 1

μ

[
−k1

2

(
q − 2

e
Jp

)
− JP

]
,

(3.3)

ρ1 = 1

μ

[
k2

2

(
q + 2

e
Jp

)
+ Jf

]
, ρ2 = 1

μ

[
−k1

2

(
q + 2

e
Jp

)
+ Jf

]
.

Combining (3.3) and (3.2) we obtain

H = 1

2m

(|p|2 + pz
2) + e2

8m
|q|2 + e

2m
qJp + V (R)

+ ε(2p − eJq)f + k1Ω1 + k2Ω2

2μ2
|f |2 + Pz

2

2M
,

and

ω = dqx ∧ dpx + dqy ∧ dpy + dqz ∧ dpz + dCz ∧ dPz

+ 1

μ
(dPx ∧ dPy − dfx ∧ dfy),

where R = (|q|2 + qz
2)1/2 and

ε = Ω1 − Ω2

2μ
(3.4)

measures the displacement from the set of parameters satisfying Ω1 = Ω2. This co-
ordinate change reduces (2.1) by a further degree of freedom by conservation (and
elimination) of Px and Py . The quantities L and W are now given by

L = qJp + 1

2μ

(|f |2 − |P |2), W = |f |2.
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Since P is conserved we remove the −|P |2/(2μ) term from the angular momentum,
corresponding to a change in the level set of the angular momentum, and define the
following conserved quantity

pθ = qJp + 1

2μ
|f |2.

A final change of coordinates makes the system canonical and exhibits the reduction
to three degrees of freedom. It is given by writing

q = rer , p = prer + 2μpθ − pφ

2μr
eθ ,

f = p
1/2
φ e2μφ+θ , (3.5)

Px = μΠx, Py = Πy,

where θ is the direction of q, i.e.,

er = cos θex + sin θey, eθ = − sin θex + cos θey, (3.6)

with ex = (1,0) ∈ R
2 and ey = (0,1) ∈ R

2 and φ is an angle of period π/μ repre-
senting the direction of f relative to that of q. The vector e2μφ+θ is defined in the
same way as eθ with θ replaced by 2μφ + θ . The coordinate change given in (3.5)
is singular at pφ = 0 since φ is undefined in this case. There is another coordinate
singularity at r = 0 that corresponds to collisions when qz = 0.

We obtain the following result.

Theorem 3.1 Let k1 + k2 �= 0. Then the Hamiltonian system (2.1) reduces to one
with three degrees of freedom in the variables (r,pr ,φ,pφ, qz,pz), given by

H = H0 + εH1,

ω = dr ∧ dpr + dφ ∧ dpφ + dqz ∧ dpz (3.7)

+ dθ ∧ dpθ + dΠx ∧ dΠy + dCz ∧ dPz,

where H0 = H0(r,pr ,pφ, qz,pz,pθ ,Pz) is given by

H0 = 1

2m

(
pr

2 + pz
2) + 1

2m

(
2μpθ − pφ

2μr

)2

+ e2

8m
r2 + e

2m

(
pθ + pφ

2μ

)
+ 1

2M
Pz

2 + V (R),

H1 = H1(r,pr ,pθ ,φ,pφ) is given by

H1 = pφ
1/2

((
er + 2μpθ − pφ

μr

)
cos(2μφ) − 2pr sin(2μφ)

)
+ k1 − k2

2μ
pφ
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and

ε = Ω1 − Ω2

2μ
, R = (

r2 + qz
2)1/2

, pθ = L + 1

2μ
P,

pφ = W, (μΠx,Πy) = P .

The reconstruction map is given by

R1 = −JP

μ
+ k2

2μ

((
r − 2μpθ − pφ

k1k2r

)
er + 2

e
preθ

)
,

R2 = −JP

μ
− k1

2μ

((
r − 2μpθ − pφ

k1k2r

)
er + 2

e
preθ

)
,

ρ1 = p
1/2
φ

μ
Je2μφ+θ + k2

2μ

((
r + 2μpθ − pφ

k1k2r

)
er − 2

e
preθ

)
,

ρ2 = p
1/2
φ

μ
Je2μφ+θ − k1

2μ

((
r + 2μpθ − pφ

k1k2r

)
er − 2

e
preθ

)
,

qz1 = Cz + m2

M
qz, qz2 = Cz − m1

M
qz,

pz1 = m1

M
Pz + pz, pz2 = m2

M
Pz − pz.

If the gyrofrequencies of the two particles are equal, i.e., Ω1 = Ω2, we have ε = 0.
Applying Theorem 3.1 we see that φ is ignorable and so we obtain the following
result.

Corollary 3.2 If Ω1 = Ω2 the Hamiltonian system (2.1) reduces to one with two
degree of freedom in the variables (r,pr , qz,pz), given by

H = H0(r,pr ,pφ, qz,pz,pθ ,Pz),

ω = dr ∧ dpr + dφ ∧ dpφ + dqz ∧ dpz + dCz ∧ dPz + dθ ∧ dpθ + dΠx ∧ dΠy,

where H0 is as given in Theorem 3.1.

3.2 Case k1 + k2 = 0

We now treat the case where the charges sum to zero. For simplicity of notation let

κ = k1 = −k2.

We make the change of coordinates

q = R1 − R2 + ρ1 − ρ2, p = −κ

2
J(ρ1 + ρ2)

(3.8)

C = −1

2
J(R1 + R2 + ρ1 + ρ2), Π = κ(R1 − R2),
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where q = (qx, qy) ∈ R
2 is the relative position of the two particles, p = (px,py) ∈

R
2 a conjugate momentum, C = (Cx,Cy) ∈ R

2 and Π = (Πx,Πy) ∈ R
2. Inverting

(3.8) we obtain

R1 = 1

2κ
Π + JC − 1

κ
Jp, R2 = − 1

2κ
Π + JC − 1

κ
Jp,

(3.9)

ρ1 = − 1

2κ
Π + 1

2

(
q + 2

κ
Jp

)
, ρ2 = 1

2κ
Π − 1

2

(
q − 2

κ
Jp

)
.

From (3.2) and (3.9), we obtain a system determined by the Hamiltonian function

H = 1

2m
|p|2 + κ2

8m
|q|2 + (m2 − m1)κ

2m1m2
qJp + V (R)

−
(

κ

4m
q + m2 − m1

2m1m2
Jp

)
Π + 1

8m
|Π|2 + 1

2m
pz

2 + 1

2M
Pz

2, (3.10)

where R = (|q|2 + qz
2)1/2, and symplectic form

ω = dqx ∧ dpx + dqy ∧ dpy + dqz ∧ dpz + dCx ∧ dΠx + dCy ∧ dΠy + dCz ∧ dPz,

with the conserved quantities

P = JΠ, L = qJp + CJΠ.

The Hamiltonian system (3.10) is already reduced to three degrees of freedom by
conservation of Π and Pz and elimination of C and Cz. Unless Π = 0 (or equiv-
alently P = 0), it is not possible to use the angular momentum L to reduce further
(3.10) since L depends on the cyclic variables C and hence it is not a function defined
on the reduced space. We make a final change of coordinates, given by

q = rer , p = prer + pθ

r
eθ ,

where er and eθ are as given in (3.6). We obtain the following result.

Theorem 3.3 Let k1 + k2 = 0. Then the Hamiltonian system (2.1) reduces to one
with three degrees of freedom in the variables (r,pr , θ,pθ , qz,pz), given by

H = H0 + H1,

ω = dr ∧ dpr + dθ ∧ dpθ + dqz ∧ dpz (3.11)

+ dCx ∧ dΠx + dCy ∧ dΠy + dCz ∧ dPz,

where H0 = H0(r,pr ,pθ , qz,pz,Pz) is given by

H0 = 1

2m

(
pr

2 + pz
2) + 1

2m

(
pθ

r

)2

+ κ2

8m
r2 + 1

2M
Pz

2 + (m2 − m1)κ

2m1m2
pθ + V (R),
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H1 = H1(r,pr , θ,pθ ,Πx,Πy) is given by

H1 = −
((

κ

4m
r + m2 − m1

2m1m2

pθ

r

)
er − m2 − m1

2m1m2
preθ

)
Π + 1

8m
|Π|2

and

R = (
r2 + qz

2)1/2
, pθ = L − CJΠ, Π = −JP .

The reconstruction map is given by

R1 = 1

2κ
Π + JC − 1

κ

pθ

r
er + 1

κ
preθ ,

R2 = − 1

2κ
Π + JC − 1

κ

pθ

r
er + 1

κ
preθ ,

ρ1 = − 1

2κ
Π + 1

2

(
r + 2

κ

pθ

r

)
er − 1

κ
preθ ,

ρ2 = 1

2κ
Π − 1

2

(
r − 2

κ

pθ

r

)
er − 1

κ
preθ ,

qz1 = Cz + m2

M
qz, qz2 = Cz − m1

M
qz,

pz1 = m1

M
Pz + pz, pz2 = m2

M
Pz − pz.

If P = 0, then Π = 0 and hence H1, as given in the statement of Theorem 3.3, is
identically zero. From Theorem 3.3, we obtain the following result.

Corollary 3.4 If k1 + k2 = 0 and P = 0 then the Hamiltonian system (2.1) reduces
to one with two degrees of freedom in the variables (r,pr , qz,pz), given by

H = H0(r,pr , qz,pz,pθ ,Pz),

ω = dr ∧ dpr + dqz ∧ dpz + dθ ∧ dpθ + dCx ∧ dΠx + dCy ∧ dΠy + dCz ∧ dΠz,

where H0 is as given in Theorem 3.3.

Remarks

(i) In Schmelcher and Cederbaum (1992, 1993) a reduction similar to the above
is provided for the case k1 + k2 = 0, but done with canonical coordinates. The
resulting reduced system is the same as the one given here, up to the choice of
the direction of the magnetic field. The pseudomomentum K of Schmelcher and
Cederbaum (1992, 1993) is represented here by the linear momentum vector P .
The remaining variables are the relative position and conjugate momentum. We
provide one extra transformation to write the system in variables involving the
distance between the particles and conjugate momentum.

(ii) The reduction done in this section is mostly regular, making it a standard illus-
tration of the theory of symplectic reduction (see Abraham and Marsden 1978;
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Arnold 1989; Cushman and Bates 1997; Marsden and Ratiu 1999). There are,
however, level sets of the conserved quantities where the reduction is singular:
the level sets of the form 2(k1 + k2)L + |P |2 = 0 in the case k1 + k2 �= 0 and
L = 0 in the case k1 + k2 = 0 have conical singularities that must be removed
for the reduced space to be a smooth manifold. In Marsden and Ratiu (1999)
symplectic reduction by the symmetry group SE(2) is discussed in a general set-
ting and in Pinheiro (2006) a detailed study is done for the symplectic reduction
of the Hamiltonian system representing the interaction of charges moving in a
plane under the action of a uniform magnetic field by its symmetry group SE(2).
The symplectic reduction for the spatial version of that problem is completely
analogous.

3.3 Invariant Plane qz = 0, pz = 0

In this section we note the existence of an invariant plane for the dynamics of the
reduced Hamiltonian systems given in Theorems 3.1 and 3.3, and corresponding in-
variant plane of the Hamiltonian system (2.1).

Lemma 3.5 The reduced Hamiltonian systems (3.7) and (3.11) given, respectively,
in Theorems 3.1 and 3.3, have an invariant plane determined by the conditions qz = 0
and pz = 0.

Proof From (3.7) and (3.11) we obtain

q̇z = 1

m
pz, ṗz = −qz

V ′(R)

R
. (3.12)

In particular we obtain q̇z = ṗz = 0 if qz = pz = 0. It follows that qz and pz remain
equal to zero if they both start at zero. �

Invariance of the plane qz = 0, pz = 0 under the dynamics of (3.7) and (3.11)
corresponds to invariance of the (ten-dimensional) plane

Λ = {
(q1,q2,p1,p2) ∈ R

12 : qz1 = qz2,m2pz1 = m1pz2

}

under the dynamics of (2.1). Furthermore, on the invariant plane Λ the dynamics of
the Hamiltonian system (2.1) reduce by a further degree of freedom compared to the
reduced systems in Theorems 3.1 and 3.3. In fact, by setting qz = 0, pz = 0 in the
Hamiltonian systems (3.7) and (3.11) we obtain reduced dynamical systems for the
problem of the interaction of two charges moving in a plane under the action of a
magnetic field (with a shift in the energy level sets by Pz

2/(2M)).

4 Reconstructed Dynamics for a Coulomb Potential

In this section we use the reduced Hamiltonian systems and the corresponding recon-
struction maps obtained in Sect. 3 to provide a qualitative description of the possible
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types of dynamics in the full 12-dimensional phase space in terms of the properties
of the dynamics of the reduced systems. Throughout this section we consider the
interaction potential to be Coulomb

V (R) = G

R
,

where R is the distance between the particles, G = e1e2/(4πε0) and ε0 is the permit-
tivity of the vacuum.

From Theorems 3.1 and 3.3 we obtain that the vertical z-component of the centre
of mass of the two particles moves with constant velocity Ċz = Pz/M . Hence, by a
translation we can assume that Ċz and Pz are 0. Furthermore, without loss of gen-
erality we will assume that Cz = 0. This corresponds to considering the system as
moving with the centre of mass of the z-component. Until Sect. 5.3, we will assume
this is the case. To extend the results in the following sections to nonzero Pz it is
enough to add a drift Pzt/M to the vertical positions qz1 and qz2 of the particles (by
the reconstruction maps of Theorems 3.1 and 3.3).

4.1 Dynamics on the Invariant Plane Λ

For the Coulomb interaction, extensive results on the planar case were obtained in
Pinheiro and MacKay (2006). We summarize here the implications. The next two
results follow from Theorems 3.1 and 3.3, Lemma 3.5 and the results in Pinheiro and
MacKay (2006). We skip their proof.

Corollary 4.1 Let k1 + k2 �= 0 and restrict attention to the dynamics of (2.1) on Λ.
Then:

• The Hamiltonian system (2.1) reduces to one with two degrees of freedom in the
variables (r,pr ,φ,pφ), given by the restriction of (3.7) to qz = 0, pz = 0.

• If Ω1 = Ω2 the Hamiltonian system (2.1) reduces to one with one degree of freedom
in the variables (r,pr), given by the restriction of (3.7) to qz = 0, pz = 0 (and
ε = 0).

• If e1 and e2 have opposite signs and Ω1 + Ω2 �= 0 the Hamiltonian system (2.1)
contains a suspension of a nontrivial subshift of finite type on all level sets of
sufficiently high energy.

Corollary 4.2 Let k1 + k2 = 0 and restrict attention to the dynamics of (2.1) on Λ.
Then:

• The Hamiltonian system (2.1) reduces to one with two degrees of freedom in the
variables (r,pr , θ,pθ ), given by the restriction of (3.11) to qz = 0, pz = 0.

• If P = 0 the Hamiltonian system (2.1) reduces to one with one degree of freedom
in the variables (r,pr), given by the restriction of (3.11) to qz = 0, pz = 0 (and
P = 0).

• If P �= 0 and Ω1 + Ω2 �= 0 the Hamiltonian system (2.1) contains a suspension of
a nontrivial subshift of finite type on all level sets of sufficiently high energy.
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Remark The existence of chaotic orbits was proved in Pinheiro and MacKay (2006)
for Gm1/2 < δ0 for some δ0 > 0 depending on the parameters e1, e2,m1,m2 (with
e1e2 < 0 and e1/m1 �= −e2/m2), the magnetic field B, the energy H > 0, and the
angular momentum L or squared linear momentum |P |2 (according as e1 + e2 �= 0 or
e1 +e2 = 0) in a certain range depending on the preceding quantities. We should have
pointed out there that by a four-dimensional group of scaling symmetries (dimen-
sional analysis) the functional dependence of δ0 can be reduced so that the condition
can be written as

E3B

M1/2H 3/2ε0
< δ1(e2/e1,m2/m1,A),

where E = |e1 − e2| and A = (e1 + e2)BL/MH or A = |P |2/2MH according as
e1 + e2 �= 0 or e1 + e2 = 0. Equivalently,

H 3/2 >
E3B

M1/2ε0δ1
.

Taking δ2(e2/e1,m2/m1) = max δ1(e2/e1,m2/m1,A) over A yields chaos on each
energy level with

H 3/2 >
E3B

M1/2ε0δ2
,

specifying quantitatively the minimum energy required in Corollaries 4.1 and 4.2.

As was observed in Pinheiro and MacKay (2006) the reduced dynamics exhibit
the following types of dynamical behaviour:

• In the integrable regimes the energy levels are foliated by periodic orbits.
• Close to the integrable regimes most of the periodic orbits cease to exist and all but

a small fraction of the orbits in the energy levels are quasiperiodic and hence the
dynamics still look regular.

• For opposite signs of charge (except for the case Ω1 +Ω2 = 0) there is chaotic dy-
namics on all level sets of sufficiently high energy, which implies nonintegrability.

The full dynamics in Λ correspond to a drift of the two particles with constant
and equal velocities Pz/M in the z-direction. The dynamics in the (x, y) plane are as
described in Pinheiro and MacKay (2006):

(1) If k1 + k2 �= 0, the dynamics in the (x, y) plane are mostly quasiperiodic with
three rationally independent frequencies. The particles rotate with these three
frequencies about a fixed centre determined by the linear momenta.

(2) If k1 + k2 = 0, periodic and quasiperiodic base dynamics lift to possibly un-
bounded motion in the (x, y) plane corresponding to a combination of a drift
and quasiperiodic dynamics. The quasiperiodic dynamics have, generically, two
rationally independent frequencies.

(3) Chaotic dynamics lift to chaotic dynamics in the (x, y) plane. The motion (in the
(x, y) plane) is always bounded if k1 + k2 �= 0 and typically unbounded other-
wise.
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4.2 Bounds on the Motion

In this section we study the boundedness or not of various of the variables for the
reduced systems given in Theorems 3.1 and 3.3. This will give us important insight
into distinct types of dynamical behaviour of (2.1), which will be of significance for
the description of the global dynamics of the reconstructed system given in Sect. 4.3
and the associated scattering problem.

We first state an auxiliary result, providing a regime of parameters where the pla-
nar distance r between the two particles is bounded away from zero. We skip the
proof, since it follows from an analysis of the Hamiltonian functions given in Theo-
rems 3.1 and 3.3.

Lemma 4.3 Let k1 + k2 �= 0. If k1k2 > 0, or k1k2 < 0 and the value of the conserved
quantity pθ is fixed so that μpθ < 0, the planar distance r between the two particles
is bounded away from zero, i.e., there exists d > 0 such that r(t) > d for all t ∈ R.

Similarly, let k1 + k2 = 0. If P = 0 and pθ �= 0, the planar distance r between the
two particles is bounded away from zero, i.e., there exists d > 0 such that r(t) > d

for all t ∈ R.

In the next two lemmas we identify the sets of parameters and level sets of the con-
served quantities for which the distance between the two particles remains bounded
or not. In Pinheiro and MacKay (2006) we gave similar results for the case where the
two particles move in a plane.

Lemma 4.4 Let k1 + k2 �= 0 and consider the reduced Hamiltonian system given in
Theorem 3.1. Then:

(i) For every level set of the Hamiltonian function the dynamics of r and pφ are
bounded for all time.

(ii) If e1 and e2 have equal signs, there exists E′ ∈ R such that for every level set
E < E′ of the Hamiltonian function the projection of the level set {H = E}
onto the qz direction is unbounded but bounded away from qz = 0, and for E >

E′ the projection of the level set {H = E} onto the qz direction is unbounded.
Furthermore, for every level set of the Hamiltonian function the dynamics of pr

and pz are bounded for all time.
(iii) If e1 and e2 have opposite signs and the value of the conserved quantity pθ is

fixed so that 2μpθ < 0, there exists E′′ ∈ R such that for every level set E < E′′
of the Hamiltonian function the dynamics of qz are bounded and for every level
set E > E′′ the projection of the level set {H = E} onto the qz direction is
unbounded. Furthermore, for every level set of the Hamiltonian function the
dynamics of pr and pz are bounded for all time.

(iv) If e1 and e2 have opposite signs and the value of the conserved quantity pθ is
fixed so that 2μpθ ≥ 0, there exists E′′ ∈ R such that for every level set E < E′′
of the Hamiltonian function the dynamics of qz are bounded and for every level
set E > E′′ the projection of the level set {H = E} onto the qz direction is
unbounded.
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Proof Item (i) follows trivially from the fact that H → ∞ as r → ∞ (and similarly
for pφ).

For the proof of the remaining items let us define the function H by

H = H − G
(
r2 + qz

2)−1/2
,

where H is given in Theorem 3.1 with V replaced by the Coulomb potential (1.1)
and G = e1e2/(4πε0). It is crucial to point out that the function H does not depend
on qz and is always bounded below. For simplicity of notation we consider H and H
just as functions of the variables in the reduced phase spaces and do not make their
dependence on the conserved quantities Pz and pθ explicit.

We now prove item (ii). For the case of same-sign charges, the Hamiltonian func-
tion H is bounded below. Denote its lower bound by

E− = infH(r,pr ,φ,pφ, qz,pz).

By Lemma 4.3 we obtain that r is bounded away from 0 and hence G(r2 + qz
2)−1/2

is bounded. On lines where r is constant G(r2 + qz
2)−1/2 increases at nonzero rate

from 0 at the limit qz → −∞ to attain its (positive) maximum at qz = 0 to decrease
again to 0 at nonzero rate at the limit qz → +∞. We now define

E′ = infH(r,pr ,φ,pφ, qz = 0,pz),

and note that E− < E′. From a simple analysis of the Hamiltonian function H we
obtain that for every level set E− ≤ E < E′ of the Hamiltonian function the projec-
tion of the level set {H = E} onto the qz direction is bounded away from 0 and for
E > E′, qz = 0 intersects the level sets of the Hamiltonian function. Furthermore, we
obtain that for every level set of the Hamiltonian function the projection of the level
set {H = E} onto the qz direction is unbounded. Boundedness of the dynamics of pr

and pz follow from the fact that r is always bounded away from 0 (Lemma 4.3).
For the proof of item (iii) we start by defining

E′′ = inf H(r,pr ,φ,pφ,pz).

By Lemma 4.3 we get that r is bounded away from 0 and hence G(r2 + qz
2)−1/2

is bounded. On lines where r is constant G(r2 + qz
2)−1/2 decreases at nonzero rate

from 0 at the limit qz → −∞ to its (negative) minimum at qz = 0 to increase again
to 0 at nonzero rate at the limit qz → +∞. We note that in this case the function H

is also bounded below and define

E− = infH(r,pr ,φ,pφ, qz = 0,pz)

= inf

(
H(r,pr ,φ,pφ,pz) + G

r

)
,

and note that by item (i) in this lemma, r is bounded and hence G/r is strictly negative
implying that E− < E′′. Using the fact that H does not depend on qz a simple analysis
of the Hamiltonian function H shows that for every level set E− ≤ E < E′′ of H the
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dynamics of qz are bounded for all time and for every level set E > E′′ the projection
of the level set {H = E} onto the qz direction is unbounded. Boundedness of the
dynamics of pr and pz follow from the fact that r is always bounded away from 0
(Lemma 4.3).

To prove (iv) we note that H is not bounded below at points satisfying pφ = 2μpθ

and define

E′′ = inf H(r,pr ,φ,pφ,pz).

Since G(r2 + qz
2)−1/2 < 0 (possibly unbounded), we obtain that H ≤ H. A simple

analysis of the Hamiltonian function H shows that for every level set E < E′′ of
H the dynamics of qz are bounded for all time and for every level set E > E′′ the
projection of the level set {H = E} onto the qz direction is unbounded. �

We skip the proof of the next lemma which is analogous to (though simpler than)
the proof of the previous Lemma 4.4.

Lemma 4.5 Let k1 + k2 = 0 and consider the reduced Hamiltonian system given in
Theorem 3.3. Then:

(i) For every level set of the Hamiltonian function the dynamics of r and pθ are
bounded for all time.

(ii) If P = 0 and pθ �= 0, there exists E′′ ∈ R such that for every level set E < E′′
of the Hamiltonian function the dynamics of qz are bounded and for every level
set E > E′′ the projection of the level set {H = E} onto the qz direction is
unbounded. Furthermore, for every level set of the Hamiltonian function the
dynamics of pr and pz are bounded for all time.

(iii) If P �= 0 or P = 0 and pθ = 0, there exists E′′ ∈ R such that for every level
set E < E′′ of the Hamiltonian function the dynamics of qz are bounded and
for every level set E > E′′ the projection of the level set {H = E} onto the qz

direction is unbounded.

4.3 Description of the Global Dynamics of the Reconstructed System

The dynamics of (qz,pz) is given by

q̇z = pz

m
, ṗz = −qz

V ′(R)

R
.

Although these depend on r(t) via R =
√

q2
z + r2, quite a lot can be deduced without

explicit knowledge of r(t). We separate the analysis according as the charges have
the same or opposite signs.

4.3.1 Same-Sign Charges

In this case V ′ < 0, so the signs of q̇z and ṗz in the (qz,pz) plane are as indicated in
Fig. 1, and the normal motion to Λ is hyperbolic, as shown.
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Fig. 1 Signs of q̇z and ṗz for
the case of same-sign charges

Fig. 2 Sketch of the dynamics of (qz,pz) for charges of the same sign. Λ is the invariant set of coplanar
states. The invariant manifolds of Λ are 4D in each 5D energy level above the minimum energy on Λ for
the reduced system. They do not project to curves in (qz,pz) but the directions of motion of qz,pz are
correctly represented. They separate trajectories from qz = ±∞ into “bounce-back” and “pass-through”

In particular, every trajectory in the quadrant qz ≥ 0, pz ≤ 0, except those on Λ

(qz = pz = 0), has qz(t) decreasing, pz(t) increasing. Thus it has to do precisely one
of the following:

(1) Cross pz = 0, qz > 0.
(2) Cross qz = 0,pz < 0.
(3) Converge to Λ.

In the first case, qz(t) subsequently increases to +∞, so we say the gyrating par-
ticles “bounce-back”. In the second case, qz(t) decreases to −∞, so we say the gy-
rating particles “pass-through”. The third case can be called the stable set of Λ. Only
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Fig. 3 Signs of q̇z and ṗz for
the case of opposite sign charges

a set of measure zero on each energy level does the third case, because ΛE , the inter-
section of Λ with energy level E, has measure zero in the energy level, and volume
is conserved (see Fig. 2).

We conjecture that Λ (and thus ΛE for all regular values of E) is normally hyper-
bolic, though we have proved this in only the special case of equal gyrofrequencies
(Sect. 5.2.3) (the difficulty in the general case is that unless measured in a suitable
way, tangential contraction might be almost as strong as normal contraction). If ΛE

is normally hyperbolic, then its stable set is a smooth submanifold of codimension
one, and each trajectory on it converges to a trajectory on ΛE . The stable manifold
separates the cases of “bounce-back” and “pass-through”. For energies in the interval
(E′,E1) up to the next critical value E1 on Λ, ΛE is topologically a 3-sphere and
can be spanned by two 4D hemispheres of unidirectional flux in the 5D energy level
(it suffices to take one hemisphere to be qz = 0,pz > 0, the other qz = 0,pz < 0),
representing “pass-through” transitions in the two directions. The flux of energy–
level–volume across the hemispheres is given by an action integral over ΛE (MacKay
1990). For E > E1 the topological type of ΛE changes, but the division into “pass-
through” and “bounce-back” orbits persists.

4.3.2 Opposite Sign Charges

In this case V ′ > 0, so the signs of q̇z and ṗz are as in Fig. 3 and the normal motion
to Λ is elliptic.

The key to understanding this case is to regularise the sets Ω± = {qz = ±∞,pz =
0}, by setting qz = ±σ−2 (or using the global coordinate η of Fig. 4) and using a new
time s with ds/dt = σ 3. Specialising to Ω+ this yields

dσ

ds
= − p

2m
,

dp

ds
= − Gσ

(1 + r2σ 4)3/2
.

In particular, Ω+ gives an invariant submanifold at σ = p = 0, and the normal motion
is hyperbolic. The dynamics on Ω+ (and anywhere on σ = 0) is not really defined
since it has infinite gyrofrequencies in the new time s, but the guiding centre posi-
tions and the gyroradii are constant, so Ω+ can be regarded as a normally hyperbolic
submanifold. In particular, we conjecture that the stable and unstable sets for Ω+
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Fig. 4 Sketch of the dynamics of (qz,pz) for charges of opposite sign. The horizontal coordinate η is
related to qz by qz = η

(1−η2)2 . Ω± are normally hyperbolic invariant sets at qz = ±∞, pz = 0, for a

regularised system with new time s related by ds/dt = (1 − η2)−3. The invariant manifolds for Ω± are
4D in each 5D energy level above the minimum energy on Ω± for the reduced system. They do not project
to curves in (qz,pz), but the directions of motion of qz,pz are correctly represented. They separate each
quadrant of (qz,pz) into free and trapped subsets. They intersect the 4D plane qz = 0 in 3-spheres. The
two 3-spheres with pz > 0 are expected to intersect but not to coincide, so there is flux from free qz < 0
to trapped qz > 0 and from trapped qz < 0 to free qz > 0. Similarly for pz < 0

are smooth submanifolds of codimension one (a modification of usual proofs should
work).

The stable and unstable manifolds of Ω±, extended to qz = 0, separate the state
space into a “trapped” region which reaches qz = ±∞ at only Ω± and two “free”
regions which extend to qz = ±∞ with pz > 0 and pz < 0, respectively. Although we
have not proved it, we expect that the stable and unstable manifolds intersect at qz = 0
but do not coincide. Then the intersections of the invariant manifolds with qz = 0
form 3D lobes in each energy level, consisting of the flux between free and trapped
motions. The fluxes are given by action integrals over the intersection submanifolds.
Any trajectory other than those on an invariant manifold of Ω± describes a sequence
of transitions in the graph below.
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In particular there are:

(1) Permanently trapped trajectories, e.g., the set Λ (pz = qz = 0) and all those with
E < E′′. We call these “atom-like” (thinking of the case of a proton and an elec-
tron); they can be subdivided into bounded trajectories and those with unbounded
oscillation (oscillating between a neighbourhood of Λ and unbounded excursions
near qz = ±∞). It would be interesting to prove existence of the latter.

(2) Trajectories starting and ending free but possibly spending a finite time trapped
in between. These are the main object of study for scattering; they may end in
the same or opposite direction as they begin. The two cases can be called “pass-
through” and “bounce-back”.

(3) Trajectories starting free and making a transition to permanently trapped; there
could even be positive flux for this on each energy level with E > E′′, because
the volume of trapped orbits with given energy greater than E′′ is infinite (owing
to divergence of the integral as qz → ∞). These almost certainly lead to chaotic
scattering in the neighbourhood, because they are likely to form a fractal and thus
create a fractal structure of behaviour for the scattering trajectories.

4.4 Summary of the Different Types of Dynamics

In this section we combine the results given in the three previous subsections with
the reconstruction maps of Theorems 3.1 and 3.3 to provide a characterization of the
dynamics of the Hamiltonian system (2.1).

As seen before, we have to distinguish between three main cases: dynamics on the
invariant plane Λ, dynamics of two charges of the same sign and dynamics of two
charges of opposite sign.

(1) Dynamics on the invariant plane Λ. In the invariant plane Λ the two particles drift
with equal and constant velocity in the vertical z-direction while the dynamics in
the (x, y) plane correspond to the interaction of the two particles in a plane. We
call this “planar” behaviour.

(2) Dynamics of two charges of the same sign. The following types of dynamical
behaviour have been identified:

(2.1) “Bounce-back” behaviour—the dynamics are such that the following as-
ymptotic conditions are satisfied:
(a) limt→±∞ qz1(t) = − limt→±∞ qz2(t).
(b) limt→±∞ |qz1(t)| = limt→±∞ |qz2(t)| = ∞.
(c) qz1(t) − qz2(t) is bounded away from zero for all t ∈ R.

(2.2) “Pass-through” behaviour—the dynamics are such that the following as-
ymptotic conditions are satisfied:
(a) limt→±∞ qz1(t) = − limt→±∞ qz2(t).
(b) limt→±∞ |qz1(t)| = limt→±∞ |qz2(t)| = ∞.
(c) limt→+∞ qzi

(t) = − limt→−∞ qzi
(t), i ∈ {1,2}.

(2.3) Trajectories forward or backward asymptotic to Λ.
(3) Dynamics of two charges of the opposite sign. The following types of dynamical

behaviour have been identified
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(3.1) “Atom-like” behaviour—the particles are permanently trapped and can
have either bounded or unbounded oscillations. However, even in the case
of bounded oscillations, each particle position may be unbounded:

– If Pz �= 0, the particles drift in the vertical direction with nonzero veloc-
ity.

– If k1 + k2 �= 0 and Pz = 0 using (3.1) and the reconstruction map in
Theorem 3.1, we obtain

(qxi
, qyi

) = −JP

μ
+ (−1)i+1 1

μ

(
k2rer + (−1)i+1p

1/2
φ Je2μφ+θ

)
.

By Lemma 4.4 we obtain that r and pφ are bounded and hence q1 and
q2 are bounded.

– If k1 +k2 = 0 and P �= 0 we have that the trajectories of the two particles
are typically unbounded in the (x, y) plane: they drift with a non-zero
average velocity.

(3.2) Trajectories starting and ending free but possibly spending a finite time
trapped in between, leading to an asymptotic behaviour of the type
“bounce-back” or “pass-through” described in points (2.1) and (2.2).

(3.3) Trajectories starting free and making a transition to permanently trapped.

Figure 5 shows some examples.

5 The Scattering Map

In this section we introduce the scattering map associated with the Hamiltonian
system (2.1) and derive relevant properties of this map in some suitable regimes.
As in Sect. 4, throughout this section we will consider the interaction potential
to be Coulomb V (R) = G/R, where R is the distance between the particles and
G = e1e2/4πε0; as before, we will also set Cz = 0 and Pz = 0 without loss of gener-
ality (except in Sect. 5.3).

In the case of zero interaction, the general solution of (2.1) can be written as

qi (t) = (
Ri + ρi (t), qzi

(t)
)
, pi (t) = (−kiJρi(t),pzi

)
, (5.1)

for i ∈ {1,2}, where Ri = (Rxi
,Ryi

) ∈ R
2 are the guiding centres of the particles,

ρi (t) ∈ R
2 their gyroradii vectors, qzi

(t) ∈ R their vertical positions and pzi
∈ R

their vertical momenta. For zero interaction, Ri , ρi = |ρi (t)|2/2 and pzi
are con-

served, while arg(ρi (t)) rotates with gyrofrequency Ωi and the vertical positions
qzi

(t) evolve linearly with time.
As a consequence of Theorems 3.1 and 3.3, for nonzero interactions the general

solution of (2.1) can still be written in the form given in (5.1), with the variables Ri ,
ρi , qzi

and pzi
(i ∈ {1,2}) evolving with time accordingly with the reconstruction

maps and the reduced Hamiltonian systems given in the statements of Theorems 3.1
and 3.3.
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Fig. 5 Four distinct dynamical behaviours. For all the figures we fix the parameters e1 = m1 = 1,
B = 1 and ε0 = 0.1 (ε0 is really about 8.854 × 10−12 F m−1 but by choice of units/scaling
symmetry we can scale it to any convenient value for the numerics) and initial conditions
qx1 (0) = −qx2 (0) = 2, px1 (0) = px2 (0) = 1 (px1 (0) = −px2 (0) = 0.1 on the bottom right figure)
and qy1 (0) = qy2 (0) = py1 (0) = py2 (0) = 0. On the top left figure we set e2 = −4, m2 = 3 and
qz1 (0) = −qz2 (0) = 0.1, pz1 (0) = −pz2 (0) = −0.01 and obtain “atom-like” behaviour. On the top
right figure we set e2 = m2 = 3 and qz1 (0) = −qz2 (0) = 0.1, pz1 (0) = −pz2 (0) = −0.01 and obtain
“bouncing-back” behaviour. On the bottom left figure we set e2 = m2 = 3 and qz1 (0) = −qz2 (0) = 10,
pz1 (0) = −pz2 (0) = −0.85 and obtain “pass-through” behaviour. On the bottom right figure we set
e2 = −4, m2 = 3 and qz1 (0) = −qz2 (0) = 10, pz1 (0) = −pz2 (0) = −0.2 and obtain an orbit starting
and ending free but spending a finite time trapped

We will be considering the cases of Sect. 4.3 where the dynamics in the ver-
tical direction are unbounded: in the limits of t → ±∞ we have that |qz(t)| =
|qz1(t) − qz2(t)| → ∞. In such cases, the typical situation is the following: initially
the particles have a large vertical separation and their trajectories are just helices of
the form (5.1), as described for the zero-interaction case. As their vertical separation
reduces, the particles interact and their paths are no longer helices. The two particles
eventually separate again and their paths approach helices again. Due to the interac-
tion, the helices in which the particles move before and after interacting are different.
The scattering map describes such asymptotic changes to the helices.

We now rigorously introduce the scattering map. We assume that as |t | → ∞
the two particles have infinite vertical separation and the particles move in helices.
We would like the scattering map to map the main asymptotic properties of such
helices, i.e., the guiding centres and gyroradius as well as the vertical position and
momentum as the particles approach t = −∞, to the asymptotic properties of the
helices at t = +∞. We proceed as follows. First of all, we note that since Cz = Pz = 0
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from the reconstruction maps in Theorems 3.1 and 3.3, we have that

qz1 = m2

M
qz, qz2 = −m1

M
qz,

pz1 = pz, pz2 = −pz,

and hence it is enough to look at the asymptotics of qz and pz. There are, however,
some difficulties: in the limit of large vertical separation, the gyroradii of the two
particles rotate uniformly with angular velocity given by the gyrofrequency of each
particle and hence do not have a well-defined limit as |t | → ∞. To overcome this dif-
ficulty we consider the Hamiltonian system (3.2) and introduce the following change
of coordinates

ρi = (2ρi)
1/2Jeθi

, i ∈ {1,2}, (5.2)

where eθi
is defined in the same way as eθ in (3.6) with θ replaced by θi . Note that

ρi ∈ R is one half the square of the length of the gyroradius vector and θi is the ith
particle gyrophase. Using (5.2), we obtain the Hamiltonian system

H = pz
2

2m
+ k1Ω1ρ1 + k2Ω2ρ2 + V (R),

(5.3)
ω =

∑

i=1,2

ki(dRxi
∧ dRyi

+ dθi ∧ dρi) + dqz ∧ dpz,

where

R = (∣∣R1 − R2 + (2ρ1)
1/2Jeθ1 − (2ρ2)

1/2Jeθ2

∣∣2 + qz
2)1/2

.

The transformation (5.2) introduces two coordinate singularities at ρ1 = 0 and
ρ2 = 0. The gyrophases θi evolve by the differential equation

θ̇i = Ωi + 1

ki

∂

∂ρi

V (R)

and hence do not have well-defined limits θ±
i = limt→±∞ θi(t). To avoid this incon-

venience we introduce modified gyrophases by

φi = θi − Ωit, i ∈ {1,2}, (5.4)

measuring the displacement between the gyrophases in the nonzero interaction and
zero interaction settings. Going to the extended phase space by introducing the con-
jugate variables energy E and time t and making the change of coordinates (5.4) we
obtain the following Hamiltonian system

H = pz
2

2m
+ k1Ω1ρ1 + k2Ω2ρ2 + V (R) − E,

ω =
∑

i=1,2

ki(dRxi
∧ dRyi

+ dφi ∧ dρi) + dqz ∧ dpz (5.5)

+ d(E − k1Ω1ρ1 − k2Ω2ρ2) ∧ dt,
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where

R = (∣∣R1 − R2 + (2ρ1)
1/2Jeφ1+Ω1t − (2ρ2)

1/2Jeφ2+Ω2t

∣∣2 + qz
2)1/2

. (5.6)

Note that the dynamics on level sets {H = E} of (5.3) correspond to the dynamics of
the level set {H = 0} of (5.5). Introducing the asymptotic vertical energy

Ez = E − k1Ω1ρ1 − k2Ω2ρ2,

we obtain

H = pz
2

2m
+ V (R) − Ez,

ω =
∑

i=1,2

ki(dRxi
∧ dRyi

+ dφi ∧ dρi) + dqz ∧ dpz + dEz ∧ dt,

where R is given by (5.6).
Let i ∈ {1,2} and let us denote by R+

i , ρ+
i , φ+

i and pz
+ (respectively, R−

i , ρ−
i ,

φ−
i and pz

−) the limits of the quantities Ri (t), ρi(t), φi(t) and pz(t) as t → +∞
(respectively, t → −∞). Furthermore, let us denote by qz

+ the sign of qz(t) as t →
+∞ and by qz

− the sign of qz(t) as t → −∞. The scattering map is the map S :
R

9 × {+,−} → R
9 × {+,−} given by

S
(
R1

−,R2
−, ρ1

−, ρ2
−, φ1

−, φ2
−,pz

−, qz
−)

= (
R1

+,R2
+, ρ1

+, ρ2
+, φ1

+, φ2
+,pz

+, qz
+)

. (5.7)

Remarks

(i) The scattering map is well defined provided |qz(t)| → ∞ as |t | → ∞.
(ii) A complete study of the scattering map should take into account the asymptotic

time difference for the particles to travel between two points with and without the
interaction. We skip an analytic study of this asymptotic time difference since the
Coulomb potential leads to unbounded time difference due to a logarithmic term.
However, we report on a numerical study of the time difference in Sect. 5.4.

5.1 Scattering Map in the Limit of Widely Separated Trajectories and Rationally
Independent Gyrofrequencies

Throughout this section we will consider that the projections of the helices on the
horizontal plane in the limits |t | → ∞ are two widely separated circles, i.e.,

|ρ1|2 + |ρ2|2 
 |�⊥|2, (5.8)

where

�⊥ = R1 − R2. (5.9)

Furthermore, we assume that the ratio of gyrofrequencies is not close to
a low-order rational and the relative vertical speed q̇z is small compared to
|�⊥|min{Ω1,Ω2}. Then to a good approximation one can average the interaction
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potential over the two gyrophases (two-phase averaging, cf. Lochak and Meunier
1988), obtaining the averaged Hamiltonian system:

Heff = pz
2

2m
+ V eff − Ez

ω =
∑

i=1,2

ki(dRxi
∧ dRyi

+ dφi ∧ dρi) + dqz ∧ dpz + dEz ∧ dt,

where

V eff = 1

4π2

∫ 2π

0

∫ 2π

0
V (R)dφ1 dφ2,

and

V (R) = G

R
,

R = (|�⊥|2 + 2�⊥.w + |w|2 + qz
2)1/2

,

w = (2ρ1)
1/2Jeφ1+Ω1t − (2ρ2)

1/2Jeφ2+Ω2t .

The average of 1/R with respect to the two modified gyrophases φ1 and φ2 can be
expressed most simply by change of variables of integration from φ1 and φ2 to the
modulus r and direction φ of w. We obtain

〈
1

R

〉
= 1

4π2

∫ 2π

0

∫ 2π

0

1

R
dφ1 dφ2

= 1

π2

∫ r+

r−

∫ 2π

0

r
√

(�2 + 2r�⊥.Jeφ + r2)(r2+ − r2)(r2 − r2−)

× dφ dr, (5.10)

where

� =
√

|�⊥|2 + qz
2,

(5.11)
r± = ∣∣

√
2ρ1 ± √

2ρ2
∣∣.

This is a type of double elliptic integral, but rather than expressing it in such terms,
we choose to expand it in Taylor series to analyse the dominant effects:

∫ 2π

0

(
�2 + 2r�⊥.Jeφ + r2)−1/2 dφ = �−1

∫ 2π

0

(
1 + 2r�⊥.Jeφ + r2

�2

)−1/2

dφ

= �−1
∫ 2π

0
1 − 1

2

2r�⊥.Jeφ + r2

�2
+ 3

8

(
2r�⊥.Jeφ + r2

�2

)2

dφ + O

( |�⊥|4
�9

)

= �−1
(

2π − πr2 1

�2
+ 3πr2 |�⊥|2

�4

)
+ O

( |�⊥|4
�9

)
. (5.12)
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Noting that

∫ r+

r−

r
√

(r2+ − r2)(r2 − r2−)

dr = π

2
,

∫ r+

r−

r3
√

(r2+ − r2)(r2 − r2−)

dr = π

4

(
r2+ + r2−

) = π(ρ1 + ρ2),

and putting together (5.10) and (5.12), to second order in the ratio of gyroradii to the
distance between the guiding centres, we obtain the following approximate effective
potential

V eff = G

(
1

�
− (ρ1 + ρ2)

(
1

�3
− 3

2

|�⊥|2
�5

))
, (5.13)

where �⊥ is given in (5.9) and � is given in (5.11).
Thus, we have derived an effective Hamiltonian system for the interaction of two

widely separated charges in a uniform magnetic field, which is given by

Heff = pz
2

2m
+ V eff − Ez

(5.14)
ω =

∑

i=1,2

ki(dRxi
∧ dRyi

+ dφi ∧ dρi) + dqz ∧ dpz + dEz ∧ dt,

where V eff is approximately given in (5.13), and we will use this approximation
henceforth.

Note that the averaging procedure eliminates t and implies the conservation of
the quantities ρ1, ρ2 and Ez. Furthermore, the system (5.14) has a three-dimensional
group of symmetries (two translations and one rotation) to which correspond the
following conserved quantities:

P = J(k1R1 + k2R2),

(5.15)

L − k1ρ1 − k2ρ2 = −k1

2
|R1|2 − k2

2
|R2|2.

We will use these symmetries and conserved quantities to reduce the Hamiltonian
system (5.14). We divide our analysis into two cases: k1 + k2 �= 0 and k1 + k2 = 0.

5.1.1 Case k1 + k2 �= 0

From (5.15) we obtain that the centre of charge of the guiding centres

k1R1 + k2R2

k1 + k2
= −JP

k1 + k2
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is a constant. So by a translation we can assume it and P are 0. This implies the
relation

R2 = −k1

k2
R1. (5.16)

Restricting the Hamiltonian system (5.14) to the level set determined by (5.16) gives

Heff = pz
2

2m
+ V eff − Ez,

ω = k1
2

e
dRx1 ∧ dRy1 + k1dφ1 ∧ dρ1 + k2dφ2 ∧ dρ2 + dqz ∧ dpz + dEz ∧ dt,

V eff = G

(k1
2|R1|2/e2 + qz

2)1/2
− G(ρ1 + ρ2)

qz
2 − k1

2|R1|2/(2e2)

(k1
2|R1|2/e2 + qz

2)5/2
.

The angular momentum given in (5.15) is now given by

L − k1ρ1 − k2ρ2 = −k1
2

2e
|R1|2. (5.17)

We introduce a corrected angular momentum

pθR
= L − k1ρ1 − k2ρ2, (5.18)

and note that:

• −2epθR
> 0.

• Conservation of pθR
implies that the guiding centres Ri move in arcs of radius

√
−2epθR

/ki
2, i ∈ {1,2}.

We reduced the system by angular momentum introducing polar coordinates

R1 =
√

−2epθR
/k1

2eθR
,

where eθR
is defined in the same way as eθ in (3.6) with θ replaced by θR . We note

that there is a coordinate singularity when pθR
= 0 corresponding to the case when

R1 = R2 = 0, which is not a problem since we are dealing with the case of large
|R1 − R2|. To obtain a canonical Hamiltonian system we also introduce pφi

defined
by

pφi
= kiρi = 1

2
eiB|ρi |2

(the quantity eipφi
/mi is the magnetic moment of the gyrating particle) and reduce

by the (extra) degree of freedom dEz ∧ dt corresponding to the coordinates in the ex-
tended phase space. We obtain the following one degree of freedom effective Hamil-
tonian system

H eff = pz
2

2m
+ V eff,
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Fig. 6 Plots of V eff. For both figures pφ1/k1 = pφ2/k2 = 1 and −2pθR
/e = 100. In the left figure G = 1

while on the right figure G = −1

V eff = G

(−2pθR
/e + qz

2)1/2
− G

(
pφ1

k1
+ pφ2

k2

)
qz

2 + pθR
/e

(−2pθR
/e + qz

2)5/2
, (5.19)

ω = dqz ∧ dpz + dθR ∧ dpθR
+ dφ1 ∧ dpφ1 + dφ2 ∧ dpφ2 .

We note that assumption (5.8) implies that the effective potential in (5.19) has
exactly one critical point. Furthermore, it satisfies the following conditions:

• If G > 0, then V eff is positive for all qz ∈ R (see Fig. 6(a)). It is increasing for
qz < 0, decreasing for qz > 0 and has a maximum E′ at qz = 0, given by

E′ = G

(−2pθR
/e)1/2

+ 1

2

(
pφ1

k1
+ pφ2

k2

)
G

(−2pθR
/e)3/2

. (5.20)

Furthermore limqz→±∞ V eff = 0.
• If G < 0, then V eff is negative for all qz ∈ R (see Fig. 6(b)). It is decreasing for

qz < 0, increasing for qz > 0 and has global minimum E′ (given by (5.20)) at
qz = 0. Furthermore limt→±∞ V eff = 0.

The next results summarize the most relevant properties of the scattering map (5.7)
for the case of two widely separated charges (satisfying k1 + k2 �= 0) moving under
the action of a uniform magnetic field and a Coulomb interaction. Before stating the
results we need to introduce some notation. Given n ∈ N, we define the asymptotic
changes of order n for k1 + k2 �= 0, Γn,γ0,γ1,γ2,γ3 , by

Γn,γ0,γ1,γ2,γ3 = γ1

∫ +∞

γ0

1

(1 + x2)n/2(1 − Uγ2,γ3(x))1/2
dx,

where Uγ2,γ3(x) is given by

Uγ2,γ3(x) = γ2

(1 + x2)1/2
− γ3

x2 − 1/2

(1 + x2)5/2
;
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γ1, γ2 and γ3 are given by

γ1 = − Ge

pθR

√
m

2E
, γ2 = G

E

√
− e

2pθR

, γ3 = G

E

(√
− e

2pθR

)3(
pφ1

k1
+ pφ2

k2

)
;

and γ0 is defined by

γ0 =

⎧
⎪⎨

⎪⎩

0 if k1k2 > 0 and E > E′,
qz

∗√−e/(2pθR
) if k1k2 > 0 and 0 < E < E′,

0 if k1k2 < 0 and E > 0,

(5.21)

where qz
∗ is the only positive root of V eff(qz) = E and E′ is given by (5.20).

Theorem 5.1 Let k1 + k2 �= 0 and k1k2 > 0 and assume that inequality (5.8) is sat-
isfied. Then, for every level set {H eff = E} of (5.19) such that E > 0, the scattering
map S is well defined. Furthermore, there exists E′ ∈ R given by (5.20) such that:

(i) For every E > E′ we have that pz
+ = pz

−, |pz
±| = (2mE)1/2 and qz

+ = −qz
−.

(ii) For every 0 < E < E′ we have that pz
+ = −pz

−, |pz
±| = (2mE)1/2 and

qz
+ = qz

−.

Let i ∈ {1,2}. Whenever the scattering map is well defined, it also has the following
properties:

(a) There is no transfer of magnetic moment between the two particles, i.e., the gy-
roareas π |ρi |2 = 2πpφi

/ki are conserved and hence ρ+
i = ρ−

i .
(b) The asymptotic gyrophases φ+

i and φ−
i are related by

�φi = φ+
i − φ−

i = − 1

ki

(
Γ3,γ0,γ1,γ2,γ3 − 3

2
Γ5,γ0,γ1,γ2,γ3

)
.

(c) The guiding centres Ri move in arcs of radius
√

−2epθR
/ki

2 about −JP /μ and
rotate (about the centre −JP /μ) by an angle �θR which, to leading order, is
given by

�θR = 1

e
Γ3,γ0,γ1,γ2,γ3 .

Proof The first part of the theorem and item (a) of the second part follow trivially
from an analysis of the Hamiltonian system (5.19). To prove item (b) of the second
part note that

�φi = φ+
i − φ−

i =
∫ +∞

−∞
∂H eff

∂pφi

(
qz(t),pz(t)

)
dt.

If E > E′, then

�φi =
∫ +∞

−∞
∂H eff

∂pφi

dt

dqz

dqz. (5.22)
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From (5.19), we obtain

∂H eff

∂pφi

= −G

ki

qz
2 + pθR

/e

(−2pθR
/e + qz

2)5/2
,

(5.23)
dqz

dt
= ±

(
2

m

(
E − V eff(qz)

))1/2

.

From (5.22) and (5.23), we get

�φi = −G

ki

∫ +∞

−∞
qz

2 + pθR
/e

(−2pθR
/e + qz

2)5/2( 2
m

(E − V eff(qz)))1/2
dqz. (5.24)

Making the change of variable qz = (−2pθR
/e)1/2x in the integral on the right-hand

side of (5.24) and noting that the integrand is an even function of qz, we obtain

�φi = −γ1

ki

∫ +∞

0

× x2 − 1/2

(1 + x2)5/2(1 − γ2/(1 + x2)1/2 + γ3(x2 − 1/2)/(1 + x2)5/2)1/2
dx,

where

γ1 = − Ge

pθR

√
m

2E
, γ2 = G

E

√
− e

2pθR

,

(5.25)

γ3 = G

E

(√
− e

2pθR

)3(
pφ1

k1
+ pφ2

k2

)
.

The result then follows by simple manipulations. With a similar procedure, if 0 <

E < E′, we obtain

�φi = −γ1

ki

∫ +∞

γ0

× x2 − 1/2

(1 + x2)5/2(1 − γ2/(1 + x2)1/2 + γ3(x2 − 1/2)/(1 + x2)5/2)1/2
dx,

where γi (i ∈ {1,2,3}) are still given by (5.25) and γ0 is given by

γ0 = qz
∗
√

− e

2pθR

.

The first part of item (c) follows from (5.16), (5.17) and (5.18) and the reconstruction
map in Theorem 3.1. To complete the proof we just need to evaluate

�θR = lim
t→+∞ θR(t) − lim

t→−∞ θR(t) =
∫ +∞

−∞
∂H eff

∂pθR

(
qz(t),pz(t)

)
dt.
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Noting that

∂H eff

∂pθR

= G

e(−2pθR
/e + qz

2)3/2
+ O

(
(pφ1/k1 + pφ2/k2)

(−2pθR
/e + qz

2)5/2

)
, (5.26)

and using (5.8) we obtain that the second term on the right-hand side of (5.26) is
negligible. Proceeding in the same way as for the proof of item b) we obtain the
required result. �

Theorem 5.2 Let k1 + k2 �= 0 and k1k2 < 0 and assume that inequality (5.8) is sat-
isfied. Then, for every level set {H eff = E} of (5.19) such that E > 0 the scattering
map S is well defined and we have that p+

z = p−
z , |pz

±| = (2mE)1/2 and q+
z = −q−

z .
Let i ∈ {1,2}. Whenever the scattering map is well defined, it also has the following
properties:

(a) There is no transfer of magnetic moment between the two particles, i.e., the gy-
roareas π |ρi |2 = 2πpφi

/ki are conserved and hence ρ+
i = ρ−

i .
(b) The asymptotic gyrophases φ+

i and φ−
i are related by

�φi = φ+
i − φ−

i = − 1

ki

(
Γ3,γ0,γ1,γ2,γ3 − 3

2
Γ5,γ0,γ1,γ2,γ3

)
.

(c) The guiding centres Ri move in arcs of radius
√

−2epθR
/ki

2 about −JP /μ and
rotate (about the centre −JP /μ) by an angle �θR which, to leading order, is
given by

�θR = 1

e
Γ3,γ0,γ1,γ2,γ3 .

The proof of Theorem 5.2 is identical to the proof of Theorem 5.1 and so we
skip it.

Remarks

(i) Item (i) in Theorem 5.1 corresponds to “pass-through” behaviour (high energy)
while item (ii) corresponds to “bounce-back” behaviour (small energy).

(ii) In the case of two charges satisfying k1 + k2 �= 0 and k1k2 < 0 (as in Theorem
5.2) to level sets with negative energies (bounded below by E′ given in (5.20))
correspond bounded motions and hence, the scattering map is not well defined.
In this case we have “atom-like” behaviour in agreement with Sect. 4.3.

5.1.2 Case k1 + k2 = 0

Let us consider again the Hamiltonian system (5.14). We change coordinates to

C = 1

2
(R1 + R2), P = 1

2κ
J(R1 − R2), (5.27)
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introduce again pφi
defined by

pφi
= kiρi

and reduce by the (extra) degree of freedom dEz∧dt corresponding to the coordinates
in the extended phase space obtaining the following one degree of freedom effective
Hamiltonian system

H eff = pz
2

2m
+ G

(4κ2|P |2 + qz
2)1/2

− G

(
pφ1

k1
+ pφ2

k2

)
qz

2 − 2κ2|P |2
(4κ2|P |2 + qz

2)5/2
,

(5.28)
ω = dqz ∧ dpz + dCx ∧ dPx + dCy ∧ dPy

+ dφ1 ∧ dpφ1 + dφ2 ∧ dpφ2 .

We note that condition (5.8) implies that the effective potential in (5.28) has exactly
one critical point. Furthermore, it satisfies the following condition:

• V eff is negative for all qz ∈ R (see Fig. 6(b)). It is decreasing for qz < 0, increasing
for qz > 0 and has global minimum E′ given by

E′ = G

2|κ||P | + G(pφ1/k1 + pφ2/k2)

2(2|κ||P |)3
(5.29)

at qz = 0. Furthermore limt→±∞ V eff = 0.

The next result summarizes the most relevant properties of the scattering map (5.7)
for the case of two widely separated charges (satisfying k1 + k2 = 0) moving under
the action of a uniform magnetic field and a Coulomb interaction. Before stating the
results we need to introduce some notation. Given, n ∈ N, we define the asymptotic
change of order n for k1 + k2 = 0, Γ 0

n,γ 0
1 ,γ 0

2 ,γ 0
3

, by

Γ 0
n,γ 0

1 ,γ 0
2 ,γ 0

3
= γ 0

1

∫ +∞

0

1

(1 + x2)n/2(1 − Uγ 0
2 ,γ 0

3
(x))1/2

dx,

where Uγ 0
2 ,γ 0

3
(x) is given by

Uγ 0
2 ,γ 0

3
(x) = γ 0

2

(1 + x2)1/2
− γ 0

3
x2 − 1/2

(1 + x2)3/2

and γ 0
1 , γ 0

2 and γ 0
3 are given by

γ 0
1 = G

2κ2|P |2
√

m

2E
, γ 0

2 = G

2|κ||P |E , γ 0
3 = G

8|κ|3|P |3E
(

pφ1

k1
+ pφ2

k2

)
.

Theorem 5.3 Let k1 + k2 = 0 and assume that inequality (5.8) is satisfied. Then,
for every level set {H eff = E} of (5.28) such that E > 0 the scattering map S is well
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defined and we have that p+
z = p−

z , |pz
±| = (2mE)1/2 and q+

z = −q−
z . Let i ∈ {1,2}.

Whenever the scattering map is well defined, it also has the following properties:

(a) There is no transfer of magnetic moment between the two particles, i.e., the gy-
roareas π |ρi |2 = 2πpφi

/ki are conserved and hence ρ+
i = ρ−

i .
(b) The asymptotic gyrophases φ+

i and φ−
i are related by

�φi = φ+
i − φ−

i = − 1

ki

(
Γ 0

3,γ 0
1 ,γ 0

2 ,γ 0
3

− 3

2
Γ 0

5,γ 0
1 ,γ 0

2 ,γ 0
3

)
.

(c) The distance between the guiding centres is conserved:
∣∣R1

+ − R2
+∣∣ = ∣∣R1

− − R2
−∣∣ = 2|κ||P |.

(d) To leading order, the asymptotic guiding centres Ri
+ and Ri

− are related by

Ri
+ − Ri

− = −4κ2Γ 0
3,γ 0

1 ,γ 0
2 ,γ 0

3
P .

Proof The first part of the theorem and item (i) of the second part follow trivially
from an analysis of the Hamiltonian system (5.28). The proof of item (b) is analo-
gous to the proof of item (b) of Theorem 5.1. Item (c) follows from (5.27). To prove
item (d) we invert (5.27) to obtain

R1 = C − κJP , R2 = C + κJP .

Noting that

Ri
+ − Ri

− = lim
t→+∞C(t) − lim

t→−∞C(t) =
∫ +∞

−∞
∂H eff

∂P

(
qz(t),pz(t)

)
dt

and proceeding in the same way as we did for the proof of item (c) of Theorem 5.1
we obtain the result. �

Remark In the setting of Theorem 5.3, level sets with negative energies (bounded
below by E′ given in (5.29)) correspond to bounded motions and the scattering map
is not defined. In such energy regimes the dynamics exhibit “atom-like” behaviour in
agreement with Sect. 4.3. Otherwise, on level sets with positive energies the dynamics
exhibit “pass-through” behaviour.

We should note that Theorems 5.1, 5.2 and 5.3 apply only to the averaged sys-
tems (5.19) and (5.28); the error of approximation caused by the derivation of such
Hamiltonian systems has not been analysed in detail.

5.2 Scattering Map in the Limit of Widely Separated Trajectories and Rationally
Dependent Gyrofrequencies

As in the previous section, we will consider that the projections of the helices on
the horizontal plane in the limits |t | → ∞ are two widely separated circles satisfy-
ing (5.8). Furthermore, we assume that the particles’ gyrofrequencies have ratio close
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to a low-order rational. Then correlations between the gyrophases may lead to cor-
rections to the scattering map obtained in the previous section, of the order of the
ratio between a gyroradius and the horizontal distance between guiding centres. In
particular, although one combination of the magnetic moments is still an adiabatic
invariant and it happens to imply that the vertical kinetic energy is approximately un-
changed by the interaction, there can be transfer of horizontal kinetic energy between
the particles.

To analyse this case, let λ1, λ2 ∈ Z be relatively prime integers such that λ1Ω1 +
λ2Ω2 = 0 and introduce the near-resonant combination φ of the gyrophases and a
complementary one ψ by

φ = λ1θ1 + λ2θ2, ψ = γ1θ1 + γ2θ2,

where γ1, γ2 ∈ Z are relatively prime integers such that λ1γ2 −λ2γ1 = 1. Introducing
conjugate momenta pφ and pψ , given by

pφ = γ2k1ρ1 − γ1k2ρ2, pψ = λ1k2ρ2 − λ2k1ρ1

and substituting the gyrophases θ1, θ2 and their conjugate momenta ρ1, ρ2 by the new
variables introduced above in the Hamiltonian system (5.3), we obtain

H = pz
2

2m
+ (γ1Ω1 + γ2Ω2)pψ + V (R),

(5.30)
ω =

∑

i=1,2

ki(dRxi
∧ dRyi

) + dφ ∧ dpφ + dψ ∧ dpψ + dqz ∧ dpz,

where R = (|w|2 + 2�⊥w + �2)1/2 and

�⊥ = R1 − R2,

� =
√

|�⊥|2 + qz
2,

w =
(

2

k1
(λ1pφ + γ1pψ)

)1/2

Jeγ2φ−λ2ψ −
(

2

k2
(λ2pφ + γ2pψ)

)1/2

Jeλ1ψ−γ1φ.

Then one can average the Hamiltonian system (5.30) with respect to ψ , obtaining
the following averaged Hamiltonian system:

H eff = pz
2

2m
+ (γ1Ω1 + γ2Ω2)pψ + V eff,

ω =
∑

i=1,2

ki(dRxi
∧ dRyi

) + dφ ∧ dpφ + dψ ∧ dpψ + dqz ∧ dpz,

where

V eff = 1

2π

∫ 2π

0
V (R)dψ.
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In particular, adiabatic invariance of pψ and conservation of H eff imply that the
vertical kinetic energy is unchanged by the interaction.

To examine whether there is some transfer of horizontal kinetic energy, we proceed
in the same way as in Sect. 5.1, i.e., we expand the interaction potential V (R) in
Taylor’s series, neglect terms of order O(|�⊥|/�5) and integrate the remaining terms
with respect to ψ . If |λ1| + 2|λ2| �= 0 or 2|λ1| + |λ2| �= 0 there are no terms of order
O(|�⊥|/�5) and we neglect terms of order O(1/�5). We separate our analysis into
three cases: |λ1| �= |λ2|, λ1 − λ2 = 0 and λ1 + λ2 = 0.

5.2.1 Case |λ1| �= |λ2|

Applying the averaging procedure described above, we obtain the following effective
Hamiltonian system:

H eff = pz
2

2m
+ (γ1Ω1 + γ2Ω2)pψ + V eff,

(5.31)
ω =

∑

i=1,2

ki(dRxi
∧ dRyi

) + dφ ∧ dpφ + dψ ∧ dpψ + dqz ∧ dpz,

where

V eff = G

(
1

�
− (ρ1 + ρ2)

(
1

�3
− 3

2

|�⊥|2
�5

))
.

and

�⊥ = R1 − R2,

� =
√

|�⊥|2 + qz
2, (5.32)

ρ1 + ρ2 =
(

λ1

k1
+ λ2

k2

)
pφ +

(
γ1

k1
+ γ2

k2

)
pψ.

Since V eff is independent of φ (up to an error of order O(|�⊥|/�5) if |λ1| +
2|λ2| = 0 or 2|λ1|+|λ2| = 0 or of order O(1/�5) otherwise) we obtain that pφ is also
approximately conserved, and then the analysis reduces to the cases of Sects. 5.1.1
and 5.1.2. In particular, integrating the error bound along unperturbed trajectories
shows that the effect of the errors is of order at most |�⊥|−3 if |λ1| + 2|λ2| = 0 or
2|λ1| + |λ2| = 0 or of order at most |�⊥|−4 otherwise.

We should remark, however, that effects of resonance would be noticeable if we
had considered higher order terms in the Taylor’s series expansions of the interaction
potential V (R).

5.2.2 Case λ1 − λ2 = 0

We start by noticing that λ1 − λ2 = 0 is equivalent to Ω1 + Ω2 = 0 and that, with-
out loss of generality, one can fix λ1, λ2, γ1, γ2 ∈ Z so that λ1 = 1, λ2 = 1 and
γ2 − γ1 = 1. Then, applying the averaging procedure described above, we obtain
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an effective Hamiltonian system of the form (5.31) with effective potential V eff given
by

H eff = pz
2

2m
− Ωpψ + V eff,

ω =
∑

i=1,2

ki(dRxi
∧ dRyi

) + dφ ∧ dpφ + dψ ∧ dpψ + dqz ∧ dpz,

(5.33)

V eff = G

(
1

�
− (ρ1 + ρ2)

(
1

�3
− 3

2

|�⊥|2
�5

)

+ 3
√

ρ1ρ2
(�⊥2

y − �⊥2
x) cos(φ) − 2�⊥x�⊥y sin(φ)

�5

)
,

where Ω = Ω1 = −Ω2, �⊥ = (�⊥x,�⊥y), �⊥ and � are as given in (5.32) and

ρ1 = λ1pφ + γ1pψ

k1
, ρ2 = λ2pφ + γ2pψ

k2
.

We can now use the system symmetries as in Sects. 5.1.1 and 5.1.2 to reduce the
Hamiltonian system given by (5.33) to one with two degrees of freedom. We skip such
details here and proceed to state results which are analogous to those of Sects. 5.1.1
and 5.1.2, but since pφ is not necessarily conserved there is no longer any reason to
expect the magnetic moments of the particles to be individually conserved and indeed
we prove typical transfer of horizontal kinetic energy between the particles.

Theorem 5.4 Let k1 + k2 �= 0 and assume that inequality (5.8) is satisfied. Then, for
every level set {H eff = E} of (5.33) such that E > −Ωpψ the scattering map S is
well defined and we have that p+

z = p−
z , |pz

±| = (2m(E+Ωpψ))1/2 and q+
z = −q−

z .
Let i ∈ {1,2}. Whenever the scattering map is well defined, it also has the following
properties:

(a) The difference pψ in magnetic moments is approximately conserved.
(b) Typically there is transfer of horizontal kinetic energy between the particles.
(c) The distances of the guiding centres from −JP /μ typically change, but conserve

L = k1ρ1 + k2ρ2 − k1
2 |R1|2 − k2

2 |R2|2 and −JP = k1R1 + k2R2.

Proof Most of the proof is analogous to that for Theorems 5.1 and 5.2. For part (b),
we use

�pφ = −
∫

V ′(φ)dt

and note that to first order in G this can be evaluated along unperturbed orbits, i.e., ρj

and �⊥ constant and � = √|�⊥|2 + v2t2 for some relative vertical speed v. Thus to
first order in G,

�pφ = G(A sinφ + B cosφ),
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with

A = 3
√

ρ1ρ2
(
�2⊥y − �2⊥x

)∫ (|�⊥|2 + v2t2)−5/2 dt

and similar for B . Evaluating the integral in the expression for A, we obtain

A = 4
√

ρ1ρ2(�
2⊥y − �2⊥x)

v|�⊥|4 , B = 8
√

ρ1ρ2(�⊥x�⊥y)

v|�⊥|4 ,

which shows the effect on pφ to be of order 1/|�⊥|2.
In particular, for small G �= 0 it is not constant as a function of φ. Now �pφ is ana-

lytic in the initial conditions and parameters, so its zeroes form isolated codimension-
one subsets. Thus typically �pφ is nonzero. This means that there is transfer of hor-
izontal kinetic energy between the particles. The magnitude for small G (which is
equivalent to large �⊥) is as above. �

Theorem 5.5 Let k1 + k2 = 0 and assume that inequality (5.8) is satisfied. Then, for
every level set {H eff = E} of (5.33) such that E > −Ωpψ the scattering map S is
well defined and we have that p+

z = p−
z , |pz

±| = (2m(E+Ωpψ))1/2 and q+
z = −q−

z .
Let i ∈ {1,2}. Whenever the scattering map is well defined, it also has the following
properties:

(a) The difference pψ in magnetic moments is approximately conserved.
(b) Typically there is transfer of horizontal kinetic energy between the particles.
(c) The positions of the guiding centres typically move, but conserve k1(R1 −R2) =

P and L/k1 = ρ1 − ρ2 − |R1|2/2 + |R2|2/2.

Proof Similar to Theorem 5.4. �

5.2.3 λ1 + λ2 = 0

Note that λ1 + λ2 = 0 is equivalent to Ω1 = Ω2. Without loss of generality, one can
fix λ1, λ2, γ1, γ2 ∈ Z so that λ1 = −λ2 = 1 and γ2 + γ1 = 1. Applying the averag-
ing procedure described at the beginning of Sect. 5.2, we will obtain that the total
magnetic moment pψ = k1ρ1 + k2ρ2 is an adiabatic invariant. Under the adiabatic
approximation, the vertical kinetic energy is unchanged by the interaction and we
prove there is typically a transfer of horizontal kinetic energy between the particles,
as in the previous case. In this case, however, we will then go beyond the adiabatic
approximation, using the exceptional additional invariant W to reduce the scattering
problem to two degrees of freedom. In particular we will refine the qualitative de-
scription obtained in Sect. 4.3.1 for this case, and prove that there is also typically a
transfer between horizontal and vertical kinetic energy.

Using the averaging approximation, we obtain an effective Hamiltonian system of
the form (5.31) with effective potential V eff given by

H eff = pz
2

2m
+ Ωpψ + V eff,
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ω =
∑

i=1,2

ki(dRxi
∧ dRyi

) + dφ ∧ dpφ + dψ ∧ dpψ + dqz ∧ dpz, (5.34)

V eff = G

(
1

�
− (

ρ1 + ρ2 − 2
√

ρ1ρ2 cos(φ)
)( 1

�3
− 3

2

|�⊥|2
�5

))
,

where Ω = Ω1 = Ω2, �⊥ = (�⊥x,�⊥y), �⊥ and � are as given in (5.32) and

ρ1 = λ1pφ + γ1pψ

k1
, ρ2 = λ2pφ + γ2pψ

k2
.

Theorem 5.6 Let Ω1 = Ω2 = Ω and assume that inequality (5.8) is satisfied. Then,
for every level set {H eff = E} of (5.34) such that E > Ωpψ , the scattering map S is
well defined and has the following properties:

(a) The total magnetic moment pψ is approximately conserved.
(b) Typically there is transfer of horizontal kinetic energy between the particles.
(c) The distances of the guiding centres from −JP /μ typically change, but conserve

pψ − L = k1
2 |R1|2 + k2

2 |R2|2 and −JP = k1R1 + k2R2.

Proof The analysis is very similar to that for Theorem 5.4. �

Next, as promised, the extra conserved quantity W of Proposition 2.1 enables us
to push the analysis beyond the adiabatic approximation in this case. We perform
exact reduction using W , obtaining the two degrees of freedom reduced Hamiltonian
system of Corollary 3.2, given by

H = 1

2m

(
p2

r + p2
z

) + A2

r2
+ B2r2 + Ec + V (R),

(5.35)
ω = dr ∧ dpr + dqz ∧ dpz,

where

A2 = 1

2m

(
2μpθ − W

2μ

)2

, B2 = e2

8m
, Ec = e

2m

(
pθ + W

2μ

)
+ 1

2M
Pz

2

and V (R) is the Coulomb potential V (R) = G/R with R = (r2 + qz
2)1/2.

We obtain the following result, refining that of Sect. 4.3.1.

Proposition 5.7 The Hamiltonian system (5.35) has the following properties:

(i) The Hamiltonian function H is bounded below by Ec + 2AB .
(ii) It has a unique equilibrium at r = r∗, pr = qz = pz = 0, where r∗ is the unique

positive root of the equation

2A2

r3
− 2B2r + G

r
= 0.
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Furthermore, the equilibrium is a saddle with eigenvalues

±
√

G

mr∗3
, ±i

√
2(3A2 + B2r∗4 + Gr∗)

mr∗4
.

(iii) Let E∗ = A2/r∗2 + B2r∗2 + Ec be the energy of the level set of (5.35) contain-
ing the equilibrium. Then, the Hamiltonian system (5.35) possesses a family of
hyperbolic periodic orbits γE parameterised by the energy E > E∗ and given
by

1

2m
pr

2 + A2

r2
+ B2r2 + G

R
= E − Ec.

(iv) The stable manifold of the periodic orbit separates incoming orbits into pass-
through and bounce-back orbits. The flux of energy–surface volume over the
saddle (i.e., pass-through orbits) for energy E > E∗ is given by

2
(
r+(E) − r−(E)

)√
2m(E − Ec)

∫ 1

0

(
1 − U(z)

)1/2 dz,

where 0 < r−(E) < r+(E) are the two positive roots of A2/r2 +B2r2 +G/r =
E − Ec and

U(z) = A2 − B2r4(z) − Gr(z)

2m(E − Ec)r2(z)
,

r(z) = r−(E) + (
r+(E) − r−(E)

)
z.

Proof The proof of the first two items is trivial and we skip it. For the proof of the
third item we note that qz = pz = 0 is an invariant plane under the dynamics defined
by (5.35). Furthermore, the restriction of (5.35) to qz = pz = 0 defines a one degree
of freedom Hamiltonian system given by

H = 1

2m
pr

2 + A2

r2
+ B2r2 + Ec + G

R
,

(5.36)
ω = dr ∧ dpr .

This system is the reduced Hamiltonian system corresponding to the interaction of
two charges moving in a plane under the action of a magnetic field in the particular
case of equal gyrofrequencies Ω1 = Ω2 and has been extensively studied in Pinheiro
and MacKay (2006). In particular, from the results in Pinheiro and MacKay (2006)
it follows that the Hamiltonian system (5.36) has a unique (elliptic) equilibrium cor-
responding to the level set of energy E = E∗ and for every E > E∗ the level set of
energy E is composed of a periodic orbit γ̃E = (rE(t),prE(t)) of period T (E) > 0,
given by

1

2m
pr

2 + A2

r2
+ B2r2 + G

r
= E − Ec.
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Furthermore, for every E > E∗ there exist positive values 0 < r−(E) < r+(E) such
that for all 0 < t < T (E) we have that r−(E) ≤ rE(t) ≤ r+(E). Therefore, the full
system (5.35) possesses a family of periodic orbits γE = (rE(t),prE(t),0,0) para-
meterised by the energy E > E∗.

To see that the periodic orbits are hyperbolic we construct a forward invariant
conefield with a uniform expansion estimate. Let (δr , δpr , δqz , δpz) denote a tangent
vector to the phase space of (5.35). Then, for E > E∗ the linearised dynamics around
a periodic orbit of the family γE are given by the following system of differential
equations

δ̇qz = 1

m
δpz, δ̇pz = G

(rE(t))3
δqz ,

δ̇r = 1

m
δpr , δ̇pr = −2(3A2 + B2(rE(t))4 + GrE(t))

(rE(t))4
δpz .

Thus the cone δpzδqz > 0 is forward invariant. Furthermore, it is absorbed in
bounded time by the subcone

√
A ≤ δpz/δqz ≤ √

B for any A < mint mG/rE(t)3,
B > maxt mG/rE(t)3. In this subcone,

d

dt

(
δp2

z + δq2
z

) = 2

(
1

m
+ G

r3

)
δpzδqz ≥ 2 min

t

(
1

m
+ G

rE(t)3

) √
A

1 + B

(
δq2

z + δp2
z

)
,

giving a uniform expansion estimate. The (r,pr) directions are not relevant because
they correspond to the flow direction and change of energy.

The proof of item (iv) follows by a result in MacKay (1990), stating that the flux
of energy–surface volume across a surface S in an energy surface for a two degrees of
freedom Hamiltonian system is the action integral of its boundary S. In our particular
case the boundary is the hyperbolic periodic orbit of item (iii). Thus, the result is
obtained by computing the action integral along such orbit. �

The motion in (r,pr) for frozen qz is oscillatory with frequency near Ω1 =
Ω2 = Ω . Indeed, if the contribution of V (R) is neglected, the solutions are r2 =
C + D cos(Ω(t − t0)) with C2 − D2 = A2/B2. Under the conditions of widely sep-
arated helices or small pz, one can average with respect to this oscillation, obtaining
an adiabatic invariant for it and an effective Hamiltonian for the (qz,pz) motion. Up
to scale, the adiabatic invariant is the total magnetic moment k1ρ1 + k2ρ2, just as
we obtained without the reduction by W . We could also use the reconstruction of
Theorem 3.1 to reveal that there is in general a transfer of horizontal kinetic energy
between the particles, equivalently of magnetic moment, as already obtained. Con-
servation of W and total magnetic moment k1ρ1 + k2ρ2 leave a 2-torus of possible
values for (ρ1, ρ) and in general their lengths change as a result of the interaction.

Instead of pursuing this line, we will treat the exact reduced system (i.e., without
averaging), and show that there is typically also some exchange between the vertical
and horizontal kinetic energies. Let H±

ver and H±
hor denote, respectively, the vertical

and horizontal components of the energy when qz → ±∞, i.e.:

H±
ver = lim

t→±∞
1

2m
pz

2(t),
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H±
hor = lim

t→±∞
1

2m
pr

2(t) + A2

r2(t)
+ B2r2(t) + Ec.

Clearly, the limits defined above exist. Furthermore, let us define the asymptotic
changes in the vertical and horizontal energies, �Hver and �Hhor, by

�Hver = H+
ver − H−

ver,

�Hhor = H+
hor − H−

hor.

Theorem 5.8 If Ω1 = Ω2 = Ω then, for every level set {H = E} of (5.35) such that
E > Ec + 2AB , the scattering map S is well defined. Furthermore, defining E∗ as in
Proposition 5.7:

(i) For every E ∈ (Ec +AB,E∗) we have pz
+pz

− < 0 and qz
+ = qz

−, correspond-
ing to “bouncing-back” behaviour.

(ii) For every E > E∗ there is a mixture of “pass-through” and “bounce-back” be-
haviour.

Let i ∈ {1,2}. The scattering map also has the following properties:

(a) Typically for “pass-through” orbits there is exchange between parallel and per-
pendicular kinetic energy.

(b) Typically for “pass-through” orbits, the magnetic moments of the two particles
are not conserved but they are always constrained by the following relations:

d

dt

∣∣k1ρ1(t) + k2ρ2(t)
∣∣2 = 0,

lim
t→+∞ k1

∣∣ρ1(t)
∣∣2 + k2

∣∣ρ2(t)
∣∣2 (5.37)

− lim
t→−∞ k1

∣∣ρ1(t)
∣∣2 + k2

∣∣ρ2(t)
∣∣2 = − 2

Ω
�Hver.

(c) Typically for “pass-through” orbits, the distance of the guiding centres to the
fixed centre of rotation −JP /μ is not conserved during an interaction but is
always constrained by

lim
t→+∞

∣∣∣∣Ri (t) + JP

μ

∣∣∣∣

2

− lim
t→−∞

∣∣∣∣Ri (t) + JP

μ

∣∣∣∣

2

= −
(

2m

ki

)2

�Hver, i ∈ {1,2}.

Proof The first part of the theorem has already been proved in this section. The con-
straints in the second part follow from a simple analysis of the reconstruction map
of Theorem 3.1 and the reduced Hamiltonian (5.35). So the main job is to prove that
�Hver is typically nonzero for “pass-through” orbits. To see this,

dHver

dt
= pzṗz

m
= G

pzqz

mR3
,

so

�Hver = G

∫
qzpz

mR3
dt.
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For “pass-through” trajectories this can be computed to first order in G along trajec-
tories of the case G = 0. These have pz = mv, constant (and we assume nonzero),
qz = vt (choosing the origin of time at qz = 0), r2 = C + D cos(Ω(t − t0)) with
C2 − D2 = A2/B2 and Hhor = 2B2C. Thus to first order in G,

�Hver = G

∫
v2t

(v2t2 + C + D cos(Ω(t − t0)))3/2
dt.

If D = 0, the integrand is odd and the result is zero, but to first order in D/C the
result is

�Hver = −3

2
GDv2 sinΩt0

∫
t sinΩt

(v2t2 + C)5/2
dt

which is nonzero for sinΩt0 �= 0. Now �Hver is analytic in the initial conditions
and G for “pass-through” orbits, so being nonconstant with respect to D for small
G its zeroes in D are isolated. Thus it is typically nonzero (though very small if
v2 
 CΩ2). �

Remark Presumably, transfer between perpendicular and parallel kinetic energy is
also typical in the “bounce-back” case, but a different proof would be required.

Using the two relations from item (c) in the previous theorem it is possible to
derive explicit formulae for the (forward) asymptotic gyroareas 2πρ+

i in terms of the
value of the conserved quantity W , the variation of the vertical energy �Hver, the
(backward) asymptotic gyroareas 2πρ−

i and the forward relative gyrophase of the
two particles Θ+ = limt→+∞(θ1(t) − θ2(t)). Putting together (5.1), (5.2) and (5.37),
we obtain

k1
2ρ+

1 + 2k1k2
(
ρ+

1 ρ+
2

)1/2 cos
(
Θ+) + k2

2ρ+
2 = W

2
,

k1ρ
+
1 + k2ρ

+
2 = k1ρ

−
1 + k2ρ

−
2 − �Hver

Ω
.

Solving the equalities above with respect to ρ+
1 and ρ+

2 , we get

ρ+
1 = ρ−

1 − k2

k1

(
ρ+

2 − ρ−
2

) − �Hver

k1Ω
, (5.38)

where ρ+
2 is one of the (positive) solutions of the quadratic equation

k1
2

k2
2
ρ+

1
2 + k2

2

k1
2
ρ+

2
2 + 2

(
1 − 2 cos

(
Θ+))

ρ+
1 ρ+

2

− W

(
ρ+

1

k2
2

+ ρ+
2

k1
2

)
− W 2

4k1
2k2

2
= 0 (5.39)

replacing ρ+
1 by the right-hand side of (5.38).

The solutions of equations (5.38) and (5.39) are the intersection points in the
(ρ+

1 , ρ+
2 ) plane of the conic given by (5.39) with the line defined by (5.38) as shown

in Fig. 7.
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Fig. 7 Intersections of conic sections of the form (5.39) with a line of the form (5.38). For both figures
we fix the parameters e1 = m1 = 1, e2 = m2 = 2, B = 1, W = 10, �Hver = 1 and ρ−

1 = ρ−
2 = 7. On the

left figure Θ+ = 0 and on the right figure Θ+ = π/4

• If Θ+ = 0 the conic (5.39) is a parabola and there are two (positive) intersection
points with the line (5.39) provided that |k1|ρ−

1 + |k2|ρ−
2 > M−, where M− is

given by

M− = �Hver

|Ω| + W

2(|k1| + |k2|) .

• If 0 < Θ+ < π/2 the conic (5.39) is an ellipse and there are two (positive) intersec-
tion points with the line (5.39) whenever the inequalities M− < |k1|ρ−

1 +|k2|ρ−
2 <

M+ are satisfied, where M+ and M− are given by

M± = �Hver

|Ω| + W
|k1| + |k2| ± ((k1 − k2)

2 − 4k1k2 cos(Θ+))1/2

4k1k2(1 − cos(Θ+))
.

There is exactly one intersection when one of the inequalities becomes an equality.
• If Θ+ = π/2 the conic (5.39) degenerates to a line with slope −k1

2/k2
2 and there

is one (positive) intersection point with the line (5.39) provided that k1 �= k2 and
M− < |k1|ρ−

1 + |k2|ρ−
2 < M+, where M+ and M− are given by

M+ = �Hver

|Ω| + W

2 min{|k1|, |k2|} , M− = �Hver

|Ω| + W

2 max{|k1|, |k2|} .

• If π/2 < Θ+ < π the conic (5.39) is an hyperbola and there are no (positive)
intersection points with the line (5.39).

5.3 Transfer of Parallel Energy in Fixed Frame

In the two previous sections we have done our analysis in a frame moving with the
vertical centre of mass and studied the transfer of energy between the two particles.
In this section we will see that in the original fixed frame there is a transfer of parallel
kinetic energy between the particles in most cases of “bouncing-back” behaviour even
if there is no change in the moving frame.
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Assume the conditions of Theorem 5.1 and recall that there exists E′ > 0 such
that for every level set {H eff = E} of (5.19) with 0 < E < E′ we have that pz

+ =
−pz

−, |pz
±| = (2mE)1/2 and qz

+ = qz
−, i.e., the particles “bounce-back” during an

interaction.
Let i ∈ {1,2} and let us denote by p+

zi
(respectively p−

zi
) the limit of pzi

(t) as
t → +∞ (respectively t → −∞). By the reconstruction map in Theorem 3.1 we
obtain that

p±
z1

= m1

M
Pz + pz

±, p±
z2

= m2

M
Pz − pz

±.

Thus, the change in the vertical kinetic energy of the first particle is given by

�(KE1) = 1

2m1

(
p+

z1

2 − p−
z1

2)

= 2

M
pz

+Pz.

Similarly, we obtain that the change in the vertical kinetic energy of the second par-
ticle is given by

�(KE2) = 1

2m2

(
p+

z2

2 − p−
z2

2)

= − 2

M
pz

+Pz. (5.40)

Hence, if the vertical z-component of the centre of mass of the two particles moves
with nonzero velocity Ċz = Pz/M there is a transfer of vertical kinetic energy when
the two particles “bounce-back”.

5.4 Chaotic Scattering: Some Numerical Results

In this section we provide some numerical results that give strong evidence in favour
of the existence of chaotic scattering for the problem of two charges of opposite sign
moving in R

3 under the action of a uniform magnetic field and a Coulomb interaction
when the averaging assumptions of the previous subsection are not satisfied.

5.4.1 Procedure

We numerically integrate Hamilton’s equations associated with the reduced Hamil-
tonian system given in Theorem 3.1 under the following conditions: we fix the values
of the parameters

e1 = 1, m1 = 1, e2 = −3, m2 = 5, B = 1, ε0 = 0.1,

the initial conditions

pr(0) = 0, φ(0) = 0, pφ(0) = 1
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and the level sets of the conserved quantities

pθ = 1, Pz = 0.

Furthermore, if the energy E > 0 and the initial conditions r(0) = R and qz(0) =
h > 0 are fixed, we obtain the value of the remaining initial condition pz(0) as a
function of E, R and h:

pz(0) = ±
(

3E

2
− 49

64R2
− 25R2

64
− 5

8

(
R − 7

5R

)
+ 75

4π(R2 + h2)1/2
+ 21

32

)1/2

.

For a given h > 0 choosing pz(0) ≤ 0 will make the particles move towards each
other, interact and then move apart again.

We now fix the values of the energy E and initial relative vertical position
qz(0) = h and let TE,h(R) be the bigger instant of time needed for the particles start-
ing with horizontal distance r(0) = R (and corresponding pz(0)) to reach a vertical
distance of absolute value h before escaping to ∞ when subject to a Coulomb in-
teraction and let T 0

E,h(R) be the time needed for the particles starting with the same

initial conditions to reach a vertical distance qz(T
0
E,h(R)) = −h when moving freely

in a uniform magnetic field. In the case of zero interaction the particles move with
constant velocity in the vertical direction (equal to (2E/m)1/2) and hence we obtain

T 0
E,h(R) = 2h

√
m

2E
.

We define the time difference map τE,h : R
+ → R by

τE,h(R) = TE,h(R) − T 0
E,h(R),

and define the sign map σE,h : R
+ → {+,−} by

σE,h(R) = sign
(
qz

(
TE,h(R)

))
,

where sign(x) denotes the sign of x ∈ R. The sign map σE,h(R) associates to each
orbit the sign + if the particles “bounce-back” during the interaction and the sign −
if the particles “pass-through”.

Note that the definition given for the time difference map avoids the problems
related with the unboundedness of the logarithmic term associated with the general
time difference map (i.e., h = ∞) by making h finite. However, we still have that
τE,h → ∞ as h → ∞.

5.4.2 Simulations

The plots for the maps σE,h(R) and τE,h(R), shown in Figs. 8, 9, 10 and 11, were
made for h = 500 and values of energy E = 20, E = 10, E = 5 and E = 1.

Note that large energies lead to either a large vertical relative velocity or a large
horizontal displacement between the two particles. For large vertical relative veloci-
ties the interaction time between the two particles is small while for large horizontal
displacements the interaction strength is small. This is the main reason for the regu-
larity of the dynamics for large energies and the lack of it for small energies.
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Fig. 8 Plots of σE,h(R) and τE,h(R) for E = 20 and h = 500. The motion is regular: the only type
of dynamical behaviour observed is “pass-through” behaviour and the time difference map is reasonably
smooth

Fig. 9 Plots of σE,h(R) and τE,h(R) for E = 10 and h = 500. The motion is still mostly regular but
there is already a small number of choices of initial horizontal distance that lead to a “bouncing-back”
behaviour. The time difference map is still very regular

6 Conclusions

We have proved that the Hamiltonian system (2.1) can always be reduced to one
with three degrees of freedom. Moreover, we have proven that it can be reduced to
one with two degrees of freedom for the special case of same sign charges when the
particles have equal gyrofrequencies (equal ratio of charge to mass) and on some
special submanifolds. Furthermore, we explicitly computed the reduced Hamiltonian
systems and corresponding reconstruction maps, enabling us to lift the dynamics from
the reduced spaces and hence obtain a description for the dynamics on the initial
phase space.

In an invariant subspace where the reduced dynamics are just those associated
with the interaction of two particles moving in a plane under the action of a uniform
magnetic field (orthogonal to the plane of motion), we obtain that the system always
reduces by a further degree of freedom, which leads to an integrable system in the
case of two particles with equal gyrofrequency (and some special submanifolds).
Specialising to the case of Coulomb interaction, as a consequence of the results in
Pinheiro and MacKay (2006) we obtain that in the case of particles with opposite sign
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Fig. 10 Plots of σE,h(R) and τE,h(R) for E = 5 and h = 500. Although the dominant dynamical behav-
iour is “pass-through” there is already a large amount of “bouncing-back” behaviour. The time difference
map loses much of its regularity

Fig. 11 Plots of σE,h(R) and τE,h(R) for E = 1 and h = 500. Chaotic scattering: both dynamical be-
haviours are observable and small changes in the initial horizontal distance might lead to each one of the
observed behaviours. The time difference map is very irregular

and nonzero gyrofrequencies sum, the system contains a suspension of a nontrivial
subshift of finite type on all level sets of sufficiently high energy and hence it is
nonintegrable.

We have studied the scattering map associated with this problem in the regime
where the two particles trajectories are widely separated. For rationally independent
gyrofrequencies or high-order rationally dependent gyrofrequencies, we have ob-
tained that the magnetic moments are conserved to high accuracy, there is no change
in parallel kinetic energy in the frame moving with the parallel centre of mass, and
that the guiding centres either rotate about a fixed field line during an interaction in
the case of two charges whose sum is not zero or translate in a direction determined
by the linear momentum if the two charges sum is zero. We give explicit formulas
for the rotations and translations in this regime. In the cases where the two particles
have gyrofrequencies of equal absolute values, we have proved that typically there
is transfer of perpendicular kinetic energy between the particles, and in the case of
equal gyrofrequencies there is also typically transfer between perpendicular and par-
allel kinetic energy. In a fixed frame, parallel kinetic energy is transferred between
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the particles in the case of “bounce-back”, unless the vertical centre of mass speed
is zero. This extends the results in Anderegg et al. (1997), Driscoll et al. (2002) and
Dubin (1998) from the case of infinite to finite magnetic field. To compute energy
transport in a temperature or density gradient, however, one would also need to take
into account the effects of the interaction-induced horizontal rotation (or translation)
of the guiding centres that we have found, and the transfer of horizontal kinetic en-
ergy in the resonant cases, which move energy and particles horizontally in all cases
of scattering.

We have also made a numerical study of the scattering map without using the
assumption that the particles’ trajectories are widely separated. We observed regular
behaviour for large energies, but in the case of opposite signs of charge we found
evidence for chaotic scattering for small positive energies.

One application of our results might be to reassess the derivations of kinetic equa-
tions for the velocity distribution functions of charged particles in a magnetic field,
describing the effects of two-body scattering. The standard derivations (e.g. Balescu
1988; Helander and Sigmar 2002) appear to ignore the possibility of resonant inter-
action such as we have found for interaction of particles with equal gyrofrequencies.
Even if the resonance effects might be significant for only a small fraction of interac-
tions (those with low-order rational ratio of gyrofrequencies and small relative paral-
lel velocity), their net effect might turn out to be larger than the standard answers. By
changing the Coulomb interaction to a Debye-shielded version, the Balescu–Lenard
version of plasma kinetic theory could also be addressed. Any significant resulting
changes to standard plasma kinetic theory could be valuable to understand the scat-
tering of particles into the loss cone in the magnetosphere or that of particles into and
out of banana orbits in tokamak fields. In particular, the result could shed light on the
generation of toroidal current in tokamaks by such transitions and might contribute
to the understanding of anomalous perpendicular electron heat transport.
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