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Abstract For the two versions of the KdV equation on the positive half-line an
initial-boundary value problem is well posed if one prescribes an initial condition
plus either one boundary condition if g; and g, have the same sign (KdVI) or two
boundary conditions if g; and g« have opposite sign (KdVII). Constructing the gen-
eralized Dirichlet to Neumann map for the above problems means characterizing the
unknown boundary values in terms of the given initial and boundary conditions. For
example, if {g(x,0),¢(0,7)} and {g(x,0),q(0,1), g+(0,1)} are given for the KdVI
and KdVII equations, respectively, then one must construct the unknown boundary
values {gx (0, 1), gxx(0,?)} and {g.« (0, 1)}, respectively. We show that this can be
achieved without solving for ¢g(x, ¢) by analysing a certain “global relation” which
couples the given initial and boundary conditions with the unknown boundary values,
as well as with the function @ (t, k), where @ () satisfies the t-part of the associated
Lax pair evaluated at x = 0. The analysis of the global relation requires the construc-
tion of the so-called Gelfand—Levitan-Marchenko triangular representation for @ ®.
In spite of the efforts of several investigators, this problem has remained open. In
this paper, we construct the representation for @) for the first time and then, by em-
ploying this representation, we solve explicitly the global relation for the unknown
boundary values in terms of the given initial and boundary conditions and the func-
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tion @, This yields the unknown boundary values in terms of a nonlinear Volterra
integral equation. We also discuss the implications of this result for the analysis of
the long ¢-asymptotics, as well as for the numerical integration of the KdV equation.

1 Introduction

The Korteweg—de Vries (KdV) equation
QI+CC]x_)‘CIxxx+6CIQx=0’ C=0’1a )"Zilv (11)

appears in a wide range of physical applications. For example, it models one-
dimensional small amplitude surface gravity waves propagating in a shallow channel
of water, where A = 1 corresponds to the case of dominant surface tension. This equa-
tion has a celebrated history in the field of integrability; it was for this equation that a
method was first developed, later called the inverse scattering transform method, for
solving the Cauchy (initial value) problem for integrable nonlinear evolution equa-
tions (Gardner et al. 1967; Fokas and Zakharov 1994). In 1968 Peter Lax realised that
the key to the integrability of the KdV equation was the fact that it can be expressed
as the compatibility condition of two linear eigenvalue equations (Lax 1968), now
called a “Lax pair”. Soon thereafter it was shown that a similar Lax pair formulation
exists for the nonlinear Schrodinger equation (Zakharov and Shabat 1972), as well as
for the sine-Gordon and for the modified KdV equations. Actually, the existence of a
Lax pair depending on a complex spectral parameter, denoted here by k, is a defining
property of integrability.

The problem of solving the KdV equation on the half-line 0 < x < oo, ¢ > 0,
was considered in Fokas (2002a) using the general methodology introduced by one
of the authors in Fokas (1997) and further developed in Fokas et al. (2005). The
starting point of this method is the simultaneous spectral analysis of the two eigen-
value equations that make up the associated Lax pair. This yields the solution of the
KdV equation in terms of the solution of a matrix Riemann—Hilbert (RH) problem.
This RH problem is formulated in the complex plane of the spectral parameter, the
complex k-plane, and its “jump” matrix is uniquely specified in terms of appropriate
spectral functions, which are defined in terms of the initial condition g (x, 0) and the
boundary values g (0, 1), g (0, 1), gxx (0, t). Thus, the solution of a well posed initial-
boundary value problem for the KdV equation can be expressed in terms of a ma-
trix RH problem with known jumps, provided that one can construct the generalized
Dirichlet to Neumann map, i.e. one can characterize the unknown boundary values
in terms of the given initial and boundary conditions. It was shown in Fokas (1997)
that this can be achieved, in principle, by analysing the so-called global relation,
which is a simple algebraic relation coupling the spectral functions in the complex
k-plane. Since these functions are defined in terms of the initial condition and all
the boundary values, the global relation provides an implicit characterization of the
Dirichlet to Neumann map. A breakthrough in the analysis of the global relation was
announced in Boutet de Monvel et al. (2003), where it was shown that the global re-
lation for the nonlinear Schrodinger equation can be solved explicitly in terms of the
given initial and boundary conditions, as well as in terms of ®® (t, k), the solution of
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the 7-part of the associated Lax pair evaluated at x = (. Following this development,
the generalized Dirichlet to Neumann map for several integrable nonlinear PDEs was
analysed in Fokas (2004), but the corresponding problem for (1.1) remained open.
This was due to the fact that for the explicit solution of the global relation one re-
quires an appropriate Gelfand—Levitan—-Marchenko representation for & (z, k) and,
in spite of the attempts of several investigators, such a representation could not be
constructed for (1.1) until now. In this paper, we first present an appropriate Gelfand—
Levitan—Marchenko representation for (1.1) and then use this representation to solve
the global relation explicitly.

The results of this paper together with those of Fokas (2002a) complete the analy-
sis of the initial-boundary value problem of the KdV equation on the half-line using
the machinery of integrability. This has important analytical and numerical implica-
tions: (a) Although well-posedness results for the KdV equation can be obtained us-
ing PDE techniques, long time asymptotic results can be obtained so far only through
the integrability formalism. (b) Following the influential work of Engquist and Ma-
jda (1977), the consideration of the Dirichlet to Neumann map provides the basis
of the so-called method of reflectionless boundary conditions which, for evolution
equations, is a method for the numerical computation of the initial value problem
on the line. This approach has been extended in Zheng (2006) to integrable nonlin-
ear PDEs using the Dirichlet to Neumann results of Boutet de Monvel et al. (2003)
and Fokas (2004). Actually, it was stated in Zheng (2006) that this approach could
not be applied to the KdV equation because the problem of constructing the Dirich-
let to Neumann map for (1.1) was still open. Here, we present the solution of this
problem and therefore the approach of Zheng (2006) can now be applied to the KdV
equation.

The paper is organized as follows. In Sect. 2 we solve the global relation and
present our main result. In Sect. 3 we derive a Gelfand—Levitan—-Marchenko rep-
resentation for @@ (z, k). In Sect. 4, using the techniques developed in Boutet de
Monvel et al. (2003), we show that it is possible to solve the global relation for both
versions of the KdV equation explicitly. Actually, following Zheng (2006), we com-
pute certain k-integrals and hence we carry the technique of Boutet de Monvel et al.
(2003) one step further by showing that the relevant expressions can be simplified
substantially, see Sect. 2. These results are discussed further in Sect. 5. In Appen-
dix 1 we review the general methodology of Fokas (2002a), namely: We first analyse
the “direct” spectral problem by defining appropriate spectral functions {a(k), b(k)}
and {A(k), B(k)}, associated with the initial condition and with the boundary val-
ues, respectively. We then formulate the “inverse” spectral problem through a matrix
RH problem defined in terms of the above spectral functions. The solution of this
problem yields the solution of the KdV equation with prescribed initial and boundary
data, provided that the spectral functions satisfy the global relation. In Appendix 2
we discuss the generalized Dirichlet to Neumann map for the linear version of (1.1)
and show that in the limit of small data this map reduces to the corresponding map of
the linear equation.

Remark 1.1 The usual caveat where one removes the g, term from (1.1) by employ-

ing travelling coordinates is not available in the quarter-plane, since this transforma-
tion yields a moving boundary problem (see Bona et al. 2002). If one drops the g,
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term arbitrarily (i.e. take ¢ = 0 in (1.1)), the resulting initial-boundary value problem
can be treated by a considerably simplified version of the analysis that is developed
here.

1.1 Notations and Assumptions

We use the following notations and assumptions:

e Subscripts with respect to x and ¢ denote partial derivatives, for example

_% G’

qr = 9 %cxx=¥~

f (k) denotes the complex conjugate of the function f (k).

e g(x,0) = go(x) denotes the initial condition. It is assumed that the initial condition
belongs to the Schwarz space on the half-line, which will be denoted by S(R™).

e We denote the boundary values at x = 0 by

q(0,1) = go(1), qx(0,1) =g1(1), g qxx(0,1) = g2(1). (1.2)

A subset of these functions is prescribed as boundary conditions. We assume that
these boundary conditions are sufficiently smooth and are compatible with go(x)
atx =1t =0.

e Ay, A1, Azr, Ay denote the (11), (12), (21), (22) entries, respectively, of the
2 x 2 matrix A.

e D denotes the closure of the domain D in the complex k-plane.

e The dispersion relation w (k) is defined by

wk) =41k +ck, r==%1, c=0,]1. (1.3)

2 The Main Result
Given the initial condition go(x), define the spectral functions a (k) and b(k) by
a(k) =v2(0, k), b(k) =v1(0,k), Imk <0, (2.1)

where the vector (V¥ (x, k), ¥2(x, k)) satisfies the following ODE, which is uniquely
specified in terms of go(x):

v ) A
— — 2k = ——qo(x) (Y1 + ¥2),
ax 2ik (2.22)
W 2 o) + ) |
ax | 2i VRV T V)
where
0<x < o0, Imk <0,
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and
lim ¥ (x,k) =0, lim ¥ (x, k) =1. (2.2b)
X—>00 X—00

The global relation associated with the KdV equation is given by (see Fokas
2002a)

a(k)B(t, k) —b(k)A(t, k) =e?*®l et k), Tmk<0, 0<1< o0, (2.3)

where w (k) is defined by (1.3), c(¢, k) is an analytic function of k for Imk < 0 which
is of O(1/k) as k — oo, and the functions {A(¢, k), B(t, k)} are defined by

A(t,k) = ®a(t, k),  B(t,k) = —e* W@ (1, k), (2.4)

where the vector (@1 (z, k), ®,(t, k))T satisfies the following ODE, which is uniquely
specified in terms of {go(?), g1(¢), g2(¢)}:

9D
T L i (k)@ = 2ikgo (1) P2 + g1(1) D>

Jat
1
+ 2f(gza) — hego(t) — 22g0(1)?) (@1 + P2),
ik
(2.5a)
0D, :
o —2ikgo(t)P1 + g1(1) Py
1
— ﬁ(gz(l) — hego(t) — 2g0(1)*) (@1 + P2),
where
0<1t< oo, keC, (2.5b)
and
®1(0,k) =0, Dr(0,k) =1. (2.5¢)

In the remainder of this section we give our main results and show that, for both
versions of the KdV equation, the global relation (2.3) can be solved explicitly for the
unknown boundary values, i.e. we give the generalized Dirichlet to Neumann map
for (1.1). These results will be proved in Sects. 3 and 4 by using a Gelfand-Levitan—
Marchenko triangular representation for the spectral functions A(¢, k) and B(t, k).

2.1 The Gelfand—Levitan—Marchenko Representation of @ and @,

Proposition 2.1 The vector (®1(t, k), P (t, )T has the following Gelfand-Levitan—
Marchenko representation

@1\ (0 RS0 wti—s)os
(&)=(0)+ [(Riig) e
o3 =diag(1, —1), (2.6)
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where

1 1 1 1
Fi(t,s,k) = —kBj + C1 + —g0()A1 — —| Di — —go(1)Ba — ——g1( A1 |,
12,5, k) 1 1 4Ag0() 1 k[ 1 4A80() 2 Slkgl() 1i|

1 1 1
Fo(t,s, k) =k?A; +kBy+ Co+ — | D} — —go(t)By — —g1(1) A1 |,
2(t, 5, k) 1+ kB> + 2+k[ 1 4)Lgo() 2 SiAgl() 1]

and the six scalar functions {A1(t,s), B1(t,s), Ba(t,s), C1(¢t,s), Ca(t,s), D1(t, s)}
satisfy the following well-posed characteristic-value problem:

(8 + 95) A1 = 2igoB1 + 8iADy, (2.7a)
1 .
(0r — 95)B1 = <G2 - mgo)z‘h — 8182 —2igo(Ca, (2.7b)
1 .
(0r +05)B2 = (Gz + ﬁ&%)Al — g1B1 —2igoC1, (2.7¢)
€ a)c—l('+ +)A+G+IZB
¢ = 0:)C1 == (80 + 8081 + 81 A1 2+ 580 ) Bi
+ ! Gy + L2\ +g1C (2.7d)
ZiAgO 2 2iAg0 2+ 8107, .

1 . .
(0r +05)C2 = —G2 By + (Gz + ﬁ%) By +g1C1 + Qi+ 2igo)Dy,  (2.7e)

1 1 1
& —3)D; = — | ¢ 2 4 4igoGr + —g2 A1 + — 200, B
(0; — 05) D1 8ik<gl+gl+ 180 2+Ago> 1+2Agos 2

1 1
— (g B Gy + —g2 |C1 + G2C, 2.7
+4k(80+8081) 2+< 2+2ikg0) 1+ G20y (2.71)

where go = %go, g1 = %gl and Gy = %(gz — Acgo — 2kg(2)), with boundary condi-
tions

1
By(t,1) = —igo(1), Ci(t, 1) = z81(0),

. (2.8)
i
Di(t,1) = 7 (82(r) = Aego() = 2Ago(1)?),
and
A(t, —1) = By (t, —1) = Ca(t, —1) = 0. 2.9
Proof The proof of this Proposition will be given below in Sect. 3. ]

2.2 The Generalized Dirichlet to Neumann Map for KdVI

For the KdV equation (1.1) with A = —1, an initial-boundary value problem is well
posed if the initial condition and a single boundary condition are specified. In the
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Fig. 1 The oriented boundary
dD for the case A = —1

case that the KdV equation models water waves the appropriate initial and boundary
conditions are

q(x,0)=0, q(0,1) = go(1).

In this case the analysis of the global relation yields two algebraic relations that can
be solved explicitly to give the unknown boundary values g (#) and g»(¢) in terms of
the given boundary condition go(#) and in terms of the kernel functions that appear
in the Gelfand-Levitan—-Marchenko representation of @; and @,. We will show that

1
g1(t) = Ego(t)Al(l,t)

o
S /0 %[31%—4&]0,21—0&, (2.10a)

1
22(t) = —2g0(1)* +1igo(t) Ba(t, 1) — F8OALED

" OA(C) [3i0B;
_3—2/3/ . | =—— 4+ 2B |(t,2t — t)dr, 2.10b
o (-0 |2 g TPO]G2rmndn (2100

where Ai(¢) is a solution of Airy’s equation given by
1 .
Ai(¢) = —/ KD = 371G — )23, (2.11)
2w aD

the contour d D, shown in Fig. 1, is the oriented boundary of the domain D; de-
fined by

D= {keC, Imk <0NImw(k) > 0},
and w (k) is defined by (1.3) with A = —1.

2.3 The Generalized Dirichlet to Neumann Map for KdVII

For the KdV equation (1.1) with A = 1, the initial-boundary value problem is well
posed if the initial condition and two independent boundary conditions are specified.
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Fig. 2 The oriented boundary
dD for the case A =1

In the case that the KdV equation models water waves with dominant surface tension
the appropriate initial and boundary conditions are

q(x,0) =0, q(0,1) = go(0), q:(0,1) = g1(1).

In this case the global relation can be solved explicitly for the unknown boundary
value g>(¢) in terms of the given boundary conditions and in terms of the kernel func-
tions that appear in the Gelfand—Levitan—-Marchenko representation of @ and @;.
We will show that

1
g2(1) = cgo(t) + 280(1)* — igo(t) Ba(t, 1) — F&1OALE, 1)

AV 3i0B
_1_372/3/ &[ ! 1+2B1:|(t,2r—t)dr
0

(t—1)23| 2 ot
LA aC, 304,
—3—1/3/ - _|6—— +8iC Ol =— +2iA
L 15| % THC s 5 T 2Al
x (t,27 —t)dz, (2.12)

where Ai(¢) is given by (2.11) but with ¢ = 3713t — 1)%/3, the contour d D, shown
in Fig. 2, is the oriented boundary of the domain

Dy = {keC,Imk <0NImw(k) >0},
and w (k) is defined by (1.3) with A = 1.

Remark 2.2 The analogues of (2.10) and (2.12) in the case that g(x,0) # 0 are
given in (4.5) and (4.6). These formulae contain certain integrals in the complex
k-plane involving the spectral functions a(k), b(k) (which are known) and the kernel
functions that appear in the Gelfand-Levitan—Marchenko representation of @ (z, k)
and @, (1, k).
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Remark 2.3 The solution of the global relation given in (2.10) and (2.12) is ex-
pressed in terms of the given boundary conditions and in terms of the kernel
functions that appear in the Gelfand-Levitan-Marchenko representation of @ (z, k)
and @,(t,k). We note that it is also possible to rewrite (2.10) and (2.12) in
terms of @(z,k) and ®D,(¢, k) only (i.e. without reference to the kernel func-
tions), but the resulting formulas are more complicated than those given here (see
Fokas 2004).

Remark 2.4 If ¢ =0 in (1.1), i.e. if the g, term is absent, the formulae (2.10) and
(2.12) simplify further and, instead of the Airy function (2.11), they now involve the
gamma function. For instance, if g(x,0) =0, c =0, A = —1, the unknown boundary
values g1(¢) and g»(#) can be expressed in terms of g (0, t) = go(¢) by the following
formulae:

1
g1t) = Ego(l)Al(t,t)

Ll /[ ! 5281 4p (t,2t —1)d (2.132)
—TI| = — | 3i— - , 21 —t)dr, 13a
6ir \3) ), t—o0)3|" 8z !

1
22(1) = —2g0(1)* +igo(t) Ba(t, 1) — Egl(t)Al(f, 1)

L r(? /t ! 31081, op (t,2t —1)d (2.13b)
——T\= — | 27 — , .
6ir \3)Jy (=023 2 ot ! ’

where {A1, B1, B», C1, C, D1} satisty the hyperbolic system (2.7-2.9).
Remark 2.5 Tt is shown in Appendix 2 that, in the linear limit of small bound-
ary data, the expressions in (2.10) and (2.12) reduce to the same representations

that are obtained by solving the global relation associated with the linearized KdV
equation

qr +cqx — Agxxx = 0. (2.14)

3 The Gelfand-Levitan-Marchenko Representation of ®® (t, k)

In this section we verify Proposition 2.1 directly. Let the matrix &) (¢, k) be defined
in terms of (&1, @;) by

@(’)(t,k)=<—¢2(t’]f) q)l(”k)). 3.1)
DK Pt k)

Then (2.5) imply that this matrix satisfies the equation

3PV (t, k) +iwk)[o3, @1, k)] = [on(t) + Q1) + %sz]dﬂ”(r, k),
(3.2a)
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where
a0 (] ). aw=an(l o).
(3.2b)
Qz(t)=G2(t)<_11 ‘ll),
and
Golt) = ~digo(), o) = 5 (82(0) — hego() ~ gol@). (320)

Substituting the representation (cf. Boutet de Monvel et al. 2003 and Fokas 2004)

Dt k=1 +/

—t

(sz(t s)+kB(t,s)+ C(t,s) + — D(t s)> (=903 45
(3.3)

into equation (3.2a) we obtain an integral equation involving the matrix-valued func-
tions A, B, C, D. By multiplying the following identity (obtained by integration by
parts) by k2

t

/ k3F(S)eiw(k)(t—s)U3 ds
—t
_ & _ _ 2iw (k)tos
=7 (F(t)cr3 F(—t)ose )

A [ .
-3 / (KF (s) +iFy(s)a3)el®® =9 g (3.4)
—t

we can eliminate the integral terms involving k°. Then, using the identity obtained
from multiplying (3.4) by k, as well as (3.4) itself, we can eliminate the integral terms
involving k* and k3. Finally, by using the identity obtained from multiplying (3.4) by
1/k we can eliminate the integral terms involving k2. The remaining terms involve k,
1,1/k, and 1/ k2. The latter term involves the product Q, D, which is equal to zero
if the matrix D has the following form

D(t,s) = D (t,s) (‘11 _11) (3.5)

Equating to zero the coefficients of the terms involving k, 1, 1/k we obtain the fol-
lowing equations:

. . . . I
Bi +03Bs03 = QoC + Q1B+ 02A — HQOA, (3.6a)
. N 1, . N
Ci +03C503 — K(A; + (T3ASU3)
~ ~ ~ 1 ~ - 1 ~
=00D+ 0:1C+ 02B — H(QOB + 014) + EQoAs%, (3.6b)
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~ ~ 1 - ~
D; + 03Ds03 + H(Atsfﬁ + 0’3Ass)

- | - -
=01D+ 0C+ H(QOBS + Q14;)03, (3.6¢)

Equating the coefficients of the boundary terms involving k2, k, 1, 1/k we find the
following boundary conditions:

A(t, 1) — 03A(t, 1oz =0, (3.72)
B(t,1) — 03B(t, 1)o3 = Q. (3.7b)
C@t,1)—03C(t,t)o3 = Q) — ﬁQOA(t, o3, (3.7¢)

~ ~ 1 - ~
D(t,1) — 03 D(t, 1)o3 — H(Az(h 1)03 4 03A(1, 1))

=0~ ﬁ(Qoé(t, D+ 1A, 1))o3; (3.7d)
and
A(t, —1) + 03A(t, —1)o3 =0, (3.8a)
B(t,—t) + 03B(t, —t)o3 =0, (3.8b)
C(t,—1) +03C(t, —t)o3 = ﬁ QoA(t, —t)o3, (3.8¢)

~ ~ 1 - -
D(t,—t) + 03D(t, —1)o3 + H(Az(f, —1)03 + 03A,(t, —1))

1 ~ -
= m(QQB(t,—I)+ Q1A(t,—t))(73. (3.8d)

We choose the matrices A, f?, C in the following form,

A(t,s)zAl(t,s)<(1) ?) E(t,s):(‘Blfz —Blzl>,

C(t,s)= <g? 8) (3.9)

Substituting (3.5) and (3.9) into equations (3.6) we find the following differential
equations:

1
(0; — 05)B1 = <G2 — HGO)AI —g1B2 + GoCy, (3.10a)
(3 + 35)Ba = G2 A1 — g1B1 + GoC, (3.10b)
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@ —03)C = ﬁGoasAl - %glAl + G2B1 + (%Go - Gz)Bz
+81C2 — GoDy,

(0 + 05)C2 = i(31 +095)A1 + (LGO - G2>B1 +G2B;
4x an
+¢1C1 — GoDy,

~ 1 1 ~ -
0 — 0s)D1 = —g10;A1 — —Gpds B Go(C1+Cr)—g1D
(0 — 95) Dy 1. 810541 — 7= Gods 2+ G2(C1+C2) —g1D1,

~ 1 1 ~ -
0y +05) D1 = —(0; + 05) 05 A —Goos B Go(C1+Cy) — g1 Dy.
(0; +95) Dy 4i)\(t+s)s 1+4ik 00sB1 + G2(C1 + C2) — g1 Dy

Furthermore, (3.7) and (3.8) yield the following boundary conditions:

2By (t.1) = Go(1).

2C1(t, 1) =g1(1) — ﬁGomAl(r, 1.

2Di(t, 1) = G (t) — ﬁgm)m(n N+ ﬁGo(l)Bz(h 0.
O IANLD = —Ga + - GoOBI,1),

and

A](t7 _t) =07
By (t,—t) =0,
Co(t,—1) =0,

- 1 1
2Di(t, —1) — m(at +9)A1(t, —1) = mGoBl(t, —1),

1 1
0=———g1A1(t,—t) + —GoBa(t, —1).
o8 1( )+4i/\ 0Ba2(t, —1)
By subtracting (3.10e) from (3.10f), we find the equation
{3 +8,)A1 — g1A1 — Go(B1 + By) — 8iAD } = 0.
Similarly, by adding (3.11c) and (3.11d), we find the boundary condition
(0 + 95)A1(2, 1) — g1(1) A1 (2, 1)
+Go(1)(B1(,1) + Ba(t, 1)) — 8irDy (¢, 1) =0.

(3.10c)

(3.10d)

(3.10¢)

(3.10)

(3.11a)

(3.11b)

(3.11c)

(3.11d)

(3.12a)
(3.12b)
(3.12¢)

(3.12d)

(3.12¢)

(3.10f")

(3.11d")

In summary, we have derived the following result: Let @D (1, k) be expressed in
terms of the matrices {A, B, C, D} by (3.3). Let these matrices have the form given
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by (3.5) and (3 9). Then @ (s, k) satisfies (3.2) provided that the scalar functions
{A1, By, By, C1 Cy, D1} satisfy the differential equations (3.10a-3.10e), (3.10f") to-
gether with the boundary conditions (3.11a-3.11¢), (3.11d’) at s = ¢, and the bound-
ary conditions (3.12) at s = —t¢.

We will now show that the above differential equations and boundary conditions
are satisfied provided that the six functions {A1, Bj, B2, C 1, Ca, 51} satisfy the dif-
ferential equations (3.10a—3.10e), the differential equation

(8 + 05)A1 = g1 A1 — Go(B) + Bo) + 8irDy, (3.10f")

as well as the boundary conditions (3.11a-3.11c) and (3.12a-3.12c). Indeed, if
(3.10f") is valid then (3.10f") is also valid. Furthermore, evaluating (3.10f") at s = ¢,
it follows that (3.11d’) is also valid. In addition, evaluating (3.10f”) at s = —r and
dividing the resulting equation by 1/4iA we find

~ 1
2Dy (t, —t) — —— (0 + 95) A1 (¢, —1)
4ir

1 1
—HGO(Bl(t —1) + Ba(t, —t))—ﬂglf\l(t 1),

which, taking into consideration (3.12a) and (3.12b), yields (3.12d). Finally, (3.12a)
and (3.12b) imply that (3.12e) is identically satisfied.

It is convenient to replace (9; + d5)A; in the RHS of (3.10d) by the RHS of
(3.10f"); thus (3.10d) can be replaced by the equation

1 G . _
(3t+as)c2:HglAl_GZBI+<G2_4_;>Bz+glcl+(2l_GO)Dl- (3.10d")

Equations (3.11b) and (3.11d’) suggest the following change of variables
Ci(t,s)=Ci(t,s) — —Go(t)A1(t 8),
Dy(t,s) = Di(t,s) : (DAL, 5) + ]G(I)B(t )
1\, s)= Ui, s 8i)\gl 1\z,s Sin 0 2, 8).
This yields the required result.

3.1 The Spectral Functions A(¢, k), B(t, k)

Equation (3.1), together with (3.2) and the integral representation for ®D(z, k) in
(3.3), imply the following expression for @1:

t
¢1 (t, k) — e—iw(k)t/

—t

~ 1 -~ .
[—kBl (t,s)+Cy(t,s) — 2D (t, s)}e“"("” ds
t
=f [—ZkBl(t, 21 — 1) +2C1(t, 21 — 1)
0
1 .
+ 5580 AL(, 27 — t)j|ezlw(k)(fl) dr,
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1 [! 1
S 2D(t,2t —t) — —go(t)Ba(t, 21 — ¢
k/O[ (1,20 1) = g0 Ba(t, 20 — 1)

1 .
— —g1(DA (1,2t — 1) |[He®CED g,
4i)

where we have used the change of variables s + 27 — ¢. The definition of B(z, k)
(2.4) then yields

. A 1 .
B(t, k) =2kB; — <2C1 + ﬁgo(t)Al)

1/ 4 1 . 1 .
(2D — —g0(t)Br — — o1 (1)A, ), 3.13
+k< 1 2)\go() 2 4ik81() 1) (3.13a)
where
A l .
N, k) = f N(t,2t — 1)eZe®T g, (3.13b)
0

An analogous expression can also be written for A(z, k):

At k) =1+ 2k*A; — 2kBy + 20

L/ A 1 A 1 .
— —{2D1 — —g0(t) B2 — ——g1(H)A1 . 3.13
k( 1= 57800 B2 — 7—81(t) 1) (3.13¢)

4 The Generalized Dirichlet to Neumann Map

As was noted earlier (see also Appendix 1), given go(x) and a “proper”! subset of
the boundary values {go(¢), g1(¢), g2(¢)} we can characterize the unknown bound-
ary values by the requirement that the spectral functions {A(z, k), B(¢, k)} satisfy
the global relation (2.3). For the Riemann-Hilbert problem formulated in Theo-
rem 6.3 (see Appendix 1), the spectral functions {A(z, k), B(t, k)} are needed in the
domain

D3 = {k eC, Imk>0NImw (k) > O}.

However, since (2.3) is valid for Imk < 0 we must transform the global relation from
the lower half k-plane into D3. We do this by using the invariance properties of the
exponential e2i@®)

For the case A = —1, the two non-trivial roots of the dispersion relation w(p) =
w (k) are such that k € D3 = py (k), p—(k) € D1 where D is defined as

Dy ={keC, Imk <0NImw(k) > 0}.

1“Proper” here means those boundary conditions for which the initial-boundary value problem is at least
linearly well posed. For example, if A = —1 the boundary value problem with ¢ (0, #) given is well posed.
Similarly, if A = 1 the boundary value problem with {g (0, 7), gx (0, #)} given is well posed.
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Fig. 3 The domains Dy, Dgl),
and Déz)

D,

Evaluating the global relation (2.3) at p4+ and p_ we thus find two equations for the
spectral functions A(t, k) and B(z, k), which are valid for k € D3

a(p4)B(t, p1) — b(p)A(t, pr) = ®le, py, (4.1a)

a(p-)B(t, p-) —b(p_)A(t, p-) =e**®'ct, p_), ke Ds. (4.1b)

These two equations give two independent relations coupling the known spectral
functions {a(k), b(k)} with the unknown spectral functions {A(z, k), B(¢, k)}. If we
specify appropriate boundary conditions, for instance ¢ (0, ) = go(¢), then we can
use (4.1) to determine the unknown boundary values g;(¢) and g>(¢) in terms of the
given initial and boundary conditions.

An analogous situation also exists for the case A = 1. In this case the two non-
trivial roots of the dispersion relation w(v) = w(k) have the following properties:

keD!" = vikeD®, v_(k)eD,

keD{ = wvitkeDi, v_(kyeD,

where D;l), D§2) are shown in Fig. 3.

If we adopt the notation whereby v(k) = {v4(k), v—_(k)} is defined such that k €
D3 = v(k) € Dy, then from (2.3) we have

a()B(t,v) — b(W)A(t,v) =X B et v), ke Ds. 4.2)

This equation is a single relation coupling the known spectral functions {a(v), b(v)}
with the unknown spectral functions {A(¢, v), B(z,v)}. If we specify appropriate
boundary conditions, for instance g (0, t) = go(¢) and ¢, (0, ¢) = g1(¢), then we can
use (4.2) to determine the unknown boundary value g;(¢) in terms of the given initial
and boundary conditions.
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Before proceeding to solve (4.1) and (4.2) for the unknown boundary values, we
first introduce certain integral identities that will be required for our analysis:

v , ’Ai
/ /CZIw(k)(r—t)K(LT)dT dk = T /' i) K(t,7)dr,
ap | Jo

CGOIB Sy =)
(4.3a)
f k /t/eZi“’(k)(’_’/)K(t r)dr |dk = i /t/ Al'() K(t,7)dt
ap | Jo 7 i 231023 Jo =023 '
(4.3b)

where Ai(¢) is the solution of Airy’s equation given in (2.11), K (¢, ) is a smooth
function of the arguments indicated,

0<t' <t,

and the contour 9 D is the oriented contour shown in Fig. 1. In order to prove the first
identity we first interchange the order of integration and then introduce new variables

13

s==200"3 1 —17) "k, =00V -0

to evaluate the k-integral. The result then follows from (2.11). Similar considerations

apply to prove the second identity above.
We will also make use of the following integral identities:

o ,
/ a)/(k)|: / ezlw(k)(’f)K(t,t)dt] dk=nK(,1), (4.42)
aD 0

[ ,
/ a)(k)|:/ ezm’(k)(’_”K(t,r)dtj| dk
oD 0

_ir /f’ Ai(¢) 9K(t,7)
2803 )y =113 Bt

! : /
/ ka)(k)|:/ eZIw(k)(rt)K(t,t)dti| dk
aD 0

. /“ Ai'(¢) K, 1)
T AGBM2B Jy =123 Bt

dr, (4.4b)

dr. (4.4¢)

Identity (4.4a) follows from the usual Fourier transform identity by mapping 9D to
the real axis. In order to derive expression (4.4b) we first write the LHS as follows

o , K(t,t
/ a)(k)/ He®T—1) gt rydr — (_ ) dk.
9D 0 21
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This ensures that the integral is well defined. We next perform integration-by-parts
on the #-integral to obtain

1

o ,
/ —|:K(t,t’) —/ He®T=HK (1, 1)dT dr — K(t,t/):| dk.
a 0

p 2i
The two terms involving K (¢, ") cancel and, by interchanging the order of integra-
tion and using the identities in (4.3), we can evaluate the k-integral to obtain the
expression (4.4b). Similar considerations apply to prove the third identity (4.4c).
4.1 The Solution of the Global Relation for A = —1
We will now use the two global relations (4.1) to derive (2.10), i.e. an explicit ex-

pression for the unknown boundary values g1 (#) and g (¢). Substituting into (4.1) the
expression for B(t, k) given by (3.13) and rearranging we find

A 1 .
2C1 — = goA
1~ 58041

n 1 b b(p_
=2(py +p_)Bi — <p+ P 4t pa) —p_ﬂfm,p_))
pr— - \Ttao) a(p-)

#eziww)z( JCp) et p_)>
P+ = P- a(p+) a(p-)

and
2D +1 B+ LA
1 280 2 4ig1 1
P+P— <b(p+) b(p-) )

Alt, — A, pe
p+— p-\a(p4) t: p+) a(p-) *.p-)

__P+p- eZiw(k)t(C(tvp-i-) _ C(tap—))
p+—p- a(py)  a(p) )

=2pp-Bi -

where {Al, 1§1, éz, 6‘1, bl} are defined by (3.13b). We first assume that a(k) # O for
k € Dy. If we multiply these two equations by «'(k) exp[—2iw(k)?'] and integrate
along d D, the contour shown in Fig. 1, then terms involving c(¢, p+) will vanish
since o’ (k)c(t, p+)/a(p+) is analytic and of O(1) for Imk < 0, and the oscillatory
term exp[2iw (k)(r —t')] is bounded in D;. We use the fact that ko’ (k) = Bw (k) —2)
together with the integral identities (4.3) and (4.4) to obtain

21 Cy (1,21 —1)

t/
=mgo()A(t,2t' —1) — 3713 f

Ai(¢) [31331
o (=D

—— — 2By |(t,2t —t)d
o 1}(,T )dr

- f o (e-2ewr ! [mb(” +)A(t,p+)—p—MA(t,p—)} dk,
aD D+ — P-— a(py) a(p-)
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and

21Dy (t,21' — 1)

= —zgo(l)Bz(t, 20 —1) + z_gl(t)Al(t, 2t —1) — g31 (1,21 —1)
2 4i 2
T " A(¢) [39B
—3_2/3/ — | ——— —2iB; |(¢t,2t — t)d
*t3 W —0B| 29 ABi|t 2z mnde

_/ o (fye—2iotn’ _P+P- [b(P+)A(t’p+)_ b(p_)A(t,p_)i| dk.
9D p+—p-La(py) a(p-)

Letting ¢’ — ¢ in these expressions and using the identities for By (¢, t), C1(¢, 1), and
Dq(t,t) in (2.8) we find

1 _ tOAI) 0B
g1(t) = Ego(t)Al(t, t)—3 1/3/0 m[31¥ — 431}0, 2t —t)dr
1 [ o (ke 2iekr [ b(py) b(p-) ]
- = Alt, — p_———A(t, p-) | dk,
77/31) P+ —pP- Ta(py) ¢.pe)=p a(p-) . p-)

(4.52)

1
22(1) = —2g0(1)* +igo(t) Ba(t, 1) — F81OALED

LOAT(e) [3i0B,
—3—2/3/ AT VNP o |2t —nd
L, G—023| 2 g TB| T nde

4 E/ w/(k)e2iw<k)t%[—b(p+)f\(z,p+) — MA(t,p—)] dk.
7 Jop p+—p-La(py) a(p-)

(4.5b)

We note that the last line in each of these expressions still has k-integrals involving
the spectral functions a(k), b(k), and A(z, k). Depending upon the specific choice
for the initial condition go(x) it is possible to simplify these expressions further by
evaluating a(k) and b(k) from (2.1) and then using the expression for A(z, k) given
in (3.13) to evaluate the k-integrals. For instance, if ¢(x,0) = O then the spectral
function b(k) defined in (2.1) is zero. This implies that the k-integrals in the above
expressions vanish and these expressions simplify to give (2.10).

Finally, we note that if a (k) does have zeros for k € Dy, then the integral involving
o' (k)c(t, k) exp[iw (k) (t — t')]/a(k) does not vanish, but rather it has a contribution
due to the relevant residues. The simplest way to compute this contribution is to
deform the contour d D to include the relevant zeros.

4.2 The Solution of the Global Relation for A =1

For the case of A = 1, we use the single global relation (4.2) to determine the un-
known boundary value g»(¢). Substituting into (4.2) the expression for B(¢, k) given
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by (3.13) and rearranging we find

~ 1 A 1
2D = -goB2+ —

~ ~ ~ 1 ~
Ay —2v°B 2C) + —g0A
2 4181 1 % 1+V[ 1+2go 1}

b(v) 2w € V)
+a(U)A(t,v)+e av)

We first assume that a(v) # O for v € Di. If we multiply this equation by
' (v) exp[—2iw(k)t'] and integrate along 9 D1, then the final term on the RHS van-
ishes because '(v)c(t, v)/a(v) is analytic and of O(1) for Imk < 0, and the os-
cillatory term exp[2iw (k)(t — t')] is bounded in D;. Using the fact that ko' (k) =
(Bw (k) — 2) together with the integral identities (4.3) and (4.4) we find

2nDy (1,2t — 1) = %go(t)Bz(t, 2t —1) + %gl(t)Al(t, 2t —1)

n " OAV() [30B;
__3—2/3/ _AE) 290 g |20 — 1) d
2 o -2 (t2e =0 de

"OAIQ) aC,
-3 // TSy e P
o (t'—1) ot
3i9A
+go(t)<za—rl—A1>}(t,21—t)dt

+ / ko' (ke e ®r’ MA(z, k) dk.
3D a(k)

Letting ¢’ — ¢ in this equation and using the identity for Dj(z, r) in (2.8) we find

1
§2(1) = cgo(r) +2g0(1)* — igo(t) Ba(t, 1) — Egl(t)Al(ts 1)

AT 3i0B
+3—2/3f &[_1_1+2Bl:|(t,2t—t)df
0

(t—1)23| 2 ot
_ tOALQ) 0Cy .
-3 ‘/3/ | 6—— +8iC
L (=50 TG
394,
+go(®)| =— +2iA1 ) |(¢,21 — 1) dt
2 ot
2i . bk
A e 2o P® L (4.6)
T JoaD a(k)

As in the previous case, this expression contains k-integrals involving the spectral
functions a(k), b(k), and A(t, k). Given a specific value for the initial condition go(x)
it is possible to simplify this formula by evaluating the k-integrals. In the particular
case of g(x,0) = 0 the spectral function b(k) defined in (2.1) is zero and so the
k-integrals in (4.6) vanish and we find (2.12).

@ Springer



210 J Nonlinear Sci (2008) 18: 191-217

As in the case for A = —1, we note that if a (k) does have zeros for k € Dy, then the
integral involving ' (k)c(t, k) exp[2iw (k) (t —t")]/a(k) does not vanish. The simplest
way to compute the contribution from this term is to deform the contour 0D to
include the relevant zeros.

5 Conclusion

The generalized Dirichlet to Neumann map for integrable nonlinear evolution
PDEs can be characterized by the requirement that the spectral functions {a(k),
b(k), A(t, k), B(t,k)} satisfy the so-called global relation. The Gelfand-Levitan—
Marchenko representation of @ (¢, k) was used in Boutet de Monvel et al. (2003)
and Fokas (2004) to solve the global relation explicitly for the nonlinear Schrodinger,
the sine-Gordon, and the modified KdV equations (see also Boutet de Monvel et al.
2004). We have shown in this paper that the global relation can also be solved explic-
itly for both cases A = £1 of the KdV equation.

The analysis of the KdV equation in the case A = —1 is more complicated than the
analysis of the case A = 1 since in the former case the single global relation (2.3) must
be solved for two unknown boundary values. For economy of presentation we have
concentrated on the case where go(#) is prescribed as a boundary condition and, by
using certain invariant transformations of the dispersion relation w (k) = —4k3 + ck,
we have constructed explicit expressions for g1(¢) and g»(¢). The analysis is similar
for the case that, say g1 (), is prescribed.

The explicit solution of the global relation yields the unknown boundary values in
terms of the given initial and boundary conditions and in terms of the kernel functions
that appear in the Gelfand—Levitan-Marchenko representation of @ (¢, k). These
kernel functions in turn satisfy a system of linear ODEs which, after inserting the
expressions for the unknown boundary values, give nonlinear Volterra integral equa-
tions in which the nonlinearity now appears in a simple explicit form. The rigorous
analysis of this system has not yet been carried out, however because the nonlinear in-
tegral equations are of Volterra type it should be straightforward to establish existence
of the solution at least for small ¢ or for “small” boundary conditions (Fokas 2004).

We remark that the explicit characterization of the Dirichlet to Neumann map that
we have presented here appears to be particularly useful in the context of numerical
simulations of soliton equations. Indeed, the result of Fokas (2004) has been used
in Zheng (2006) for the implementation of the so-called method of nonreflecting
boundary conditions for the numerical integration of the modified KdV equation.
Actually, it was in Zheng (2006) that the formulae of Fokas (2004) were simplified
by computing the k-integrals. In this paper we have extended this analysis and applied
it to the KdV equation.

Finally, we note that initial-boundary value problems for integrable nonlinear
PDEs can also be analysed using PDE techniques (Bona et al. 2002, 2003; Col-
liander and Kenig 2002). In particular we note the remarkable result of Colliander
and Kenig (2002) where global well posedness is established. We consider our ap-
proach as complementary to the above approach: Having established a priori global
existence for g (x, t) and therefore for {g(0, 1), g+ (0, 1), gxx (0, 1)}, our results can be
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extended globally. Therefore, our results imply an explicit characterization of the un-
known boundary values which appears important both for analytical as well as com-
putational considerations. Also, we note the Riemann—Hilbert formalism reviewed in
Appendix 1 together with the powerful Deift—Zhou method (Deift and Zhou 1993)
yield explicit results for the large #-asymptotics of the solution.
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Appendix 1: Lax Pair, Spectral Functions and the “Inverse” Problem

In this appendix we summarize the main results for the KdV equation presented in
Fokas (2002a). Details and proofs can be found in Fokas (2002a) and Fokas et al.
(2005).

Equation (1.1) admits the Lax pair formulation

Mx — 1k[U3, M] = Q(-xvtak)/'l/v (613)
e +iwk)[oz, u]= P(x,t,kyn, keC, (6.1b)

where w (k) is defined by (1.3), the eigenfunction w(x, 7, k) is a 2 x 2 matrix-valued
function, and the functions Q(x,t, k), P(x,t, k) are defined by

0, 1.k) = ;—sz —iopq(x. 1),

P(x,t, k) =—2koaq(x,1t)

1 .
+ 01903, 1) + (02 = 103) (qua (x, 1) = g (x, 1) = 207 (x, 1),

0 1 0 —i 10
(o) () e h)

and [-, -] denotes the usual matrix commutator

with

[o3, A] = 03A — Ao3s.
6.1 The “Direct” Spectral Problem

The spectral functions denoted by {a(k), b(k), A(t, k), B(t, k)}, are defined in terms
of the initial condition and the boundary values by the direct map

{4000), g0(0), 1), g2()} = {a(k), b(K), A(t, k), B(z,K)}.

In order to set up the map go(x) — {a(k), b(k)}, we first introduce the matrix-valued
function ¥ ¥ (x, k). This function is defined in terms of qo(x) as the following matrix
solution of the x-part of the associated Lax pair (6.1) evaluated at r = 0:

WO (x, k) —ik[o3, ¥ (x, 0] = Qo(x, W™ (x, k), (6.2a)
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where
A .
Qo(x, k) = ﬂ(az —i03)qo(x), (6.2b)
lim @ (x,k)=1, 0<x < oo, (6.2¢)
X—> 00

and for the first column of ¥ ™) we take Imk > 0, whereas for the second column we
take Imk < 0.

Definition 6.1 The spectral functions a(k) and b(k) associated with the initial con-
dition go(x) are defined by

a(k) =v2(0, k), b(k) =v1(0,k), Imk <0, (6.3)

where Y1 (x, k) and Y2 (x, k) are the following components of the matrix-valued func-
tion ¥ ™) (x, k) defined by (6.2),

PO ) (wz(x,lé) 1//1(x,k)>. 6

Y106, k) ylx, k)

In order to set up the map {go(?), g1(¢), g2(t)} — {A(¢, k), B(t, k)}, we intro-
duce the matrix-valued function ®® (¢, k). This function is defined in terms of
{go(?), g1(1), g2(¢)} as the following solution of the ¢-part of the associated Lax pair
(A.1) evaluated at x = 0:

H PV (t, k) +iwk)[o3, (1, k)] = Po(t. k)@, k), (6.52)

where

1 . 1
Po(t, k) = —20280k + 0181+ > (02 —io3) (2(t) — Aego(t) — 2280 (1)) = (6.5b)

and
D0,k =1, (6.5¢)
and ke C.2

Definition 6.2 The spectral functions A(t, k) and B(¢, k) associated with the bound-
ary values {go(?), g1(¢), g2(¢)} are defined by

_ 721w(k)tB f, k
e B(t. k) =<<D1(t,k))’ 66)
A(t, k) Po(1, k)
where @1 (t, k) and @,(¢, k) are the (12) and (22) components, respectively, of the
matrix-valued function @) (¢, k) defined by (6.3).

21f t — oo, we take k such that Imw (k) > 0 for the first column of @® and k such that Imw(k) <0 for
the second column.
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6.2 The Global Relation

Although the relationship between the initial condition and the boundary values of
the solution of the KdV equation is complicated, this relationship takes a surprisingly
simple form when expressed in terms of the corresponding spectral functions, see
(2.3). In the case 0 < ¢t < 00, (2.3) becomes

a(k)B(oco, k) —b(k)A(co, k) =0, Imk<0NImw(k)>0. 6.7)

The derivation of the global relation can be found in Fokas (2002a).
6.3 The “Inverse” Spectral Problem

The inverse map
{a(k), e 2Pl p(k), AT, k), e 2O BT, )} > g (x, 1),
defines the function g (x, #) by

g(x,0)= lim 463 (M (x,1,k)),,, O0<x<o0, 0<t<T, (6.8)
—00

12’
where M (x, t, k) satisfies the 2 x 2 matrix RH problem formulated in Theorem 6.3,
which we state below without proof. For conciseness we give only the solitonless
case. The inclusion of solitons is a simple procedure, the details of which can be
found in Fokas (2002a). An improved procedure for including solitons is presented
in Boutet de Monvel and Kotlyarov (2000).

Theorem 6.3 (Fokas 2002a) Let gqo(x) € S(RT). Define {a(k),b(k)} by (6.3).
Suppose that there exist smooth functions {go(t), g1(t), g2(t)} satisfying {g;(0) =
8){(]0(0)}(2), such that the functions {A(t, k), B(t,k)}, defined by (6.6), satisfy the
global relation (2.3), where c(t, k) is analytic in {k € C\ O|Imk < 0} and is of
O(1/k) ask — 00’

Let M(x,t, k) be a solution of the following 2 x 2 matrix RH problem:

e M is sectionally meromorphic in k € C\ {k|Imw (k) = 0}.
o Along the contours {k|Imw (k) = 0}, M satisfies the following jump conditions

M_(x,t,k)=M;i(x,t,k)J(x,t,k), Imw(k)=0, (6.9)

where the matrices My (x,t,k) are the limit values of M as k approaches
{Imw (k) = 0}, and the jump matrix J(x,t,k) is defined in terms of the spectral

3For the case 0 < < oo, (2.3) is replaced by (6.7) and we further assume that go(¢), g1(¢), g2(¢) belong
to S(R™).
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functions a(k), b(k), A(T, k), and B(T, k) as follows:

1 0 —_— =
(ﬁezw 1), ke DN Dy,

( 1 —I(k)e 20 ) ( L=ly(®P y ke 26 )

7020

T tky=1"0 1l O—y(k)e 1 o
X (r(,;)ezie 1), k € Dy N Ds3,
(e-2if o
((1) I“(kie ), k € D3N Dy,

where
O(x,t, k) =—kx + wk)t,;
the functions y (k), I" (k) are given by

V(k)=ﬂf), k € DN Ds,
a(k)
B(T.k) o
I'k)==—=—=, ke DyN D3, D3N Dy,
a(k)d(k)

with

d(k) =a(k)A(T, k) —b(k)B(T, k), ke Ds;

and the domains D1—Dy are defined as:

Dy ={keC,Imk <0NImw(k) > 0},
}
}
}

keC,Imk >0NImw(k) <0f.

ke C,Imk <0NImw(k) <0

3

3

D2={
D3={keC,Imk >0NImw(k) >0
D4={

1
M(x,t,k)zl—}-O(E), k — o0.

e M(x,t,k) has a pole at k = 0 satisfying

M(x,t,k)fvif(z’t)<O 1), k— 0.

0 -1
Then we have the following:

(1) M(x,t,k) exists and is unique.

(6.10)

6.11)

(6.12a)

(6.12b)

(6.12¢)

(6.13)

(6.14)

(2) g(x,t) defined in terms of M (x, t, k) by (6.8) satisfies the KdV equation (1.1).
(3) q(x,t) satisfies the initial condition q(x,0) = qo(x), and furthermore, it has the

following boundary values:

q(0,1) = go(?), 9:(0,1) = g1 (1), qxx(0,1) = g2(2).

Proof Details of the proof of this theorem can be found in Fokas (2002a).
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Appendix 2: The Linear Limit

In this appendix we give the generalized Dirichlet to Neumann map for the linear ver-
sion of (1.1). We also prove that, in the linear limit, our construction of the Dirichlet
to Neumann map for the KdV equation in Sect. 2 reduces to the corresponding map
in the linear case.

In the approximation of small gg, go, g1, g2 (or small gg and small ¢) then, from
Proposition 2.1, we find By (¢, s) = B1(t + s) and thus By (¢,t) = B1(2t) = —igo(?).
Hence

Bi(t,2t —t) = B1(21) = —igo(7).

Similar considerations apply for the other kernel functions and so we have
Bi(t,2t — 1) = —igo(7), Ay(t,2t —1) =0,

1
Cl(t72t_t)~§gl(r)s B2(t12t_t)%01
i
D12t =)~ 7[g2(0) —rego(@®], G2t 2r =)0
and, from (2.2),
1 *© —2ik
ak) ~1, b(k) ~ _ﬂ " go(x) dx.

7.1 The Linear Limit for KdVI (A = —1)

Taking the linear limit of (4.5) and substituting the above expressions, we find

2 r
qi)~ =~ / ikw’(k)[ /O ez"”(k)(t’)go(t)dt:| dk
D

1 e 1 R n
L / o ke 0 LT (b — podo(p)] dk
aD P+ — P-

T
and
4 2 ! 2iw (k
2(t) ~ ;/Dk o' (k) /o HeWE=D o0 () dr | dk
_ P+DP— o
= [ o (ke 2O T[40 (py) — Go(p-)] dk
b+ — p-
where

oo .
Go(k) = / e 2% go(x) dx.
0

By using the identities (4.3) and (4.4) we see that these are the same formulae we get
by solving the global relation associated with (2.14) with A = —1, see Fokas (2002b).
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7.2 The Linear Limit for KAVII (A =1)

Taking the linear limit of (4.6) and substituting the above expressions, we find

8 .
g2(1) % ego(t) + — / ko' (k) / 20 ®T=D g0 (7)dr | dk
D 0

4 ‘o
_2 / ko' (k) / 2o®E=0 4 (1) dr | dk
T Jp 0

4i .
2 ke 0ok,
T JoD

where
o ik
Go(k) = / e 2K g0 (x) d.
0

By using the identities (4.3) and (4.4) we see that these are the same formulae we get
by solving the global relation associated with equation (2.14) with A = 1, see Fokas
(2002b).
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