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Abstract This paper studies the construction of geometric integrators for nonholo-
nomic systems. We develop a formalism for nonholonomic discrete Euler–Lagrange
equations in a setting that permits to deduce geometric integrators for continuous
nonholonomic systems (reduced or not). The formalism is given in terms of Lie
groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Ad-
ditionally, it is necessary to fix a vector subbundle of the Lie algebroid associated
to the Lie groupoid. We also discuss the existence of nonholonomic evolution oper-
ators in terms of the discrete nonholonomic Legendre transformations and in terms
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of adequate decompositions of the prolongation of the Lie groupoid. The character-
ization of the reversibility of the evolution operator and the discrete nonholonomic
momentum equation are also considered. Finally, we illustrate with several classical
examples the wide range of application of the theory (the discrete nonholonomic con-
strained particle, the Suslov system, the Chaplygin sleigh, the Veselova system, the
rolling ball on a rotating table and the two wheeled planar mobile robot).

Keywords Discrete Mechanics · Nonholonomic Mechanics · Lie groupoids ·
Lie algebroids · Reduction · Nonholonomic momentum map

Mathematics Subject Classification (2000) 17B66 · 22A22 · 37J60 · 37M15 ·
70F25

1 Introduction

In the paper by Moser and Veselov (1991), dedicated to the complete integrability of
certain dynamical systems, the authors proposed a discretization of the tangent bundle
T Q of a configuration space Q replacing it by the product Q × Q, approximating a
tangent vector on Q by a pair of “close” points (q0, q1). In this sense, the continuous
Lagrangian function L : T Q → R is replaced by a discretization Ld : Q × Q → R.
Then, applying a suitable variational principle, it is possible to derive the discrete
equations of motion. In the regular case, one obtains an evolution operator, a map
that assigns to each pair (qk−1, qk) a pair (qk, qk+1), sharing many properties with
the continuous system, in particular, symplecticity, momentum conservation and a
good energy behavior. We refer to Marsden and West (2001) for an excellent review
in discrete Mechanics (on Q × Q) and its numerical implementation.

On the other hand, in Moser and Veselov (1991), Veselov and Veselova (1989),
the authors also considered discrete Lagrangians defined on a Lie group G where the
evolution operator is given by a diffeomorphism of G.

All the above examples led A. Weinstein (1996) to study discrete mechanics on Lie
groupoids. A Lie groupoid � is a geometric structure that naturally generalizes the
concept of a Lie group, where now not all elements are composable. The product of
a pair g1g2 of elements is only defined on the set of composable pairs �2 = {(g,h) ∈
� × � | β(g) = α(h)} where α : � → M and β : � → M are the source and target
maps over a base manifold M . Its infinitesimal version is the Lie algebroid E� → M ,
which is the restriction of the vertical bundle of α to the submanifold of the identities.
Lie groupoids include as particular examples the case of Cartesian products Q×Q as
well as Lie groups and other examples as Atiyah or action Lie groupoids (Mackenzie
2005). Therefore, mechanics on Lie groupoids permit us to analyze simultaneously
all the situations that habitually appear after reduction by symmetries, and the relation
between them is a consequence of the naturalness of the formalism (reduction by
groupoid morphisms).

In a recent paper (Marrero et al. 2006), we studied discrete Lagrangian and Hamil-
tonian Mechanics on Lie groupoids, deriving from a variational principle the dis-
crete Euler–Lagrange equations. We also introduced a symplectic 2-section (which
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is preserved by the Lagrangian evolution operator) and defined the Hamiltonian evo-
lution operator, in terms of the discrete Legendre transformations, which is a sym-
plectic map with respect to the canonical symplectic 2-section on the prolongation
of the dual of the Lie algebroid of the given groupoid. These techniques include as
particular cases the classical discrete Euler–Lagrange equations, the discrete Euler–
Poincaré equations (see Bobenko and Suris 1999a, 1999b; Marsden et al. 1999a,
1999b) and the discrete Lagrange–Poincaré equations. In fact, the results in Marrero
et al. (2006) may be applied in the construction of geometric integrators for continu-
ous Lagrangian systems which are invariant under the action of a symmetry Lie group
(see also Jalnapurkar et al. 2006 for the particular case when the symmetry Lie group
is abelian).

From the perspective of geometric integration, there is a great interest in intro-
ducing new geometric techniques for developing numerical integrators. This interest
arises because standard methods often introduce some spurious effects, like dissipa-
tion in conservative systems (Hairer et al. 2002; Sanz-Serna and Calvo 1994). The
case of dynamical systems subjected to constraints is also of considerable interest.
In particular, the case of holonomic constraints is well established in the literature of
geometric integration, for instance, in simulation of molecular dynamics where the
constraints may be molecular bond lengths or angles and also in multibody dynamics
(see Hairer et al. 2002; Leimkuhler and Reich 2004 and references therein).

By contrast, the construction of geometric integrators for the case of nonholo-
nomic constraints is less well understood. This type of constraints appears, for in-
stance, in mechanical models of convex rigid bodies rolling without sliding on a
surface (Neimark and Fufaev 1972). The study of systems with nonholonomic con-
straints goes back to the nineteenth century. The equations of motion were ob-
tained applying either D’Alembert’s principle of virtual work or Gauss’s princi-
ple of least constraint. Recently, many authors have shown a new interest in that
theory and also in its relation to the new developments in control theory and ro-
botics using geometric techniques (see, for instance, Bates and Śniatycki 1992;
Bloch 2003; Bloch et al. 1996; Cortés 2002; Koiller 1992; de León et al. 1997;
de León and Martín de Diego 1996).

Geometrically, nonholonomic constraints are globally described by a submanifold
M of the velocity phase space T Q. If M is a vector subbundle of T Q, we are dealing
with linear constraints and, in the case when M is an affine subbundle, we are in the
case of affine constraints. Lagrange–D’Alembert’s or Chetaev’s principles allow us
to determine the set of possible values of the constraint forces only from the set
of admissible kinematic states, that is, from the constraint manifold M determined
by the vanishing of the nonholonomic constraints φi . Therefore, assuming that the
dynamical properties of the system are mathematically described by a Lagrangian
function L : T Q → R and by a constraint submanifold M, the equations of motion,
following Chetaev’s principle, are

[
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

]
δqi = 0,
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where δqi denotes the virtual displacements satisfying ∂φa

∂q̇i δq
i = 0. By using the

Lagrange multiplier rule, we obtain that

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λ̄a

∂φa

∂q̇i
, (1.1)

with the condition q̇(t) ∈ M, λ̄a being the Lagrange multipliers to be determined.
Recently, J. Cortés et al. (2005) (see also Cortés and Martínez 2004; Mestdag 2005;
Mestdag and Langerock 2005) proposed a unified framework for nonholonomic sys-
tems in the Lie algebroid setting, that we will use in this paper, generalizing some
previous work for free Lagrangian mechanics on Lie algebroids (see, for instance, de
León et al. 2005; Martínez 2001a, 2001b, 2002).

The construction of geometric integrators for (1.1) is very recent. In fact, in
McLachlan and Scovel (1996) there appears as an open problem:

. . . The problem for the more general class of non-holonomic constraints is still
open, as is the question of the correct analogue of symplectic integration for
non-holonomically constrained Lagrangian systems. . .

Numerical integrators derived from discrete variational principles have proved their
adaptability to many situations: collisions, classical field theory, external forces etc.
(Marsden 1999; Marsden and West 2001) and it also seems very adequate for non-
holonomic systems, since nonholonomic equations of motion come from Hölder’s
variational principle which is not a standard variational principle (Arnold 1978), but
admits an adequate discretization. This is the procedure introduced by J. Cortés and
S. Martínez (Cortés 2002; Cortés and Martínez 2001) and followed by other authors
(Fedorov 2007; Fedorov and Zenkov 2005a, 2005b; McLachlan and Perlmutter 2006)
extending, moreover, the results to nonholonomic systems defined on Lie groups (see
also de León et al. 2004 for a different approach using generating functions).

In this paper, we tackle the problem from the unifying point of view of Lie
groupoids (see Cortés et al. 2005 for the continuous case). This technique permits
us to recover all the previous methods in the literature (Cortés and Martínez 2001;
Fedorov and Zenkov 2005a; McLachlan and Perlmutter 2006) and consider new
cases of great importance in nonholonomic dynamics. For instance, using action Lie
groupoids, we may discretize LR-nonholonomic systems such as the Veselova system
or using Atiyah Lie groupoids we find discrete versions for the reduced equations of
nonholonomic systems with symmetry. Neither case had been previously considered
in the literature. Moreover, our procedure results in a set of reduced discrete nonholo-
nomic equations which define an algorithm on the reduced space that is shown to be
equivalent to the discrete nonholonomic equations defined in Cortés and Martínez
(2001) in the sense of reconstruction. These equations are defined in spaces with less
degrees of freedom than the traditional banal groupoid (where the constructions in
Cortés and Martínez 2001 were developed) and we expect that the proposed methods
will be more competitive in numerical experiments.

The paper is structured as follows. In Sect. 2 we review some basic results on Lie
algebroids and Lie groupoids. In particular, we describe the prolongation of a Lie
groupoid (Saunders 2004), which has a double structure of Lie groupoid and Lie al-
gebroid. Then, we briefly expose the geometric structure of discrete unconstrained
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mechanics on Lie groupoids: Poincaré–Cartan sections, Legendre transformations
and so on. The main results of the paper appear in Sect. 3, where the geometric struc-
ture of discrete nonholonomic systems on Lie groupoids is considered. In particular,
given a discrete Lagrangian Ld : � → R on a Lie groupoid �, a constraint distribu-
tion Dc in the Lie algebroid E� of � and a discrete constraint submanifold Mc in �,
we obtain the nonholonomic discrete Euler–Lagrange equations from a discrete gen-
eralized Hölder’s principle (see Sect. 3.1). In addition, we characterize the regularity
of the nonholonomic system in terms of the nonholonomic Legendre transformations
and decompositions of the prolongation of the Lie groupoid. In the case when the
system is regular, we can define the nonholonomic evolution operator. An interesting
situation, studied in Sect. 3.4, is that of reversible discrete nonholonomic Lagrangian
systems, where the Lagrangian and the discrete constraint submanifold are invariants
with respect to the inversion of the Lie groupoid. The particular example of reversible
systems in the pair groupoid Q × Q was first studied in McLachlan and Perlmutter
(2006). We also define the discrete nonholonomic momentum map. We discuss sev-
eral examples, including their regularity and their reversibility, to give an idea of the
breadth and flexibility of the proposed formalism. The examples include:

– Discrete holonomic Lagrangian systems on a Lie groupoid, which are a gen-
eralization of the Shake algorithm for holonomic systems (Hairer et al. 2002;
Leimkuhler and Reich 2004; Marsden and West 2001).

– Discrete nonholonomic systems on the pair groupoid, recovering the equations first
considered in Cortés and Martínez (2001). An explicit example of this situation is
the discrete nonholonomic constrained particle.

– Discrete nonholonomic systems on Lie groups, where the equations that are ob-
tained are the so-called discrete Euler–Poincaré–Suslov equations (see Fedorov
and Zenkov 2005a). We remark that, although our equations coincide with those in
Fedorov and Zenkov (2005a), the technique developed in this paper is different to
the one in that paper. Two explicit examples which we describe here are the Suslov
system and the Chaplygin sleigh.

– Discrete nonholonomic Lagrangian systems on an action Lie groupoid. This exam-
ple is quite interesting since it allows us to discretize a well-known nonholonomic
LR-system: the Veselova system (see Veselov and Veselova 1989; see also Fe-
dorov and Jovanovic 2004). For this example, we obtain a discrete system that is
not reversible and we show that the system is regular in a neighborhood around the
manifold of units.

– Discrete nonholonomic Lagrangian systems on an Atiyah Lie groupoid. With this
example, we are able to discretize reduced systems, in particular, we concentrate
on the example of the discretization of the equations of motion of a rolling ball
without sliding on a rotating table with constant angular velocity.

– Discrete Chaplygin systems, which are regular systems (Ld,Mc,Dc) on the Lie
groupoid � ⇒ M , for which (α,β) ◦ iMc : Mc → M × M is a diffeomorphism
and ρ ◦ iDc : Dc → T M is an isomorphism of vector bundles, (α,β) being the
source and target of the Lie groupoid � and ρ being the anchor map of the Lie
algebroid E� . This example includes a discretization of the two-wheeled planar
mobile robot.

We conclude our paper with future lines of work.
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2 Discrete Unconstrained Lagrangian Systems on Lie Groupoids

2.1 Lie Algebroids

A Lie algebroid E over a manifold M is a real vector bundle τ : E → M together with
a Lie bracket [[·,·]] on the space Sec(τ ) of the global cross-sections of τ : E → M and
a bundle map ρ : E → T M , called the anchor map, such that if we also denote by
ρ : Sec(τ ) → X(M) the homomorphism of C∞(M)-modules induced by the anchor
map, then

[[X,f Y ]] = f [[X,Y ]] + ρ(X)(f )Y, (2.1)

for X,Y ∈ Sec(τ ) and f ∈ C∞(M) (see Mackenzie 2005).
If (E, [[·, ·]], ρ) is a Lie algebroid over M , then the anchor map ρ : Sec(τ ) →

X(M) is a homomorphism between the Lie algebras (Sec(τ ), [[·, ·]]) and (X(M),

[·, ·]). Moreover, one may define the differential d of E as follows:

dμ(X0, . . . ,Xk) =
k∑

i=0

(−1)iρ(Xi)
(
μ
(
X0, . . . , X̂i , . . . ,Xk

))

+
∑
i<j

(−1)i+jμ
([[Xi,Xj ]],X0, . . . , X̂i , . . . , X̂j , . . . ,Xk

)
, (2.2)

for μ ∈ Sec(∧kτ ∗) and X0, . . . ,Xk ∈ Sec(τ ). d is a cohomology operator, that is,
d2 = 0. In particular, if f : M → R is a real smooth function, then df (X) = ρ(X)f ,
for X ∈ Sec(τ ).

Trivial examples of Lie algebroids are a real Lie algebra of finite dimension (in
this case, the base space is a single point) and the tangent bundle of a manifold M .

On the other hand, let (E, [[·,·]], ρ) be a Lie algebroid of rank n (that is, dimEx =
dim τ−1(x) = n, for all x ∈ M) over a manifold M of dimension m and π : P → M

be a fibration. We consider the subset of E × T P

T EP = {
(a, v) ∈ E × T P

∣∣ (T π)(v) = ρ(a)
}
,

where T π : T P → T M is the tangent map to π . Denote by τπ : T EP → P the
map given by τπ (a, v) = τP (v), τP : T P → P being the canonical projection. If
dimP = p, one may prove that T EP is a vector bundle over P of rank n + p − m

with vector bundle projection τπ : T EP → P .
A section X̃ of τπ : T EP → P is said to be projectable if there exists a section X

of τ : E → M and a vector field U ∈ X(P ) which is π -projectable to the vector field
ρ(X) and such that X̃(p) = (X(π(p)),U(p)), for all p ∈ P . For such a projectable
section X̃, we will use the following notation X̃ ≡ (X,U). It is easy to prove that one
may choose a local basis of projectable sections of the space Sec(τπ ).

The vector bundle τπ : T EP → P admits a Lie algebroid structure ([[·, ·]]π ,ρπ ).
Indeed, if (X,U) and (Y,V ) are projectable sections, then

[[
(X,U), (Y,V )

]]π = ([[X,Y ]], [U,V ]), ρπ (X,U) = U.
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(T EP, [[·, ·]]π ,ρπ ) is the E-tangent bundle to P or the prolongation of E over
the fibration π : P → M (for more details, see de León et al. 2005).

Now, let (E, [[·, ·]], ρ) (resp., (E′, [[·, ·]]′, ρ′)) be a Lie algebroid over a manifold
M (resp., M ′) and suppose that Ψ : E → E′ is a vector bundle morphism over the
map Ψ0 : M → M ′. Then, the pair (Ψ,Ψ0) is said to be a Lie algebroid morphism if

d
(
(Ψ,Ψ0)

∗φ′)= (Ψ,Ψ0)
∗(d ′φ′), for all φ′ ∈ Sec(∧k(τ ′)∗) and for all k, (2.3)

where d (resp., d ′) is the differential of the Lie algebroid E (resp., E′). In the partic-
ular case when M = M ′ and Ψ0 = Id then (2.3) holds if and only if

[[Ψ ◦ X,Ψ ◦ Y ]]′ = Ψ [[X,Y ]], ρ′(Ψ X) = ρ(X), for X,Y ∈ Sec(τ )

(see de León et al. 2005).

2.2 Lie Groupoids

A Lie groupoid over a differentiable manifold M is a differentiable manifold � to-
gether with the following structural maps:

• A pair of submersions α : � → M , the source, and β : � → M, the target. The
maps α and β define the set of composable pairs

�2 = {
(g,h) ∈ � × � | β(g) = α(h)

}
.

• A multiplication m : �2 → �, to be denoted simply by m(g,h) = gh, such that
– α(gh) = α(g) and β(gh) = β(h).
– g(hk) = (gh)k.

• An identity section ε : M → � such that
– ε(α(g))g = g and gε(β(g)) = g.

• An inversion map i : � → �, to be simply denoted by i(g) = g−1, such that
– g−1g = ε(β(g)) and gg−1 = ε(α(g)).

A Lie groupoid � over a set M will be simply denoted by the symbol � ⇒ M .
On the other hand, if g ∈ �, then the left-translation by g and the right-translation

by g are the diffeomorphisms

lg : α−1(β(g)
)−→ α−1(α(g)

)
, h −→ lg(h) = gh,

rg : β−1(α(g)
)−→ β−1(β(g)

)
, h −→ rg(h) = hg.

Note that l−1
g = lg−1 and r−1

g = rg−1 .

A vector field X̃ on � is said to be left-invariant (resp., right-invariant) if it
is tangent to the fibers of α (resp., β) and X̃(gh) = (Thlg)(X̃h) (resp., X̃(gh) =
(Tgrh)(X̃(g))), for (g,h) ∈ �2.

Now, we will recall the definition of the Lie algebroid associated with �.
We consider the vector bundle τ : E� → M , whose fiber at a point x ∈ M is

(E�)x = Vε(x)α = Ker(Tε(x)α). It is easy to prove that there exists a bijection be-
tween the space Sec(τ ) and the set of left-invariant (resp., right-invariant) vector
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fields on �. If X is a section of τ : E� → M , the corresponding left-invariant (resp.,
right-invariant) vector field on � will be denoted

←−
X (resp.,

−→
X ), where

←−
X (g) = (Tε(β(g))lg)

(
X
(
β(g)

))
, (2.4)

−→
X (g) = −(Tε(α(g))rg)

(
(Tε(α(g))i)

(
X
(
α(g)

)))
, (2.5)

for g ∈ �. Using the above facts, we may introduce a Lie algebroid structure
([[·, ·]], ρ) on E� , which is defined by

←−−−−[[X,Y ]] = [←−
X ,

←−
Y
]
, ρ(X)(x) = (Tε(x)β)

(
X(x)

)
, (2.6)

for X,Y ∈ Sec(τ ) and x ∈ M . Note that

−−−−→[[X,Y ]] = −[−→X ,
−→
Y
]
,

[−→
X ,

←−
Y
]= 0, (2.7)

(for more details, see Coste et al. 1987; Mackenzie 2005).
Given two Lie groupoids � ⇒ M and �′ ⇒ M ′, a morphism of Lie groupoids is a

smooth map � : � → �′ such that

(g,h) ∈ �2 =⇒ (
�(g),�(h)

) ∈ (�′)2,

and

�(gh) = �(g)�(h).

A morphism of Lie groupoids � : � → �′ induces a smooth map �0 : M → M ′ in
such a way that

α′ ◦ � = �0 ◦ α, β ′ ◦ � = �0 ◦ β, � ◦ ε = ε′ ◦ �0,

α, β and ε (resp., α′, β ′ and ε′) being the source, the target and the identity section
of � (resp., �′).

Suppose that (�,�0) is a morphism between the Lie groupoids � ⇒ M and �′ ⇒
M ′ and that τ : E� → M (resp., τ ′ : E�′ → M ′) is the Lie algebroid of � (resp., �′).
Then, if x ∈ M we may consider the linear map Ex(�) : (E�)x → (E�′)�0(x) defined
by

Ex(�)(vε(x)) = (Tε(x)�)(vε(x)), for vε(x) ∈ (E�)x. (2.8)

In fact, we have that the pair (E(�),�0) is a morphism between the Lie algebroids
τ : E� → M and τ ′ : E�′ → M ′ (see Mackenzie 2005).

Trivial examples of Lie groupoids are Lie groups and the pair or banal groupoid
M × M , M being an arbitrary smooth manifold. The Lie algebroid of a Lie group
� is just the Lie algebra g of �. On the other hand, the Lie algebroid of the pair (or
banal) groupoid M × M is the tangent bundle T M to M .

Apart from the Lie algebroid E� associated with a Lie groupoid � ⇒ M , other
interesting Lie algebroids associated with � are the following ones:
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The E�-Tangent Bundle to E∗
� Let T E�E∗

� be the E�-tangent bundle to E∗
� , that

is,

T E�

Υx
E∗

� = {
(vx,XΥx ) ∈ (E�)x × TΥx E

∗
�

∣∣ (TΥx τ
∗)(XΥx ) = (Tε(x)β)(vx)

}
for Υx ∈ (E∗

�)x, with x ∈ M. As we know, T E�E∗
� is a Lie algebroid over E∗

� .
We may introduce the canonical section Θ of the vector bundle (T E�E∗

�)∗ → E∗
�

as follows:

Θ(Υx)(ax,XΥx ) = Υx(ax),

for Υx ∈ (E∗
�)x and (ax,XΥx ) ∈ T E�

Υx
E∗

� . Θ is called the Liouville section associated
with E� . Moreover, we define the canonical symplectic section Ω associated with
E� by Ω = −dΘ , where d is the differential on the Lie algebroid T E�E∗

� → E∗
� . It

is easy to prove that Ω is nondegenerate and closed, that is, it is a symplectic section
of T E�E∗

� (see de León et al. 2005).
Now, if Z is a section of τ : E� → M , then there is a unique vector field Z∗c on

E∗
� , the complete lift of X to E∗

� , satisfying the two following conditions:

(i) Z∗c is τ ∗-projectable on ρ(Z)

(ii) Z∗c(X̂) = ̂[[Z,X]]
for X ∈ Sec(τ ) (see de León et al. 2005). Here, if X is a section of τ : E� → M , then
X̂ is the linear function X̂ ∈ C∞(E∗) defined by

X̂
(
a∗)= a∗(X(τ ∗(a∗))), for all a∗ ∈ E∗.

Using the vector field Z∗c, one may introduce the complete lift Z∗c of Z as the section
of τ τ∗ : T E�E∗

� → E∗
� defined by

Z∗c(a∗)= (
Z
(
τ ∗(a∗)),Z∗c

(
a∗)), for a∗ ∈ E∗. (2.9)

Z∗c is just the Hamiltonian section of Ẑ with respect to the canonical symplectic
section Ω associated with E� . In other words,

iZ∗cΩ = dẐ, (2.10)

where d is the differential of the Lie algebroid τ τ∗ : T E�E∗
� → E∗

� (for more details,
see de León et al. 2005).

The Lie Algebroid τ̃� : T �� → � Let T �� be the Whitney sum Vβ ⊕� V α of the
vector bundles Vβ → � and V α → �, where Vβ (resp., V α) is the vertical bundle
of β (resp., α). Then, the vector bundle τ̃� : T �� ≡ Vβ ⊕� V α → � admits a Lie
algebroid structure ([[·, ·]]T ��,ρT ��). The anchor map ρT �� is given by

(
ρT ��

)
(Xg,Yg) = Xg + Yg

and the Lie bracket [[·, ·]]T �� on the space Sec(̃τ�) is characterized for the following
relation [[(−→

X ,
←−
Y
)
,
(−→
X′,

←−
Y ′ )]]T �� = (−−−−−−→[[

X,X′]],←−−−−[[
Y,Y ′]]),

for X,Y,X′, Y ′ ∈ Sec(τ ) (for more details, see Marrero et al. 2006).
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On other hand, if X is a section of τ : E� → M , one may define the sections
X(1,0),X(0,1) (the β and α-lifts) and X(1,1) (the complete lift) of X to τ̃� : T �� → �

as follows:

X(1,0)(g) = (−→
X (g),0g

)
, X(0,1)(g) = (

0g,
←−
X (g)

)
, and

X(1,1)(g) = (−−→
X (g),

←−
X (g)

)
.

We have that
[[
X(1,0), Y (1,0)

]]T �� = −[[X,Y ]](1,0),
[[
X(0,1), Y (1,0)

]]T �� = 0,

[[
X(0,1), Y (0,1)

]]T �� = [[X,Y ]](0,1),

and, as a consequence,

[[
X(1,1), Y (1,0)

]]T �� = [[X,Y ]](1,0),
[[
X(1,1), Y (0,1)

]]T �� = [[X,Y ]](0,1),

[[
X(1,1), Y (1,1)

]]T �� = [[X,Y ]](1,1).

Now, if g,h ∈ � one may introduce the linear monomorphisms (1,0)
h : (E�)∗α(h) →

(T �
h �)∗ ≡ V ∗

h β ⊕ V ∗
h α and (0,1)

g : (E�)∗
β(g)

→ (T �
g �)∗ ≡ V ∗

g β ⊕ V ∗
g α given by

γ
(1,0)
h (Xh,Yh) = γ

(
Th(i ◦ rh−1)(Xh)

)
, (2.11)

γ
(0,1)
g (Xg,Yg) = γ

(
(Tglg−1)(Yg)

)
, (2.12)

for (Xg,Yg) ∈ T �
g � and (Xh,Yh) ∈ T �

h �.

Thus, if μ is a section of τ ∗ : E∗
� → M , one may define the corresponding lifts

μ(1,0) and μ(0,1) as the sections of τ̃�
∗ : (T ��)∗ → � given by

μ(1,0)(h) = μ
(1,0)
h , for h ∈ �,

μ(0,1)(g) = μ
(0,1)
g , for g ∈ �.

Note that if g ∈ � and {XA} (resp., {YB}) is a local basis of Sec(τ ) on an open
subset U (resp., V ) of M such that α(g) ∈ U (resp., β(g) ∈ V ), then {X(1,0)

A ,Y
(0,1)
B }

is a local basis of Sec(̃τ�) on the open subset α−1(U)∩β−1(V ). In addition, if {XA}
(resp., {YB}) is the dual basis of {XA} (resp., {YB}), then {(XA)(1,0), (YB)(0,1)} is the
dual basis of {X(1,0)

A ,Y
(0,1)
B }.

2.3 Discrete Unconstrained Lagrangian Systems

In this section, we recall some results and constructions of our paper (Marrero et al.
2006) where we discussed the geometrical framework for discrete Mechanics on Lie
groupoids, giving a unified point of view of several different sets of discrete equa-
tions such as the classical discrete Euler–Lagrange equations and the discrete Euler–
Poincaré equations, and proposing new equations, such as the discrete Lagrange–
Poincaré equations. We will extensively use these constructions in Sect. 3.
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A discrete unconstrained Lagrangian system on a Lie groupoid consists of a Lie
groupoid � ⇒ M (the discrete space) and a discrete Lagrangian Ld : � → R.

2.3.1 Discrete Unconstrained Euler–Lagrange Equations

An admissible sequence of order N on the Lie groupoid � is an element (g1, . . . , gN)

of �N ≡ � × · · · × � such that (gk, gk+1) ∈ �2, for k = 1, . . . ,N − 1.
An admissible sequence (g1, . . . , gN) of order N is a solution of the discrete

unconstrained Euler–Lagrange equations for Ld if

N−1∑
k=1

do[Ld ◦ lgk
+ Ld ◦ rgk+1 ◦ i](ε(xk)

)
|(E�)xk

= 0,

where β(gk) = α(gk+1) = xk and do is the standard differential on �, that is, the
differential of the Lie algebroid τ� : T � → � (see Marrero et al. 2006).

The discrete unconstrained Euler–Lagrange operator DDELLd : �2 → E∗
� is

given by

(DDELLd)(g,h) = do[Ld ◦ lg + Ld ◦ rh ◦ i](ε(x)
)
|(E�)x

,

for (g,h) ∈ �2, with β(g) = α(h) = x ∈ M (see Marrero et al. 2006).
Thus, an admissible sequence (g1, . . . , gN) of order N is a solution of the discrete

unconstrained Euler–Lagrange equations if and only if

(DDELLd)(gk, gk+1) = 0, for k = 1, . . . ,N − 1.

2.3.2 Discrete Poincaré–Cartan Sections

Consider the Lie algebroid τ̃� : T �� ≡ Vβ ⊕� V α → �, and define the Poincaré–
Cartan 1-sections Θ−

Ld
,Θ+

Ld
∈ Sec((τ̃�)∗) as follows

Θ−
Ld

(g)(Xg,Yg) = −Xg(Ld), Θ+
Ld

(g)(Xg,Yg) = Yg(Ld), (2.13)

for each g ∈ � and (Xg,Yg) ∈ T �
g � ≡ Vgβ ⊕ Vgα.

Since dLd = Θ+
Ld

− Θ−
Ld

and so, using d2 = 0, it follows that dΘ+
Ld

= dΘ−
Ld

. This

means that there exists a unique 2-section ΩLd = −dΘ+
Ld

= −dΘ−
Ld

, which will be
called the Poincaré–Cartan 2-section. This 2-section will be important to study the
symplectic character of the discrete unconstrained Euler–Lagrange equations.

If g is an element of � such that α(g) = x and β(g) = y and {XA} (resp., {YB})
is a local basis of Sec(τ ) on the open subset U (resp., V ) of M , with x ∈ U (resp.,
y ∈ V ), then on α−1(U) ∩ β−1(V ) we have that

Θ−
Ld

= −−→
XA(L)

(
XA

)(1,0)
, Θ+

Ld
= ←−

YB(L)
(
YB
)(0,1)

,

ΩLd = −−→
XA

(←−
YB(Ld)

)(
XA

)(1,0) ∧ (YB
)(0,1)

,

(2.14)

where {XA} (resp., {YB}) is the dual basis of {XA} (resp., {YB}) (for more details,
see Marrero et al. 2006).
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2.3.3 Discrete Unconstrained Lagrangian Evolution Operator

Let Υ : � → � be a smooth map such that:

– graph(Υ ) ⊆ �2, that is, (g,Υ (g)) ∈ �2, for all g ∈ � (Υ is a second-order opera-
tor) and

– (g,Υ (g)) is a solution of the discrete unconstrained Euler–Lagrange equations, for
all g ∈ �, that is

(DDELLd)
(
g,Υ (g)

)= 0, for all g ∈ �.

In such a case
←−
X (g)(Ld) − −→

X
(
Υ (g)

)
(Ld) = 0, (2.15)

for every section X of τ : E� → M and every g ∈ �. The map Υ : � → � is called a
discrete flow or a discrete unconstrained Lagrangian evolution operator for Ld.

Now, let Υ : � → � be a second-order operator. Then, the prolongation T Υ :
T �� ≡ Vβ ⊕� V α → T �� ≡ Vβ ⊕� V α of Υ is the Lie algebroid morphism over
Υ : � → � defined as follows (see Marrero et al. 2006):

TgΥ (Xg,Yg) = ((
Tg(rgΥ (g) ◦ i)

)
(Yg), (TgΥ )(Xg)

+ (TgΥ )(Yg) − Tg(rgΥ (g) ◦ i)(Yg)
)
, (2.16)

for all (Xg,Yg) ∈ T �
g � ≡ Vgβ ⊕ Vgα. Moreover, from (2.4), (2.5) and (2.16), we

obtain that

TgΥ
(−→
X (g),

←−
Y (g)

)= (−−→
Y
(
Υ (g)

)
, (TgΥ )

(−→
X (g) + ←−

Y (g)
)+ −→

Y
(
Υ (g)

))
, (2.17)

for all X,Y ∈ Sec(τ ).
Using (2.16), one may prove that (see Marrero et al. 2006):

(i) The map Υ is a discrete unconstrained Lagrangian evolution operator for Ld if
and only if (T Υ,Υ )∗Θ−

Ld
= Θ+

Ld
.

(ii) The map Υ is a discrete unconstrained Lagrangian evolution operator for Ld if
and only if (T Υ,Υ )∗Θ−

Ld
− Θ−

Ld
= dLd.

(iii) If Υ is discrete unconstrained Lagrangian evolution operator, then

(T Υ,Υ )∗ΩLd = ΩLd .

2.3.4 Discrete Unconstrained Legendre Transformations

Given a Lagrangian Ld : � → R we define the discrete unconstrained Legendre trans-
formations F

−Ld : � → E∗
� and F

+Ld : � → E∗
� by (see Marrero et al. 2006)

(
F

−Ld
)
(h)(vε(α(h))) = −vε(α(h))(Ld ◦ rh ◦ i), for vε(α(h)) ∈ (E�)α(h),(

F
+Ld

)
(g)(vε(β(g))) = vε(β(g))(Ld ◦ lg), for vε(β(g)) ∈ (E�)β(g).
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Now, we introduce the prolongations T �
F

−Ld : T �� ≡ Vβ ⊕� V α → T E�E∗
� and

T �
F

+Ld : T �� ≡ Vβ ⊕� V α → T E�E∗
� as follows

T �
h F

−Ld(Xh,Yh) = (
Th(i ◦ rh−1)(Xh),

(
ThF

−Ld
)
(Xh) + (

ThF
−Ld

)
(Yh)

)
, (2.18)

T �
g F

+Ld(Xg,Yg) = (
(Tglg−1)(Yg),

(
TgF

+Ld
)
(Xg) + (

TgF
+Ld

)
(Yg)

)
, (2.19)

for all h,g ∈ � and (Xh,Yh) ∈ T �
h � ≡ Vhβ ⊕ Vhα and (Xg,Yg) ∈ T �

g � ≡ Vgβ ⊕
Vgα (see Marrero et al. 2006). We observe that the discrete Poincaré–Cartan 1-
sections and 2-section are related to the canonical Liouville section of (T E�E∗

�)∗ →
E∗

� and the canonical symplectic section of ∧2(T E�E∗
�)∗ → E∗

� by pull-back under
the discrete unconstrained Legendre transformations, that is (see Marrero et al. 2006),

(
T �

F
−Ld,F

−Ld
)∗

Θ = Θ−
Ld

,
(
T �

F
+Ld,F

+Ld
)∗

Θ = Θ+
Ld

, (2.20)
(
T �

F
−Ld,F

−Ld
)∗

Ω = ΩLd ,
(
T �

F
+Ld,F

+Ld
)∗

Ω = ΩLd . (2.21)

2.3.5 Discrete Regular Lagrangians

A discrete Lagrangian Ld : � → R is said to be regular if the Poincaré–Cartan 2-
section ΩLd is nondegenerate on the Lie algebroid τ̃� : T �� ≡ Vβ ⊕� V α → �

(see Marrero et al. 2006). In Marrero et al. (2006), we obtained some necessary and
sufficient conditions for a discrete Lagrangian on a Lie groupoid � to be regular that
we summarize as follows:

Ld is regular

⇐⇒ The Legendre transformation F
+Ld is a local diffeomorphism

⇐⇒ The Legendre transformation F
−Ld is a local diffeomorphism.

Locally, we deduce that Ld is regular if and only if for every g ∈ � and every local
basis {XA} (resp., {YB}) of Sec(τ ) on an open subset U (resp., V ) of M such that
α(g) ∈ U (resp., β(g) ∈ V ) we have that the matrix (

−→
X A(

←−
Y B(Ld))) is regular on

α−1(U) ∩ β−1(V ).
Now, let Ld : � → R be a discrete Lagrangian and g be a point of �. We define

the R-bilinear map G
Ld
g : (E�)α(g) ⊕ (E�)β(g) → R given by

GLd
g (a, b) = ΩLd(g)

((−Tε(α(g))(rg ◦ i)(a),0
)
,
(
0, (Tε(β(g))lg)(b)

))
. (2.22)

Then, using (2.14), we have that

Proposition 2.1 The discrete Lagrangian Ld : � → R is regular if and only if G
Ld
g

is nondegenerate, for all g ∈ �, that is,

GLd
g (a, b) = 0, for all b ∈ (E�)β(g) ⇒ a = 0

(resp., G
Ld
g (a, b) = 0, for all a ∈ (E�)α(g) ⇒ b = 0).
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On the other hand, if Ld : � → R is a discrete Lagrangian on a Lie groupoid �,
then we have that

τ ∗ ◦ F
−Ld = α, τ ∗ ◦ F

+Ld = β,

where τ ∗ : E∗
� → M is the vector bundle projection. Using these facts, (2.18) and

(2.19), we deduce the following result.

Proposition 2.2 Let Ld : � → R be a discrete Lagrangian function. Then, the fol-
lowing conditions are equivalent:

(i) Ld is regular.
(ii) The linear map T �

h F
−Ld : Vhβ ⊕ Vhα → T E�

F−Ld(h)
E∗

� is a linear isomorphism,
for all h ∈ �.

(iii) The linear map T �
g F

+Ld : Vgβ ⊕Vgα → T E�

F+Ld(g)
E�

∗ is a linear isomorphism,
for all g ∈ �.

Finally, let Ld : � → R be a regular discrete Lagrangian function and (g0, h0) ∈
� × � be a solution of the discrete Euler–Lagrange equations for Ld. Then, one may
prove (see Marrero et al. 2006) that there exist two open subsets U0 and V0 of �, with
g0 ∈ U0 and h0 ∈ V0, and there exists a (local) discrete unconstrained Lagrangian
evolution operator ΥLd : U0 → V0 such that:

(i) ΥLd(g0) = h0.
(ii) ΥLd is a diffeomorphism.

(iii) ΥLd is unique, that is, if U ′
0 is an open subset of �, with g0 ∈ U ′

0, and Υ ′
Ld

:
U ′

0 → � is a (local) discrete Lagrangian evolution operator, then

ΥLd|U0∩U ′
0
= Υ ′

Ld|U0∩U ′
0
.

3 Discrete Nonholonomic (or Constrained) Lagrangian Systems on Lie
Groupoids

In this section we find the discrete nonholonomic equations applying a discrete ver-
sion of Hölder’s principle (see Arnold 1978). We also discuss the existence of non-
holonomic evolution operators giving characterizations which are the discrete ver-
sions of typical conditions for a continuous nonholonomic system (see Bates and
Śniatycki 1992; Cortés et al. 2005; de León et al. 1997; de León and Martín de Diego
1996 and references therein). Finally we also study the reversibility of this evolution
operator and the discrete nonholonomic momentum equation. With this framework, it
would be possible to develop geometric integrators for the (reduced or not) equations
of a continuous nonholonomic system.

3.1 Discrete Generalized Hölder’s Principle

Let � be a Lie groupoid with structural maps

α,β : � → M, ε : M → �, i : � → �, m : �2 → �.
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Denote by τ : E� → M the Lie algebroid associated to �. Suppose that the rank of
E� is n and that the dimension of M is m.

A generalized discrete nonholonomic (or constrained) Lagrangian system on � is
determined by:

– A regular discrete Lagrangian Ld : � → R.
– A constraint distribution, Dc, which is a vector subbundle of the bundle E� →

M of admissible directions. We will denote by τDc : Dc → M the vector bundle
projection and by iDc : Dc → E� the canonical inclusion.

– A discrete constraint embedded submanifold Mc of �, such that dimMc =
dimDc = m + r , with r ≤ n. We will denote by iMc : Mc → � the canonical
inclusion.

Remark 3.1 Let Ld : � → R be a regular discrete Lagrangian on a Lie groupoid �

and Mc be a submanifold of � such that ε(M) ⊆ Mc. Then, dimMc = m + r , with
0 ≤ r ≤ m. Moreover, for every x ∈ M , we may introduce the subspace Dc(x) of
E�(x) given by

Dc(x) = Tε(x)Mc ∩ E�(x).

Since the linear map Tε(x)α : Tε(x)Mc → TxM is an epimorphism, we deduce that
dimDc(x) = r . In fact, Dc =⋃

x∈M Dc(x) is a vector subbundle of E� (over M) of
rank r . Thus, we may consider the discrete nonholonomic system (Ld,Mc,Dc) on
the Lie groupoid �.

For g ∈ � fixed, we consider the following set of admissible sequences of order
N :

CN
g = {

(g1, . . . , gN) ∈ �N
∣∣ (gk, gk+1) ∈ �2,

for k = 1, . . . ,N − 1 and g1 . . . gN = g
}
.

Given a tangent vector at (g1, . . . , gN) to the manifold CN
g , we may write it as the tan-

gent vector at t = 0 of a curve in CN
g , t ∈ (−ε, ε) ⊆ R → c(t) which passes through

(g1, . . . , gN) at t = 0. This type of curves is of the form

c(t) = (
g1h1(t), h

−1
1 (t)g2h2(t), . . . , h

−1
N−2(t)gN−1hN−1(t), h

−1
N−1(t)gN

)
,

where hk(t) ∈ α−1(β(gk)), for all t, and hk(0) = ε(β(gk)) for k = 1, . . . ,N − 1.
Therefore, we may identify the tangent space to CN

g at (g1, . . . , gN) with

T(g1,g2,...,gN )CN
g ≡ {

(v1, v2, . . . , vN−1)
∣∣ vk ∈ (E�)xk

and

xk = β(gk),1 ≤ k ≤ N − 1
}
.

Observe that each vk is the tangent vector to the curve hk at t = 0.
The curve c is called a variation of (g1, . . . , gN) and (v1, v2, . . . , vN−1) is called

an infinitesimal variation of (g1, . . . , gN).
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Now, we define the discrete action sum associated to the discrete Lagrangian Ld :
� → R as

SLd : CN
g −→ R

(g1, . . . , gN) �−→
N∑

k=1

Ld(gk).

We define the variation δSLd : T(g1,...,gN )CN
g → R as

δSLd(v1, . . . , vN−1)

= d

dt

∣∣∣∣
t=0

SLd
(
c(t)

)

= d

dt

∣∣∣∣
t=0

{
Ld
(
g1h1(t)

)+ Ld
(
h−1

1 (t)g2h2(t)
)+ · · ·

+ Ld
(
h−1

N−2(t)gN−1hN−1(t)
)+ Ld

(
h−1

N−1(t)gN

)}

=
N−1∑
k=1

(
do(Ld ◦ lgk

)
(
ε(xk)

)
(vk) + do(Ld ◦ rgk+1 ◦ i)

(
ε(xk)

)
(vk)

)
,

where do is the standard differential on �, i.e., do is the differential of the Lie alge-
broid τ� : T � → �. It is obvious from the last expression that the definition of vari-
ation δSLd does not depend on the choice of variations c of the sequence g whose
infinitesimal variation is (v1, . . . , vN−1).

Next, we will introduce the subset (Vc)g of T(g1,...,gN )CN
g defined by

(Vc)g = {
(v1, . . . , vN−1) ∈ T(g1,...,gN )CN

g

∣∣ ∀k ∈ {1, . . . ,N − 1}, vk ∈ Dc
}
.

Then, we will say that a sequence in CN
g satisfying the constraints determined by

Mc is a Hölder-critical point of the discrete action sum SLd if the restriction of
δSLd to (Vc)g vanishes, i.e.,

δSLd|(Vc)g = 0.

Definition 3.2 (Discrete Hölder’s Principle) Given g ∈ �, a sequence (g1, . . . , gN)

∈ CN
g such that gk ∈ Mc, 1 ≤ k ≤ N , is a solution of the discrete nonholonomic La-

grangian system determined by (Ld,Mc,Dc) if and only if (g1, . . . , gN) is a Hölder-
critical point of SLd.

Remark 3.3 In the particular case when � is the pair groupoid M × M , Definition
3.2 is the discrete version of Hölder’s principle for an standard Lagrangian sys-
tem subjected to nonholonomic constraints (see Arnold 1978). This kind of sys-
tem is specified by a Lagrangian function L : T M → R and a nonintegrable dis-
tribution D on M . Hölder’s principle establishes that a curve σ : [t0, t1] → M sat-
isfying the constraints (σ̇ (t) ∈ Dc(t)) is a motion of the given nonholonomic La-
grangian system if and only if it is a critical point (in the sense of Hölder) of the
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action functional S(σ ) = ∫ t1
t0

L(σ(t), σ̇ (t))dt , that is, dS(σ )|Vσ
= 0, where Vσ =

{X ∈ Tσ C2(t0, t1, q0, q1) | X(σ(t)) ∈ Dσ(t) ∀t ∈ [t0, t1]} and C2(t0, t1, q0, q1) = {σ :
[t0, t1] → M | σ ∈ C2, σ (t0) = q0, σ (t1) = q1}.

If (g1, . . . , gN) ∈ CN
g ∩ (Mc × · · · × Mc), then (g1, . . . , gN) is a solution of the

nonholonomic discrete Lagrangian system if and only if

N−1∑
k=1

(
do(Ld ◦ lgk

) + do(Ld ◦ rgk+1 ◦ i)
)(

ε(xk)
)
|(Dc)xk

= 0,

where β(gk) = α(gk+1) = xk. For N = 2, we obtain that (g,h) ∈ �2 ∩ (Mc × Mc)

(with β(g) = α(h) = x) is a solution if

do(Ld ◦ lg + Ld ◦ rh ◦ i)
(
ε(x)

)
|(Dc)x

= 0.

These equations will be called the discrete nonholonomic Euler–Lagrange equa-
tions for the system (Ld,Mc,Dc).

Let (g1, . . . , gN) be an element of CN
g . Suppose that β(gk) = α(gk+1) = xk ,

1 ≤ k ≤ N − 1, and that {XAk} = {Xak,Xαk} is a local adapted basis of Sec(τ ) on an
open subset Uk of M , with xk ∈ Uk . Here, {Xak}1≤a≤r is a local basis of Sec(τDc)

and, thus, {Xαk}r+1≤α≤n is a local basis of the space of sections of the vector sub-
bundle τD0

c
: D0

c → M , where D0
c is the annihilator of Dc and {Xak,Xαk} is the dual

basis of {Xak,Xαk}. Then, the sequence (g1, . . . , gN) is a solution of the discrete non-
holonomic equations if (g1, . . . , gN) ∈ Mc × · · · ×Mc and it satisfies the following
closed system of difference equations

0 =
N−1∑
k=1

[←−
Xak(gk)(Ld) − −→

Xak(gk+1)(Ld)
]

=
N−1∑
k=1

[〈
dLd, (Xak)

(0,1)
〉
(gk) − 〈

dLd, (Xak)
(1,0)

〉
(gk+1)

]
,

for 1 ≤ a ≤ r , d being the differential of the Lie algebroid πτ : T �� ≡ Vβ ⊕� V α →
�. For N = 2 we obtain that (g,h) ∈ �2 ∩ (Mc ×Mc) (with β(g) = α(h) = x) is a
solution if

←−
Xa(g)(Ld) − −→

Xa(h)(Ld) = 0,

where {Xa} is a local basis of Sec(τDc) on an open subset U of M such that x ∈ U .
Next, we describe an alternative version of these difference equations. First ob-

serve that using the Lagrange multipliers the discrete nonholonomic equations are
rewritten as

do[Ld ◦ lg + Ld ◦ rh ◦ i](ε(x)
)
(v) = λαXα(x)(v),

for v ∈ (E�)x , with (g,h) ∈ �2 ∩ (Mc × Mc) and β(g) = α(h) = x. Here, {Xα} is
a local basis of sections of the annihilator D0

c .
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Thus, the discrete nonholonomic equations are:

←−
Y (g)(Ld) − −→

Y (h)(Ld) = λα

(
Xα
)
(Y )|β(g) (g,h) ∈ �2 ∩ (Mc ×Mc),

for all Y ∈ Sec(τ ) or, alternatively,
〈
dLd − λα(Xα)(0,1), Y (0,1)

〉
(g) − 〈

dLd, Y
(1,0)

〉
(h) = 0 (g,h) ∈ �2 ∩ (Mc ×Mc),

for all Y ∈ Sec(τ ).
On the other hand, we may define the discrete nonholonomic Euler–Lagrange

operator DDEL(Ld,Mc,Dc) : �2 ∩ (Mc ×Mc) →D∗
c as follows

DDEL(Ld,Mc,Dc)(g,h) = do[Ld ◦ lg + Ld ◦ rh ◦ i](ε(x)
)
|(Dc)x

,

for (g,h) ∈ �2 ∩ (Mc ×Mc), with β(g) = α(h) = x ∈ M .
Then, we may characterize the solutions of the discrete nonholonomic equations

as the sequences (g1, . . . , gN), with (gk, gk+1) ∈ �2 ∩ (Mc × Mc), for each k ∈
{1, . . . ,N − 1}, and

DDEL(Ld,Mc,Dc)(gk, gk+1) = 0.

Remark 3.4

(i) The set �2 ∩ (Mc ×Mc) is not, in general, a submanifold of Mc ×Mc.
(ii) Suppose that αMc : Mc → M and βMc : Mc → M are the restrictions to Mc

of α : � → M and β : � → M , respectively. If αMc and βMc are submersions,
then �2 ∩ (Mc ×Mc) is a submanifold of Mc ×Mc of dimension m + 2r .

3.2 Discrete Nonholonomic Legendre Transformations

Let (Ld,Mc,Dc) be a discrete nonholonomic Lagrangian system. We define the dis-
crete nonholonomic Legendre transformations

F
−(Ld,Mc,Dc) :Mc →D∗

c and F
+(Ld,Mc,Dc) : Mc → D∗

c

as follows:

F
−(Ld,Mc,Dc)(h)(vε(α(h))) = −vε(α(h))(Ld ◦ rh ◦ i),

for vε(α(h)) ∈ Dc
(
α(h)

)
, (3.1)

F
+(Ld,Mc,Dc)(g)(vε(β(g))) = vε(β(g))(Ld ◦ lg),

for vε(β(g)) ∈ Dc
(
β(g)

)
. (3.2)

If F
−Ld : � → E∗

� and F
+Ld : � → E∗

� are the standard Legendre transformations
associated with the Lagrangian function Ld and i∗Dc

: E∗
� → D∗

c is the dual map of
the canonical inclusion iDc :Dc → E� , then

F
−(Ld,Mc,Dc) = i∗Dc

◦ F
−Ld ◦ iMc ,

F
+(Ld,Mc,Dc) = i∗Dc

◦ F
+Ld ◦ iMc .

(3.3)
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Remark 3.5

(i) Note that

τ ∗
Dc

◦ F
−(Ld,Mc,Dc) = αMc , τ ∗

Dc
◦ F

+(Ld,Mc,Dc) = βMc . (3.4)

(ii) If DDEL(Ld,Mc,Dc) is the discrete nonholonomic Euler–Lagrange operator,
then

DDEL(Ld,Mc,Dc)(g,h) = F
+(Ld,Mc,Dc)(g) − F

−(Ld,Mc,Dc)(h),

for (g,h) ∈ �2 ∩ (Mc ×Mc).

On the other hand, since by assumption Ld : � → R is a regular discrete La-
grangian function, we have that the discrete Poincaré–Cartan 2-section ΩLd is sym-
plectic on the Lie algebroid τ̃� : T �� → �. Moreover, the regularity of L is equiva-
lent to the fact that the Legendre transformations F

−Ld and F
+Ld to be local diffeo-

morphisms (see Sect. 2.3.5).
Next, we will present necessary and sufficient conditions for the discrete nonholo-

nomic Legendre transformations associated with the system (Ld,Mc,Dc) to be local
diffeomorphisms.

Let F be the vector subbundle (over �) of τ̃� : T �� → � whose fiber at the point
h ∈ � is

Fh = {
γ

(1,0)
h

∣∣ γ ∈ Dc
(
α(h)

)0}0 ⊆ T �
h �.

In other words,

F 0
h = {

γ
(1,0)
h

∣∣ γ ∈ Dc
(
α(h)

)0}
.

Note that the rank of F is n + r .
We also consider the vector subbundle F̄ (over �) of τ̃� : T �� → � of rank n + r

whose fiber at the point g ∈ � is

F̄g = {
γ (0,1)
g

∣∣ γ ∈Dc
(
β(g)

)0}0 ⊆ T �
g �.

Now, let ρT �� : T �� → T � be the anchor map of the Lie algebroid τ̃� :
T �� → �. Then, we will denote by Hh the subspace of T �

h � given by

Hh = (
ρT ��

)−1
(ThMc) ∩ Fh, for h ∈ Mc.

In a similar way, for every g ∈ Mc we will introduce the subspace H̄g of T �
g � de-

fined by

H̄g = (
ρT ��

)−1
(TgMc) ∩ F̄g.

On the other hand, let h be a point of Mc and G
Ld
h : (E�)α(h) ⊕ (E�)β(h) → R

be the R-bilinear map given by (2.22). We will denote by (
←−
E �)

Mc
h the subspace of

(E�)β(h) defined by

(←−
E �

)Mc
h

= {
b ∈ (E�)β(h)

∣∣ (Tε(β(h))lh)(b) ∈ ThMc
}
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and by G
Ldc
h : (Dc)α(h) × (

←−
E �)

Mc
h → R the restriction to (Dc)α(h) × (

←−
E �)

Mc
h of

the R-bilinear map G
Ld
h .

In a similar way, if g is a point of � we will consider the subspace (
−→
E �)

Mc
g of

(E�)α(g) defined by

(−→
E �

)Mc
g

= {
a ∈ (E�)α(g)

∣∣ (Tε(α(g))(rg ◦ i)
)
(a) ∈ TgMc

}

and the restriction Ḡ
Ldc
g : (−→E �)

Mc
g × (Dc)β(g) → R of G

Ld
g to the space (

−→
E �)

Mc
g ×

(Dc)β(g).

Then, we have the following result.

Theorem 3.6 If (Ld,Mc,Dc) is a discrete nonholonomic Lagrangian system, the
following conditions are equivalent:

(i) The discrete nonholonomic Legendre transformation F
−(Ld,Mc,Dc) (resp.,

F
+(Ld,Mc,Dc)) is a local diffeomorphism.

(ii) For every h ∈ Mc (resp., g ∈Mc)

(
ρT ��

)−1
(ThMc) ∩ F⊥

h = {0}

(resp., (ρT ��)−1(TgMc) ∩ F̄⊥
g = {0}).

(iii) For every h ∈ Mc (resp., g ∈ Mc) the dimension of the vector subspace Hh

(resp., H̄g) is 2r and the restriction to the vector subbundle H (resp., H̄) of the
Poincaré–Cartan 2-section ΩLd is nondegenerate.

(iv) For every h ∈ Mc (resp., g ∈Mc)

{
b ∈ (←−E �

)Mc
h

∣∣GLdc
h (a, b) = 0, ∀a ∈ (Dc)α(h)

}= {0}

(resp., {a ∈ (
−→
E �)

Mc
g | GLdc

g (a, b) = 0, ∀b ∈ (Dc)β(g)} = {0}).

Proof The proof of this theorem may be found in the Appendix of this paper. �

3.3 Nonholonomic Evolution Operators and Regular Discrete Nonholonomic
Lagrangian Systems

First of all, we introduce the definition of a nonholonomic evolution operator.

Definition 3.7 Let (Ld,Mc,Dc) be a discrete nonholonomic Lagrangian system and
Υnh : Mc → Mc be a differentiable map. Υnh is said to be a discrete nonholonomic
evolution operator for (Ld,Mc,Dc) if:

(i) graph(Υnh) ⊆ �2, that is, (g,Υnh(g)) ∈ �2, for all g ∈Mc and
(ii) (g,Υnh(g)) is a solution of the discrete nonholonomic equations, for all g ∈Mc,

that is,

do(Ld ◦ lg + Ld ◦ rΥnh(g) ◦ i)
(
ε
(
β(g)

))
|Dc(β(g))

= 0, for all g ∈ Mc.
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Remark 3.8 If Υnh : Mc → Mc is a differentiable map then, from (3.1), (3.2)
and (3.4), we deduce that Υnh is a discrete nonholonomic evolution operator for
(Ld,Mc,Dc) if and only if

F
−(Ld,Mc,Dc) ◦ Υnh = F

+(Ld,Mc,Dc).

Now, we will introduce the notion of a regular discrete nonholonomic Lagrangian
system.

Definition 3.9 A discrete nonholonomic Lagrangian system (Ld,Mc,Dc) is said to
be regular if the discrete nonholonomic Legendre transformations F

−(Ld,Mc,Dc)

and F
+(Ld,Mc,Dc) are local diffeomorphims.

From Theorem 3.6, we deduce Corollary 3.10.

Corollary 3.10 Let (Ld,Mc,Dc) be a discrete nonholonomic Lagrangian system.
Then, the following conditions are equivalent:

(i) The system (Ld,Mc,Dc) is regular.
(ii) The following relations hold

(
ρT ��

)−1
(ThMc) ∩ F⊥

h = {0}, for all h ∈ Mc,

(
ρT ��

)−1
(TgMc) ∩ F̄⊥

g = {0}, for all g ∈ Mc.

(iii) H and H̄ are symplectic subbundles of rank 2r of the symplectic vector bundle
(T �

Mc
�,ΩLd).

(iv) If g and h are points of Mc, then the R-bilinear maps G
Ldc
h and Ḡ

Ldc
g are right

and left nondegenerate, respectively.

The map G
Ldc
h (resp., Ḡ

Ldc
g ) is right nondegenerate (resp., left nondegenerate) if

G
Ldc
h (a, b) = 0, ∀a ∈ (Dc)α(h) ⇒ b = 0

(resp., Ḡ
Ldc
g (a, b) = 0,∀b ∈ (Dc)β(g) ⇒ a = 0).

Remark 3.11 Corollary 3.10 may be considered as the discrete version of some re-
sults obtained by several authors (see Bates and Śniatycki 1992; Cortés et al. 2005;
de León et al. 1997; de León and Martín de Diego 1996) about the characterization
of the regularity of continuous nonholonomic Lagrangian systems.

Every solution of the discrete nonholonomic equations for a regular discrete non-
holonomic Lagrangian system determines a unique local discrete nonholonomic evo-
lution operator. More precisely, we may prove the following result:
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Theorem 3.12 Let (Ld,Mc,Dc) be a regular discrete nonholonomic Lagrangian
system and (g0, h0) ∈ Mc × Mc be a solution of the discrete nonholonomic equa-
tions for (Ld,Mc,Dc). Then, there exist two open subsets U0 and V0 of �, with
g0 ∈ U0 and h0 ∈ V0, and there exists a local discrete nonholonomic evolution oper-
ator Υ

(Ld,Mc,Dc)
nh : U0 ∩Mc → V0 ∩Mc such that:

(i) Υ
(Ld,Mc,Dc)

nh (g0) = h0.

(ii) Υ
(Ld,Mc,Dc)

nh is a diffeomorphism.

(iii) Υ
(Ld,Mc,Dc)

nh is unique, that is, if U ′
0 is an open subset of �, with g0 ∈ U ′

0, and
Υnh : U ′

0 ∩ Mc → Mc is a (local) discrete nonholonomic evolution operator,
then (

Υ
(Ld,Mc,Dc)
nh

)
|U0∩U ′

0∩Mc
= (Υnh)|U0∩U ′

0∩Mc
.

Proof From Remark 3.5, we deduce that

F
+(Ld,Mc,Dc)(g0) = F

−(Ld,Mc,Dc)(h0) = μ0 ∈ D∗
c .

Thus, we can choose two open subsets U0 and V0 of �, with g0 ∈ U0 and h0 ∈ V0,

and an open subset W0 of E∗
� such that μ0 ∈ W0 and

F
+(Ld,Mc,Dc) : U0 ∩Mc → W0 ∩D∗

c ,

F
−(Ld,Mc,Dc) : V0 ∩Mc → W0 ∩D∗

c

are diffeomorphisms. Therefore, from Remark 3.8, we obtain that

Υ
(Ld,Mc,Dc)

nh = (
F

−(Ld,Mc,Dc)
−1 ◦ F

+(Ld,Mc,Dc)
)
|U0∩Mc

:
U0 ∩Mc → V0 ∩Mc

is a (local) discrete nonholonomic evolution operator. Moreover, it is clear that
Υ

(Ld,Mc,Dc)
nh (g0) = h0 and it follows that Υ

(Ld,Mc,Dc)
nh is a diffeomorphism.

Finally, if U ′
0 is an open subset of �, with g0 ∈ U ′

0, and Υnh : U ′
0 ∩ Mc → Mc

is another (local) discrete nonholonomic evolution operator, then (Υnh)|U0∩U ′
0∩Mc

is also a (local) discrete nonholonomic evolution operator. Consequently, from Re-
mark 3.8, we conclude that

(Υnh)|U0∩U ′
0∩Mc

= [
F

−(Ld,Mc,Dc)
−1 ◦ F

+(Ld,Mc,Dc)
]
|U0∩U ′

0∩Mc

= (
Υ

(Ld,Mc,Dc)
nh

)
|U0∩U ′

0∩Mc
. �

3.4 Reversible Discrete Nonholonomic Lagrangian Systems

Let (Ld,Mc, Dc) be a discrete nonholonomic Lagrangian system on a Lie groupoid
� ⇒ M .

Following the terminology used in McLachlan and Perlmutter (2006) for the par-
ticular case when � is the pair groupoid M × M , we will introduce the following
definition
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Definition 3.13 The discrete nonholonomic Lagrangian system (Ld,Mc,Dc) is said
to be reversible if

Ld ◦ i = Ld, i(Mc) = Mc,

i : � → � being the inversion of the Lie groupoid �.

For a reversible discrete nonholonomic Lagrangian system we have the following
result:

Proposition 3.14 Let (Ld,Mc,Dc) be a reversible nonholonomic Lagrangian sys-
tem on a Lie groupoid �. Then, the following conditions are equivalent:

(i) The discrete nonholonomic Legendre transformation F
−(Ld,Mc,Dc) is a local

diffeomorphism.
(ii) The discrete nonholonomic Legendre transformation F

+(Ld,Mc,Dc) is a local
diffeomorphism.

Proof If h ∈Mc then, using (3.1) and the fact that Ld ◦ i = Ld, it follows that

F
−(Ld,Mc,Dc)(h)(vε(α(h))) = −vε(α(h))

(
Ld ◦ l−1

h

)

for vε(α(h)) ∈ (Dc)α(h). Thus, from (3.2), we obtain that

F
−(Ld,Mc,Dc)(h)(vε(α(h))) = −F

+(Ld,Mc,Dc)
(
h−1)(vε(β(h−1))).

This implies that

F
+(Ld,Mc,Dc) = −F

−(Ld,Mc,Dc) ◦ i.

Therefore, since the inversion is a diffeomorphism (in fact, we have that i2 = id), we
deduce the result. �

Using Theorem 3.6, Definition 3.9 and Proposition 3.14, we may obtain necessary
and sufficient conditions for a reversible nonholonomic Lagrangian system on a Lie
groupoid to be regular.

Next, we will prove that a reversible nonholonomic Lagrangian system is dynam-
ically reversible.

Proposition 3.15 Let (Ld,Mc,Dc) be a reversible nonholonomic Lagrangian sys-
tem on a Lie groupoid � and (g,h) be a solution of the discrete nonholonomic
Euler–Lagrange equations for (Ld,Mc,Dc). Then (h−1, g−1) is also a solution of
these equations. In particular, if the system (Ld,Mc,Dc) is regular and Υ

(Ld,Mc,Dc)
nh

is the (local) discrete nonholonomic evolution operator for (Ld,Mc,Dc), then
Υ

(Ld,Mc,Dc)
nh is reversible, that is,

Υ
(Ld,Mc,Dc)

nh ◦ i ◦ Υ
(Ld,Mc,Dc)

nh = i.
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Proof Using that i(Mc) = Mc, we deduce that
(
h−1, g−1) ∈ �2 ∩ (Mc ×Mc).

Now, suppose that β(g) = α(h) = x and that v ∈ (Dc)x. Then, since Ld ◦ i = Ld, it
follows that

do[Ld ◦ lh−1 + Ld ◦ rg−1 ◦ i](ε(x)
)
(v) = v(Ld ◦ i ◦ rh ◦ i) + v(Ld ◦ i ◦ lg)

= v(Ld ◦ lg) + v(Ld ◦ rh ◦ i)

= 0.

Thus, we conclude that (h−1, g−1) is a solution of the discrete nonholonomic
Euler–Lagrange equations for (Ld,Mc,Dc).

If the system (Ld,Mc,Dc) is regular and g ∈ Mc, we have that (g,

Υ
(Ld,M,Dc)
nh (g)) is a solution of the discrete nonholonomic Euler–Lagrange equa-

tions for (Ld,Mc,Dc). Therefore, (i(Υ
(Ld,M,Dc)

nh (g)), i(g)) is also a solution of the
dynamical equations which implies that

Υ
(Ld,M,Dc)

nh

(
i
(
Υ

(Ld,M,Dc)
nh (g)

))= i(g). �

Remark 3.16 Proposition 3.15 was proved in McLachlan and Perlmutter (2006) for
the particular case when � is the pair groupoid.

3.5 Lie Groupoid Morphisms and Reduction

Let (�,�0) be a Lie groupoid morphism between the Lie groupoids � ⇒ M and
�′ ⇒ M ′.

Denote by (E(�),�0) the corresponding morphism between the Lie algebroids
E� and E�′ of � and �′, respectively (see Sect. 2.2).

If Ld : � → R and L′
d : �′ → R are discrete Lagrangians on � and �′ such that

Ld = L′
d ◦ �

then, from Theorem 4.6 in Marrero et al. (2006), we have that

(DDELLd)(g,h)(v) = (
DDELL′

d

)(
�(g),�(h)

)(
Ex(�)(v)

)
for (g,h) ∈ �2 and v ∈ (E�)x, where x = β(g) = α(h) ∈ M.

Using this fact, we deduce the following result:

Corollary 3.17 Let (�,�0) be a Lie groupoid morphism between the Lie groupoids
� ⇒ M and �′ ⇒ M ′. Suppose that L′

d : �′ → R is a discrete Lagrangian on �′, that
(Ld = L′

d ◦�,Mc,Dc) is a discrete nonholonomic Lagrangian system on � and that
(g,h) ∈ �2 ∩ (Mc ×Mc). Then:

(i) The pair (g,h) is a solution of the discrete nonholonomic problem (Ld,Mc,Dc)

if and only if (DDELL′
d)(�(g),�(h)) vanishes over the set (Eβ(g)�)((Dc)β(g)).
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(ii) If (L′
d,M′

c,D′
c) is a discrete nonholonomic Lagrangian system on �′ such

that (�(g),�(h)) ∈ M′
c × M′

c and (Eβ(g)(�))((Dc)β(g)) = (D′
c)�0(β(g)), then

(g,h) is a solution for the discrete nonholonomic problem (Ld,Mc,Dc) if
and only if (�(g),�(h)) is a solution for the discrete nonholonomic problem
(L′

d,M′
c,D′

c).

3.6 Discrete Nonholonomic Hamiltonian Evolution Operator

Let (Ld,Mc, Dc) be a regular discrete nonholonomic system. Assume, without
the loss of generality, that the discrete nonholonomic Legendre transformations
F

−(Ld,Mc,Dc) : Mc → D∗
c and F

+(Ld,Mc,Dc) : Mc → D∗
c are global diffeo-

morphisms. Then, γ
(Ld,Mc,Dc)
nh = F

−(Ld,Mc,Dc)
−1 ◦ F

+(Ld,Mc,Dc) is the dis-
crete nonholonomic evolution operator and one may define the discrete nonholo-
nomic Hamiltonian evolution operator, γ̃nh : D∗

c → D∗
c , by

γ̃nh = F
+(Ld,Mc,Dc) ◦ γ

(Ld,Mc,Dc)
nh ◦ F

+(Ld,Mc,Dc)
−1. (3.5)

From Remark 3.8, we have

γ̃nh = F
−(Ld,Mc,Dc) ◦ γ

(Ld,Mc,Dc)
nh ◦ F

−(Ld,Mc,Dc)
−1

= F
+(Ld,Mc,Dc) ◦ F

−(Ld,Mc,Dc)
−1.

The following commutative diagram illustrates the situation

Mc Mc�
γ

(Ld,Mc,Dc)
nh

D∗
c D∗

c D∗
c

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
���

� �

F
−(Ld,Mc,Dc)

F
+(Ld,Mc,Dc)

F
−(Ld,Mc,Dc)

F
+(Ld,Mc,Dc)

γ̃nh γ̃nh

Remark 3.18 The discrete nonholonomic evolution operator is an application from
D∗

c to itself. It is remarkable that D∗
c is also the appropriate nonholonomic momentum

space for a continuous nonholonomic system defined by a Lagrangian L : E� →
R and the constraint distribution Dc. Therefore, in the regular case, the solution of
the continuous nonholonomic Lagrangian system also determines a flow from D∗

c to
itself. We consider that this would be a good starting point to compare the discrete
and continuous dynamics and eventually to establish a backward error analysis for
nonholonomic systems.

3.7 The Discrete Nonholonomic Momentum Map

Let (Ld,Mc,Dc) be a regular discrete nonholonomic Lagrangian system on a Lie
groupoid � ⇒ M and τ : E� → M be the Lie algebroid of �.
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Suppose that g is a Lie algebra and that Ψ : g → Sec(τ ) is a R-linear map. Then,
for each x ∈ M, we consider the vector subspace gx of g given by

g
x = {

ξ ∈ g
∣∣ Ψ (ξ)(x) ∈ (Dc)x

}
and the disjoint union of these vector spaces

g
Dc =

⋃
x∈M

g
x.

We will denote by (gDc)∗ the disjoint union of the dual spaces, that is,

(
g
Dc
)∗ =

⋃
x∈M

(
g
x
)∗

.

Next, we define the discrete nonholonomic momentum map J nh : � → (gDc)∗ as
follows: J nh(g) ∈ (gβ(g))∗ and

J nh(g)(ξ) = Θ+
Ld

(
Ψ (ξ)(1,1)

)
(g) = ←−−

Ψ (ξ)(g)(Ld), for g ∈ � and ξ ∈ g
β(g).

If ξ̃ : M → g is a smooth map such that ξ̃ (x) ∈ gx, for all x ∈ M, then we may
consider the smooth function J nh

ξ̃
: � → R defined by

J nh
ξ̃

(g) = J nh(g)
(̃
ξ
(
β(g)

))
, ∀g ∈ �.

Definition 3.19 The Lagrangian Ld is said to be g-invariant with respect Ψ if

Ψ (ξ)(1,1)(Ld) = ←−−
Ψ (ξ)(Ld) − −−→

Ψ (ξ)(Ld) = 0, ∀ξ ∈ g.

Now, we will prove the following result

Theorem 3.20 Let Υ
(Ld,Mc,Dc)
nh : Mc → Mc be the local discrete nonholonomic

evolution operator for the regular system (Ld,Mc,Dc). If Ld is g-invariant with
respect to Ψ : g → Sec(τ ) and ξ̃ : M → g is a smooth map such that ξ̃ (x) ∈ gx , for
all x ∈ M, then

J nh
ξ̃

(
Υ

(Ld,Mc,Dc)
nh (g)

)− J nh
ξ̃

(g)

=
←−−−−−−−−−−−−−−−−−−−−−−−−−−
Ψ
(̃
ξ
(
β
(
Υ

(Ld,Mc,Dc)
nh (g)

))− ξ̃
(
β(g)

))(
Υ

(Ld,Mc,Dc)
nh (g)

)
(Ld) (3.6)

for g ∈Mc.

Proof Using that the Lagrangian Ld is g-invariant with respect to Ψ , we have that

−−−−−−−−−−−−−−−−−−→
Ψ
(
ξ̃
(
α
(
Υ

(Ld,Mc,Dc)
nh (g)

)))(
Υ

(Ld,Mc,Dc)
nh (g)

)
(Ld)

=
←−−−−−−−−−−−−−−−−−−
Ψ
(
ξ̃
(
α
(
Υ

(Ld,Mc,Dc)
nh (g)

)))(
Υ

(Ld,Mc,Dc)
nh (g)

)
(Ld). (3.7)
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Also, since (g,Υ
(Ld,Mc,Dc)

nh (g)) is a solution of the discrete nonholonomic equations:

←−−−−−−−
Ψ
(
ξ̃
(
β(g)

))
(g)(Ld) =

−−−−−−−−−−−−−−−−−−→
Ψ
(
ξ̃
(
α
(
Υ

(Ld,Mc,Dc)
nh (g)

)))(
Υ

(Ld,Mc,Dc)
nh (g)

)
(Ld). (3.8)

Thus, from (3.7) and (3.8), we find that

←−−−−−−−
Ψ
(
ξ̃
(
β(g)

))
(g)(Ld) = ←−−−−−−−

Ψ
(
ξ̃
(
β(g)

))(
Υ

(Ld,Mc,Dc)
nh (g)

)
(Ld).

Therefore,

J nh
ξ̃

(
Υ

(Ld,Mc,Dc)
nh (g)

)− J nh
ξ̃

(g) =
←−−−−−−−−−−−−−−−−−−
Ψ
(
ξ̃
(
β
(
Υ

(Ld,Mc,Dc)
nh (g)

)))(
Υ

(Ld,Mc,Dc)
nh (g)

)
(Ld)

− ←−−−−−−−
Ψ
(
ξ̃
(
β(g)

))
(g)(Ld)

=
←−−−−−−−−−−−−−−−−−−
Ψ
(
ξ̃
(
β
(
Υ

(Ld,Mc,Dc)
nh (g)

)))(
Υ

(Ld,Mc,Dc)
nh (g)

)
(Ld)

− ←−−−−−−−
Ψ
(
ξ̃
(
β(g)

))(
Υ

(Ld,Mc,Dc)
nh (g)

)
(Ld)

=
←−−−−−−−−−−−−−−−−−−−−−−−−−−
Ψ
(
ξ̃
(
β
(
Υ

(Ld,Mc,Dc)
nh (g)

))− ξ̃
(
β(g)

))
× (

Υ
(Ld,Mc,Dc)

nh (g)
)
(Ld). �

Remark 3.21 Theorem 3.20 may be considered as the discrete version of a result
which was proved in Cortés et al. (2005) (see also Bloch et al. 1996; Cantrijn et al.
1998, 1999) for a continuous Lagrangian system on a Lie algebroid which is invariant
under the action of a symmetry Lie group.

Equation (3.6) will be called the discrete nonholonomic momentum equation.
Theorem 3.20 suggests we introduce the following definition.

Definition 3.22 An element ξ ∈ g is said to be a horizontal symmetry for the discrete
nonholonomic system (Ld,Mc,Dc) and the map Ψ : g → Sec(τ ) if

Ψ (ξ)(x) ∈ (Dc)x, for all x ∈ M.

Now, from Theorem 3.20, we conclude that:

Corollary 3.23 If Ld is g-invariant with respect to Ψ and ξ ∈ g is a horizontal sym-
metry for (Ld,Mc,Dc) and Ψ : g → Sec(τ ), then J nh

ξ̃
: � → R is a constant of the

motion for Υ
(Ld,Mc,Dc)
nh , that is,

J nh
ξ̃

◦ Υ
(Ld,Mc,Dc)
nh = J nh

ξ̃
.
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4 Examples

4.1 Discrete Holonomic Lagrangian Systems on a Lie Groupoid

Let us examine the case when the system is subjected to holonomic constraints.
Let Ld : � → R be a discrete Lagrangian on a Lie groupoid � ⇒ M . Suppose that

Mc ⊆ � is a Lie subgroupoid of � over M ′ ⊆ M , that is, Mc is a Lie groupoid over
M ′ with structural maps

α|Mc :Mc → M ′, β|Mc : Mc → M ′,

ε|M ′ : M ′ →Mc, i|Mc : Mc → Mc,

the canonical inclusions iMc :Mc → � and iM ′ : M ′ → M are injective immersions
and the pair (iMc , iM ′) is a Lie groupoid morphism. We may assume, without the
loss of generality, that M ′ = M (in other cases we will replace the Lie groupoid � by
the Lie subgroupoid �′ over M ′ defined by �′ = α−1(M ′) ∩ β−1(M ′)).

Then, if LMc = Ld ◦ iMc and τMc : EMc → M is the Lie algebroid of Mc, we
have that the discrete (unconstrained) Euler–Lagrange equations for the Lagrangian
function LMc are

←−
X (g)(LMc) − −→

X (h)(LMc) = 0 (g,h) ∈ (Mc)2, (4.1)

for X ∈ Sec(τMc).
We are interested in writing these equations in terms of the Lagrangian Ld defined

on the Lie groupoid �. From Corollary 4.7 (iii) in Marrero et al. (2006), we de-
duce that (g,h) ∈ (Mc)2 is a solution of (4.1) if and only if DDELLd(g,h) vanishes
over Im(Eβ(g)(iMc)). Here, E(iMc) : EMc → E� is the Lie algebroid morphism
induced between EMc and E� by the Lie groupoid morphism (iMc , id). Therefore,
we may consider the discrete holonomic system as the discrete nonholonomic system
(Ld,Mc,Dc), where Dc = (E(iMc))(EMc)

∼= EMc .
In this particular case, when the subgroupoid Mc is determined by the vanishing

set of n − r independent real C∞-functions φγ : � → R

Mc = {
g ∈ �

∣∣ φγ (g) = 0, for all γ
}
,

then the discrete holonomic equations are equivalent to

←−
Y (g)(Ld) − −→

Y (h)(Ld) = λγ doφγ
(
ε
(
β(g)

))(
Y
(
β(g)

))
, φγ (g) = φγ (h) = 0,

for all Y ∈ Sec(τ ), where do is the standard differential on �. This algorithm is a gen-
eralization of the Shake algorithm for holonomic systems (see Cortés and Martínez
2001; Leimkuhler and Reich 2004; Marsden and West 2001; McLachlan and Perl-
mutter 2006 for similar results on the pair groupoid Q × Q).

4.2 Discrete Nonholonomic Lagrangian Systems on the Pair Groupoid

Let (Ld,Mc,Dc) be a discrete nonholonomic Lagrangian system on the pair group-
oid Q×Q ⇒ Q and suppose that (q0, q1) is a point of Mc. Then, using the results of



J Nonlinear Sci (2008) 18: 221–276 249

Sect. 3.1, we deduce that ((q0, q1), (q1, q2)) ∈ (Q × Q)2 is a solution of the discrete
nonholonomic Euler–Lagrange equations for (Ld,Mc,Dc) if and only if(

D2Ld(q0, q1) + D1Ld(q1, q2)
)
|Dc(q1)

= 0,

(q1, q2) ∈Mc,

or, equivalently,

D2Ld(q0, q1) + D1Ld(q1, q2) =
n−r∑
j=1

λjA
j (q1),

(q1, q2) ∈ Mc,

where λj are the Lagrange multipliers and {Aj } is a local basis of the annihilator D0
c .

These equations were considered in Cortés and Martínez (2001) and McLachlan and
Perlmutter (2006).

Note that if (q1, q2) ∈ � = Q × Q then, in this particular case, G
Ld
(q1,q2)

: Tq1Q ×
Tq2Q → R is just the R-bilinear map (D2D1Ld)(q1, q2).

On the other hand, if (q1, q2) ∈Mc we have that

←−−−
(T Q)

Mc
(q1,q2)

= {
vq2 ∈ Tq2Q

∣∣ (0, vq2) ∈ T(q1,q2)Mc
}
,

−−−→
(T Q)

Mc
(q1,q2)

= {
vq1 ∈ Tq1Q

∣∣ (vq1 ,0) ∈ T(q1,q2)Mc
}
.

Thus, the system (Ld,Mc,Dc) is regular if and only if for every (q1, q2) ∈ Mc
the following conditions hold:

If vq1 ∈ −−−→
(T Q)

Mc
(q1,q2)

and

〈D2D1Ld(q1, q2)vq1 , vq2〉 = 0, ∀vq2 ∈ Dc(q2)

⎫⎬
⎭ =⇒ vq1 = 0,

and

if vq2 ∈ ←−−−
(T Q)

Mc
(q1,q2)

and

〈D2D1Ld(q1, q2)vq1, vq2〉 = 0, ∀vq1 ∈Dc(q1)

⎫⎬
⎭ =⇒ vq2 = 0.

The first condition was obtained in McLachlan and Perlmutter (2006) in or-
der to guarantee the existence of a unique local nonholonomic evolution opera-
tor Υ

(Ld,Mc,Dc)
nh for the system (Ld,Mc,Dc). However, in order to assure that

Υ
(Ld,Mc,Dc)
nh is a (local) diffeomorphism one must assume that the second condition

also holds.

Example 4.1 (Discrete Nonholonomically Constrained Particle) Consider the dis-
crete nonholonomic system determined by:

(a) A discrete Lagrangian Ld : R
3 × R

3 → R:

Ld(x0, y0, z0, x1, y1, z1) = 1

2

[(
x1 − x0

h

)2

+
(

y1 − y0

h

)2

+
(

z1 − z0

h

)2]
.
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(b) A constraint distribution of Q = R
3,

Dc = span

{
X1 = ∂

∂x
+ y

∂

∂z
,X2 = ∂

∂y

}
.

(c) A discrete constraint submanifold Mc of R
3 × R

3 determined by the constraint

φ(x0, y0, z0, x1, y1, z1) = z1 − z0

h
−
(

y1 + y0

2

)(
x1 − x0

h

)
.

The system (Ld,Mc,Dc) is a discretization of a classical continuous nonholonomic
system: the nonholonomic free particle (for a discussion on this continuous system
see, for instance, Bloch et al. 1996; Cortés 2002). Note that if E(R3×R3)

∼= T R
3 is the

Lie algebroid of the pair groupoid R
3 × R

3 ⇒ R
3, then

T(x1,y1,z1,x1,y1,z1)Mc ∩ E(R3×R3)(x1, y1, z1) = Dc(x1, y1, z1).

Since

←−
X1 = ∂

∂x1
+ y1

∂

∂z1
,

−→
X1 = − ∂

∂x0
− y0

∂

∂z0
,

←−
X2 = ∂

∂y1
,

−→
X2 = − ∂

∂y0
,

then, the discrete nonholonomic equations are(
x2 − 2x1 + x0

h2

)
+ y1

(
z2 − 2z1 + z0

h2

)
= 0, (4.2)

y2 − 2y1 + y0

h2
= 0, (4.3)

which together with the constraint equation determine a well-posed system of differ-
ence equations.

We have that

D2D1Ld = − 1

h
{dx0 ∧ dx1 + dy0 ∧ dy1 + dz0 ∧ dz1}

(−−→
T R

3)Mc
(x0,y0,z0,x1,y1,z1)

=
{
a0

∂

∂x0
+ b0

∂

∂y0
+ c0

∂

∂z0
∈ T(x0,y0,z0)R

3/

c0 = 1

2

(
a0(y1 + y0) − b0(x1 − x0)

)}
.

(←−−
T R

3)Mc
(x0,y0,z0,x1,y1,z1)

=
{
a1

∂

∂x1
+ b1

∂

∂y1
+ c1

∂

∂z1
∈ T(x1,y1,z1)R

3/

c1 = 1

2

(
a1(y1 + y0) + b1(x1 − x0)

)}
.

Thus, if we consider the open subset of Mc defined by{
(x0, y0, z0, x1, y1, z1) ∈ Mc

∣∣ 2 + y2
1 + y1y0 �= 0,2 + y2

0 + y0y1 �= 0
}
,

then in this subset the discrete nonholonomic system is regular.
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Let Ψ : g = R
2 → X(R3) given by Ψ (a, b) = a ∂

∂x
+ b ∂

∂z
. Then gDc =

span{Ψ (ξ̃) = X1}, where ξ̃ : R
3 → R

2 is defined by ξ̃ (x, y, z) = (1, y). Moreover,
the Lagrangian Ld is g-invariant with respect to Ψ . Therefore,

J nh
ξ̃

(x1, y1, z1, x2, y2, z2) − J nh
ξ̃

(x0, y0, z0, x1, y1, z1)

= ←−−−−−−−−−
Ψ (0, y2 − y1)(x1, y1, z1, x2, y2, z2)(Ld),

that is,
(

x2 − x1

h2
+ y2

z2 − z1

h2

)
−
(

x1 − x0

h2
+ y1

z1 − z0

h2

)
= (y2 − y1)

(
z2 − z1

h2

)
.

This equation is precisely (4.2).

4.3 Discrete Nonholonomic Lagrangian Systems on a Lie Group

Let G be a Lie group. G is a Lie groupoid over a single point and the Lie algebra g

of G is just the Lie algebroid associated with G.
If g,h ∈ G, vh ∈ ThG and αh ∈ T ∗

h G we will use the following notation:

gvh = (Thlg)(vh) ∈ TghG, vhg = (Thrg)(vh) ∈ ThgG,

gαh = (
T ∗

ghlg−1

)
(αh) ∈ T ∗

ghG, αhg = (
T ∗

hgrg−1

)
(αh) ∈ T ∗

hgG.

Now, let (Ld,Mc,Dc) be a discrete nonholonomic Lagrangian system on the Lie
group G, that is, Ld : G → R is a discrete Lagrangian, Mc is a submanifold of G

and Dc is a vector subspace of g.
If g1 ∈ Mc, then (g1, g2) ∈ G × G is a solution of the discrete nonholonomic

Euler–Lagrange equations for (Ld,Mc,Dc) if and only if

g−1
1 dLd(g1) − dLd(g2)g

−1
2 =

n−r∑
j=1

λjμ
j ,

gk ∈Mc, k = 1,2,

(4.4)

where λj are the Lagrange multipliers and {μj } is a basis of the annihilator D0
c of Dc.

These equations were obtained in McLachlan and Perlmutter (2006) (see Theorem 3
in McLachlan and Perlmutter 2006).

Taking pk = dLd(gk)g
−1
k , k = 1,2 then

p2 − Ad∗
g1

p1 = −
n−r∑
j=1

λjμj ,

gk ∈ Mc, k = 1,2,

(4.5)

where Ad : G × g → g is the adjoint action of G on g. These equations were ob-
tained in Fedorov and Zenkov (2005a) and called discrete Euler–Poincaré–Suslov
equations.
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On the other hand, from (2.14), we have that

ΩLd

(
(−→η ,←−μ ), (−→η ′,←−μ ′)

)= −→η ′(←−μ (Ld)
)− −→η (←−μ ′(Ld)

)
.

Thus, if g ∈ G then, using (2.22), it follows that the R-bilinear map G
Ld
g : g× g → R

is given by

GLd
g (ξ, η) = −←−η (g)

(−→
ξ (Ld)

)
.

Therefore, the system (Ld,Mc,Dc) is regular if and only if for every g ∈ Mc the
following conditions hold:

η ∈ g/←−η (g) ∈ TgMc and ←−η (g)
(−→

ξ (Ld)
)= 0, ∀ξ ∈Dc =⇒ η = 0,

ξ ∈ g/
−→
ξ (g) ∈ TgMc and ←−η (g)

(−→
ξ (Ld)

)= 0, ∀η ∈ Dc =⇒ ξ = 0.

We illustrate this situation with two simple examples previously considered in
Fedorov and Zenkov (2005a).

4.3.1 The Discrete Suslov System

(See Fedorov and Zenkov (2005a).) The Suslov system studies the motion of a rigid
body suspended at its center of mass under the action of the following nonholonomic
constraint: the body angular velocity is orthogonal to some fixed direction.

The configuration space is G = SO(3) and the elements of the Lie algebra so(3)

may be identified with R
3 and represented by coordinates (ωx,ωy,ωz). Without loss

of generality, let us choose as fixed direction the third vector of the body frame
ē1, ē2, ē3. Then, the nonholonomic constraint is ωz = 0.

The discretization of this system is modelled by considering the discrete La-
grangian Ld : SO(3) → R defined by Ld(Ω) = 1

2 Tr(ΩJ), where J represents the
mass matrix (a symmetric positive-definite matrix with components (Jij )1≤i,j≤3).

The constraint submanifold Mc is determined by the constraint Tr(ΩE3) = 0 (see
Fedorov and Zenkov 2005a), where

E1 =
⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ , E2 =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ , E3 =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠

is the standard basis of so(3), the Lie algebra of SO(3).
The vector subspace Dc = span{E1,E2}. Therefore, D0

c = span{E3}. Moreover,
the exponential map of SO(3) is a diffeomorphism from an open subset of Dc (which
contains the zero vector) to an open subset of Mc (which contains the identity ele-
ment I ). In particular, TIMc = Dc.

On the other hand, the discrete Euler–Poincaré–Suslov equations are given by

←−
Ei(Ω1)(Ld) − −→

Ei(Ω2)(Ld) = 0, Tr(ΩiE3) = 0, i ∈ {1,2}.
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After some straightforward operations, we deduce that the above equations are equiv-
alent to

Tr
(
(EiΩ2 − Ω1Ei)J

)= 0, Tr(ΩiE3) = 0, i ∈ {1,2}

or, considering the components Ωk = (Ω
(k)
ij ) of the elements of SO(3), we have that:

(
J23Ω

(1)
33 − J33Ω

(1)
32 + J22Ω

(1)
23

−J23Ω
(1)
22 + J12Ω

(1)
13 − J13Ω

(1)
12

)
=
(−J23Ω

(2)
33 − J22Ω

(2)
32 − J12Ω

(2)
31

+J33Ω
(2)
23 + J23Ω

(2)
22 + J13Ω

(2)
21

)

(−J13Ω
(1)
33 + J33Ω

(1)
31 − J12Ω

(1)
23

+J23Ω
(1)
21 − J11Ω

(1)
13 + J13Ω

(1)
11

)
=
(

J13Ω
(2)
33 + J12Ω

(2)
32 + J11Ω

(2)
31

−J33Ω
(2)
13 − J23Ω

(2)
12 − J13Ω

(2)
11

)

Ω
(1)
12 = Ω

(1)
21 , Ω

(2)
12 = Ω

(2)
21 .

Moreover, since the discrete Lagrangian verifies that

Ld(Ω) = 1

2
Tr(ΩJ) = 1

2
Tr
(
ΩtJ

)= Ld
(
Ω−1)

and also the constraint satisfies Tr(ΩE3) = −Tr(Ω−1E3), then this discretization
of the Suslov system is reversible. The regularity condition in Ω ∈ SO(3) is, in this
particular case,

η ∈ so(3)/Tr(E1ΩηJ) = 0, Tr(E2ΩηJ) = 0 and

Tr(ΩηE3) = 0 =⇒ η = 0.

It is easy to show that the system is regular in a neighborhood of the identity I .

4.3.2 The Discrete Chaplygin Sleigh

(See Fedorov (2007), Fedorov and Zenkov (2005a).) The Chaplygin sleigh system
describes the motion of a rigid body sliding on a horizontal plane. The body is sup-
ported at three points, two of which slide freely without friction while the third is a
knife edge, a constraint that allows no motion orthogonal to this edge (see Neimark
and Fufaev 1972).

The configuration space of this system is the group SE(2) of Euclidean motions
of R

2. An element Ω ∈ SE(2) is represented by a matrix

Ω =
⎛
⎝cos θ − sin θ x

sin θ cos θ y

0 0 1

⎞
⎠ with θ, x, y ∈ R.

Thus, (θ, x, y) are local coordinates on SE(2).
A basis of the Lie algebra se(2) ∼= R

3 of SE(2) is given by

e =
⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ , e1 =

⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠ , e2 =

⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠ ,
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and we have that

[e, e1] = e2, [e, e2] = −e1, [e1, e2] = 0.

An element ξ ∈ se(2) is of the form

ξ = ωe + v1 e1 + v2 e2,

and the exponential map exp : se(2) ∼= R
3 → SE(2) of SE(2) is given by

exp(ω, v1, v2) =
(

ω,v1
sinω

ω
+ v2

(
cosω − 1

ω

)
,−v1

(
cosω − 1

ω

)
+ v2

sinω

ω

)
,

if ω �= 0,

and

exp(0, v1, v2) = (0, v1, v2).

Note that the restriction of this map to the open subset U =] − π,π[×R
2 ⊆ R

3 ∼=
se(2) is a diffeomorphism onto the open subset exp(U) of SE(2).

A discretization of the Chaplygin sleigh may be constructed as follows:

– The discrete Lagrangian Ld : SE(2) → R is given by

Ld(Ω) = 1

2
Tr
(
ΩJΩT)− Tr(ΩJ),

where J is the matrix:

J =
⎛
⎝ (J/2) + ma2 mab ma

mab (J/2) + mb2 mb

ma mb m

⎞
⎠

(see Fedorov and Zenkov 2005a).
– The vector subspace Dc of se(2) is

Dc = span{e, e1} = {
(ω, v1, v2) ∈ se(2)

∣∣ v2 = 0
}
.

– The constraint submanifold Mc of SE(2) is

Mc = exp(U ∩Dc). (4.6)

Thus, we have that

Mc = {
(θ, x, y) ∈ SE(2)

∣∣−π < θ < π, θ �= 0, (1 − cos θ)x − y sin θ = 0
}

∪ {(0, x,0) ∈ SE(2)
∣∣ x ∈ R

}
.

From (4.6) it follows that I ∈ Mc and TIMc = Dc. In fact, one may prove that

T(0,x,0)Mc = span

{
∂

∂θ |(0,x,0)
+ x

2

∂

∂y |(0,x,0)

,
∂

∂x |(0,x,0)

}
,

for x ∈ R (see Fig. 1).
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Fig. 1 Submanifold Mc

Now, the discrete Euler–Poincaré–Suslov equations are:

←−
e (θ1, x1, y1)(Ld) − −→

e (θ2, x2, y2)(Ld) = 0,

←−
e1 (θ1, x1, y1)(Ld) − −→

e1 (θ2, x2, y2)(Ld) = 0,

and the condition (θk, xk, yk) ∈ Mc, with k ∈ {1,2}. We rewrite these equations as
the following system of difference equations:

(−am cos θ1 − bm sin θ1 + am

+mx1 cos θ1 + my1 sin θ1

)
=
(

mx2 + am cos θ2
−bm sin θ2 − am

)

(
amy1 cos θ1 − amx1 sin θ1 − bmx1 cos θ1

−bmy1 sin θ1 + (a2m + b2m + J ) sin θ1

)
=
(

amy2 − bmx2

+(a2m + b2m + J ) sin θ2

)

together with the condition

(θk, xk, yk) ∈ Mc, k ∈ {1,2}.
On the other hand, one may prove that the discrete nonholonomic Lagrangian system
(Ld,Mc,D) is reversible.

Finally, consider a point (0, x,0) ∈ Mc and an element η ≡ (ω, v1, v2) ∈ se(2)

such that

←−η (0, x,0) ∈ T(0,x,0)Mc,
←−η (0, x,0)

(−→
e (Ld)

)= 0,

←−η (0, x,0)
(−→
e1 (Ld)

)= 0.

Then, if we assume that a2m + J + amx
2 �= 0, it follows that η = 0.

Thus, the discrete nonholonomic Lagrangian system (Ld,Mc,Dc) is regular in a
neighborhood of the identity I .

4.4 Discrete Nonholonomic Lagrangian Systems on an Action Lie Groupoid

Let H be a Lie group with identity element e and · : M ×H → M , (x,h) ∈ M ×H �→
xh ∈ M , a right action of H on M . Thus, we may consider the action Lie groupoid
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� = M × H over M with structural maps given by

α̃(x,h) = x, β̃(x,h) = xh, ε̃(x) = (x, e),

m̃
(
(x,h),

(
xh,h′))= (

x,hh′), ĩ(x, h) = (
xh,h−1

)
.

(4.7)

Now, let h = TeH be the Lie algebra of H and � : h → X(M) the map given by

�(η) = ηM, for η ∈ h,

where ηM is the infinitesimal generator of the action · : M × H → M corresponding
to η. Then, � is a Lie algebra morphism and the corresponding action Lie algebroid
pr1 : M × h → M is just the Lie algebroid of � = M × H .

We have that Sec(pr1) ∼= {η̃ : M → h | η̃ is smooth} and that the Lie algebroid
structure ([[·, ·]]�,ρ�) on pr1 : M × H → M is defined by

[[η̃, μ̃]]�(x) = [
η̃(x), μ̃(x)

]+ (
η̃(x)

)
M

(x)(μ̃) − (
μ̃(x)

)
M

(x)(η̃),

ρ�(η̃)(x) = (
η̃(x)

)
M

(x),

for η̃, μ̃ ∈ Sec(pr1) and x ∈ M. Here, [·, ·] denotes the Lie bracket of h.
If (x,h) ∈ � = M × H , then the left-translation l(x,h) : α̃−1(xh) → α̃−1(x) and

the right-translation r(x,h) : β̃−1(x) → β̃−1(xh) are given

l(x,h)

(
xh,h′)= (

x,hh′), r(x,h)

(
x
(
h′)−1

, h′)= (
x
(
h′)−1

, h′h
)
. (4.8)

Now, if η ∈ h, then η defines a constant section Cη : M → h of pr1 : M × h → M

and, using (2.4), (2.5), (4.7) and (4.8), we have that the left-invariant and the right-
invariant vector fields

←−
C η and

−→
C η, respectively, on M × H are defined by

−→
C η(x,h) = (−ηM(x),−→η (h)

)
,

←−
C η(x,h) = (

0x,
←−η (h)

)
, (4.9)

for (x,h) ∈ � = M × H.

Note that if {ηi} is a basis of h then {Cηi
} is a global basis of Sec(pr1).

On the other hand, we will denote by exp� : E� = M × h → � = M ×H the map
given by

exp�(x, η) = (
x, expH (η)

)
, for (x, η) ∈ E� = M × h,

where expH : h → H is the exponential map of the Lie group H . Note that if �(x,e) :
R → � = M × H is the integral curve of the left-invariant vector field

←−
C η on � =

M × H such that �(x,e)(0) = (x, e), then (see (4.9))

exp�(x, η) = �(x,e)(1).

Next, suppose that Ld : � = M × H → R is a Lagrangian function, that Dc is a
constraint distribution such that {Xα} is a local basis of sections of the annihilator
D0

c , and Mc ⊆ � is the discrete constraint submanifold.
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For every h ∈ H (resp., x ∈ M) we will denote by Lh (resp., Lx ) the real function
on M (resp., on H ) given by Lh(y) = Ld(y,h) (resp., Lx(h

′) = Ld(x,h′)). A com-
posable pair ((x,hk), (xhk,hk+1)) ∈ �2 ∩ (Mc × Mc) is a solution of the discrete
nonholonomic Euler–Lagrange equations for the system (Ld,Mc,Dc) if

←−
C η(x,hk)(Ld) − −→

C η(xhk,hk+1)(Ld) = λαXα(xhk)(η), for all η ∈ h,

or, in other terms (see (4.9))

{
(Telhk

)(η)
}
(Lx) − {

(Terhk+1)(η)
}
(Lxhk

) + ηM(xhk)(Lhk+1) = λαXα(xhk)(η),

for all η ∈ h.

4.4.1 The Discrete Veselova System

As a concrete example of a nonholonomic system on an action Lie groupoid we
consider a discretization of the Veselova system (see Veselov and Veselova 1989). In
the continuous theory (Cortés et al. 2005), the configuration manifold is the action
Lie algebroid pr1 : S2 × so(3) → S2 with Lagrangian

Lc(γ,ω) = 1

2
ω · Iω − mglγ · e,

where S2 is the unit sphere in R
3, ω ∈ R

3 � so(3) is the angular velocity, γ is the
direction opposite to the gravity and e is a unit vector in the direction from the fixed
point to the center of mass, all them expressed in a frame fixed to the body. The con-
stants m, g and l are respectively the mass of the body, the strength of the gravitational
acceleration and the distance from the fixed point to the center of mass. The matrix
I is the inertia tensor of the body. Moreover, the constraint subbundle Dc → S2 is
given by

γ ∈ S2 �→Dc(γ ) = {
ω ∈ R

3 � so(3)
∣∣ γ · ω = 0

}
.

Note that the section φ : S2 → S2 × so(3)∗, (x, y, z) �→ ((x, y, z), xe1 + ye2 + ze3),
where {e1, e2, e3} is the canonical basis of R

3 and {e1, e2, e3} is the dual basis, is a
global basis for D0

c .
If ω ∈ so(3) and ω̂ is the skew-symmetric matrix of order 3 such that ω̂v = ω × v

then the Lagrangian function Lc may be expressed as follows

Lc(γ,ω) = 1

2
Tr
(
ω̂Iω̂T)− mglγ · e,

where I = 1
2 Tr(I )I3×3 − I . Here, I3×3 is the identity matrix. Thus, we may define a

discrete Lagrangian Ld : � = S2 × SO(3) → R for the system by (see Marrero et al.
2006)

Ld(γ,Ω) = − 1

h
Tr(IΩ) − hmglγ · e.
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On the other hand, we consider the open subset of SO(3)

V = {
Ω ∈ SO(3)

∣∣ TrΩ �= ±1
}

and the real function ψ : S2 × V → R given by

ψ(γ,Ω) = γ · (Ω̂ − ΩT
)
.

One may check that the critical points of ψ are

Cψ = {
(γ,Ω) ∈ S2 × V

∣∣Ωγ − γ = 0
}
.

Thus, the subset Mc of � = S2 × SO(3) defined by

Mc = {
(γ,Ω) ∈ (S2 × V

)− Cψ

∣∣ γ · (Ω̂ − ΩT
)= 0

}
,

is a submanifold of � of codimension one. Mc is the discrete constraint submanifold.
We have that the map exp� : S2 × so(3) → S2 × SO(3) is a diffeomorphism from

an open subset of Dc, which contains the zero section, to an open subset of Mc,
which contains the subset of � given by

ε̃
(
S2)= {

(γ, e) ∈ S2 × SO(3)
}
.

So, it follows that

(Dc)(γ ) = T(γ,e)Mc ∩ E�(γ ), for γ ∈ S2.

Following the computations of Marrero et al. (2006) we get the nonholonomic dis-
crete Euler–Lagrange equations

Mk+1 − ΩT
k MkΩk + mglh2( ̂γk+1 × e

)= λγ̂k+1,

γk

(
̂Ωk − ΩT

k

)= 0, γk+1
(

̂Ωk+1 − ΩT
k+1

)= 0,

for ((γk,Ωk), (γkΩk,Ωk+1)) ∈ �2, where M = ΩI− IΩT. Therefore, in terms of the

axial vector � in R
3 defined by �̂ = M , we can write the equations in the form

�k+1 = ΩT
k �k − mglh2γk+1 × e + λγk+1,

γk

(
̂Ωk − ΩT

k

)= 0, γk+1
(

̂Ωk+1 − ΩT
k+1

)= 0.

Note that, using the expression of an arbitrary element of SO(3) in terms of the Euler
angles (see Chap. 15 in Marsden and Ratiu 1999), we deduce that the discrete con-
straint submanifold Mc is reversible, that is, i(Mc) = Mc. However, the discrete
nonholonomic Lagrangian system (Ld,Mc,Dc) is not reversible. In fact, it is easy
to prove that Ld ◦ i �= Ld.

On the other hand, if γ ∈ S2 and ξ, η ∈ R
3 ∼= so(3), then it follows that

−→
C ξ (γ, I3)

(←−
C η(Ld)

)= −ξ · Iη.

Consequently, the nonholonomic system (Ld,Mc,Dc) is regular in a neighborhood
(in Mc) of the submanifold ε̃(S2).
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4.5 Discrete Nonholonomic Lagrangian Systems on an Atiyah Lie Groupoid

Let p : Q → M = Q/G be a principal G-bundle and choose a local trivialization
G × U , where U is an open subset of M . Then, one may identify the open subset
(p−1(U) × p−1(U))/G � ((G × U) × (G × U))/G of the Atiyah groupoid (Q ×
Q)/G with the product manifold (U × U) × G. Indeed, it is easy to prove that the
map

(
(G × U) × (G × U)

)
/G → (U × U) × G,[(

(g, x),
(
g′, y

))]→ (
(x, y), g−1g′),

is bijective. Thus, the restriction to ((G × U) × (G × U))/G of the Lie groupoid
structure on (Q × Q)/G induces a Lie groupoid structure in (U × U) × G with
source, target and identity section given by

α : (U × U) × G → U ; (
(x, y), g

)→ x,

β : (U × U) × G → U ; (
(x, y), g

)→ y,

ε : U → (U × U) × G; x → (
(x, x), e

)
,

and with multiplication m : ((U × U) × G)2 → (U × U) × G and inversion i : (U ×
U) × G → (U × U) × G defined by

m
((

(x, y), g
)
,
(
(y, z), h

)) = (
(x, z), gh

)
,

i
(
(x, y), g

) = (
(y, x), g−1

)
.

(4.10)

The Lie algebroid A((U × U) × G) may be identified with the vector bundle T U ×
g → U . Thus, the fiber over the point x ∈ U is the vector space TxU × g. Therefore,
a section of A((U ×U)×G) is a pair (X, ξ̃ ), where X is a vector field on U and ξ̃ is
a map from U on g. The space Sec(A((U × U) × G)) is generated by sections of the
form (X,0) and (0,Cξ ), with X ∈ X(U), ξ ∈ g and Cξ : U → g being the constant
map Cξ (x) = ξ , for all x ∈ U (see Marrero et al. 2006 for more details).

Now, suppose that Ld : (U × U) × G → R is a Lagrangian function, Dc a vector
subbundle of T U ×g and Mc a constraint submanifold on (U ×U)×G. Take a basis
of sections {Yα} of the annihilator Do

c . Then, the discrete nonholonomic equations are

←−−−−−
(Xα, η̃α)

(
(x, y), gk

)
(Ld) − −−−−−→

(Xα, η̃α)
(
(y, z), gk+1

)
(Ld) = 0,

with (Xα, η̃α) : U → T U × g a basis of the space Sec(τDc) and (((x, y), gk), ((y, z),

gk+1)) ∈ (Mc × Mc) ∩ ((U × U) × G)2. The above equations may be also written
as

←−−−
(X,0)

(
(x, y), gk

)
(Ld) − −−−→

(X,0)
(
(y, z), gk+1

)
(Ld) = λαYα(y)

(
X(y)

)
,

←−−−−
(0,Cξ )

(
(x, y), gk

)
(Ld) − −−−−→

(0,Cξ )
(
(y, z), gk+1

)
(Ld) = λαYα(y)

(
Cξ (y)

)
,
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with X ∈ X(U), ξ ∈ g and (((x, y), gk), ((y, z), gk+1)) ∈ (Mc × Mc) ∩ ((U ×
U) × G)2. An equivalent expression of these equations is

D2Ld
(
(x, y), gk

)+ D1Ld
(
(y, z), gk+1

)= λαμα(y),

pk+1(y, z) = Ad∗
gk

pk(x, y) − λαη̃α(y),
(4.11)

where pk(x̄, ȳ) = d(r∗
gk

L(x̄,ȳ,))(e) for (x̄, ȳ) ∈ U × U and we write Yα ≡ (μα, η̃α),
μα being a 1-form on U and η̃α : U → g∗ a smooth map.

4.5.1 A Discretization of the Equations of Motion of a Rolling Ball Without Sliding
on a Rotating Table with Constant Angular Velocity

A (homogeneous) sphere of radius r > 0, mass m and inertia about any axis I rolls
without sliding on a horizontal table which rotates with constant angular velocity Ω

about a vertical axis through one of its points. Apart from the constant gravitational
force, no other external forces are assumed to act on the sphere (see Neimark and
Fufaev 1972).

The configuration space for the continuous system is Q = R
2 × SO(3) and we

shall use the notation (x, y;R) to represent a typical point in Q. Then, the nonholo-
nomic constraints are

ẋ + r

2
Tr
(
ṘRTE2

)= −Ωy, ẏ − r

2
Tr
(
ṘRTE1

)= Ωx,

where {E1,E2,E3} is the standard basis of so(3).
The matrix ṘRT is skew symmetric, therefore we may write

ṘRT =
⎛
⎝ 0 −w3 w2

w3 0 −w1
−w2 w1 0

⎞
⎠ ,

where (w1,w2,w3) represents the angular velocity vector of the sphere measured
with respect to the inertial frame. Then, we may rewrite the constraints in the usual
form:

ẋ − rw2 = −Ωy, ẏ + rw1 = Ωx.

The Lagrangian for the rolling ball is:

Lc
(
x, y;R, ẋ, ẏ; Ṙ) = 1

2
m
(
ẋ2 + ẏ2)+ 1

4
I Tr

(
ṘRT(ṘRT)T)

= 1

2
m
(
ẋ2 + ẏ2)+ 1

2
I
(
ω2

1 + ω2
2 + ω2

3

)
.

Moreover, it is clear that Q = R
2 × SO(3) is the total space of a trivial princi-

pal SO(3)-bundle over R
2 and the bundle projection φ : Q → M = R

2 is just the
canonical projection on the first factor. Therefore, we may consider the correspond-
ing Atiyah algebroid E′ = T Q/SO(3) over M = R

2. We will identify the tangent
bundle to SO(3) with so(3) × SO(3) by using right translation.
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Under this identification between T (SO(3)) and so(3) × SO(3) the tangent action
of SO(3) on T (SO(3)) ∼= so(3) × SO(3) is the trivial action

(
so(3) × SO(3)

)× SO(3) → so(3) × SO(3)
(
(ω,R),S

) �→ (ω,RS). (4.12)

Thus, the Atiyah algebroid T Q/SO(3) is isomorphic to the product manifold
T R

2 × so(3) and the vector bundle projection is τR2 ◦ pr1, where pr1 : T R
2 ×

so(3) → T R
2 and τR2 : T R

2 → R
2 are the canonical projections.

A section of E′ = T Q/SO(3) ∼= T R
2 × so(3) → R

2 is a pair (X,u), where X is
a vector field on R

2 and u : R
2 → so(3) is a smooth map. Therefore, a global basis

of sections of T R
2 × so(3) → R

2 is

s′
1 =

(
∂

∂x
,0

)
, s′

2 =
(

∂

∂y
,0

)
, s′

3 = (0,E1),

s′
4 = (0,E2), s′

5 = (0,E3).

The anchor map ρ′ : E′ = T Q/SO(3) ∼= T R
2 × so(3) → T R

2 is the projection
over the first factor and if [[·, ·]]′ is the Lie bracket on the space Sec(E′ = T Q/SO(3))

then the only nonzero fundamental Lie brackets are

[[
s′

3, s
′
4

]]′ = s′
5,

[[
s′

4, s
′
5

]]′ = s′
3,

[[
s′

5, s
′
3

]]′ = s′
4.

Moreover, the Lagrangian function Lc = T and the constraint functions are SO(3)-
invariant. Consequently, Lc induces a Lagrangian function L′

c on E′ = T Q/SO(3)

L′
c(x, y, ẋ, ẏ;ω) = 1

2
m
(
ẋ2 + ẏ2)+ 1

4
I Tr

(
ωωT)= 1

2
m
(
ẋ2 + ẏ2)− 1

4
I Tr

(
ω2),

where (x, y, ẋ, ẏ) are the standard coordinates on T R
2 and ω ∈ so(3). The constraint

functions defined on E′ = T Q/SO(3) are

ẋ + r

2
Tr(ωE2) = −Ωy, ẏ − r

2
Tr(ωE1) = Ωx. (4.13)

We have a nonholonomic system on the Atiyah algebroid E′ = T Q/SO(3) ∼= T R
2 ×

so(3). This kind of system was recently analyzed by J. Cortés et al. (2005) (in partic-
ular, this example was carefully studied).

Equations (4.13) define an affine subbundle of the vector bundle E′ ∼= T R
2 ×

so(3) → R
2 which is modeled over the vector subbundle D′

c generated by the sections

D′
c = {

s′
5, rs

′
1 + s′

4, rs
′
2 − s′

3

}
.

Our objective is to discretize this example directly on the Atiyah algebroid. The
Atiyah groupoid is now identified to R

2 × R
2 × SO(3) ⇒ R

2. We may construct
the discrete Lagrangian by

L′
d(x0, y0, x1, y1;W1) = L′

c

(
x0, y0,

x1 − x0

h
,
y1 − y0

h
; (logW1)/h

)
,
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where log : SO(3) → so(3) is the (local)-inverse of the exponential map exp :
so(3) → SO(3). For simplicity instead of this procedure we use the following ap-
proximation

logW1/h ≈ W1 − I3×3

h
,

where I3×3 is the identity matrix.
Then

L′
d(x0, y0, x1, y1;W1) = L′

c

(
x0, y0,

x1 − x0

h
,
y1 − y0

h
; W1 − I3×3

h

)

= 1

2
m

[(
x1 − x0

h

)2

+
(

y1 − y0

h

)2]
+ I

(2h)2
Tr(I3×3 − W1).

Eliminating constants, we may consider as discrete Lagrangian

L′
d = 1

2
m

[(
x1 − x0

h

)2

+
(

y1 − y0

h

)2]
− I

2h2
Tr(W1).

The discrete constraint submanifold M′
c of R

2 × R
2 × SO(3) is determined by

the constraints

x1 − x0

h
+ r

2h
Tr(W1E2) = −Ω

y1 + y0

2
,

y1 − y0

h
− r

2h
Tr(W1E1) = Ω

x1 + x0

2
.

We have that the system (L′
d,M′

c,D′
c) is not reversible. Note that the Lagrangian

function L′
d is reversible. However, the constraint submanifold M′

c is not reversible.
The discrete nonholonomic Euler–Lagrange equations for the system (L′

d,M′
c,

D′
c) are

←−
s′

5 (x0, y0, x1, y1;W1)
(
L′

d

)− −→
s′

5 (x1, y1, x2, y2;W2)
(
L′

d

) = 0,

←−−−−−−(
rs′

1 + s′
4

)
(x0, y0, x1, y1;W1)

(
L′

d

)− −−−−−−→(
rs′

1 + s′
4

)
(x1, y1, x2, y2;W2)

(
L′

d

) = 0,

←−−−−−−(
rs′

2 − s′
3

)
(x0, y0, x1, y1;W1)

(
L′

d

)− −−−−−−→(
rs′

2 − s′
3

)
(x1, y1, x2, y2;W2)

(
L′

d

) = 0

with the constraints defining Mc.

On the other hand, the vector fields ←−
s ′

5, −→
s ′

5,
←−−−−
rs′

1 + s′
4,

−−−−→
rs′

1 + s′
4,

←−−−−
rs′

2 − s′
3 and−−−−→

rs′
2 − s′

3 on (R2 × R
2) × SO(3) are given by

←−
s ′

5 = (
(0,0),

←−
E 3
)
,

−→
s ′

5 = (
(0,0),

−→
E 3
)
,

←−−−−
rs′

1 + s′
4 =

((
0, r

∂

∂x

)
,
←−
E 2

)
,

−−−−→
rs′

1 + s′
4 =

((
−r

∂

∂x
,0

)
,
−→
E 2

)
,
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←−−−−
rs′

2 − s′
3 =

((
0, r

∂

∂y

)
,−←−

E 1

)
,

−−−−→
rs′

2 − s′
3 =

((
−r

∂

∂y
,0

)
,−−→

E 1

)
,

where
←−
E i (resp.,

−→
E i ) is the left-invariant (resp., right-invariant) vector field on

SO(3) induced by Ei ∈ so(3), for i ∈ {1,2,3}. Thus, we deduce the following system
of equations:

Tr
(
(W1 − W2)E3

) = 0,

rm

(
x2 − 2x1 + x0

h2

)
+ I

2h2
Tr
(
(W1 − W2)E2

) = 0,

rm

(
y2 − 2y1 + y0

h2

)
− I

2h2
Tr
(
(W1 − W2)E1

) = 0,

x2 − x1

h
+ r

2h
Tr(W2E2) + Ω

y2 + y1

2
= 0,

y2 − y1

h
− r

2h
Tr(W2E1) − Ω

x2 + x1

2
= 0,

where (x0, x1, y0, y1;W1) are known. Simplifying we obtain the following system of
equations:

x2 − 2x1 + x0

h2
+ IΩ

I + mr2

y2 − y0

2h
= 0, (4.14)

y2 − 2y1 + y0

h2
− IΩ

I + mr2

x2 − x0

2h
= 0, (4.15)

Tr
(
(W1 − W2)E3

) = 0, (4.16)

x2 − x1

h
+ r

2h
Tr(W2E2) + Ω

y2 + y1

2
= 0, (4.17)

y2 − y1

h
− r

2h
Tr(W2E1) − Ω

x2 + x1

2
= 0. (4.18)

Now, consider the open subset U of R
2 × R

2 × SO(3)

U = (
R

2 × R
2)× {

W ∈ SO(3)
∣∣W − Tr(W)I3×3 is regular

}
.

Then, using Corollary 3.10 (iv), we deduce that the discrete nonholonomic La-
grangian system (L′

d,M′
c,D′

c) is regular in the open subset U ′ of M′
c given by

U ′ = U ∩M′
c.

If we denote by uk = (xk+1 − xk)/h and vk = (yk+1 − yk)/h, k ∈ N, then from
(4.14) and (4.15) we deduce that(

uk+1
vk+1

)
= A

(
uk

vk

)
= 1

4 + α2h2

(
4 − α2h2 −4αh

4αh 4 − α2h2

)(
uk

vk

)

or in other terms

xk+2 = 8xk+1 + (α2h2 − 4)xk − 4αh(yk+1 − yk)

α2h2 + 4
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Fig. 2 Orbits for the discrete nonholonomic equations of motion (left) and a standard numerical method
(right) (initial conditions x0 = 0.99, y0 = 1, x1 = 1, y1 = 0.99 and h = 0.01 after 20,000 steps)

yk+2 = 8yk+1 + (α2h2 − 4)yk + 4α(xk+1 − xk)

α2h2 + 4
,

where α = IΩ

I+mr2 . Since A ∈ SO(2), the discrete nonholonomic model predicts that
the point of contact of the ball will sweep out a circle on the table in agreement
with the continuous model. Figure 2 shows the excellent behavior of the proposed
numerical method.

4.6 Discrete Chaplygin Systems

Now we present the theory for a particular (but typical) example of discrete nonholo-
nomic systems: discrete Chaplygin systems. These kinds of systems were considered
in the case of the pair groupoid in Cortés and Martínez (2001).

For any groupoid � ⇒ M , the map χ : � → M × M , g �→ (α(g),β(g)) is a mor-
phism over M from � to the pair groupoid M × M (usually called the anchor of �).
The induced morphism of Lie algebroids is precisely the anchor ρ : E� → T M of E�

(the Lie algebroid of �).

Definition 4.2 A discrete Chaplygin system on the groupoid � is a discrete nonholo-
nomic problem (Ld,Mc,Dc) such that

– (Ld,Mc,Dc) is a regular discrete nonholonomic Lagrangian system.
– χMc = χ ◦ iMc : Mc → M × M is a diffeomorphism.
– ρ ◦ iDc : Dc → T M is an isomorphism of vector bundles.

Denote by L̃d : M × M → R the discrete Lagrangian defined by L̃d = Ld ◦ iMc ◦
(χMc)

−1.
In the following, we want to express the dynamics on M ×M , by finding relations

between the dynamics defined by the nonholonomic system on � and M × M .
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From our hypothesis, for any vector field Y ∈ X(M) there exists a unique section
X ∈ Sec(τDc) such that ρ ◦ iDc ◦ X = Y .

Now, using (2.4), (2.5) and (2.6), it follows that

Tgα
(−→
X (g)

)= −Y
(
α(g)

)
and Tgβ

(←−
X (g)

)= Y
(
β(g)

)

with some abuse of notation. In other words,

Tgχ
(
X(1,0)(g)

)= Y (1,0)
(
α(g),β(g)

)
and Tgχ

(
X(0,1)(g)

)= Y (0,1)
(
α(g),β(g)

)

for g ∈ Mc, where T χ : T �� ∼= Vβ ⊕� V α → T M×M(M × M) ∼= T (M × M) is
the prolongation of the morphism χ given by

(Tgχ)(Xg,Yg) = (
(Tgα)(Xg), (Tgβ)(Yg)

)
,

for g ∈ � and (Xg,Yg) ∈ T �
g � ∼= Vgβ ⊕ Vgα.

Since χMc is a diffeomorphism, there exists a unique X′
g ∈ TgMc (resp., X̄′

g ∈
TgMc) such that

(TgχMc)
(
X′

g

)= Y (1,0)
(
α(g),β(g)

)= (−Y
(
α(g)

)
,0β(g)

)

(resp., (TgχMc)(X̄
′
g) = Y (0,1)(α(g),β(g)) = (0α(g), Y (β(g)))) for all g ∈Mc.

Thus,

X′
g ∈ TgMc ∩ Vgβ,

−→
X (g) − X′

g = Z′
g ∈ Vgα ∩ Vgβ,

X̄′
g ∈ TgMc ∩ Vgα,

←−
X (g) − X̄′

g = Z̄′
g ∈ Vgα ∩ Vgβ,

for all g ∈ Mc.
Now, if (g,h) ∈ �2 ∩ (Mc ×Mc), then

←−
X (g)(Ld) − −→

X (h)(Ld) = X̄′
g(Ld) + Z̄′

g(Ld) − X′
h(Ld) − Z′

h(Ld)

= ←−
Y
(
α(g),β(g)

)
(L̃d) − −→

Y
(
α(h),β(h)

)
(L̃d)

+ Z̄′
g(Ld) − Z′

h(Ld).

Therefore, if we use the following notation
(
α(g),β(g)

)= (x, y),
(
α(h),β(h)

)= (y, z)

F+
Y (x, y) = −Z̄′

χ−1
Mc

(x,y)
(Ld), F−

Y (y, z) = Z′
χ−1
Mc

(y,z)
(Ld),

then

←−
X (g)(Ld) − −→

X (h)(Ld) = ←−
Y (x, y)(L̃d) − −→

Y (y, z)(L̃d) − F+
Y (x, y) + F−

Y (y, z).

In conclusion, we have proved that (g,h) is a solution of the discrete nonholonomic
Euler–Lagrange equations for the system (Ld,Mc,Dc) if and only if ((x, y), (y, z))
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is a solution of the reduced equations

←−
Y (x, y)(L̃d) − −→

Y (y, z)(L̃d) = F+
Y (x, y) − F−

Y (y, z), Y ∈ X(M).

Note that the above equations are the standard forced discrete Euler–Lagrange equa-
tions (see Marsden and West 2001).

4.6.1 The Discrete Two-Wheeled Planar Mobile Robot

We now consider a discrete version of the two-wheeled planar mobile robot (Cortés
2002; Cortés et al. 2005) (see also Kobilarov and Sukhatme 2007). The position and
orientation of the robot is determined, with respect a fixed Cartesian reference, by an
element Ω = (θ, x, y) ∈ SE(2), that is, a matrix

Ω =
⎛
⎝cos θ − sin θ x

sin θ cos θ y

0 0 1

⎞
⎠ .

Moreover, the different positions of the two wheels are described by elements
(φ,ψ) ∈ T

2. Therefore, the configuration space is SE(2) × T
2. The system is sub-

jected to three nonholonomic constraints: one constraint induced by the condition of
no lateral sliding of the robot and the other two by the rolling conditions of both
wheels.

It is well known that this system is SE(2)-invariant and that the system may be
described as a nonholonomic system on the Lie algebroid se(2) × T T

2 → T
2 (see

Cortés et al. 2005). In this case, the Lagrangian is

L = 1

2

(
Jω2 + m

(
v1)2 + m

(
v2)2 + 2m0lωv2 + J2φ̇

2 + J2ψ̇
2)

= 1

2
Tr
(
ξJξT)+ J2

2
φ̇2 + J2

2
ψ̇2,

where

ξ = ωe + v1 e1 + v2 e2 =
⎛
⎝ 0 −ω v1

ω 0 v2

0 0 0

⎞
⎠ and J =

⎛
⎝J/2 0 m0l

0 J/2 0
m0l 0 m

⎞
⎠ .

Here, m = m0 + 2m1, where m0 is the mass of the robot without the two wheels, m1
the mass of each wheel, J its the moment of inertia with respect to the vertical axis,
J2 the axial moments of inertia of the wheels and l the distance between the center
of mass of the robot and the intersection point of the horizontal symmetry axis of the
robot and the horizontal line connecting the centers of the two wheels.

The nonholonomic constraints are

v1 + R

2
φ̇ + R

2
ψ̇ = 0,

v2 = 0,

ω + R

2c
φ̇ − R

2c
ψ̇ = 0,

(4.19)
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determining a submanifold M of se(2) × T T
2, where R is the radius of the two

wheels and 2c the lateral length of the robot.
In order to discretize the above nonholonomic system, we consider the Atiyah

groupoid � = SE(2) × (T2 × T
2) ⇒ T

2. The Lie algebroid of SE(2) × (T2 × T
2) ⇒

T
2 is T T

2 × se(2) → T
2. Then:

– The discrete Lagrangian Ld : SE(2) × (T2 × T
2) → R is given by

Ld(Ωk,φk,ψk,φk+1,ψk+1) = 1

2h2
Tr
(
(Ωk − I3×3)J(Ωk − I3×3)

T)

+ J1

2

(�φk)
2

h2
+ J1

2

(�ψk)
2

h2
,

where I3×3 is the identity matrix, �φk = φk+1 − φk , �ψk = ψk+1 − ψk and

Ωk =
⎛
⎝cos θk − sin θk xk

sin θk cos θk yk

0 0 1

⎞
⎠ .

We obtain that

Ld = 1

2h2

(
mx2

k + my2
k − 2lm0xk(1 − cos θk)

+ 2J (1 − cos θk) + 2lm0yk sin θk

)+ 1

2
J1

(�φk)
2

h2
+ 1

2
J1

(�ψk)
2

h2
.

– The constraint vector subbundle of se(2) × T T
2 is generated by the sections

{
s1 = R

2
e1 + R

2c
e − ∂

∂φ
, s2 = R

2
e1 − R

2c
e − ∂

∂ψ

}
.

– The continuous constraints of the two-wheeled planar robot are written in matrix
form (see 4.19):

ξ =
⎛
⎝ 0 −ω v1

ω 0 v2

0 0 0

⎞
⎠=

⎛
⎝ 0 R

2c
φ̇ − R

2c
ψ̇ −R

2 φ̇ − R
2 ψ̇

− R
2c

φ̇ + R
2c

ψ̇ 0 0
0 0 0

⎞
⎠ .

We discretize the previous constraints using the exponential on SE(2) (see
Sect. 4.3.2) and discretizing the velocities on the right-hand side

Ωk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos( R
2c

�φk

− R
2c

�ψk)

sin( R
2c

�φk

− R
2c

�ψk)

−c
�φk+�ψk

�φk−�ψk

× sin( R
2c

�φk − R
2c

�ψk)

− sin( R
2c

�φk

− R
2c

�ψk)

cos( R
2c

�φk

− R
2c

�ψk)

c
�φk+�ψk

�φk−�ψk

× (1 − cos( R
2c

�φk − R
2c

�ψk))

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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if �φk �= �ψk , and

Ωk =
⎛
⎝1 0 −R�φk

0 1 0
0 0 1

⎞
⎠

if �φk = �ψk .
Therefore, the constraint submanifold Mc is defined as

θk = − R

2c
�φk + R

2c
�ψk, (4.20)

xk = −c
�φk + �ψk

�φk − �ψk

sin

(
R

2c
�φk − R

2c
�ψk

)
, (4.21)

yk = c
�φk + �ψk

�φk − �ψk

(
1 − cos

(
R

2c
�φk − R

2c
�ψk

))
(4.22)

if �φk �= �ψk and θk = 0, xk = −R�φk and yk = 0 if �φk = �ψk .

We have that the discrete nonholonomic system (Ld,Mc,Dc) is reversible. More-
over, if ε� : T

2 → SE(2) × (T2 × T
2) is the identity section of the Lie groupoid

� = SE(2) × (T2 × T
2), then it is clear that

ε�

(
T

2)= {I3×3} × �T2×T2 ⊆ Mc.

Here, �T2×T2 is the diagonal in T
2 × T

2. In addition, the system (Ld,Mc,Dc) is
regular in a neighborhood U of the submanifold ε�(T2) = {I3×3} × �T2×T2 in Mc.
Note that

T(I3×3,φ1,ψ1,φ1,ψ1)Mc ∩ E�(φ1,ψ1) = Dc(φ1,ψ1),

for (φ1,ψ1) ∈ T
2, where E� = se(2) × T T

2 is the Lie algebroid of the Lie groupoid
� = SE(2) × (T2 × T

2).
On the other hand, it is easy to show that the system (Ld,U,Dc) is a discrete

Chaplygin system.
The reduced Lagrangian on T

2 × T
2 is

L̃d =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
h2 (mc2(

�φk+�ψk

�φk−�ψk
)2(1 − cos( R

2c
�φk − R

2c
�ψk))

+ J (1 − cos( R
2c

�φk − R
2c

�ψk)))

+ 1
2J1

(�φk)
2

h2 + 1
2J1

(�ψk)
2

h2 , if �φk �= �ψk,

(J1 + mR2

2 )
(�φk)

2

h2 , if �φk = �ψk.

The discrete nonholonomic equations are

←−
s1 |(Ω1,φ1,ψ1,φ2,ψ2)(Ld) − −→

s1 |(Ω2,φ2,ψ2,φ3,ψ3)(Ld) = 0,

←−
s2 |(Ω1,φ1,ψ1,φ2,ψ2)(Ld) − −→

s2 |(Ω2φ2,ψ2,φ3,ψ3)(Ld) = 0.
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These equations in coordinates are

2J1(φ3 − 2φ2 + φ1) = lRm0(cos θ2 + cos θ1) + JR

c
(sin θ2 − sin θ1)

− R cos θ1

c
(lm0y1 + cmx1) + R sin θ1

c
(lm0x1 − cmy1)

+ R

c

(
cmx2 + lm0(y2 − 2c)

)
, (4.23)

2J1(ψ3 − 2ψ2 + ψ1) = lRm0(cos θ2 + cos θ1) − JR

c
(sin θ2 − sin θ1)

+ R cos θ1

c
(lm0y1 − cmx1) − R sin θ1

c
(lm0x1 + cmy1)

+ R

c

(
cmx2 − lm0(y2 + 2c)

)
. (4.24)

Substituting constraints (4.20), (4.21) and (4.22) in (4.23) and (4.24) we obtain a set
of equations of the type 0 = f1(φ1, φ2, φ3,ψ1,ψ2,ψ3) and 0 = g1(φ1, φ2, φ3,ψ1,

ψ2,ψ3) which are the reduced equations of the Chaplygin system.

5 Conclusions and Future Work

In this paper we have elucidated the geometrical framework for nonholonomic dis-
crete Mechanics on Lie groupoids. We have developed discrete nonholonomic equa-
tions on Lie groupoids that are general enough to produce practical integrators for
continuous nonholonomic systems (reduced or not). The geometric properties related
with these equations have been completely studied and the applicability of these de-
velopments has been stated in several interesting examples.

Of course, much work remains to be done to clarify the nature of discrete nonholo-
nomic mechanics. Many of this future work was stated in McLachlan and Perlmutter
(2006) and, in particular, we emphasize the need for the following:

– A complete backward error analysis which explains the very good energy behavior
showed in examples or the preservation of a discrete energy (see Fedorov and
Zenkov 2005a).

– Related to the previous question, the construction of a discrete exact model for
a continuous nonholonomic system (see Iglesias et al. 2007; Marsden and West
2001; McLachlan and Perlmutter 2006).

– To study discrete nonholonomic systems that preserve a volume form on the con-
straint surface mimicking the continuous case (see, for instance, Fedorov and Jo-
vanovic 2004; Zenkov and Bloch 2003 for this last case).

– To analyze the discrete Hamiltonian framework and the construction of integrators
depending on different discretizations.

– And the construction of a discrete nonholonomic connection in the case of Atiyah
groupoids (see Leok 2004; Marrero et al. 2006).
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Related with some of the previous questions, in the conclusions of the paper by R.
McLachlan and M. Perlmutter (2006), the authors raised the question of the possibil-
ity of the definition of generalized constraint forces dependent on all the points qk−1,
qk and qk+1 (instead of just qk) for the case of the pair groupoid. We think that the
discrete nonholonomic Euler–Lagrange equations can be generalized to consider this
case of general constraint forces that, moreover, are closest to the continuous model
(see de León et al. 2004; McLachlan and Perlmutter 2006).

Appendix

We will use the same notation as in Sect. 3.2.

Lemma 6.1 F (resp., F̄ ) is a coisotropic vector subbundle of the symplectic vector
bundle (T ��,ΩLd), that is,

F⊥
h ⊆ Fh, for every h ∈ �

(resp., F̄⊥
g ⊆ F̄g , for every g ∈ �), where F⊥

h (resp., F̄⊥
g ) is the symplectic or-

thogonal of Fh (resp., F̄g) in the symplectic vector space (T �
h �, ΩLd(h)) (resp.,

(T �
g �,ΩLd(g))).

Proof If h ∈ � we have that

F⊥
h = �−1

ΩLd (h)

(
F 0

h

)
,

�ΩLd (h) : T �
h � → (T �

h �)∗ being the canonical isomorphism induced by the symplec-
tic form ΩLd(h). Thus, using (2.14), we deduce that

F⊥
h = {

�−1
ΩLd (h)

(
γ

(1,0)
h

) ∣∣ γ ∈Dc
(
α(h)

)0}⊆ {0} ⊕ Vhα ⊆ Fh.

The coisotropic character of F̄g is proved in a similar way. �

We also have the following result

Lemma 6.2 Let T �
F

−Ld : T �� → T E�E∗
� (resp., T �

F
+Ld : T �� → T E�E∗

�) be
the prolongation of the Legendre transformation F

−Ld : � → E∗
� (resp., F

+Ld : � →
E∗

�). Then,

(
T �

h F
−Ld

)
(Fh) = T Dc

F−Ld(h)
E∗

�

= {
(vα(h),XF−Ld(h)) ∈ T E�

F−Ld(h)
E∗

�

∣∣ vα(h) ∈ Dc
(
α(h)

)}
,

for h ∈ Mc (resp.,
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(
T �

g F
+Ld

)
(F̄g) = T Dc

F+Ld(g)
E∗

�

= {
(vβ(g),XF+Ld(g)) ∈ T E�

F+Ld(g)
E∗

�

∣∣ vβ(g) ∈Dc
(
β(g)

)}
,

for g ∈Mc).

Proof It follows using (2.11), (2.18) (resp., (2.12), (2.19)) and Proposition 2.2. Note
that dimT Dc

F−Ld(h)
E∗

� = dimFh (resp., dimT Dc
F+Ld(g)

E∗
� = dim F̄g). �

Now, we may prove Theorem 3.6.

Proof of Theorem 3.6 (i) ⇒ (ii) If h ∈ Mc and (Xh,Yh) ∈ (ρT ��)−1(ThMc) ∩ F⊥
h

then, using the fact that F⊥
h ⊆ {0} ⊕ Vhα (see the proof of Lemma 6.1), we have that

Xh = 0. Therefore,

Yh ∈ Vhα ∩ ThMc. (6.1)

Next, we will see that (
ThF

−(Ld,Mc,Dc)
)
(Yh) = 0. (6.2)

From (3.4) and (6.1), it follows that (ThF
−(Ld,Mc,Dc))(Yh) is vertical with re-

spect to the projection τ ∗
Dc

: D∗
c → M .

Thus, it is sufficient to prove that

((
ThF

−(Ld,Mc,Dc)
)
(Yh)

)(
Ẑ
)= 0, for all Z ∈ Sec(τDc).

Here, Ẑ :D∗
c → R is the linear function on D∗

c induced by the section Z : M → Dc.
Now, using (3.3), we deduce that

((
ThF

−(Ld,Mc,Dc)
)
(Yh)

)(
Ẑ
)= d

(
Ẑ ◦ i∗Dc

)((
F

−Ld
)
(h)
)(

0,
(
ThF

−Ld
)
(Yh)

)
,

where d is the differential of the Lie algebroid τ τ∗ : T E�E∗
� → E∗

� .
Consequently, if Z∗c : E∗

� → T E�E∗
� is the complete lift of Z ∈ Sec(τ ), we have

that (see (2.10)),

((
ThF

−(Ld,Mc,Dc)
)
(Yh)

)(
Ẑ
)

= Ω
(
F

−Ld(h)
)(

Z∗c(
F

−Ld(h)
)
,
(
0,
(
ThF

−Ld
)
(Yh)

))
, (6.3)

Ω being the canonical symplectic section associated with the Lie algebroid E� .
On the other hand, since Z ∈ Sec(τDc), it follows that Z∗c(F−Ld(h)) is in

T Dc
F−Ld(h)

E∗
� and, from Lemma 6.2, we conclude that there exists (X′

h,Y
′
h) ∈ Fh such

that (
T �

h F
−Ld

)(
X′

h,Y
′
h

)= Z∗c((
F

−Ld
)
(h)
)
. (6.4)

Moreover, using (2.18), we obtain that

(
T �

h F
−Ld

)
(0, Yh) = (

0,
(
ThF

−Ld
)
(Yh)

)
. (6.5)
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Thus, from (2.21), (6.3), (6.4) and (6.5), we deduce that

((
ThF

−(Ld,M,Dc)
)
(Yh)

)(
Ẑ
)= −ΩLd(h)

(
(0, Yh),

(
X′

h,Y
′
h

))
.

Therefore, since (0, Yh) ∈ F⊥
h , it follows that (6.2) holds, which implies that Yh = 0.

This proves that (ρT ��)−1(ThMc) ∩ F⊥
h = {0}.

If F
+(Ld,Mc,Dc) is a local diffeomorphism then, proceeding as above, we have

that (ρT ��)−1(TgMc) ∩ F̄⊥
g = {0}, for all g ∈ Mc.

(ii) ⇒ (iii) Assume that h ∈ Mc and that

(
ρT ��

)−1
(ThMc) ∩ F⊥

h = {0}. (6.6)

Let U be an open subset of �, with h ∈ U , and {φγ }γ=1,...,n−r a set of independent
real C∞-functions on U such that

Mc ∩ U = {
h′ ∈ U

∣∣ φγ
(
h′)= 0, for all γ

}
.

If d is the differential of the Lie algebroid τ̃� : T �� → �, then it is easy to prove that

(
ρT ��

)−1
(ThMc) = 〈{

dφγ (h)
}〉0

.

Thus,

dim
((

ρT ��
)−1

(ThMc)
)≥ n + r. (6.7)

On the other hand, dimF⊥
h = n − r . Therefore, from (6.6) and (6.7), we obtain

that

dim
((

ρT ��
)−1

(ThMc)
)= n + r,

and

T �
h � = (

ρT ��
)−1

(ThMc) ⊕ F⊥
h .

Consequently, using Lemma 6.1, we deduce that

Fh = Hh ⊕ F⊥
h . (6.8)

This implies that dimHh = 2r . Moreover, from (6.8), we also get that

Hh ∩H⊥
h ⊆ Hh ∩ F⊥

h

and, since Hh ∩ F⊥
h = (ρT ��)−1(ThMc) ∩ F⊥

h (see Lemma 6.1), it follows that
Hh ∩H⊥

h = {0}.
Thus, we have proved that Hh is a symplectic subspace of the symplectic vector

space (T �
h �,ΩLd(h)).

If (ρT ��)−1(TgMc) ∩ F̄⊥
g = {0}, for all g ∈ Mc then, proceeding as above,

we obtain that H̄g is a symplectic subspace of the symplectic vector space
(T �

g �,ΩLd(g)), for all g ∈ Mc.
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(iii) ⇒ (iv) Assume that h ∈ Mc, that Hh is a symplectic subspace of dimension
2r of the symplectic vector space (T �

h �,ΩLd(h)) and that b ∈ (
←−
E �)

Mc
h satisfies the

following condition

G
Ld
h (a, b) = 0, ∀a ∈ (Dc)α(h).

Then, Yh = (Tε(β(h))lh)(b) ∈ ThMc ∩ Vhα and (0, Yh) ∈ (ρT ��)−1(ThMc).
Moreover, if (X′

h,Y
′
h) ∈ Fh, we have that

X′
h = −(Tε(α(h))(rh ◦ i)

)
(a), with a ∈ (Dc)α(h).

Thus, from (2.14) and (2.22), we deduce that

ΩLd(h)
((

X′
h,Y

′
h

)
, (0, Yh)

)= ΩLd(h)
((

X′
h,0

)
, (0, Yh)

)= G
Ld
h (a, b) = 0.

Therefore,

(0, Yh) ∈ (ρT ��
)−1

(ThMc) ∩ F⊥
h

which, using Lemma 6.1 and the fact that Hh ⊆ Fh, implies that (0, Yh) ∈Hh ∩H⊥
h =

{0}. Consequently, b = 0.
If H̄g is a symplectic subspace of dimension 2r of the symplectic vector space

(T �
g �,ΩLd(g)), for all g ∈ Mc then, proceeding as above, we obtain that

{
a ∈ (−→E �

)Mc
g

∣∣GLdc
g (a, b) = 0, for all b ∈ (Dc)β(g)

}= {0}.
(iv) ⇒ (i) Suppose that h ∈Mc, that

{
b ∈ (←−E �

)Mc
h

∣∣GLd
h (a, b) = 0, ∀a ∈ (Dc)α(h)

}= {0}
and that Yh is a tangent vector to Mc at h such that

(
ThF

−(Ld,Mc,Dc)
)
(Yh) = 0. (6.9)

Then, from (3.4), it follows that Yh ∈ Vhα. Thus,

Yh = (
Tε(α(h))lh

)
(b), with b ∈ (←−E �

)Mc
h

.

Now, using (2.21) and (2.22), we have that

G
Ld
h (a, b) = Ω

(
F

−Ld(h)
)((

0,
(
ThF

−Ld
)
(Yh)

)
, (a,YF−Ld(h))

)

for a ∈ (Dc)α(h), with YF−Ld(h) ∈ T
E�

F−Ld(h)
E∗

� and (a,YF−Ld(h)) ∈ T E�

F−Ld(h)
E∗

�.

Next, we take a section Z ∈ Sec(τDc) such that Z(α(h)) = a. Then (see (2.9)),

(a,YF−Ld(h)) = Z∗c(
F

−Ld(h)
)+ (

0, Y ′
F−Ld(h)

)
,

where Y ′
F−Ld(h)

∈ TF−Ld(h)E
∗
� and Y ′

F−Ld(h)
is vertical with respect to the projection

τ ∗ : E∗
� → M .
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Therefore, since

Ω
(
F

−Ld(h)
)((

0,
(
ThF

−Ld
)
(Yh)

)
,
(
0, Y ′

F−Ld(h)

))= 0,

(see (3.7) in de León et al. 2005), we have that

G
Ld
h (a, b) = −Ω

(
F

−Ld(h)
)(

Z∗c(
F

−Ld(h)
)
,
(
0,
(
ThF

−Ld
)
(Yh)

))
and consequently, from (2.10), (3.3) and (6.9), it follows that

G
Ld
h (a, b) = −d

(
Ẑ ◦ i∗Dc

)(
F

−Ld(h)
)(

0,
(
ThF

−Ld
)
(Yh)

)
= −(ThF

−(Ld,Mc,Dc)
)
(Yh)(Ẑ) = 0.

This implies that b = 0 and Yh = 0. Thus, we have proved that F
−(Ld,Mc,Dc)

is a local diffeomorphism.
If {

a ∈ (−→E �

)Mc
g

/GLdc
g (a, b) = 0, ∀b ∈ (Dc)β(g)

}= {0},
for all g ∈ Mc then, proceeding as above, we obtain that F

+(Ld,Mc,Dc) is a local
diffeomorphism. �
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