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Abstract In this paper we study, from a numerical point of view, some aspects of
stability of solitary-wave solutions of the Bona–Smith systems of equations. These
systems are a family of Boussinesq-type equations and were originally proposed for
modelling the two-way propagation of one-dimensional long waves of small ampli-
tude in an open channel of water of constant depth. We study numerically the behav-
ior of solitary waves of these systems under small and large perturbations with the
aim of illuminating their long-time asymptotic stability properties and, in the case of
large perturbations, examining, among other, phenomena of possible blow-up of the
perturbed solutions in finite time.
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1 Introduction

We consider the Boussinesq systems of water wave theory, introduced in [8]:

ηt + ux + (ηu)x + auxxx − bηxxt = 0,

ut + ηx + uux + cηxxx − duxxt = 0,
(1.1)

where η = η(x, t) and u = u(x, t) are real functions defined for x ∈ R and t ≥ 0. The
coefficients a, b, c, d are given by the formulas

a = 1

2

(
θ2 − 1

3

)
ν, b = 1

2

(
θ2 − 1

3

)
(1 − ν),

(1.2)

c = 1

2

(
1 − θ2)μ, d = 1

2

(
1 − θ2)(1 − μ),

where ν and μ are real constants and 0 ≤ θ ≤ 1.
The family of systems (1.1) is an approximation of the two-dimensional Euler

equations for the irrotational, free surface flow of an incompressible, inviscid fluid in
a uniform horizontal channel, when the cross-channel variations can be ignored. The
approximation is valid at appropriate time scales [8], when ε := A/h � 1, λ/h � 1,
and the Stokes number Aλ2/h3 is of order 1; here A is the maximum free surface
elevation above an undisturbed level of fluid of depth h and λ is a typical wave-
length. The derivation of (1.1) in [8] from the Euler equations leads to a system with
dimensionless but scaled variables; this system is of the form (1.1), wherein the non-
linear terms (ηu)x and uux , and the dispersive terms (the third-order derivatives) are
multiplied by ε and the right-hand side consists of terms of order ε2. Dropping the
right-hand side terms yields systems for which the effects of nonlinearity and disper-
sion are comparable. In addition, unlike models incorporating one-way propagation
assumptions, like the KdV and the BBM equations, the family of systems (1.1) de-
scribes two-way wave propagation.

In this paper we shall consider the systems in the form (1.1) wherein the variables
are dimensionless but unscaled. The independent variables x and t are proportional
to position along the channel and time, respectively, while the dependent variables
η(x, t) and u(x, t) are proportional to the deviation of the free surface from its undis-
turbed level at (x, t) and to the horizontal velocity of the fluid at (x, t) at a nondimen-
sional height y = −1 + θ(1 + η(x, t)), respectively. (In terms of the variable y, the
flat bottom of the channel lies at y = −1.) For the details of the derivation of systems
of this type and of related equations, cf. [8, 15, 33, 43].

The Bona–Smith family of systems, introduced in [13], are Boussinesq systems of
the form (1.1, 1.2) obtained by requiring that ν = 0 and b = d . The latter condition
yields that μ = (4 − 6θ2)/3(1 − θ2) for θ �= 1, and, as a consequence, the constants
of the Bona–Smith systems are given by the formulas

a = 0, b = d = 3θ2 − 1

6
, c = 2 − 3θ2

3
. (1.3)

We shall also consider the system obtained by setting θ = 1 in (1.3), i.e. the system
with parameters a = 0, b = d = 1/3, c = −1/3, which, although not properly of the
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form (1.1, 1.2), may be considered nevertheless as a limiting case in the limit b = d

and μ → −∞. We refer the reader to the remarks in [13] and [8] as to the order
of magnitude of the terms of this limit system when written in scaled variables and
considered as approximation to the Euler equations. We also remark that setting θ2 =
2/3 in (1.3) yields the BBM–BBM system corresponding to a = c = 0, b = d = 1/6;
this system was analyzed in [7].

If we consider the linearized system that we obtain from (1.1, 1.3) by dropping the
nonlinear terms, and seek solutions of the form ei(kx−ωt), we see that the dispersion
relation for the Bona–Smith systems is

ω2 = k2(1 − ck2)

(1 + bk2)2
, with ω′(k) = ± 1 − (b + 2c)k2

√
1 − ck2(1 + bk2)2

.

From these formulas it follows that, as k → ±∞, the frequency approaches a constant
while the phase velocity ωk−1 and the group velocity ω′(k) tend to zero. Hence,
as was already observed in [13], large wave components simply lead to standing
oscillations of finite frequency, which is a first indication that (1.1, 1.3) has favorable
properties as a system modelling the Euler equations. Indeed, it follows from the
analysis in [8] that the initial-value problem for the linearized system corresponding
to (1.1, 1.3) is well posed in Hs+1 ×Hs for s ≥ 0 if θ2 > 2/3 and in Hs ×Hs if θ2 =
2/3 (here Hs = Hs(R) is the usual, L2-based Sobolev space of functions on R) and
conserves “energy” in the sense explained in Sect. 3 of [8]. (The systems are linearly
ill posed if θ2 < 2/3; hence, we restrict ourselves to the parameter range 2/3 ≤ θ2 ≤ 1
in the sequel.) It also follows from [8] that for θ2 ∈ (2/3,1] the linearized system is
well posed in the Lp-based Sobolev spaces Ws+1

p ×Ws
p for all s ≥ 0 and p ∈ (1,∞),

while it is ill posed for p = 1 or ∞. The BBM–BBM system with θ2 = 2/3 is well
posed in Lp for 1 ≤ p ≤ ∞ in the sense explained in [8].

We turn now to the Cauchy problem for the nonlinear Bona–Smith system, i.e. to
determining the solution of the system

ηt + ux + (ηu)x − bηxxt = 0,

ut + ηx + uux + cηxxx − buxxt = 0,

b = 3θ2 − 1

6
, c = 2 − 3θ2

3
,

2

3
≤ θ2 ≤ 1,

(1.4)

for x ∈ R, t > 0, with initial conditions

η(x,0) = η0(x), u(x,0) = u0(x), (1.5)

where η0 and u0 are given functions on R. The initial-value problem (1.4, 1.5) has
been studied in detail by Bona and Smith [13] in the case θ2 = 1. A straightforward
extension of their theory (see also [9]) yields that if the initial data (1.5) are such that
η0 ∈ H 1 ∩ C3

b and u0 ∈ L2 ∩ C2
b (where Ck

b = Ck
b(R) denotes the space of bounded,

continuous functions on R whose first k derivatives are also continuous and bounded)
and if η0(x) > −1 for x ∈ R and

E(0) :=
∫ ∞

−∞
[
η2

0 + |c|(η′
0

)2 + (1 + η0)u
2
0

]
dx < 2|c|1/2, (1.6)
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then there is a unique, global classical solution (η,u) of the initial-value problem
(1.4, 1.5), which, for each T > 0, is a continuous map from [0, T ] into (H 1 ∩ C3

b) ×
(L2 × C2

b). If further regularity is assumed for the initial data, then (1.4, 1.5) may be
shown to be well posed in Hs+1 × Hs for s ≥ 0 or in (H 1 ∩ Cs+1

b ) × (L2 ∩ Cs
b) for

integer s ≥ 0.
As explained in [13], the crucial step in the proof of global well-posedness of the

Bona–Smith systems is establishing an a priori H 1 × L2 estimate of the solution.
This estimate follows from the fact that the system is Hamiltonian and the “energy”
functional,

E(t) :=
∫ ∞

−∞
[
η2 + |c|η2

x + (1 + η)u2]dx, (1.7)

remains invariant for t ≥ 0. The restrictions θ2 > 2/3 and η0 > −1 ensure that 1 +
η(x, t), and, consequently, E(t) remain positive for all x ∈ R and t ≥ 0. (Recall that
1 + η(x, t) > 0 means that there is water in the channel at the point x at time t .) If
θ2 = 2/3, the system (1.4) reduces to the BBM–BBM system, which may be shown
to be well posed in Hs × Hs for s ≥ 0, locally in time; cf. [7, 9].

For the purposes of solving numerically the system (1.4) and/or comparing its
solution with experimental data, it is important to establish well-posedness, at least
locally in time, of initial- and boundary-value problems for (1.4). For the periodic
initial-value problem (1.4, 1.5), θ2 > 2/3, on the spatial interval [−L,L], L > 0,
it was shown in [2] (see also [4]) that if, for example, (η0, u0) ∈ C3

π (−L,L) ×
C2

π (−L,L) (where Ck
π(−L,L) for integer k ≥ 0 are the k times continuously dif-

ferentiable periodic functions on [−L,L]), η0 > −1 and

∫ L

−L

[
η2

0 + |c|(η′
0

)2 + (1 + η0)u
2
0

]
dx <

2L|c|1/2

L + |c|1/2
, (1.8)

then there is a unique, global classical solution (η,u) of the periodic initial-value
problem for (1.4, 1.5), which, for each T > 0, is a continuous map from [0, T ] into
C3

π (−L,L) × C2
π (−L,L). In this case too it is easy to check that the energy func-

tional, defined now as

E(t) :=
∫ L

−L

[
η2 + |c|η2

x + (1 + η)u2]dx, (1.9)

is constant in t . (Note that the bound in the right-hand side of (1.8) tends, as L → ∞,
to the right-hand side 2|c|1/2 of the analogous inequality for the problem on the whole
real line.)

Other types of boundary conditions may also be shown to lead to well-posed
initial- and boundary-value problems for the Bona–Smith systems, cf. [2, 4]. For
example, the problem with the reflection boundary conditions ηx = 0 and u = 0 im-
posed at both endpoints x = ±L is globally well-posed if θ2 > 2/3; the energy E,
given by (1.9), is conserved in this case. Imposing η = 0, u = 0 at the endpoints leads
to a problem for which E(t) is not constant and for which one may prove existence
and uniqueness of smooth solutions only locally in time.
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Being approximations of the Euler equations, the Boussinesq systems may be rea-
sonably expected to possess solitary-wave solutions. To study such solutions for the
Bona–Smith system, we seek travelling-wave solutions of (1.4) of the form

ηs(x, t) = ηs(x + x0 − cst),

us(x, t) = us(x + x0 − cst), x, x0 ∈ R, t ≥ 0,
(1.10)

where cs is the (constant) speed of propagation of the wave. The univariate functions
ηs = ηs(ξ), us = us(ξ), ξ ∈ R, will be supposed to be smooth, positive, and even,
with a single maximum located at ξ = 0, and decaying monotonically to zero, along
with all their derivatives, as ξ → ±∞. Substituting the formulas (1.10) into (1.4),
integrating once and denoting (us(ξ), ηs(ξ)) simply by (u(ξ), η(ξ)) yields a system
of two nonlinear ordinary differential equations (o.d.e.) which is written (with the
notation of [18])

S1y′′ + S2y + ∇g(u,η) = 0, ξ ∈ R, (1.11)

where y = (u, η)T, ′ = d
dξ

, and

S1 = −6

(
0 b

b c
cs

)
, S2 = − 6

cs

(
1 −cs

−cs 1

)
, g(u, η) = − 3

cs

u2η.

(1.12)
Note that if (u, η)T is a solution of (1.11) corresponding to some cs > 0, then
(−u,η)T is also a solution that propagates with speed −cs , i.e. to the left as t in-
creases. Henceforth, we shall normally assume that cs is positive.

Existence of solutions of the o.d.e. system (1.11, 1.12) in the case of the Bona–
Smith system with θ2 = 1 was established, for any cs > 1, by Toland [37]. Subse-
quently Toland showed in [39], by a geometric proof, that more general similar o.d.e.
systems possess, under certain hypotheses, symmetric orbits that are homoclinic to
zero. Toland’s general theory was applied by Chen [18] to establish the existence of
solitary-wave solutions for several examples of Boussinesq systems, including the
BBM–BBM system, corresponding to the special case of (1.11, 1.12) with θ2 = 2/3.

It is not hard to check, cf. [19], that Toland’s theory can also be applied to establish
the existence of solitary waves for any value of the speed cs > 1 for all Bona–Smith
systems, i.e. for any θ2 ∈ [2/3,1]. It also follows from this theory that for a solitary
wave the pair of peaks (u(0), η(0)) must lie in the open segment Γ = P1P2 (which
does not include the origin) of the branch of the curve f (u,η) = 0 in the first quadrant
of the u,η-plane (cf. Fig. 1), where f (u,η) := yTS2y + 2g(u,η), i.e. where

f (u,η) = 6

cs

(−u2(1 + η) − η2 + 2csuη
)
. (1.13)

It follows that the speed cs of a solitary wave with peaks (u(0), η(0)) satisfies the
equation

cs = μ2(1 + η(0)) + 1

2μ
, μ = u(0)

η(0)
. (1.14)
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Fig. 1 Locus of possible
(u(0), η(0)) and orbits

The curve f = 0 and, consequently, the relation (1.14) does not explicitly involve
the coefficients of the dispersive terms of the Boussinesq system. In particular,
(1.14) must hold for any triplet (cs, u(0), η(0)) corresponding to a solitary wave of a
Bona–Smith system. Of course, given any value of cs > 1, the location of the point
(u(0), η(0)) on Γ and the shape of the corresponding solitary-wave profile (i.e. the
orbit (u(ξ), η(ξ)), 0 ≤ ξ < ∞, represented by a dashed line in Fig. 1) depends on θ2.
Note that it follows from Toland’s theory that η(0) > u(0). In addition, it is easily
seen from (1.14) that ∂cs

∂η(0)
> 0, ∂cs

∂u(0)
> 0, implying that the speed of solitary waves

increases with their height.
The question of uniqueness of these solitary waves may be studied by techniques

again due to Toland, who established uniqueness in the case of the θ2 = 1 system,
unconditionally if u(0) ≤ 1, and in general, provided 1 < cs ≤ 3/2 or cs � 1, cf.
[38]. In the case of a general Bona–Smith system it is possible, following the general
line of Toland’s proof, to show uniqueness of solitary waves if

θ2 ∈
(

2 + √
0.2

3
,1

]
and

1 < cs ≤ cs,max(θ) := min

{
12(3θ2 − 2)

21θ2 − 13
,

2(3θ2 − 2)√
3(1 − θ2)(3θ2 − 1)

}
;

see [19]. This result means that (at least) for the class of Bona–Smith systems

corresponding to θ2 ∈ ( 2+√
0.2

3 ,1], and given any value of the speed in the inter-
val (1, cs,max(θ)], there exists precisely one point (u(0), η(0)) ∈ Γ , i.e. one pair
(u(0), η(0)) satisfying (1.14), from which there issues a solitary wave of the corre-
sponding system. This solitary wave is represented by the solution of the initial-value
problem for (1.11, 1.12) with initial conditions u(0), η(0), u′(0) = 0, η′(0) = 0.
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Some solitary-wave solutions of the Bona–Smith systems can be found in closed
form. Following, e.g. [17], we assume that

ηs(x, t) = η0 sech2(λ(x + x0 − cst)
)
,

us(x, t) = Bηs(x, t),
(1.15)

where η0, B , λ are real constants and x0 is arbitrary. When these formulas are sub-
stituted in the o.d.e. system (1.11, 1.12), it transpires that for each value of θ2 in
the interval (7/9,1) there is precisely one solitary-wave solution (ηs, us) of the form
(1.15); the parameters η0, cs,B,λ are given in terms of θ2 by the formulas

η0 = 9

2
· θ2 − 7/9

1 − θ2
, cs = 4(θ2 − 2/3)√

2(1 − θ2)(θ2 − 1/3)
,

λ = 1

2

√
3(θ2 − 7/9)

(θ2 − 1/3)(θ2 − 2/3)
, B =

√
2(1 − θ2)

θ2 − 1/3
.

(1.16)

It should be stressed that for each θ2 ∈ (7/9,1), the corresponding system of
the Bona–Smith family possesses only one exact solitary-wave solution of the form
(1.15); its corresponding parameters and, in particular, its speed are given by the for-
mulas (1.16). Of course, from the existence theory previously outlined, it is known
that for each θ2 ∈ [2/3,1] and for any value of the speed cs > 1, there exists a
solitary wave of the corresponding system; this solitary wave has the property that
(u(0), η(0)) ∈ Γ so that (1.14) is satisfied.

Solitary waves are not just interesting special travelling-wave solutions of non-
linear dispersive wave equations; their importance lies in the distinguished role they
play in the evolution and long-time asymptotic behavior of general solutions of the
initial-value problem for these equations, which emanate from arbitrary initial data in
appropriate function classes. Resolution of initial data into a series of solitary waves
plus decaying, small, dispersive oscillatory tails has been rigorously proved, via the
inverse scattering transform, for integrable equations such as the KdV equation, cf.
e.g. [35], and has, of course, been observed numerically since the re-emergence of
the study of solitary waves [45] in the 1960s in the case of many integrable and non-
integrable systems. For some recent relevant numerical studies, cf. e.g. [10, 11, 20,
32], and in particular for Boussinesq systems, e.g. [2–4, 7, 31].

Related to the resolution property, and almost a prerequisite for it, is the stability
of solitary waves under small perturbations. The rigorous theory of orbital (or shape)
stability of solitary waves of the KdV and the BBM equations was initiated by Ben-
jamin [5] (see also [6]), who established stability by Liapunov’s direct method. In this
variational theory the solitary wave is characterized as an extremal of an invariant of
the equation under the constraint that a second conserved functional is held fixed.
Specifically, in [5] the solitary wave is characterized as an extremum of the “mo-
ment of instability”, which happens to be the Hamiltonian of the underlying partial
differential equation (p.d.e.), while the second conserved functional is the square of
the L2 norm, respectively, of the H 1 norm, of the solution of the KdV, respectively,
of the BBM equation. The velocity of the solitary wave is the Lagrange multiplier
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of this constrained variational problem. This classical method, whose origins can be
traced again to Boussinesq [16], was extended, improved, and applied to establish the
orbital stability (or instability) of solitary waves of a variety of nonlinear dispersive
wave equations by many authors, for example Weinstein [40, 41], Grillakis et al. [22],
Albert et al. [1], Bona et al. [14], and others. A basic ingredient of this theory is the
spectral analysis of some linear ordinary differential operators on the real line with
coefficients that depend on the profiles of the solitary waves of the specific equation.

In the case at hand, the application of this orbital stability theory would proceed as
follows. As it was mentioned earlier, the Bona–Smith system (1.4) is Hamiltonian [9].
Indeed, recalling the definition of the invariant E from (1.7), we see that the func-
tional

H := −1

2
E = 1

2

∫ ∞

−∞
[
cη2

x − η2 − (1 + η)u2]dx (1.17)

is a Hamiltonian, since the system (1.4) may be written in the form

∂t

(
η

u

)
= JδH

(
η

u

)
, (1.18)

where J is the antisymmetric operator (1 − b∂2
x )−1∂x

(
0 1
1 0

)
and the gradient δH is

computed with respect to the L2 ×L2 inner product. The phase space may be defined
as a suitable product of Sobolev classes with elements vanishing at infinity along with
an appropriate number of their derivatives. In addition, solutions of the system (1.4)
preserve the impulse functional

I :=
∫ ∞

−∞
(uη + buxηx)dx. (1.19)

The variational theory characterizes the solitary waves (ηs, us), (1.10) as ex-
tremals of H for fixed I . This means that the solitary waves are critical points of
the functional G(η,u), where

G := H − csI.

The theory requires further to compute the Hessian G′′ = H ′′ − csI
′′ evaluated at the

solitary wave (ηs, us) and check that it has a simple zero eigenvalue, at most a finite
number of negative eigenvalues, with the rest of spectrum positive and bounded away
from zero. In our case we find that

S := G′′(ηs, us) =
( −(1 + c∂2

x ) cs(1 − b∂2
x ) − us

cs(1 − b∂2
x ) − us −(1 + ηs)

)
.

We may thus write that S = S∞ + A, where

S∞ :=
( −(1 + c∂2

x ) cs(1 − b∂2
x )

cs(1 − b∂2
x ) −1

)
, A :=

(
0 −us

−us −ηs

)
.

Since ηs , us → 0 exponentially as |x| → ∞, A is relatively compact. Therefore,
by Weyl’s theorem [23, 34], the essential spectrum of S coincides with that of S∞.
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For the constant coefficient operator S∞, using Fourier analysis we readily find that
the essential spectrum is the union of the intervals (−∞,−(1 + cs)], [−1 + cs,∞).
Hence, there is an infinite number of directions in which G′′ is indefinite and the
variational theory cannot be applied. This is a typical way of failure of the classical
theory, also observed in the case of various other nonlinear dispersive equations and
systems, cf. e.g. [12, 24, 27, 29, 36].

Orbital stability implies that an initial profile w(x,0), which is a small perturbation
of a solitary wave ws(x), will evolve into a solution w(x, t), which, for all t , will
remain close to the family of translated profiles ws(x + ξ), ξ ∈ R. More detailed
information about the long-time asymptotic behavior of w(x, t) may be furnished by
studies of the asymptotic stability of solitary waves. Such studies have been carried
out in the case of one-way models such as the KdV and BBM equations and their
generalized variants, e.g. in [26, 28, 42] and assert, grosso modo, that for large t ,

w(x, t) = ws∞(x − c∞t + ξ∞) + z(x, t),

where ws∞ is a solitary wave with speed c∞ close to the speed cs of the originally
perturbed ws , and ξ∞ is a small phase shift. The part of w denoted by z(x, t) repre-
sents smaller (and slower) solitary waves that may have also been produced, as well
as the small amplitude, dispersive, oscillatory tail trailing the solitary waves. Hence,
z(x, t) appears to be convected to the left relative to the larger emerging solitary wave
ws∞ and the aim of the theory of asymptotic stability of solitary waves is to show that
z tends to zero as t → ∞ in an appropriate sense (“convective stability”). For more
recent studies of asymptotic stability of solitary waves for these equations, cf. [25]
and [21]. Many of these studies include estimates of the decay of solutions of the
nonlinear equations satisfied by z, as well as estimates of how the speed and phase
of the main pulse approach c∞ and ξ∞, respectively, as t → ∞. Pego and Wein-
stein in [29] have analyzed the linearized convective stability of solitary waves for
the fourth-order (regularized) Boussinesq equation wtt = wxx + 3

2 (w2)xx + 1
3wxxtt

and the “classical” Boussinesq system (cf. [43]; this system corresponds to the val-
ues a = b = c = 0, d = 1

3 in (1.1)). The term “linearized” refers to the fact that the
equation (or system) for the residual z analyzed in [29] is not the exact nonlinear
equation that z satisfies but is obtained by linearizing this equation in a frame of ref-
erence moving with the speed of the original unperturbed solitary wave. A similar
study in the case of the Bona–Smith systems is currently underway by the authors of
the present paper.

In view of the difficulties in establishing an exact nonlinear theory for orbital or
asymptotic stability for the Boussinesq systems, we carry out in this paper a numer-
ical study of various stability properties of the solitary waves of the Bona–Smith
family (1.4). We approximated solutions of the Cauchy problem of (1.4) by solving
numerically the periodic initial-value problem for large-enough periods 2L. The main
numerical scheme that we used was a fully discrete Galerkin-finite element method
based on cubic spline discretizations on a uniform mesh on [−L,L], and the classi-
cal, explicit fourth-order Runge–Kutta scheme for the time-stepping procedure. This
scheme has been analyzed in [2, 4] and proved to be numerically stable and of fourth
order of accuracy in space and time; it is outlined here in Appendix 1. (Other numer-
ical schemes that have been analyzed and used for the Bona–Smith system include a
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semidiscrete, nonstandard Galerkin method due to Winther [44], and a fully discrete
spectral method [30, 31].)

In the paper at hand we make a numerical study of the effect of perturbations on
solitary-wave solutions of (1.4). In Sect. 2 we study the effect of small perturbations.
Our numerical experiments suggest that the solitary waves are asymptotically sta-
ble. We examine in detail the small amplitude dispersive tails that emerge (and travel
in both directions) in addition to the main solitary waves. In Sect. 3 we consider
some effects of larger perturbations of initial solitary-wave profiles. These include
the generation of many solitary waves travelling in both directions, when the initial
perturbation is large enough. We also briefly look at the interactions between collid-
ing solitary waves; for more computations along this line cf. [2, 4]. In some cases, we
observe that suitable large initial disturbances lead to apparent blow-up of the solu-
tion in finite time and present evidence to the effect that the condition 1+η(x, t) < 0,
at some point x at some time instant t > 0, is necessary but not sufficient for the de-
velopment of singularities in the solution. With the exception of this type of violent
instability due to large, nonphysical initial perturbations, the solitary waves of the
system (1.4) appear to be stable under a variety of types of perturbations. In Appen-
dix 1 we present in detail the numerical scheme that we used to perform the numerical
experiments of Sects. 2 and 3 and review its stability and accuracy theory. We also
study in detail the accuracy of two procedures that we used to generate solitary waves
numerically, cutting them away from the rest of the solution. In Appendix 2 we list
the types of perturbations of solitary waves that we used along with tables of the
parameters (amplitude, speed, etc.) of the larger solitary waves that emerge. In Ap-
pendix 3 we summarize the parameters ηmax, umax, cs of the emerging solitary waves
in a figure in the u, η-plane, which suggests that for a given θ2, i.e. a given member of
the Bona–Smith family of systems, the peak point (umax, ηmax) of the solitary wave
is a smooth, univalent function of cs . (In Sect. 2 we remark that umax, ηmax increase
with cs .)

2 Effect of Small Perturbations: Numerical Study of Asymptotic Stability

In the numerical experiments to be described in this section, initial profiles represent-
ing exact or numerically generated solitary waves of the Bona–Smith system were
subjected to small perturbations of several kinds. In all cases the perturbed initial
wave resolved itself, relatively fast, into a “nearby” solitary wave plus a two-way
propagating dispersive oscillatory tail. As the magnitude of the perturbations grew,
one or more smaller solitary waves were generated as well; these waves travelled
to the right or the left. In this section, we present a synopsis of our numerical in-
vestigations of these asymptotic stability properties of the solitary waves. We mostly
concentrate on small perturbation cases, wherein typically one solitary wave, and in
some cases two, emerge, and describe the evolution up to the establishment of these
waves and the development of the dispersive tail. The study of the formation of more
solitary waves and of other effects of larger perturbations is postponed until Sect. 3.
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2.1 Evolution of a Slightly Perturbed Solitary Wave

We begin by describing a typical experiment. We start from an initial condition of
the form (1.15, 1.16) at t = 0 and perturb the amplitude of ηs(x,0) by a factor r > 0.
Specifically, we integrate (1.4, 1.5) with θ2 = 9/11, taking

η0(x) = rη0sech2(λ(x + x0)
)
,

u0(x) = Bη0sech2(λ(x + x0)
)
,

(2.1)

where η0 = 1, B = √
3/2, λ = 1

4

√
33
5 , x0 = 100. (The unperturbed solitary wave

would have travelled to the right with speed cs = 5
√

3/6 ∼= 1.443376.) We solved
numerically the system for various values of r up to t = 100. (Unless otherwise spec-
ified, in the numerical simulations we integrated on the spatial interval [−150,150]
with h = 0.1 and k = 0.01.) A typical temporal evolution, corresponding to r = 1.1,
is depicted in Fig. 2, which shows the sequence of the numerically computed η and
u profiles as functions of x at t = 0, 40, 100. The initially perturbed solitary wave re-
solves itself into a single solitary wave with ηmax ∼= 1.06110, umax ∼= 0.91152, travel-
ling to the right with speed cs

∼= 1.4673, and followed by a small-amplitude dispersive
oscillatory tail. Another dispersive oscillatory wavetrain, of slightly larger amplitude
propagates to the left and, by t = 100, has wrapped itself around the boundary due to
the periodic boundary conditions.

Associated with this computation are the short-time temporal evolution curves of
the amplitudes and speed of the η and u solitary waves, shown in Fig. 3. The speed
refers to the velocity of the point x∗(t) at which the pulse attains its maximum (cf.
Appendix 1 for comments on computing x∗ and other parameters of solitary waves.
Due to the short time-span of the initial stage of this evolution, we computed the
velocity of x∗ as (x∗(t) − x∗(t + t))/t , taking t = 0.2 instead of the value
t = 10 normally used in steady-state speed calculations.) After an initial, transient
phase the amplitudes and the speed are seen to settle to their steady-state values that
correspond to the parameters ηmax, umax, cs of the emerging solitary wave.

As the perturbation factor r grows, more solitary waves emerge. For example, after
about r = 1.6, and definitely by r = 1.8, as seen in Fig. 17 of Appendix 1, in addi-
tion to the main, rightward-travelling solitary wave, a second, smaller solitary wave
emerges quite early at the head of the leftward-travelling wavetrain. For larger values
of r we observe more solitary waves travelling in either direction; the parameters of
the largest solitary wave and the number of solitary waves that have appeared up to
t = 100 are shown in Table 10 of Appendix 2.

In Appendix 2 we also summarize the results of other numerical experiments that
we performed using various types of perturbations of initial solitary wave profiles,
mainly on the system with θ2 = 9/11. If the magnitude of the perturbation was small,
we observed in all cases a typical evolution having the same characteristics as the
one resulting from the perturbation of the amplitude of η0(x) that we just described.
We also performed similar experiments by perturbing by small amounts in various
directions in the function space solitary waves of other Bona–Smith systems, and in
particular of those corresponding to the limiting cases θ2 = 1 (the “classical” system)
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Fig. 2 Evolution of a perturbed solitary wave, θ2 = 9/11. Initial conditions (2.1), r = 1.1

and θ2 = 2/3 (the BBM–BBM system). For many of these systems (in particular for
the θ2 = 1 and θ2 = 2/3 cases), we recall that there exist no analytical formulas for
the solitary waves; so, the initial profiles of the solitary waves were constructed by
iterative cleaning (cf. Appendix 1). We also obtained the same behavior when we
integrated a fixed initial solitary wave under small perturbations of the coefficients of
the dispersive terms of the system, as in Case IV in Appendix 2.

The numerical experiments mentioned above suggest that the solitary waves of the
Bona–Smith systems are asymptotically stable under small perturbations in the sense
explained in the Introduction. Indeed, what is observed is that an initial solitary wave,
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Fig. 3 Initial stage of the evolution of the amplitude and speed of the emerging solitary wave, θ2 = 9/11.
Initial conditions (2.1), r = 1.1

when perturbed by a small amount, forms a dominant solitary wave (main pulse) that
is followed by dispersive tails travelling in both directions and possibly by smaller
solitary waves also travelling in both directions. The main pulse outruns the smaller
waves and tends, as time grows, to a solitary wave with parameters close to those of
the original, unperturbed solitary wave.

2.2 Dependence of ηmax, umax on cs

Assuming uniqueness of solitary waves, in the sense explained in the Introduction,
we conclude that given a value of cs > 1 there is a unique pair of peak values
(η(0), u(0)) = (ηmax, umax) of the corresponding solitary wave. In all numerical ex-
periments that we performed, using various types of perturbations of initial solitary
wave profiles, we have consistently observed that η(0) and u(0) appear to be smooth,
increasing functions of cs , so that larger solitary waves outrun smaller ones. (We have
already mentioned in the Introduction that formula (1.14) implies that ∂cs

η(0)
> 0 and

∂cs

u(0)
> 0.) For example, consider Table 10 in Appendix 2, which gives the numeri-

cally computed peak values η̃max, ũmax and their associated speeds c̃s in the case of
the Bona–Smith system with θ2 = 9/11 and perturbations of the type (5.1). (When
substituted in (1.14), these values of η̃max, ũmax yield a speed cs that differs from c̃s

by an amount of O(10−6).) Plotting η̃max and ũmax as functions of c̃s using the data
of Table 10 yields Fig. 4 in which η̃max and ũmax appear to be smooth, increasing
functions of c̃s .
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Fig. 4 Peak values of the
numerical solitary waves as
functions of the speed. Data of
Table 10

Fig. 5 Dispersive tails of η.
(Magnification of the η-profile
at t = 100, Fig. 2)

Fig. 6 Dispersive tails of u.
(Magnification of the u-profile
at t = 100, Fig. 2)

2.3 Numerical Study of Dispersive Tails

We have already mentioned that part of the evolution of a perturbed solitary-wave
is the emergence of small amplitude, oscillatory wavetrains, the dispersive tails, that
travel in both directions. In this subsection we study numerically the main features of
dispersive tails for the Bona–Smith systems, and then, using the fact that they may be
considered as approximate solutions of the associated linearized systems, we confirm
some of their experimentally observed properties using the dispersion relations of the
linearized equations.

We begin by presenting the experimental evidence for the dispersive tails pro-
duced by the evolution of the perturbed initial solitary-wave profile (2.1) for r = 1.1.
By magnifying the graphs of Fig. 2 we obtain Figs. 5 and 6 that show in detail the
dispersive tails for the η and u, respectively, components of the solution at t = 100.
The solitary-wave travels to the right and the dispersive tail forms two wavetrains,
one following the solitary-wave and travelling to the right, and another travelling to
the left; by t = 100 the latter has wrapped itself around the boundary.
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Table 1 Data of the leading pulse of the leftward-travelling η-dispersive tail and number of following
positive pulses of height greater than 10−5. (Evolution of Fig. 2)

t x∗ Amplitude Speed Support Pulses

10 −108.77189 0.03178 2

20 −118.44063 0.02832 0.967 28.2 4

30 −128.25563 0.02616 0.982 31.3 7

40 −138.13523 0.02463 0.988 33.9 9

50 −148.05173 0.02347 0.992 36.3 11

60 142.00776 0.02255 0.994 38.1 14

70 132.05035 0.02179 0.996 39.8 17

80 122.08037 0.02114 0.997 41.4 19

90 112.10066 0.02059 0.998 42.9 21

100 102.11320 0.02010 0.999 44.3 24

Table 2 Data of the leading pulse of the rightward-travelling η-dispersive tail and number of following
positive pulses of height greater than 10−5. (Evolution of Fig. 2)

t x∗ Amplitude Speed Pulses

10

20 3

30 6

40 −63.31347 0.00687 9

50 −53.50979 0.00649 0.980 11

60 −43.67607 0.00619 0.983 13

70 −33.82085 0.00594 0.986 15

80 −23.94943 0.00573 0.987 17

90 −14.06528 0.00554 0.988 19

100 −4.17086 0.00539 0.989 21

In Tables 1 and 2 we present various numerical data on the two wavetrains. Table 1
concerns the leading pulse of the leftward-travelling η-train. The first column lists the
time instances of the measurements. The second contains the coordinate x∗, where
the leading pulse gains its maximum, calculated using Newton’s method with 10
iterations starting with the quadrature node (cf. Appendix 1) where the pulse has
its maximum value (“discrete maximum”). The third column contains the values of
the maximum height of the leading pulse, while the fourth column shows the speed
of the leading pulse, defined as the average speed of x∗, and computed as x∗/t ,
where t = 10. The fifth column shows the “support” of the first pulse, defined as the
wavelength of the full leading pulse, i.e. of its positive and negative part. Finally, the
last column shows the number of observed positive pulses (that achieved maximum
height greater than 10−5) following the main pulse of the leftward-travelling train.

Table 2 shows some analogous data for the rightward-travelling η-dispersive tail.
We have not measured the support of the leading pulse of the rightward-travelling
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dispersive tail because its parameters are harder to measure due to its smaller size
and somewhat slower development. Otherwise, the data of these tables confirm the
basic characteristics of dispersive tails observed in one-way models such as the KdV
equation, for example the eventual temporal decay of the maximum amplitude and of
the amplitude of subsequent pulses, increase of the support of the pulses and of the
number of pulses as t grows, etc. It is worthwhile to note that the speeds of the two
leading pulses that travel to the left and to the right seem to have almost stabilized by
t = 100. A least squares fit of the data describing the temporal decay of the maximum
amplitude of the leftward-travelling leading pulse of the η-dispersive tail reveals that
at least up to t = 100 the decay of the pulse is very accurately predicted by a decay
law of the form Ct−1/5.

In order to gain some theoretical understanding of the dispersive tails, we make
the change of variable y = x −cst , where cs > 1 is the speed of the solitary wave, and
drop the nonlinear terms in the Bona–Smith system. The result is that small amplitude
solutions of the system (like the dispersive tails) evolve, in a frame moving with the
solitary wave, according to the linearized constant coefficient system

(1 − b∂yy)(∂t − cs∂y)η + ∂yu = 0,

(1 − b∂yy)(∂t − cs∂y)u + ∂y(1 + c∂yy)η = 0.
(2.2)

Combining equations in (2.2), we see that η (and u as well) satisfies the equation

(1 − b∂yy)
2(∂t − cs∂y)

2η − ∂yy(1 + c∂yy)η = 0, (2.3)

which has solutions of the form η(y, t) = ei(ky−ω(k)t), k ∈ R, provided the dispersion
relation

ω±(k) = −csk ± k
√

1 − ck2

1 + bk2
, (2.4)

holds for the frequency ω(k). The (local) phase speed, relative to the speed of the
solitary waves, is therefore given by the expression

v±(k) = ω±(k)

k
= −cs ±

√
1 − ck2

1 + bk2
. (2.5)

Recall that for the Bona–Smith systems c = 2
3 − θ2, b = 3θ2−1

6 with θ2 ∈ [2/3,1].
Hence, − 1

3 ≤ c ≤ 0, 1
6 ≤ b ≤ 1

3 , and 2b+ c = 1
3 . Therefore the function φ : [0,∞) →

R, defined by φ(x) =
√

1−cx
1+bx

, x ≥ 0, satisfies φ(0) = 1 and is strictly decreasing to 0
as x → ∞. We conclude from (2.5) that for all wavenumbers k > 0,

−(cs + 1) < v−(k) < −cs < v+(k) < −cs + 1 < 0, (2.6)

so that individual plane wave components of the dispersive tail of the form
ei(ky−ω+(k)t) (i.e. that travel to the right) trail the solitary wave, and their absolute
phase speed v+(k)+cs is less than 1. Moreover, components corresponding to longer
wavelengths (smaller wavenumbers k) are faster than those of shorter wavelength.
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Components of the form ei(ky−ω−(k)t) (i.e. those travelling to the left, with absolute
phase speed |v−(k) + cs |) have the same properties.

The associated group velocities ω′± = dω±
dk

are given by the formulas

ω′±(k) = −cs ± 1 − (b + 2c)k2

(1 + bk2)2
√

1 − ck2
. (2.7)

In the case of one-way model equations, such as KdV and BBM, the analogous
group velocities turn out to be always negative, [26, 28], so that the dispersive tails
are seen to be travelling to the left relatively to the solitary wave. In the case of a two-
way model, such as a Boussinesq system, one can make further observations. For the
Bona–Smith system at hand, since b + 2c = 1

6 (7 − 9θ2) in (2.7), we distinguish two
cases:

(i) 7
9 ≤ θ2 ≤ 1: In this case, b + 2c ≤ 0. Since −(b + 2c) ≤ b, the function ψ :
[0,∞) → R defined by ψ(x) = 1−(b+2c)x

(1+bx)2
√

1−cx
is positive and satisfies ψ(x) ≤ 1

for x ≥ 0, because, for such x, 1 − (b + 2c)x ≤ (1 + bx) ≤ (1 + bx)2
√

1 − cx.
In addition, ψ(x) → 0, x → ∞. We conclude that for all wavenumbers k > 0,

−cs − 1 < ω′−(k) < −cs < ω′+(k) < −cs + 1 < 0. (2.8)

Hence, in the usual frame of reference (x, t) there are two dispersive groups, one
travelling to the left and one to the right following the solitary-wave but with a
group velocity smaller than cs . This confirms e.g. the numerical results shown in
Figs. 5, 6 and 7a, wherein θ2 = 9

11 .
(ii) 2

3 ≤ θ2 < 7
9 : In this case, b + 2c > 0. The function ψ becomes negative for x >

1/(b + 2c), and satisfies 0 < ψ(x) ≤ 1 for 0 ≤ x < 1/(b + 2c), limx→∞ ψ(x) =
0. In addition, since b + 2c < b, if −μ := minx≥0 ψ(x), then 0 < μ < 1. We
conclude that for the group velocities of the two wavetrains there holds, for all
wavenumbers k > 0,

−cs − μ ≤ ω′+(k) < −cs + 1 < 0,

−(cs + 1) < ω′−(k) ≤ −cs + μ < 0.
(2.9)

Hence, e.g. in the usual frame of reference (x, t), we still have two dispersive
groups, one travelling to the left and one to the right following the solitary-wave
but with a group velocity smaller than cs . In addition, for large k (specifically for
k2 > (b+2c)−1 = 6/(7−9θ2), for which ψ(k2) < 0), i.e. for small wavelengths,
we have ω′+ = −cs + ψ(k2) < −cs − ψ(k2) = ω′−, i.e. a situation where the two
groups do not tend to separate themselves.

As evidence of this phenomenon, contrast the region of “separation” between the
two dispersive tails (near x = −100) in Figs. 7a and 7b.

Figure 7a is identical to a part of Fig. 5 (modulo changes in scale in both axes).
Figure 7b is the graph of η(x, t) at t = 100, computed numerically as the solution of
the Bona–Smith system corresponding to θ2 = 2/3, i.e. of the BBM–BBM system.
The initial profile for this evolution was a solitary-wave of the BBM–BBM system
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Fig. 7a Separation of
dispersive tails, θ2 = 9/11

Fig. 7b Separation of
dispersive tails, θ2 = 2/3

“cleaned” by the procedure outlined in Appendix 1 (recall that there are no analytical
formulas for solitary waves for this system), whose η-component was perturbed again
by a multiplicative factor of 1.1. In contrast to the practically “separated” dispersive
tails of Fig. 7a, Fig. 7b indicates that there exists a region with small wavelength
oscillations where the two tails seem to be interacting.

3 Effects of Larger Perturbations

When we increased the size of the perturbations of the exact solitary-wave profiles
that we took as initial conditions in our numerical simulations, we observed, in many
cases, that more solitary waves emerged as time grew. These solitary waves (followed
by dispersive tails) travelled in general in both directions and interacted with each
other, retaining their shape and speed. Occasionally, the initial perturbation was so
large that it caused 1 + η(x, t) to become negative at some x and t > 0. In some of
these cases, the solution apparently developed a singularity soon thereafter. In this
section we describe some of these effects of larger “perturbations”. (Summaries of
the outcome of the numerical experiments that we performed appear in the tables
of Appendix 2, wherein the above-mentioned apparent singularity is referred to as
“blow-up”.)

3.1 Resolution into Solitary Waves

Our computations suggest that for the two-way models under study we have resolu-
tion of appropriate arbitrary initial data into sequences of solitary waves (plus dis-
persive tails). In this, the Boussinesq systems under consideration resemble the theo-
retically well-understood case of the (integrable) KdV equation and the numerically
well-studied non-integrable one-way models such as the BBM equation. Resolution
into solitary waves is, of course, an attendant long-time phenomenon and may be
related to the stability of the solitary-wave solutions of these systems.



J Nonlinear Sci (2007) 17: 569–607 587

Table 3 Number of emerging solitary waves (t = 100), with initial conditions (5.1)

r 3 4 5 6 7 8 9 10 11 12 14 16 25 36 49

→ 1+ 2 2 2 2 2 2+ 3 3 3 3 3+ 4 5 5+
← 1 1+ 1+ 2 2 2 2+ 2+ 3 3 3 3 4 5 5+

Table 4 Number of emerging
solitary waves (t = 100), with
initial conditions (5.3)

r 0.8 0.5 0.4 0.3 0.2 0.15

→ 1 2 2+ 3+ 3+ 5+
← 1 1+ 1+ 2+ 2+ 3+

For example, a typical case of perturbation of solitary waves that gives resolution
into many solitary waves plus dispersive tails is Case I in Appendix 2, wherein the
initial conditions are given by (2.1) with increasing r . For example, when r = 7, the
resulting evolution is shown in the sequence of plots of Fig. 8. By t = 20 two pairs
of solitary waves have formed and are travelling in opposite directions followed by
dispersive tails. The left-travelling wavetrain reappears on the right due to periodicity,
and the two leading solitary waves collide and interact for the first time at about
t = 68. There follow other collisions and interactions between pairs of solitary waves
travelling in opposite directions as well as interactions involving the dispersive tails.

The increase of the number of solitary waves is more pronounced when we perturb
with factors r < 1 the “spread” parameter λ occurring in the argument of the sech2

initial profile of η0(x) in Case III of Appendix 2 (cf. Table 12). Note that taking r < 1
increases, while r > 1 decreases the spread, and, consequently, the number of solitary
waves into which the initial waveform is resolved. Figure 9 shows the evolution of
an example of Case III, specifically that issuing from a perturbation of the spread of
η0(x) with r = 0.2. We observe that by t = 90 at least three rightward-travelling and
two leftward-travelling solitary waves have apparently been created; the latter have
wrapped around the endpoints due to periodicity.

Tables 3 and 4 quantify these observations. In both tables we list the number of
η-solitary waves travelling to the right (→) and to the left (←) that have clearly
emerged by t = 100 for initial conditions of the form (5.1) and (5.3), respectively.
(The symbol + in the tables indicates that an additional solitary-wave is probably
being generated at t = 100.)

3.2 Interaction of Solitary Waves

Interactions between solitary waves have been thoroughly studied analytically and
numerically in the case of integrable and nonintegrable one-way model equations. As
is well-known the solitary waves emerge basically unchanged from the interaction;
this property could be partly viewed as another manifestation of their stability. Similar
studies of interactions may be performed numerically for two-way models, such as
the Bona–Smith systems. For example, we consider again the evolution depicted in
Fig. 8. Figure 10a shows the paths of the four emerging solitary waves up to t = 150
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Fig. 9 Evolution of a perturbed solitary wave, Case III in Appendix 1. Perturbation of the spread parame-
ter of η0(x), r = 0.2

Fig. 10 Interaction of solitary waves. (Evolution of Fig. 8)

in an x, t diagram, while Fig. 10b–d depict some details of the head-on collision of
the two larger solitary waves at about t = 68. In Fig. 10b we plot the positions of the
centers of these pulses (i.e. the points where they assume their maximum value) as
functions of t before and after their collision. The solid lines are the actual positions,
while the dotted lines would represent the paths if there were no interaction. (In this
experiment the large solitary-wave is moving to the right with speed 2.473, while
the small one is moving to the left with speed 1.947.) We observe that after their
interaction both pulses are slightly delayed, suffering phase shifts opposed to their
respective directions of motion. (For example, at t = 71 the large solitary-wave has
a phase shift equal to about 0.5882, while the phase shift of the small one is about
0.7921 spatial units.) Figure 10c shows the (total) amplitude Aη of the η component
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of the solution as a function of t near the time of this interaction. The amplitudes
ηmax of the two solitary waves were equal to about 4.3530 and 2.7209 before the
interaction and about 4.3525 and 2.7207 after the interaction. So, there is a small dip
of the Aη value just after the interaction, shown more clearly in Fig. 10d which is a
magnification of Fig. 10c. The maximum value of Aη was found to be about 8.3703,
i.e. about 18% larger of the sum of the amplitudes of the waves before the interaction.
The phase shifts and changes in amplitudes are nonlinear effects of the interactions
of solitary waves and have been thoroughly studied for one way models. They have
also been documented in the case of the BBM–BBM system in Bona and Chen [7]
and in more detail for the Bona–Smith systems in [4].

3.3 Complex Interactions

The solitary waves also prove to be quite resilient when undergoing complicated
interactions with large amplitude oscillations. A rather spectacular case is the inter-
action of Case V in Appendix 2, wherein the η-component of an exact solitary-wave
is perturbed additively by a numerical noise function p(x;m), cf. (5.5). For m = 107

the perturbation is quite substantial and the evolution of the η and u profiles is shown
in Fig. 11. A single solitary-wave of amplitude ηmax = 1.05820 and umax = 0.90937
and speed cs = 1.4662 emerges, followed by dispersive tails, as usual. We observe
that a large-amplitude, high-frequency oscillatory wave packet forms in the region of
interaction of the left- and right-travelling dispersive tails. The maximum amplitude
of this packet (the u-component of which is of comparable height with that of the
solitary wave) seems to be slowly diminishing in time. We let this experiment run
up to t = 300 in order to observe the interaction of the (right-travelling) u solitary-
wave with this irregular pulse. It is quite remarkable that the solitary-wave emerges
unblemished from this interaction, with the exception of a phase shift (delay), which,
in the temporal interval [240,250], is equal to about 0.25 spatial units.

3.4 Blow-up of the Solution in Finite Time

As was already mentioned, in some cases, where appropriate perturbations of the
initial solitary-wave were large enough, we observed that the solution developed a
singularity in finite time. These types of perturbations correspond to “nonphysical”
initial profiles, in a sense to be explained in the sequel, but it is important to note
that there exist initial conditions for which the solution of Boussinesq systems under
study apparently blow-up in finite time.

As an example, let us consider perturbations of the initial amplitude of u by a fac-
tor r > 1, cf. (5.2). The results of some experiments in this case are summarized in
Table 11. For small values of r the initial waveform evolves into one solitary-wave
travelling to the right, followed by a relatively small dispersive tail. There is also a
dispersive “tail” that travels to the left which has a larger amplitude, the maximum
value of which (for the η component of the solution) occurs at a negative excursion
at the front of the oscillatory wavetrain. As r grows, this excursion becomes more
negative, developing into a thin spike. For example, in the example shown in the se-
quence of graphs of Fig. 12, wherein r = 3.3, the excursion appears to approach but
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Fig. 11 Evolution of a perturbed solitary wave. Case V. Numerical noise in the initial condition of η,
m = 107

not exceed −1 for 2 ≤ t ≤ 5. Subsequently, the spike resolves itself into dispersive
oscillations that spread as the front travels to the left and slowly diminish in ampli-
tude.

As r increases further, it appears that the negative η-excursion becomes less than
and stays below −1, and, subsequently, the solution blows up. (In particular, cf. Ta-
ble 11, we observed no apparent blow-up up to r = 3.6 and blow-up for r = 3.7 and
beyond.) For example, in the case r = 3.8 depicted in the sequence of Fig. 13, the
negative η-peak that forms near x = −100 at t = 3 does not resolve into smaller am-
plitude oscillations; the solution apparently develops large-amplitude thin spikes that
cause blow-up. The blow-up appears to be genuine and not an artifact of the numeri-
cal simulation: When repeated with smaller h and k, the computation yielded similar
results. Of course, a more categorical answer and a detailed numerical description of
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Fig. 12 Evolution of a perturbed solitary wave. Case II, r = 3.3

the blow-up requires a code that adaptively refines the time step and the spatial mesh-
length around the singularity. We intend to study this question in the future using the
adaptive mesh refinement strategy proposed in [10].

Recall that, in terms of the variables used in the system (1.1), the level y = −1
represents the bottom of the channel. Thus, a situation where 1 + η(x, t) < 0 for
some (x, t) is nonphysical and corresponds to local drying of the channel. It appears
that increasing the size of the initial velocity profile of the solitary-wave by a large-
enough multiplicative factor imparts to the water column a large push, which may
empty the channel behind the wave. (A qualitatively similar phenomenon of blow-up
occurs for perturbations wherein the initial η and u solitary profiles are multiplied by
factors r1 and r2, respectively: We observed that blow-up occurs—again as a result
of a strong negative excursion of the left-travelling η-dispersive wavetrain—when r2

is sufficiently large compared with r1.)



J Nonlinear Sci (2007) 17: 569–607 593

Fig. 13 Evolution of a perturbed solitary-wave toward apparent blow-up. Case II, r = 3.8

It is evident by the form of the invariant E, cf. (1.9), of this class of systems that
the condition that 1 + η(x, t) < 0 for some (x, t) is necessary for blow-up. Indeed,
for solutions that are initially smooth and for which 1 + η(x, t) > 0 for all x and 0 ≤
t ≤ T , the positivity of the invariant guarantees that η is bounded in H 1, and hence
in L∞, up to t = T . It appears, though, that 1 + η becoming negative at some point
x at some time t > 0 is not by itself sufficient to ensure subsequent blow-up of the
solution. A case in point is furnished by the evolution corresponding to appropriate
nonsymmetric perturbations of the initial data, as e.g. in Case VI in Appendix 2.
Here η is perturbed initially by a smooth step-type factor as in (5.6a) and forms a
pulse with a negative and a positive excursion if μ > 1. If μ is not large enough, the
initial η profile is resolved into two wavetrains, one travelling to the right consisting
of a solitary-wave (the parameters of which are shown in Table 15) plus a dispersive
tail, and one travelling to the left consisting of just a larger dispersive tail for μ up to
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Fig. 14 Evolution of a perturbed solitary wave. Case VI(a), μ = 6

about 2 and, for larger values of μ, of a small solitary-wave followed by a relatively
large dispersive tail.

For μ = 6, η(x,0) is less than −1 for x less than and close to −100. Nevertheless,
this initial condition does not apparently lead to blow-up. As the sequence of graphs
of Fig. 14 shows, there is considerable interaction of the large-amplitude dispersive
tails, which seems to be diminishing as time increases. The interaction of the corre-
sponding dispersive tails in the evolution of u is more violent but not catastrophic.
For μ up to 6.25, we did not observe blow-up either. However, for μ = 6.28, the
solution apparently blows up. Figure 15 shows the evolution when μ = 6.3.

In addition to those already mentioned, other types of large perturbations of sech2-
like initial data also lead to apparent blow-up of the solution of the system in finite
time. These are not listed in Appendix 2, but include random noise perturbations of
η0(x) of large size, sinusoidal perturbations of η0(x) of large enough amplitude and
frequency, and suitable nonsymmetric perturbations of u0(x), respectively of η0(x),
coupled with perturbations of the amplitude of η0(x), respectively of u0(x). In all
these cases (including of course those of Tables 11 and 15, 16) we made the following
observations regarding the blow-up:

1. As was already mentioned, the condition η(x, t) < −1 for some x and t is not
sufficient for blow-up.

2. Initial data for which the inequality (1.8) is not satisfied do not necessarily lead to
blow-up. In fact, the energy (1.9) may become quite large without any evidence of
loss of existence of smooth solutions.

3. The transition to blow-up, as the perturbation parameters are varied, seems to be
quite abrupt.

4. The invariant E, (1.9), can be written as E = I1 + I2, where I1(t) = ∫ L

−L
(η2 +

(θ2 − 2
3 )η2

x)dx is equivalent, for θ2 > 2/3, to the square of the H 1 norm of η,
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Fig. 15 Evolution of a perturbed solitary wave toward apparent blow-up. Case VI(a), μ = 6.3

(a) II, r = 3.5 (b) II, r = 3.7

(c) VI(b), μ = 8.4 (d) VI(b), μ = 8.5

Fig. 16 E, I1, I2 as function of t in four cases. E(t): —— , I1(t): - - - - , I2(t): · · · · · ·

and I2(t) = ∫ L

−L
(1 + η)u2 dx. In all cases of apparent blow-up we observed that,

after some temporal instance t∗ > 0 prior to blow-up, the quantity I2(t) becomes
monotonically decreasing, eventually assuming negative values. (As a result, of
course, the H 1 norm increases.) This is illustrated in Fig. 16. Figure 16a shows
E, I1, I2 as functions of t in Case II, r = 3.5 (no blow-up), while the analogous
graphs of Fig. 16b (blow-up) correspond to initial conditions of the type (5.2)
with r = 3.7, cf. Table 11. The oscillations observed in Fig. 16a for t approxi-
mately between 100 and 140 are due to the interaction of the main pulse with the
dispersive tail. Figure 16c corresponds to initial perturbations of the type (5.6b)
for μ = 8.4 for which a smooth solution exists, at least up to t = 100. The curious
temporary “exchange” of magnitudes of I1 and I2 just after t = 90 is due to an
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interaction of pulses near that time value. The behavior of I1, I2 in the blow-up
case corresponding to μ = 8.5 is shown in Fig. 16d.

Appendix 1: Numerical Method

The numerical experiments on the stability of solitary waves of the Bona–Smith sys-
tem that were presented in Sects. 2 and 3 were performed by a Galerkin-finite ele-
ment full discretization of the initial-periodic boundary-value problem for the sys-
tem. The scheme employed cubic splines for the spatial discretization coupled with
time-stepping with the classical, explicit, fourth-order Runge–Kutta method. In this
appendix we state the scheme and relevant available convergence results and make a
computational assessment of its accuracy, paying particular attention to approximat-
ing and isolating solitary waves and measuring their parameters.

The numerical method is a standard Galerkin scheme on the space Sh of smooth,
periodic, cubic splines with respect to a uniform mesh on [−L,L] with meshlength h.
We approximate the solution (η,u) of the Bona–Smith system (1.4, 1.5) by (ηh,uh) :
[0, T ] → Sh × Sh, satisfying for 0 ≤ t ≤ T the semidiscrete equations

A(ηht , χ) + (uhx,χ) + ((ηhuh)x,χ) = 0, ∀χ ∈ Sh,

A(uht , ϕ) + (ηhx,ϕ) + (uhuhx,ϕ) − c(ηhxx,ϕ
′) = 0, ∀ϕ ∈ Sh.

(4.1)

Here, we denote by (ϕ,χ) = ∫ L

−L
ϕ(x)χ(x)dx the L2 inner product and by ‖ · ‖ =

(·, ·)1/2 the L2 norm on [−L,L], and put A(ϕ,χ) := (ϕ,χ) + b(ϕ′, χ ′). We take as
initial values for the o.d.e. system (4.1) the functions

ηh(0) = Πhη0, uh(0) = Πhu0, (4.2)

where Πhv denotes any of a number of reasonable approximations of v in Sh (e.g.
interpolant, L2- or elliptic projection, etc.), for which there holds that

‖v − Πhv‖ = O
(
h4),

given any function v in the (periodic) Sobolev space H 4
π [−L,L]. Then, it can be

shown, cf. [2, 4], that the initial-value problem (4.1, 4.2) has a unique solution on
[0, T ], which satisfies

max
0≤t≤T

(∥∥η(t) − ηh(t)
∥∥ + ∥∥u(t) − uh(t)

∥∥) ≤ Ch4,

where by C we shall denote positive constants independent of the discretization pa-
rameters.

The system of o.d.e’s (4.1, 4.2) is discretized in the temporal variable by the classi-
cal, explicit, fourth-order Runge–Kutta scheme. Let J be a positive integer and define
the time step k := T/J and the time levels tn := nk, n = 0,1,2, . . . . It turns out that
the system (4.1, 4.2) is not stiff; indeed, it may be shown, [2, 4], that the result-
ing fully discrete scheme is stable in L2, and that the fully discrete approximations
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(ηn
h,un

h) ∈ Sh × Sh of (η(tn), u(tn)) satisfy the error estimate

max
0≤n≤J

(∥∥ηn
h − η

(
tn

)∥∥ + ∥∥un
h − u

(
tn

)∥∥) ≤ C
(
k4 + h4),

unconditionally, i.e. without the need of any relation between k and h. As starting
values we take η0

h = Πhη0, u0
h = Πhu0.

We refer the reader to [2, 4] for computational verification of the spatial and tem-
poral rates of convergence of this numerical scheme as well as for a detailed com-
putational study of its accuracy in approximating solitary waves; the latter includes
computing several error indicators that are pertinent (cf. [10]) to assessing the fidelity
of numerical approximations of exact solitary-wave solutions, such as their normal-
ized amplitude, speed, phase and shape errors, and the errors in the values of the
numerically computed invariants (1.9) and (1.19).

In the course of the numerical experiments testing the stability of solitary waves in
the main body of the paper, it was observed that initial data of the type of perturbed
solitary waves resolves itself, as t grows, into localized pulses resembling solitary
waves plus oscillatory dispersive tails. In order to be reasonably certain that these
localized pulses are indeed solitary waves, one must isolate them and check that they
travel with practically constant speed and amplitude, retaining their shape. This may
be accomplished in two different ways: One can perform a sufficiently long time sim-
ulation on a sufficiently large spatial interval in order to isolate a solitary wave, after
it distances itself from its dispersive tail and before it interacts with other features of
the solution. This sometimes may require a very large spatial interval, and the com-
putational cost needed to maintain accuracy may become prohibitively large. As an
alternative, one may “clean” the approximate solitary waves by an iterative process,
as done e.g. in [7]. We present here examples of both procedures in order to give the
reader a sense of their accuracy.

If we perturb the η-component of the exact solitary-wave profile (ηs(x,0),

us (x,0)) given by (1.15, 1.16) for θ2 = 9/11 and x0 = 100 by a factor equal to 1.8,
i.e. use as initial conditions the functions η0(x) = 1.8ηs(x,0) and u0(x) = us(x,0),
and integrate forward in time using the finite element scheme with h = 0.1, k = 0.01,
we observe that the initially perturbed solitary wave gives rise to two wavetrains trav-
elling in opposite directions. The rightward-travelling wavetrain consists of a main
pulse resembling a solitary wave, whose η-component has an amplitude of about
1.48 and a speed of about 1.62, and is followed by an oscillatory dispersive tail. The
leading pulse has clearly separated from the tail by t = 40. The leftward-travelling
wavetrain also develops a leading pulse, which, at t = 80, after having wrapped it-
self around the boundary, is travelling with an η-amplitude and speed approximately
equal to 0.25 and 1.12, respectively, and is just beginning to detach itself from its
dispersive tail. Figure 17 shows the solution profile at t = 80.

Isolating the large approximate solitary wave is not hard. For t ∈ [40,90] it has
sufficiently outrun its dispersive tail and has not yet interacted with the small solitary
wave. Table 5 shows the amplitudes Aη and Au at the indicated values of t = tn of the
numerical solution ηn

h, un
h in this temporal interval, as well as the values of the speed

ch of the large pulse at tn. These parameters were computed as follows. Given n, in
order to find e.g. the point x∗ where ηn

h achieves its maximum (Aη(t
n) := ηn

h(x∗)), we
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Fig. 17 Evolution of a perturbed solitary wave at t = 80. Left: η(x, t). Right: u(x, t)

Table 5 Amplitudes Aη , Au and speed ch of the large solitary wave of Fig. 17 without cleaning

tn 40 60 80 90

Aη 1.480435 1.480435 1.480435 1.480434

Au 1.206309 1.206309 1.206309 1.206308

ch 1.62419 1.62419 1.62420 1.62419

Table 6 Amplitudes Aη , Au and speed ch of the large solitary wave of Fig. 17 after cleaning

tn 0 20 40 60 80 100

Aη 1.480434 1.480434 1.480435 1.480435 1.480434 1.480434

Au 1.206308 1.206309 1.206309 1.206309 1.206308 1.206308

ch – 1.62419 1.62419 1.62420 1.62420 1.62419

define first an initial approximation x∗
0 of x∗ as that quadrature node at which ηn

h is
maximized relatively to its values at the quadrature nodes. (We use Gauss quadrature
with five nodes per mesh interval for computing the integrals in the finite element
scheme.) Taking x∗

0 as starting value, we compute x∗ by Newton’s method with a
few iterations, as the nearby root of the equation d

dx
ηn

h(x) = 0. The speed ch(t
n) is

computed as the quotient x∗(tn)−x∗(tn−10)
10 . (The temporal interval t = 10—an inte-

ger multiple of k in our computations—in this difference quotient proved sufficiently
large for the purpose of smoothing away oscillations in the discrete approximations
of the speed.)

In order to check these values, we also “clean” the large solitary wave. At t = 90
we cut the large wave off the rest of the solution by setting ηh, uh equal to zero in the
intervals [−150,27] and [67,150], centered it at x = −100 by translation, and took
the resulting pair of functions as new initial conditions for the system. We integrated
then up to t = 100, observing that during this run the amplitude of the oscillatory
noise behind the wave was less than 5 × 10−10, the noise threshold value used in this
paper for pronouncing an approximate solitary wave “clean”. The amplitudes Aη,
Au of η and u, and the speed ch of the cleaned wave as functions of t are shown in
Table 6. Note that the entries in Tables 5 and 6 agree quite well. We also computed a
kind of normalized “shape” error for the approximate “cleaned” solitary wave relative
to its initial value. This error was defined as infy ‖ηn

h(·) − η0
h(· − y)‖/‖η0

h‖, where
η0

h ∈ Sh was the cleaned solitary wave centered at x = −100 and taken as initial
value (with the corresponding u0

h) for the computation that yielded ηn
h at t = tn. We
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Fig. 18 η(x, t) at t = 600. (L = 900)

Table 7 Amplitudes Aη , Au and speed ch of the small solitary wave without cleaning. (L = 900)

tn 500 520 540 560 580 600

Aη 0.25022509 0.25022509 0.25022510 0.25022511 0.25022509 0.25022509

Au 0.24129404 0.24129403 0.24129404 0.24129405 0.24129404 0.24129403

ch 1.121307 1.121308 1.121308 1.121307 1.121308 1.121308

computed it as ζ(y∗), where y∗ was the root of the equation d
dy

ζ 2(y) = 0, ζ(y) :=
‖ηn

h − η0
h(· − y)‖/‖η0

h‖, found by Newton’s method with a few iterations and initial
guess y0 = ch(t

n−1)tn−1. The maximum value of this error for 10 ≤ tn ≤ 100 was
about 1.218×10−5. It is interesting to note that substituting Aη = 1.48043 and Au =
1.20631 for η(0), u(0), respectively, in the exact speed–amplitude relation (1.14) for
solitary waves, we obtain a speed value of about 1.624193, which differs from the
value of ch in Table 5 by an amount of the order 10−6.

The small solitary wave in Fig. 17 is much harder to isolate or clean, as the spa-
tial interval [−150,150] is not large enough, and, consequently, the small solitary
wave is not able to separate itself from the large solitary wave and the rest of the
rightward-travelling wave train. In order to isolate it, we solved the same problem
(using the same initial conditions, numerical method, and mesh sizes) on the interval
[−900,900]. By t = 600 (cf. Fig. 18), the small solitary wave is seen to be approach-
ing the boundary x = −900, having distanced itself considerably from its trailing dis-
persive tail. (It is interesting to observe that a third solitary wave, of height about 0.07,
is apparently emerging at this larger t at the head of the rightward-travelling oscilla-
tory wavetrain.) Without cleaning the solitary-wave travelling to the left, we record
in Table 7 its parameters during the temporal interval [500,600].

Alternatively, we “clean” the small solitary wave in the interval [−500,500].
At t = 280 the small solitary wave (travelling to the left) has not yet reached the
boundary x = −500. At this point we cut the small solitary wave and its disper-
sive tail from the rest of the solution by setting ηh and uh equal to zero in the
interval [−100,437.5], cf. Fig. 19a. It should be noted that “cutting”, i.e. setting
ηh,uh = 0 in an interval, is done smoothly by setting the coefficients of the cubic
B-spline basis function {φj } in the representation of ηh and uh equal to zero after
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Fig. 19a Small η-wave after 1st cut (L = 500)

Fig. 19b Magnification of Fig. 19 in the interval [−102,−98]. (Solid line, +: after cut, dashed line,
×: before cut)

Table 8 Amplitudes Aη , Au and speed ch of the small solitary wave after the first cleaning. (L = 500)

tn 0 40 80 100 200 260

Aη 0.25022524 0.25022514 0.25022509 0.25022509 0.25022511 0.25022510

Au 0.24129418 0.24129408 0.24129404 0.24129404 0.24129405 0.24129404

ch — 1.121307 1.121307 1.121308 1.121307 1.121308

some suitable index. In the present case, for example, let xi+1 = −100. Then, if, say,
ηh = ∑N

j=1 cjφj (x) at t = 280, we put cj = 0 for j ≥ i. Hence, the B-spline of the
largest index present in the representation of ηh after the cut is φi−1(x), centered at
xi−1 = −100.2, which has the value zero (as do its first and second derivatives) at
xi = −100; see Fig. 19b. The same cutting is applied to uh.

We now use the solution that remains after the first cleaning as the new initial value
and let it evolve (it continues travelling to the left and wraps around the boundary) up
to t = 260. During this evolution we measure the amplitude of η and u and the speed
of the small solitary wave. These values are shown in Table 8.

We repeat this procedure two more times: We cut (truncate smoothly) ηh and uh

in appropriate intervals, let the small solitary-wave travel, then cut again, and so on.
After the third cleaning, the amplitude of the residue behind the wave is about 10−12,
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Table 9 Amplitudes Aη , Au and speed ch of the small solitary wave after the third cleaning. (L = 500)

tn 0 40 100 200 300 400

Aη 0.25022511 0.25022509 0.25022509 0.25022509 0.25022511 0.25022510

Au 0.24129405 0.24129403 0.24129404 0.24129403 0.24129405 0.24129404

ch – 1.121308 1.121308 1.121308 1.121307 1.121307

well below the cleaning threshold 5 × 10−10. During the last evolution, in a temporal
interval of 400 units, the amplitudes and speed had the values shown in Table 9.

Comparing Tables 8 and 9 reveals that we have not gained much by the extra
cleanings, in the sense that we obtain identical amplitudes if we round them to six
decimal digits, and identical speeds rounded to five decimal digits. (The only solid
gain is the stabilization of the seventh digit (0) of Au.) Comparing with Table 7
shows that both procedures give that the parameters of the small solitary wave of
Fig. 17 are Aη = 0.2502251 (last digit by rounding), Au = 0.2412940 (last digit ex-
act), ch = 1.12131 (last digit by rounding). Substituting these values of Aη and Au

in the relation (1.14), we obtain a speed value of 1.12130755. We also note that the
typical maximum normalized “shape” error for the small solitary-wave produced by
these runs was about 1.5 × 10−6. These values represent in essence the limit reso-
lution possible with our numerical method and mesh sizes h = 0.1, k = 0.01. More
digits may be gained by using high-order methods and smaller mesh sizes.

It should finally be noted that all computations in this appendix and in Sects. 2
and 3 were checked by parallel runs performed with a pseudospectral code. In all
cases the computed values of the parameters of the solitary waves (amplitude, speed,
etc.) obtained by both schemes were identical, to the digits shown.

Appendix 2: Types of Perturbations

We have experimented with many types of perturbations of initial solitary-wave pro-
files. For each type we used perturbations of several magnitudes. In what follows,
we summarize the outcome of some of the experiments that we performed. We show
only cases to which reference has been made in the text of the paper; a description
of the full set of experiments is included in a technical report available from the au-
thors upon request. The tables show the numerically computed amplitudes η̃max, ũmax

and speed c̃s of the largest emerging solitary wave, and the number of leftward-(←)
and rightward-(→) travelling solitary waves that have formed by T = 100. The sym-
bol α+ indicates that, by T = 100, α solitary waves have definitely appeared and one
more is probably being generated. (Isolating the latter would require following it over
a much larger temporal and spatial interval, something that we did not do.)
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Table 10 Case I
r η̃max ũmax c̃s → ←

0.7 0.81470 0.72360 1.3688

1.001 1.00061 0.86648 1.4436 1

1.01 1.00612 0.87062 1.4458 1

1.1 1.06110 0.91152 1.4673 1

1.2 1.12188 0.95608 1.4909 1

1.5 1.30240 1.08466 1.5591 1

1.6 1.36201 1.12594 1.5811 1 0+
1.8 1.48043 1.20631 1.6242 1 1

2.3 1.77237 1.39589 1.7266 1 1

2.5 1.88768 1.46771 1.7657 1+ 1

2.7 2.00225 1.53748 1.8038 1+ 1

3.0 2.17282 1.63862 1.8594 1+ 1

7.0 4.35303 2.72091 2.4729 2 2

I. Perturbation of the Amplitude of η

We integrate the Bona–Smith system with θ2 = 9/11, taking as initial conditions:

η0(x) = rη0sech2(λ(x + x0)
)
,

u0(x) = Bη0sech2(λ(x + x0)
)
,

(5.1)

where η0 = 1, B = √
3/2, λ = 1

4

√
33/5, x0 = 100. The unperturbed solitary-wave

(r = 1) travels to the right with speed cs = 5
√

3/6 ∼= 1.443376. Table 10 shows the
results for several values of the perturbation factor.

II. Perturbation of the Amplitude of u

Bona–Smith system, θ2 = 9/11. Initial conditions:

η0(x) = η0sech2(λ(x + x0)
)
,

u0(x) = rBη0sech2(λ(x + x0)
)
,

(5.2)

η0, B , λ, x0 as in Case I.

III. Perturbation of the “Spread” Parameter λ of η

Bona–Smith system, θ2 = 9/11. Initial conditions:

η0(x) = η0sech2(rλ(x + x0)
)
,

u0(x) = Bη0sech2(λ(x + x0)
)
,

(5.3)

η0, B , λ, x0 as in Case I. Note that r > 1 decreases and r < 1 increases the spread of
sech2(rλx).
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Table 11 Case II
r η̃max ũmax c̃s → ←

0.7 0.81904 0.72702 1.3706 1

1.1 1.06157 0.91186 1.4675 1

2.1 1.70980 1.35622 1.7051 1

3.3 2.56101 1.85773 1.9809 1

3.5 2.71020 1.93825 2.0258 1

3.6 2.78555 1.97819 2.0484 1

3.7 blow-up blow-up

Table 12 Case III
r η̃max ũmax c̃s → ←

0.2 1.26042 1.05525 1.5434 3+ 2+
0.5 1.15330 0.97886 1.5029 2 1+
0.8 1.05576 0.90757 1.4652 1 1

1.1 0.97475 0.84702 1.4334 1

2 0.80849 0.71871 1.3663 1

Table 13 Case IV
b = d c η̃max ũmax c̃s → ←

0.24 −0.15 1.000000 0.866025 1.44337 1

0.26 −0.16 0.97827 0.84893 1.4345 1

0.2 −0.3 1.08642 1.02660 1.5149 2

0.3 −0.5 1.00528 0.97966 1.4902 1+

IV. Perturbation of the System Coefficients b, c, d

Initial conditions:

η0(x) = η0sech2(λ(x + x0)
)
,

u0(x) = Bη0sech2(λ(x + x0)
)
,

(5.4)

where x0 = 100 and η0, B , λ are the coefficients corresponding to θ2 = 9/11, i.e.
as in Case I. Now we perturb the coefficients b, c, d of the system by a small
amount so that the perturbed system is no longer a member of the Bona–Smith fam-
ily, but so that there still holds a = 0, b = d > 0, and c < 0 and, therefore, the
associated initial-value problem is well-posed. Note that for θ2 = 9/11, the origi-
nal (unperturbed) Bona–Smith system has coefficients a = 0, b = d = 8/33 = 0.24,
c = −5/33 = −0.15.
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Fig. 20 The graph of p(x;105). (The plot on the right is a magnification of the one on the left)

Table 14 Case V
m η̃max ũmax c̃s → ←

105 0.99994 0.86598 1.4433 1 0

107 1.05820 0.90937 1.4662 1 0

V. Numerical Noise in the Initial Condition of η

Bona–Smith system, θ2 = 9/11. Initial conditions:

η0(x) = η0sech2(λ(x + x0)
) + p(x;m),

u0(x) = Bη0sech2(λ(x + x0)
)
,

(5.5)

where x0, η0, B , λ as in Case I and where p is a “numerical” noise function defined
as

p(x;m) = (
double

(
ηs(x,0)

) − single
(
ηs(x,0)

)) · m,

where ηs(x,0) = η0sech2(λ(x + x0)), double(ηs(x,0)) is the double precision
function ηs(x,0), and single(ηs(x,0)) is the single precision function ηs(x,0). If
m = 107, p is of the order of 10−1, while if m = 105, p is of the order of 10−3. The
graph of p(x;105) is shown in Fig. 20 and the parameters of the emerging solitary
waves in Table 14.

VI. Nonsymmetric Perturbations

Bona–Smith system, θ2 = 9/11.

(a) Nonsymmetric perturbations of η0. Initial conditions:

η0(x) = η0sech2(λ(x + x0)
)(

1 + μ tanh
(
0.5(x + x0)

))
,

u0(x) = Bη0sech2(λ(x + x0)
)
,

(5.6a)

where x0, η0, B , and λ as in Case I.
(b) Nonsymmetric perturbations of u0(x). Initial conditions:

η0(x) = η0sech2(λ(x + x0)
)
,

u0(x) = Bη0sech2(λ(x + x0)
)(

1 + μ tanh
(
0.5(x + x0)

))
,

(5.6b)

where x0, η0, B , and λ as above.
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Table 15 Case VI(a)
μ η̃max ũmax c̃s → ←

0.1 1.00023 0.86620 1.4435 1 0

2 1.08541 0.92943 1.4768 1 0+
6 1.55470 1.25565 1.6507 1 1

6.25 1.58964 1.27898 1.6631 1 1

6.28 blow-up blow-up

Table 16 Case VI(b)
μ η̃max ũmax c̃s → ←

8 1.91648 1.48539 1.7753 1 1

8.4 1.98656 1.52772 1.7985 1 1

8.5 blow-up blow-up

Fig. 21 � (θ2 = 1), ◦ (θ2 = 9/11), � (θ2 = 2/3)

Appendix 3: A Library of Solitary Waves

Figure 21 shows a collection of points in the first quadrant of the u,η-plane repre-
senting peak values (umax, ηmax) of solitary waves that we computed in our exper-
iments for three systems of the Bona–Smith family, namely the “classical” Bona–
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Smith system (θ2 = 1), the system that we often used in the numerical experiments
(θ2 = 9/11), and the BBM–BBM system (θ2 = 2/3). Also shown are four indicative
isospeed graphs of the equation f (u,η) = 0, see (1.13), in the first quadrant corre-
sponding to four values of cs . The (straight) line segments connecting the peak points
for each system are not solitary-wave orbits but are just intended to serve as graphi-
cal approximations of the parametric dependence of the peaks (umax, ηmax) on cs for
the three systems. The figure suggests that for each value of θ2, i.e. for each particu-
lar member of the Bona–Smith family, the peak (umax, ηmax) is a univalent, smooth
function of cs . (The peaks umax and ηmax increase with cs , as we have seen.)
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