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Summary. Bioremediation is a promising technique for cleaning contaminated soil.
We study an idealized bioremediation model involving a substrate (contaminant to be
removed), electron acceptor (added nutrient), and microorganisms in a one-dimensional
soil column. Using geometric singular perturbation theory, we construct traveling waves
(TW) corresponding to the motion of a biologically active zone, in which the microor-
ganisms consume both substrate and acceptor. For certain values of the parameters, the
traveling waves exist on a three-dimensional slow manifold within the five-dimensional
phase space. We prove persistence of the slow manifold under perturbation by con-
trolling the nonlinearity via a change of coordinates, and we construct the wave in the
transverse intersection of appropriate stable and unstable manifolds in this slow mani-
fold. We study how the TW depends on the half-saturation constants and other parameters
and investigate numerically a bifurcation in which the TW loses stability to a periodic
wave.

1. Introduction

In situ bioremediation is a promising technique for cleaning contaminated soil (see [9]
and the references therein). The process typically involves an organic pollutant (labeled as
a substrate), a nutrient (labeled as an electron acceptor), and indigenous microorganisms.
Roughly speaking, when both the substrate and acceptor are present, the microorganisms
consume the acceptor and degrade the substrate, decontaminating the soil. Bioremedia-
tion involves complex interactions and has many controlling factors that make it difficult
to understand. Mathematical analysis of simplified models may allow for the identifi-
cation of key components which control the behavior of the system, allowing for more
effective implementation.
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Fig. 1. A schematic diagram of the soil column and the M component of
the traveling wave is shown on the left. The traveling wave, observed in
numerical simulations in [9] with a1 = 0.011, a2 = 0.345, a3 = 0.0885,
a4 = 0.0218, Rd = 3, and KS = K A = 0.3, is shown on the right. S
increases from 0 to 1, while A decreases from 1 to 0.

In this article, we study the nondimensional form of the Oya-Valocchi bioremediation
model in [9], [6], and [13]. This is a conceptual model that was developed in order to
better identify key controlling factors, and also to help connect laboratory work with
field experiments [9]. The situation is idealized to be a one-dimensional, semi-infinite
soil column with initial constant background level of substrate and of biomass of the
microorganisms, but no acceptor. Beginning at time t = 0, a constant level of acceptor is
injected continuously at the surface of the soil column. This creates a concentration profile
of the acceptor that is a traveling front propagating down the soil column, connecting
the positive (injection) concentration behind the front and the zero concentration ahead
of it. By contrast, the traveling profile of the substrate concentration connects the zero
(completely remediated) level behind the front to the constant (initial, undisturbed) level
ahead of it. Moreover, the substrate front lags slightly behind that of the acceptor, so that
there is a region of overlap between the fronts. In this region, known as the biologically
active zone (BAZ), the microbial population is highly elevated due to the supply of
both nutrient and substrate. As the fronts move downstream, the location of the elevated
microbial population moves with them, and after the fronts pass a given location, the
biomass population returns to its equilibrium level. Thus, the biomass concentration
exhibits a single bump profile that travels with the fronts as the reaction progresses down
the column. See Figure 1.

Two structural assumptions are incorporated into the model. First, the microbes are
attached to particles in the soil and therefore do not move. Second, the acceptor is
nonsorbing, meaning it travels through the column at the pore water velocity (which
has been normalized to be 1), whereas the substrate is sorbing, traveling at the retarded
velocity 1

Rd
where the retardation factor satisfies Rd > 1.

Mathematically, we let S = S(x, t), A = A(x, t), and M = M(x, t) denote the
concentrations of the substrate, acceptor, and microorganisms, respectively. The model
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equations we study are

Rd
∂S

∂t
− ∂

2S

∂x2
+ ∂S

∂x
= −a1 fbd ,

∂A

∂t
− ∂

2 A

∂x2
+ ∂A

∂x
= −a1a2 fbd ,

∂M

∂t
= a3 fbd − a4(M − 1), (1)

fbd = M

(
S

KS + S

)(
A

K A + A

)
,

for x ∈ R, t > 0, in which the diffusion coefficients have been scaled to 1 (see remark
2.3). Because we are interested in traveling waves, the asymptotic conditions are

S(−∞, t) = 0, A(−∞, t) = 1, M(−∞, t) = 1,

S(+∞, t) = 1, A(+∞, t) = 0, M(+∞, t) = 1. (2)

The reaction function fbd represents Monod reaction kinetics. The magnitude of this
reaction function is directly proportional to the product of the substrate and acceptor
concentrations. Moreover, there is a saturation effect controlled by the parameters KS

and K A. These are referred to as the relative half-saturation constants for the substrate
and acceptor and indicate the degree to which the presence of each (or lack thereof) may
limit the growth of the microorganisms. For example, if KS � 1, then S

KS+S ≈ 1, and
the substrate has little effect on microbial growth in the reaction zone, except near the
trailing edge of the substrate front where S < KS . However, if KS � 1, then S

KS+S is
small, and everywhere the substrate limits microbial growth. Thus, the magnitudes of
these quantities will be important in determining the dynamics of the reaction.

The parameters ai represent ratios of various timescales of the reaction. As explained
in [9], a1 represents the ratio between the transport timescale and the biodegradation
timescale of substrate. Similarly, the combined parameter a1a2 represents the corre-
sponding ratio for the acceptor. The parameters a3 and a4 are the ratios of the transport
timescale to the maximum cell growth and cell decay of the microorganisms, respectively.

Finally, the asymptotic conditions (2) may be explained as follows. The asymptotic
conditions at −∞ represent the fact that, behind the BAZ, the substrate has been com-
pletely degraded, the acceptor level is equal to its injection level, and the microorganism
population has returned to its equilibrium level. At +∞, ahead of the BAZ, the soil
remains undisturbed and contaminated, and thus the substrate, acceptor, and microor-
ganisms are all equal to their initial levels.

It is of interest to note that the boundary and initial conditions corresponding to the
soil column experiment (for x ∈ [0,∞) and t > 0) are(

−∂S

∂x
+ S

)
x=0

= 0,

(
−∂A

∂x
+ A

)
x=0

= 1,

S(x, 0) = 1, A(x, 0) = 0, M(x, 0) = 1, (3)

and that one should use these to study the initial formulation of the traveling wave. In
this case, the boundary conditions for S and A at x = 0 represent the fact that a constant
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level of acceptor is injected continuously there, while no substrate is added to the system.
Here, as written above, we assume the traveling wave has already formed.

Traveling waves of the type shown in Figure 1 have been investigated in [5], [6], [9],
and [13]. A dimensional version of (1) was developed in [7], [8], and [12], and further
studied in [9], wherein the nondimensional version (1) was derived. These authors carried
out an extensive numerical investigation of the model, discovering the traveling wave.
In addition, they investigated the effects of varying the parameters KS and K A, noting
that for some values the traveling wave is stable, while for others there is a stable, time-
periodic traveling wave. In this work, the authors were the first to exploit mathematically
traveling waves in a bioremediation model in order to determine the substrate removal
rate.

Further analysis of the dimensional model was carried out in [6]. In this work, the
authors proved the existence of the traveling wave for Rd > 1, and positive values of
the other parameters. Working with an elliptically regularized form of the dimensional
model on a finite domain and using topological degree theory, the authors construct the
traveling wave as the fixed point of an appropriate map. Existence is then proven by
extending the result to the original, nonelliptic model on the infinite line. In the process,
bounds on all three components of the solution are obtained, in particular, an explicit
bound on the peak height of the M pulse in terms of the dimensional parameters.

In [13], the transition between the traveling wave behavior and the time-periodic
traveling wave behavior, first discovered in [9], is investigated. The authors study the
dimensional model in the absence of diffusion using a relaxation procedure and WKB
analysis. Using a reduced, two-component model, the authors explicitly determine the
traveling wave and show it is stable for certain parameter values, losing stability in an
oscillatory fashion.

Ultimately we would like to gain a better mathematical understanding of the mech-
anism that causes this loss of stability. A geometric construction of the traveling wave
will help in this understanding. The geometric structures underlying a traveling wave
solution, and how these structures vary with the parameters, provide direct insight into
mechanisms governing its stability.

In this paper, we provide a geometric construction of the traveling wave solution
for sufficiently large (relative to a singular perturbation parameter δ) values of the half-
saturation constants, KS and K A. In this parameter regime it will be shown that the entire
traveling wave lies on a three-dimensional slow manifold within the five-dimensional
phase space of the traveling wave ODE system. Within this slow manifold, the wave will
be constructed in the transverse intersection of appropriate stable and unstable manifolds.

In addition to providing further insight into the bioremediation model, this construc-
tion is mathematically interesting because of the nonlinear reaction term fbd . Two com-
ponents of the function, ( S

S+KS
) and ( A

A+K A
), have derivatives that become large as KS

and K A become small. In other words, because the half-saturation constants are scaled so
that KS,A → 0 as δ→ 0, the reaction term is not uniformly bounded in the C1 topology
as δ → 0. This prevents a direct application of Fenichel theory [2], thus preventing
one from concluding that geometric structures that are present in the phase space of the
model in the asymptotic limit persist. In order to overcome this difficulty, we change
coordinates by compactifying the S and A directions in a manner that naturally reflects
the components of the reaction function.
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As mentioned above, this construction is only valid for large values of the half-
saturation constants (relative to δ). For small values of the half-saturation constants,
it will be shown that a different analysis is necessary. As we will see, this is because
the geometry of the phase space changes significantly as the half-saturation constants
decrease through a critical scaling with respect to δ. The parameter regime including
smaller values of the half-saturation constants is where the bifurcation to a periodic
traveling wave has been observed numerically. Using the moving grid scheme in [1], we
will explore numerically this parameter regime, including the bifurcation, and discuss
how the geometry of the phase space changes in this case.

The paper is organized as follows. In Section 2, we reformulate the model in terms of
a moving coordinate frame that is appropriate to the study of traveling waves. In addition,
we derive scalings of the parameters based on the numerical values used in [9] in terms
of a small quantity δ, placing the problem within the context of geometric singular
perturbation theory. In Section 3, we present the geometric construction of the traveling
wave solution for sufficiently large values of the half-saturation constants. In Section 4,
we show that the asymptotics for the traveling wave solution agree with the results
obtained from numerical simulations, where we note that the asymptotics have been
carried out to include both the leading-order terms and the first-order corrections. Finally,
in Section 5, we investigate numerically the bifurcation the traveling wave undergoes
for small values of the half-saturation constants.

2. Scalings for Traveling Waves

We are interested in traveling wave solutions representing an advancing front for the
acceptor A, a trailing front for the substrate S, and a pulse for the biomass M . Plugging
the Ansatz

s = S(x − ct), a = A(x − ct), m = M(x − ct)

into (1), we find that the system becomes

s ′′ + (cRd − 1)s ′ = a1 fbd ,

a′′ + (c − 1)a′ = a1a2 fbd , (4)

cm ′ = a4(m − 1)− a3 fbd ,

where ′ denotes differentiation with respect to the moving coordinate ξ ≡ x − ct . The
asymptotic conditions are

s(−∞) = 0, s(+∞) = 1,

a(−∞) = 1, a(+∞) = 0, (5)

m(−∞) = 1, m(+∞) = 1.

Note that these conditions also imply that s ′(±∞) = a′(±∞) = m ′(±∞) = 0.
From the s and a equations in (4), one may compute analytically the wave speed c.

To do this, eliminate the term fbd from the equations and integrate once with respect
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to ξ . Using the asymptotic conditions, we find

c = a2 + 1

a2 Rd + 1
. (6)

As mentioned in [9] and [6], the wave speed depends only on the relative rates of
consumption of the substrate and acceptor by the microorganisms (a2), and the amount
of sorbtion of the substrate (Rd ). The wave speed is independent of both the microbial
parameters (a3 and a4), and also of a1.

Traveling waves are observed numerically in [9] for the following parameter values:

a1 = 0.011, a2 = 0.3450, a3 = 0.0885, a4 = 0.0218, Rd = 3.0,

and a range of values of KS and K A. The differences in magnitudes of these parameters
suggest that we introduce a small parameter δ and scale the parameters in terms of this
quantity. In turn, this will allow us to use singular perturbation theory to determine the
mechanisms that produce the observed traveling wave behavior. Moreover, the above
values suggest rescaling the parameters as

a1 = δ2ã1, a2 = a2, a3 = δã3, a4 = δ2ã4, Rd = Rd . (7)

Here ã1, ã3, and ã4 are assumed to be O(1) with respect to δ.
From numerical simulations, we see that the properties of the traveling wave depend

significantly on the half-saturation constants KS and K A, and we are interested in a range
of values. Specifically, we scale them as

KS = δκ K̃S, K A = δκ K̃ A. (8)

Inserting the rescaled quantities into (4) and writing the equations as a system of five
first-order equations, we obtain

s ′ = v,

v′ = −(cRd − 1)v + δ2ã1 fbd ,

a′ = r,

r ′ = −(c − 1)r + δ2ã1a2 fbd ,

m ′ = δ2 ã4

c
(m − 1)− δ ã3

c
fbd . (9)

These are the equations we will analyze throughout the rest of the paper.
We will construct the traveling wave for 0 < κ < 1 in Section 3, examine its

properties in Section 4, and report on numerical simulations in the regime κ ≥ 1, in
which a Hopf bifurcation takes place, in Section 5. The approach in Section 3 can be
extended naturally to include the threshold cases κ = 0 and κ = 1, although certain
technical details are different. In the simulations of [9], the case κ < 0, i.e. KS , K A � 1,
has been considered briefly. The waves observed in this case can also be constructed using
an analytical approximation procedure, which is in fact more straightforward since the
reaction term is regular (in the C1 topology) as δ → 0. We do not consider this case in
any further detail here.
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Remark 2.1. We have also explored other scalings, such as setting a2 =
√
δã2 and

Rd = 1√
δ

R̃d , as would be suggested by taking δ = 0.1; however, there are various
reasons for assuming both are O(1). These include keeping the reaction terms in the
equations for v and r in (9) of the same order and also keeping the terms (cRd − 1) and
(c − 1) in (9) of the same order. In addition, this allows us to retain as many terms as
possible, i.e. to find a significant degeneration of the system.

Remark 2.2. In both [9] and [6], it was shown that the assumption that the retardation
factor satisfies Rd > 1 is crucial for the existence of traveling waves. Biologically this
can be understood as providing a mechanism to increase the width of the BAZ. Because
the substrate is sorbing, it lags behind after the initial injection of the acceptor before the
substrate front begins moving downstream with that of the acceptor. If the retardation
factor was not present (i.e. if the substrate was not sorbing), then this lag would not
occur and the BAZ would be too narrow to allow an appreciable amount of substrate to
be degraded as the reaction progressed downstream.

From the above analysis, one can begin to see mathematically why it is necessary
that at least Rd �= 1. If Rd = 1, then we would have c = 1, and hence the quantities
(c − 1) and (cRd − 1) in equation (9) would both be 0. Therefore, if the substrate was
not sorbing, the advection terms would effectively drop out, which would dramatically
change the following analysis and also the observed dynamics.

Remark 2.3. We have implicitly chosen the diffusion coefficients in system (1) to be
equal and scaled them to 1. It may be possible to extend our analysis to the case where
they are not equal. In addition, in both [9] and [6], the dimensional model with zero
diffusion was investigated. It was shown that, in this case, a traveling wave solution still
exists. It is interesting to note that setting the dimensional diffusion coefficient to zero is
equivalent to setting the parameters a1, a3, and a4 equal to zero, while also rescaling space
(x) and time (t). See the transformation between the dimensional and nondimensional
coordinates in [9] for more details.

3. Geometric Construction of the Traveling Wave

The goal of this section is to prove the following theorem:

Theorem 3.1. There exists a δ0 > 0 such that for all δ ∈ (0, δ0), for all κ ∈ (0, 1), and
for all ã1, a2, ã3, ã4, K̃S, K̃ A, and Rd O(1)and positive, system (9) has a traveling wave so-
lution, γtw(ξ) = (stw, vtw, atw, rtw,mtw)(ξ), connecting (s, v, a, r,m) = (0, 0, 1, 0, 1)
at −∞ with (s, v, a, r,m) = (1, 0, 0, 0, 1) at +∞. In addition, let

L− =
{
(s, a,m) = (0, 1,m) | m ∈

[
1, 1+ δ−1 ã3(Rd − 1)

ã1(a2 + 1)

]}
,

and

I =
{
(s, a,m) =

(
s, 1− s, 1+ δ−1 ã3(Rd − 1)

ã1(a2 + 1)
(1− s) | s ∈ [0, 1]

}
.

Then the s, a, and m components of the traveling wave areO(δ) close to Sδ ≡ L−
⋃
I.
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The theorem states that, to leading order, the traveling wave is the union of L− and
I. These two curves can be understood biologically as follows. L− corresponds to
the portion of the traveling wave to the left of the BAZ, where s and a are equal to
their asymptotic values at −∞ and m is slowly decaying to its equilibrium value (as
ξ → −∞). Moreover, the constant 1 + δ−1 ã3(Rd−1)

ã1(a2+1) is, to leading order, the maximum
value of the microorganism population.

The curve I corresponds to the portion of the traveling wave inside the BAZ, in which
m decays from its maximum value to its asymptotic value at+∞, and s and a transition
from their asymptotic values at −∞ to those at +∞. I also contains the portion of the
wave that lies to the right of the BAZ, namely, the point (1, 0, 1).

As we will see below, these two pieces of the traveling wave correspond to portions
of the wave that evolve on different timescales. The dynamics on I occurs on a slow,
O(δ), timescale, and the dynamics onL− occurs on a super-slow,O(δ2), timescale. This
separation of timescales is due to the fact that the timescale of the reaction, which is
governed by the magnitude of the reaction function δãi fbd , is different from the timescale
of the intrinsic dynamics of the microorganisms, given by the parameter δ2ã4.

It will be shown below that there exist both a slow and a super-slow invariant manifold
in the phase space of (9). The leading-order slow system is integrable, and I corresponds
to one of the integral curves. The leading-order super-slow dynamics consist of invariant
lines in the phase space where the only dynamic variable is m. The curve L− is one of
these invariant lines.

The proof of this theorem employs geometric singular perturbation theory to demon-
strate that there is a transverse intersection of invariant manifolds in system (9) in which
the traveling wave lies.

3.1. Boundedness of the Vector Field in the C1 Topology

The kinetic terms s
KS+s and a

K A+a in fbd , with KS,A = δκ K̃S,A and κ > 0, are not

uniformly bounded in the C1 topology as δ→ 0. More precisely,

d

ds

(
s

δκ K̃S + s

)
= δκ K̃S

(s + δκ K̃S)2
→∞ for s � O(δκ/2).

Hence, the perturbation terms in (9) are not uniformly bounded in the C1 topology, and
some preparation of the equations is required before geometric singular perturbation
theory [2] – [4] can be applied.

We introduce the new dependent variables,

y = s

KS + s
, w = a

K A + a
, (10)

with inverse coordinate change being given by s = yKS/(1− y) and a = wK A/(1−w).
This coordinate change compactifies the s and a directions in the phase space in a manner
that naturally reflects the component functions of the reaction function. In terms of these
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new variables, system (9) becomes

y′ = v

KS
(1− y)2,

v′ = −(cRd − 1)v + δ2ã1myw,

w′ = r

K A
(1− w)2,

r ′ = −(c − 1)r + δ2ã1a2myw,

m ′ = δ2 ã4

c
(m − 1)− δ ã3

c
myw. (11)

Numerically, the variables v and r remain small along the traveling wave, while
the height of the peak in m is large. For 0 < κ < 1, these numerics suggest scaling
v = δ1+κ ṽ, r = δ1+κ r̃ , and m − 1 = δκ−1m̃ (see Remark 3.2). Hence, taking into
account the scalings of KS and K A in (8), we see that system (11) becomes

y′ = δ
ṽ

K̃S

(1− y)2,

ṽ′ = −(cRd − 1)ṽ + ã1m̃ yw + δ1−κ ã1 yw,

w′ = δ
r̃

K̃ A

(1− w)2,

r̃ ′ = −(c − 1)r̃ + ã1a2m̃ yw + δ1−κ ã1a2 yw,

m̃ ′ = −δ ã3

c
m̃yw − δ2−κ ã3

c
yw + δ2 ã4

c
m̃. (12)

System (12) is the fast-slow system that we will use throughout the proof of Theorem
3.1. We remark that δ � δ1−κ , because we are assuming 0 < κ < 1. This will be crucial
in the following analysis.

3.2. Geometry of the Fast-Slow System (12)

In system (12), ṽ and r̃ are fast variables, while the rest are slow. The reduced slow
system is obtained from (12) by changing the independent variable to the slow time
η = δξ and by setting δ = 0,

yη = ṽ

K̃S

(1− y)2,

0 = −(cRd − 1)ṽ + ã1m̃ yw,

wη = r̃

K̃ A

(1− w)2,

0 = −(c − 1)r̃ + ã1a2m̃ yw,

m̃η = − ã3

c
m̃yw. (13)
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The algebraic constraints in (13) imply that ṽ = −r̃ = ã1
cRd−1 m̃ yw, where we note that

we have used the fact that a2(cRd − 1) = −(c − 1). Therefore, system (13) has an
invariant manifold given by

M0 =
{
ṽ = −r̃ = ã1

cRd − 1
m̃ yw

}
, (14)

and in this case, since δ = 0, we labelM0 as a critical manifold.
Setting δ = 0 in system (12), we see that the reduced fast dynamics are given by

y′ = 0,

ṽ′ = −(cRd − 1)ṽ + ã1m̃ yw,

w′ = 0,

r̃ ′ = −(c − 1)r̃ + ã1a2m̃ yw,

m̃ ′ = 0. (15)

Because cRd − 1 > 0 and c− 1 < 0, we see that ṽ is decaying exponentially while r̃ is
growing exponentially. Hence,M0 is normally hyperbolic.

Fenichel theory [2], [3], [4] implies that, for sufficiently small δ, the full system (12)
has a locally invariant slow manifold,Mδ , which is C1O(δ1−κ) close toM0. In addition,
Mδ is the graph of a function, which has a regular perturbation expansion, as follows:

ṽ = h0(m̃, y, w)+ δ1−κh1(m̃, y, w)+ δh2(m̃, y, w)+ h.o.t,

r̃ = g0(m̃, y, w)+ δ1−κg1(m̃, y, w)+ δg2(m̃, y, w)+ h.o.t. (16)

The functions hi and gi , i = 0, 1, 2, are obtained by computing d ṽ/dξ and dr̃ /dξ from
the above asymptotic expansion and from system (12), respectively, and then by equating
these two expressions, which expresses analytically the invariance ofMδ . By using (6),
at O(1), we find

h0 = ã1

(cRd − 1)
m̃ yw,

g0 = −h0. (17)

At O(δ1−κ), we find

h1 = ã1

(cRd − 1)
yw,

g1 = −h1. (18)

Finally, at O(δ),

h2 = − ã2
1

(cRd − 1)3
ywm̃

{
m̃w(1− y)2

K̃S

− m̃ y(1− w)2
K̃ A

− ã3(cRd − 1)

cã1
yw

}
,

g2 = 1

a2
h2. (19)
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K       = 0.5S,A K       = 0.3S,A

Fig. 2. A comparison of ṽ (upper curve) and r̃ (lower curve) as computed numerically
(*) and using the asymptotic expansion (-) given by equation (16), for KS,A = 0.5 and
KS,A = 0.3.

The equations for ṽ and r̃ in (15) indicate that if a solution were to leave the slow
manifold it would not return and either ṽ or r̃ would tend to infinity as ξ → ±∞.
Therefore, the entire traveling wave solution must be contained within the slow manifold.

Numerical verification of the asymptotic expansions given in equation (16) is shown
in Figure 2. Note the good agreement as expected for 0 < κ < 1.

Remark 3.2. The reason for choosing the scalings v = δ1+κ ṽ, r = δ1+κ r̃ , and m − 1 =
δκ−1m̃ can be seen as follows. First, the numerics indicate that the reaction term balances
with v and r along the wave for 0 < κ < 1, and under these scalings, it is precisely these
terms that are O(1) in the right members of the equations for ṽ and r̃ in (11) when the
above scalings are employed. Second, y′,w′, and m̃ ′ are of the same order in (12), as are
ṽ′ and r̃ ′. This allows for the reduction to the three-dimensional slow manifoldMδ .

3.3. Dynamics on the Slow ManifoldMδ

The dynamics on the slow manifold Mδ are obtained by inserting formulas (16) into
system (12) and changing the independent variable to the slow time η = δξ ,

yη = (1− y)2

K̃S

[h0 + δ1−κh1 + δh2 +O(δ2−κ)],

wη = (1− w)2
K̃ A

[g0 + δ1−κg1 + δg2 +O(δ2−κ)],

m̃η = − ã3

c
m̃yw − δ1−κ ã3

c
yw + δ ã4

c
m̃. (20)

Retaining the O(1) and O(δ1−κ) terms, we have

yη = ã1

K̃S(cRd − 1)
(1− y)2[m̃ yw + δ1−κ yw],

wη = − ã1

K̃ A(cRd − 1)
(1− w)2[m̃ yw + δ1−κ yw],

m̃η = − ã3

c
[m̃ yw + δ1−κ yw]. (21)
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Fig. 3. On the left is a sketch of an integral curve for system (21) near the TW solution. Here
m̃pk is the height of the peak in m̃, as given in equation (32). A plot of the numerically computed
traveling wave is shown on the right, for KS,A = 0.3.

In turn, from (21) we see that up to terms of O(δ),

K̃S

(1− y)2
yη = − K̃ A

(1− w)2wη = −
cã1

ã3(cRd − 1)
m̃η. (22)

Integrating these equalities pairwise, we find that the integral curves of (21) are given by

c0 = K̃S

1− y
+ K̃ A

1− w ,

m̃ = ã3(cRd − 1)

cã1

(
K̃ A

1− w + c1

)
,

m̃ = ã3(cRd − 1)

cã1

(
− K̃S

1− y
+ c2

)
, (23)

where ci , i = 0, 1, 2 are arbitrary constants that determine which integral curve the
solution is on. Moreover, we see that c0 + c1 = c2, by equating the two expressions for
m̃. Hence, (22) determines a two-parameter family of independent integral curves.

To identify the integral curve corresponding to the traveling wave whose existence
we want to establish, we use the full (δ > 0) boundary conditions y(+∞) = 1

1+δκ K̃S

and w(+∞) = 0, as well as y(−∞) = 0 and w(−∞) = 1
1+δκ K̃ A

. The integral curve

that satisfies these boundary conditions is defined by δκc0 = 1+ δκ K̃S + δκ K̃ A. In other
words, in terms of the y and w variables, the integral curve I, which constitutes part of
the traveling wave, is given up to O(δ) by

δκ K̃S

1− y
+ δκ K̃ A

1− w = 1+ δκ K̃S + δκ K̃ A. (24)
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Similarly, in y and m̃, this integral curve I contains the point ( 1
1+δκ K̃S

, 0) and is given by

δκc2 = 1+ δκ K̃S . Also, we have δκc1 = −δκ K̃ A, since c0 + c1 = c2. Therefore, along
the integral curve I, m̃ is given as a function of w, respectively y, by

δκm̃ = ã3(cRd − 1)

cã1

(
δκ K̃ A

1− w − δ
κ K̃ A

)
,

δκm̃ = ã3(cRd − 1)

cã1

(
− δ

κ K̃S

1− y
+ 1+ δκ K̃S

)
. (25)

To complete the construction of the traveling wave up to O(δ), we append to the
integral curve I the line segment L− = {(y, w, m̃)|y = 0, w = 1

1+δκ K̃ A
, m̃ ∈ [0, m̃pk]},

where m̃pk is a constant that will be determined explicitly in Section 4. The union

Sδ = I
⋃
L− (26)

is the traveling wave to leading order.

Remark 3.3. The reason for including theO(δ1−κ) terms when determining the leading
order traveling wave is that the integral curves (23) become degenerate as δ→ 0.

3.4. Completion of the Proof of Theorem 3.1

In this section, we complete the proof of Theorem 3.1 by identifying certain submanifolds
of the slow manifoldMδ and by showing that these submanifolds intersect transversely
along a one-dimensional curve that is given by the set Sδ , recall (26), up to O(δ). The
traveling wave will be the heteroclinic orbit that lies in this transverse intersection.

First, notice that for the full system (12), the manifoldNδ ≡ N−δ
⋃
N+δ = {y = ṽ =

r̃ = 0}⋃{w = r̃ = ṽ = 0} is invariant for all δ ≥ 0. On this manifold, the dynamics
of m̃ are given by m̃ξ = δ2 ã4

c m̃, while y, ṽ, w, and r̃ are constant. These dynamics
correspond to the behavior of the microorganisms in the absence of any reaction and
occur on the “super-slow” timescale which is O(δ2). This suggests that we carry out a
fast-slow decomposition of the dynamics withinMδ .

In fact,Nδ is a super-slow manifold for (20). To see this, rewrite the system in terms of
the variable ζ = δη so that the derivatives balance with theO(δ) terms on the right-hand
sides. In order to observe these super-slow dynamics, we must have h0 + δ1−κh1 = 0.
This is true if either y = 0 or w = 0. Note that these two conditions both imply that
h2 = g2 = 0. Therefore, on Nδ the dynamics are given, to leading order, by

yζ = 0,

wζ = 0,

m̃ζ = ã4

c
m̃. (27)

We see that onN−δ , the lines for fixed w are invariant, and m̃ grows exponentially away
from 0. Similarly, on N+δ the lines for fixed y are invariant and m̃ grows exponentially
away from 0.
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Fig. 4. On the left is a schematic diagram of the phase space of (27), showing the slow manifold
N0 and the lines L±. A sketch of the functions m̃−(y) and m̃+(y) in the plane {y = w} showing
the transverse intersection is shown on the right, where y∗ = K̃ Aw−/(K̃ A + K̃S − K̃Sw−).

Consider the line segments

L− = {(0, w−, m̃): w−fixed, m̃ ∈ [0, m̃pk]},

L+ =
{
(y+, 0, 0): y+ ∈

(
1

1+ δκ K̃S

− ε, 1

1+ δκ K̃S

+ ε
)}

, (28)

for some ε > 0 and a constant m̃pk which will be defined in Section 4 (see Figure 4).
Using the integral curves given in (23), we will track L− forward and L+ backward to
the plane {y = w} and show that they intersect transversely in this plane.

First, we will track L− forward. Any integral curve that intersects L− must contain
a point of the form (0, w−, m̃). Using this information we can determine the constants
c0 and c1 for the integral curves that determine the evolution of L−. We find that c0 =
K̃S + K̃ A

1−w− and c1 = cã1
ã3(cRd−1) m̃ − K̃ A

(1−w−) . This implies that in the plane {y = w}, by
(23), we have

y = w = K̃ Aw−
K̃ A + K̃S − K̃Sw−

; m̃− ∈ [0, m̃pk]. (29)

We can use a similar procedure to trackL+ backward. Any integral curve intersecting

L+ must contain a point of the form (y+, 0, 0), which implies that c0 = K̃ A + K̃S
1−y+

and

c2 = K̃S
(1−y+)

. Hence, on the plane {y = w} we have

m̃+(y) = K̃ Aã3(cRd−1)

ã1c

(
y

1−y

)
; y ∈

(
1

1+δκ K̃S

−ε, 1

1+δκ K̃S

+ε
)

. (30)

Graphs of m̃−(y) and m̃+(y), which intersect transversely, are shown in Figure 4. Because
the images of L− and L+ intersect transversely, we know that a trajectory connecting
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the point (0, w−, 0) and the line L+ will persist under the addition of the higher order
terms [11].

All that remains to be shown is that if we choose w− = 1
1+δκ K̃ A

, then y+ = 1
1+δκ K̃S

.
This will result from the following argument. Notice that, using (11),

a2[v′ + (cRd − 1)v] = r ′ + (c − 1)r .

If we use the fact that y(+∞) = y+, w(−∞) = w−, and y(−∞) = w(+∞) = 0, and
integrate from −∞ to +∞, we see that

a2(cRd − 1)
δκ K̃S y+
1− y+

= −(c − 1)
δκ K̃ Aw−
1− w− , (31)

and using the fact that a2(cRd − 1) = −(c − 1) we see that y+ = K̃ Aw−
K̃S+(K̃ A−K̃S)w−

.

Therefore, if we choosew− = 1
1+δκ K̃ A

, then we must also have y+ = 1
1+δκ K̃S

. The reason
for this is that the boundary conditions are encoded in the wave speed.

The proof of Theorem 3.1 is completed by rewriting the expression for I given in
equations (24) and (25) in terms of the variables s, a, and m.

Remark 3.4. We briefly comment on the choice of the lines L±. Because L− is the
unstable manifold of the point (0, w−, 0) within N−0 , it is natural to track its forward
evolution. Since we are interested in a solution that is asymptotic to a point of the form
(y+, 0, 0), one might initially attempt to track its stable manifold backwards. However,
this would then require the transverse intersection of a two-dimensional manifold with
a one-dimensional manifold in a three-dimensional phase space, which is, in general,
not generic. Thus, we track the stable manifold of the line L+ backwards, so that both
tracked manifolds have dimension two and their intersection is one-dimensional.

4. The Dependence of the Peak Height on KS and K A

In this section, we compute the peak height of the m̃ component of the traveling wave
first to leading-order and then also up to and including the first-order corrections. First,
we determine the leading-order value using equation (25). The maximum value of m̃
will be attained when y = 0, or equivalently when w = 1

1+δκ K̃ A
. Thus, we see that the

peak height is defined by

δκm̃pk ≡ ã3(cRd − 1)

cã1
= ã3(Rd − 1)

ã1(a2 + 1)
, (32)

where we have used the value of c given in (6).
The value of δκm̃pk to leading order, ã3(Rd−1)

ã1(a2+1) , is exactly the upper bound on the peak
height obtained in [6]. In other words, we have found that their bound is sharp, up to
higher-order effects in δ. Note that the bound in [6] is given in terms of the dimensional
parameters (see [9] for the relationship between the dimensional and nondimensional
parameters).
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Fig. 5. Plot of the traveling wave, show at successive time steps, for increasing values of the
half-saturation constants KS and K A. Note that as the half-saturation increase, the height of the
peak decreases.

Remark 4.1. In the limit as δ → 0, m̃pk →∞. This is due to the degenerate nature of
the integral curves in the singular limit. If we were to define a new variable m̂ = δκm̃,
then m̂pk would remainO(1) as δ→ 0, and this would suggest working with the variable
m̂ throughout the analysis. However, this prevents one from balancing the derivatives of
y and w with that of m̂ on the slow manifoldMδ . Therefore, we work with the variable
m̃ instead.

Numerically, one observes that the height of the peak in the m̃ component increases as
the half-saturation constants KS and K A decrease (see Figure 5), as long as one remains
in the regime where the traveling wave is stable. This increase is confirmed analytically
using the analysis on the slow manifoldMδ , as we show now.

We compute dm̃/dy using (20) and the definitions of hi , and gi , i = 0, 1, 2 given in
(17), (18), and (19),

dm̃

dy
= − m̃pk K̃S

(1− y)2

(
1− δ f1(y, w, m̃)

1− δ f2(y, w, m̃)

)
, (33)

where f1 and f2 are given by

f1(y, w, m̃) = ã4

ã3

(
m̃

m̃ yw + δ1−κ yw

)
,

f2(y, w, m̃) = ã1

(cRd − 1)2

(
m̃

m̃ + δ1−κ

)

×
(

m̃w(1− y)2

K̃S

− m̃ y(1− w)2
K̃ A

− ã3(cRd − 1)

cã1
yw

)
. (34)
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Fig. 6. Graph of the height of the peak in m ver-
sus the half-saturation constants KS and K A (where
KS = K A) as computed numerically (*) and as com-
puted using the higher-order corrections on the slow
manifoldMδ (solid curve), via equation (33).

In order that equation given (33) depends only on m̃ and y, we eliminate w using the
leading-order integral curve w = w(y) given in (24). That is,

w = (1+ δκ K̃S)(1− y)− δκ K̃S

(1+ δκ K̃S + δκ K̃ A)(1− y)− δκ K̃S

.

Inserting the above expression into the functions f1 and f2, we obtain the leading-
order differential equation for m̃ in terms of y. Integrating this equation numerically to
determine the height of the peak in m̃, we see in Figure 6 that mpk decreases as KS and
K A increase. In Figure 6, we also see that the analytical results agree with the numerical
results, except for some higher-order corrections. This provides further evidence that, for
0 < κ < 1, the entire traveling wave solution really is contained on the three-dimensional
slow manifoldMδ .

5. Bifurcation to Periodic Waves

As previously mentioned, the geometry of system (11) changes when κ > 1. Most
prominently, asκ increases (or KS and K A decrease), the traveling wave loses stability to a
periodic wave. In this section, we demonstrate this behavior by numerically investigating
the bioremediation model.

5.1. Numerical Methods

In order to integrate system (1), we have used a moving grid code which is described
in detail in [1]. Because numerical integration must be performed on a finite domain,
the simulations have been run for x ∈ [0, 10000], and the asymptotic conditions given
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in (5) have been used as boundary conditions at the endpoints of the spatial interval.
This domain is sufficiently large so that the effects of the finite domain are exponentially
small in δ over all of the intervals of time of the simulations. The initial data used are as
follows. The microorganism concentration, M , was taken to be constant and equal to 1;
the substrate concentration, S, was taken to be 1 everywhere except near the left edge,
where it linearly decreases to 0; and the acceptor concentration, A, was taken to be 0
everywhere except near the left edge, where it linearly increases to 1.

For all results presented in this section, the parameter values used are

a1 = 0.011, a2 = 0.3450, a3 = 0.0885, a4 = 0.0218, Rd = 3.0, (35)

which are the same as those given in Section 2. We remark, however, that the bioreme-
diation model has been numerically integrated for other values of these parameters, to
ensure that the traveling wave is not unstable relative to small changes in them.

We are interested in the behavior of system (1) for a range of values of the half-
saturation constants. In particular, we have run numerical simulations for KS = K A ∈
[0.01, 1]. For this paper we have taken KS = K A to simplify the scope of the numerical
simulations.

5.2. Geometry of the Phase Space

Based upon the preceding existence construction, we see that for 0 < κ < 1, or
0.1 < KS,A < 1, the entire traveling wave is contained within a three-dimensional slow
manifold within the five-dimensional phase space, given by the asymptotic expansions
(16). This was verified numerically in Figure 2.

Similarly, we can see numerically that this is not the case when κ > 1, or KS,A < 0.1,
given the values of the other parameters. In other words, if we plot the asymptotic
expansion in (16) for κ > 1 (evaluated using the numerical values of y, w, and m̃)
against the values of ṽ and r̃ as computed numerically, we see that they do not agree
(see Figure 7). This indicates that the slow manifoldMδ no longer contains the traveling
wave solution for these parameter values. Because the bifurcation to a periodic wave
happens for small values of KS and K A, understanding this change in geometry may
provide insight into why the traveling wave loses stability.

S,AK       = 0.035S,A K       = 0.03556165520 56405760

0.08

−0.08

0.08

−0.15

Fig. 7. A comparison of ṽ and r̃ as computed numerically (*) and using the asymptotic expansion
(-), for KS = K A = 0.035. The figure on the right is a close-up of that on the left.
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Fig. 8. Each frame shows 33 snapshots of the numerically observed traveling wave at intervals
of 10 time units. Note that the traveling wave appears to lose stability to a time-periodic wave
approximately for a value of KS,A somewhere inside (0.031, 0.033).

5.3. Periodic Waves

As KS and K A decrease further, the traveling wave loses stability to a periodic wave.
This bifurcation happens for KS = K A ≈ 0.032, which corresponds to κ ≈ 3/2, and is
shown in Figure 8. Each graph shows snapshots of the traveling wave at time intervals
of ten units. For values of KS,A below the bifurcation value, the peak height in the m
component of the wave varies periodically as the wave travels. Notice that the frequency
of oscillation appears to be constant. This suggests that the traveling wave loses stability
as the result of a Hopf bifurcation, where two conjugate eigenvalues cross the imaginary
axis.

If we approximate the period of oscillation using the numerical results shown in
Figure 8, we find that the period is approximately 102.7 nondimensional time units.
Consequently, this implies the frequency of oscillation is about 2π /102.7 ≈ 0.061.
Therefore, we expect that the stability analysis will show that two conjugate eigenvalues
cross the imaginary axis with imaginary part near 0.061 as KS,A decrease through 0.032.

In order to verify this numerically observed behavior, stability analysis for the pa-
rameter regime in which we have constructed the traveling wave, 0 < κ < 1, must be
performed. In addition, construction and stability analysis of the traveling wave in the
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regime κ > 1 needs to be carried out in order to investigate the bifurcation. This is the
subject of future work.

6. Conclusions

The traveling wave for the bioremediation model has been constructed for sufficiently
large values of the half-saturation constants KS and K A. After controlling the nonlinearity
with a change of coordinates, we used geometric singular perturbation theory to show
that the wave exists on a three-dimensional slow manifold within the five-dimensional
phase space. The construction was completed by showing that the leading-order wave
exists in the transverse intersection of appropriate stable and unstable manifolds and
showing that this transverse intersection persists. We demonstrated that the peak height
in the m component of the traveling wave decreases as KS and K A increase. In addition,
it was shown numerically that the traveling wave loses stability to a periodic wave as
the half-saturation constants decrease. Construction of the wave for small values of
the half-saturation constants and a complete stability analysis are the subjects of future
work.
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