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Summary. A general description of the nonlinear mechanical behavior of quasi-periodic
alloys is presented: It accounts for the rearrangements of atomic clusters (phason activity)
and is based on a Lagrange-d’Alambert-type principle where phason dissipative effects
are included. We find the covariance of the balance of phason interactions in the presence
of phason friction, discuss the formulation of appropriate conservative and dissipative
brackets, and recognize for quasicrystals the universality of affine deformations and affine
phason activity at equilibrium for vanishing phason friction. Moreover, we investigate
the nature of the influence of phason activity on a macroscopic discontinuity surface
endowed with its own surface energy and find covariant interface balances describing
its evolution. Finally, we investigate the nature of the balance of phason interactions in
the bulk material and relate it to SO (3) invariance.
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1. Introduction

A standard crystalline lattice is a Z-module over the ambient space, characterized by
periodicity and symmetries described by the crystallographic groups. However, exper-
iments based on X-ray scattering techniques display the existence of alloys for which
periodicity, i.e., translational symmetry, is violated, but not as a common consequence
of the presence of defects. These alloys are constituted by quasi-periodic crystalline
lattices that we may roughly divide in three classes (see [36]) analyzed in the subsequent
sections.

(i) We may imagine first a perfectly periodic structure, a standard crystalline lattice.
We “modulate” it by “displacing” ideal locations of atoms in a manner in which
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the original period of the translational symmetry is incommensurate with respect to
the “period” of the modulation. Alloys with this nature are called incommensurate
modulated crystals (IMC).

(ii) Another family of quasiperiodic structures is the one of incommensurate inter-
growth compounds (composite crystals) (IIC) characterized by the presence of two
or more (sub)lattices with periods mutually incommensurate. These sublattices shift
reciprocally to try to match one another. Moreover, a more complicated landscape
may occur when each sublattice is not a standard crystalline lattice but is itself an
incommensurate modulated structure.

(iii) Both IIC and IMC are obtained by starting from standard crystalline lattices (by
superposition or modulation) and are in this sense exotic offsprings of the standard
crystallographic realm. In 1984, Shechtman and co-workers [37] discovered the
existence of intrinsically quasi-periodic structures, the so-called quasicrystals, that
satisfy symmetries forbidden by the classification of crystallographic groups [21]:
icosahedral symmetry in space and pentagonal symmetry in the plane, for example.
They may display five-fold, eight-fold, ten-fold symmetries. To have a clear idea,
let us think of a planar ambient space and try to construct over it a lattice with
pentagonal symmetry covering the whole plane. From elementary geometry we
know that we cannot fill the plane by using only pentagons, so that we are forced
to insert here and there topological alterations (i.e., structures different from pen-
tagons) called “worms,” that alter periodicity. Worms also appear to be necessary in
three-dimensional space when one would try to construct a lattice with an icosahe-
dral modulus [37]. A suggestive portrait of quasicrystals is given by Penrose tiling
(see [32]).

Substructural events occur in quasi-periodic alloys within each crystalline cell: They
are local rearrangements of atomic clusters and influence the gross mechanical behavior
because they change the global energetic landscape in a nonnegligible manner. To de-
scribe the substructural interactions generated by energetic variations at atomic scale, we
follow the general format of multifield theories for complex bodies [5], [24], and assign
to each material element a morphological descriptor of the substructural changes within
the element itself, changes that are referred to as phason activity. In this way we follow a
common practice in which the word “phason” is used to indicate modes that alter locally
the crystalline phase in addition to global acoustic (“phonon”) modes generated by the
gross deformative behavior.

For the substructural events occurring in quasi-periodic alloys, a natural descriptor
is a vector w attached at each point. In the case of IIC and IMC, it represents a true
microdisplacement, the one necessary to modulate an original periodic structure in IMC
or the one describing the shift between sublattices in IIC. In the case of quasicrystals the
interpretation is more subtle. In fact, if one develops in Fourier series the mass density
ρ (x) on a three-dimensional quasi-crystalline lattice with icosahedral symmetry, the
Fourier amplitude is given by |ρk | exp i�k with�k = �k,0+ k · u+ k′ ·w, where u and
w are three-dimensional vectors (representing phonon and phason degrees of freedom
respectively), �k,0 is the value of �k at a ground state. As a consequence, we cannot
represent in Fourier series the mass density over a three-dimensional quasi-periodic
lattice by using only one wave vector inR3; we are forced to work in a high-dimensional
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(here six-dimensional) space. In this sense a quasi-crystalline lattice can be considered as
the projection in the three-dimensional space of a high-dimensional periodic lattice [11].
Vice versa, we might imagine embedding three-dimensional quasi-crystalline lattices
in a high-dimensional space and utilizing in that space the standard crystallographic
classification techniques. In this way an indeterminacy accrues because the embedding
is not unique, so that it would appear convenient to treat everything in Fourier space
as suggested in [35]. However, by means of appropriate gauge functions, it is possible
to link Fourier representation with high-dimensional “ambient” space representation,
eliminating the indeterminacy [12], [19] (see also [18] for related matter).

Phason activity develops in quasicrystals: It is constituted by collective atomic modes
and/or tunneling of atoms below energetic barriers separating neighboring places [9],
[34]: They “perturb” standard phonon elastic modes so that, for us, the vector w represents
locally such an influence.

The three classes of quasi-periodic alloys listed in the items (i)–(iii) display different
energetic landscapes.

(a) IIC and IMC may admit phason kinetics, while, in contrast, in quasicrystals phason
inertia is absent: X-ray-based experiments show, in fact, that only three acoustic
modes (the ones associated with standard translational degrees of freedom in the
ambient space) are present in scattering spectra. In IIC and IMC, structural defects
may generate a “pinning” effect that bars phason inertia.

(b) For IIC and IMC, the internal energy depends not only on the macroscopic measures
of deformation but also on the morphological descriptor w of the phason activity
and its spatial gradient ∇w. The dependence on w is justified by the circumstance
that w represents a relative displacement in IIC and IMC, in a certain sense a sort
of measure of deformation within each crystalline cell. In contrast, in the case of
quasicrystals, the elastic energy depends on ∇w and not on w. In particular, the
dependence on ∇w is quadratic in the so-called “unlocked” phase while it is just
on the modulus of ∇w in the so-called “locked” phase where “phasons cannot be
thermodynamically excited” [18].

(c) Phason friction occurs in general in quasicrystals (it vanishes of course at zero
Kelvin). Moreover, phason friction may or may not be recognized in IIC and IMC,
depending on circumstances, but independently of the presence (or absence) of
phason inertia.

The mechanics of quasi-crystalline alloys has been discussed variously in scientific
literature, above all with reference to quasicrystals (see, e.g., [8], [11], [18], [22], [33],
[34]). Primarily, the attention has been focused on some aspects of infinitesimal strain
regime and on the possible nature of constitutive laws in nonlinear elastic behavior,
neglecting phason friction (see [33]).

Here we tackle the matter from a general point of view. The outline of this paper is
summarized below:

• A general formulation of the mechanics of IIC, IMC, and quasicrystals is presented
here. It is based on a variational principle of Lagrange-d’Alambert type that accounts
for dissipative effects due to phason friction.
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• A Noether-like theorem is proven (Theorem 1): Its main peculiarity is that it ac-
counts for phason friction. The result is nonstandard because the Noether theorem is
commonly derived in a conservative setting.

• Theorem 1 implies a number of corollaries. The covariance of the balances of phonon
and phason interactions follow first. Here, “covariance” means invariance with respect
to changes in observers differing by transformations belonging to groups larger than
SO (3) (i.e., the one associated with standard rigid body motions) and including it. The
covariance of the balance of phonon interactions (common bulk forces and stresses)
is a standard result in nonlinear elasticity (see [29]). That the balance of phason
interactions, including phason friction, is also covariant is a new result (Corollary 1).
Moreover, the presence of phason interactions renders nonsymmetric Cauchy stresses
(Corollary 2) as a consequence of SO (3) invariance.

• The requirement of invariance of the Lagrangian density with respect to the relabeling
of the reference place (i.e., the invariance with respect to the “permutation” of possible
defects) allows us to derive from Theorem 1 a balance of “configurational” forces
accounting for phason effects (friction included) that is invariant under the action of
the special group of isochoric diffeomorphisms (Corollary 3). An extended Eshelby
stress is involved: It satisfies an appropriate Doyle-Ericksen-like formula (Theorem
3), while for Cauchy stress the traditional Doyle-Ericksen formula is modified by the
contribution of the phason (micro)stress (formula (69)).

• Affine bulk deformations and affine phason activity constitute a class of universal
solutions to the equilibrium problem of quasicrystals in a nonlinear elastic setting,
in the theoretical limit of vanishing phason friction (Theorem 2). In contrast to the
standard case of nonlinear elasticity of simple bodies, here it is necessary that the
derivatives of the stress measures (first Piola-Kirchhoff stress tensor and referential
microstress) satisfy an algebraic pointwise condition.

• Poisson brackets for IIC and IMC in pinning free states are introduced in Section
4 for the pure elastic case when phason friction is absent. They allow one to rep-
resent concisely the field equations (Theorem 4), to point out that the algebra of
smooth functions over the phase space (some of such functions are candidates to be
Hamiltonians) is endowed with Lie structure, to open the way to a class of numer-
ical schemes. Dissipative brackets accounting for phason friction are presented in
Section 5.

• Linearization of the nonlinear theory presented in this paper is briefly discussed in
Section 6: Existing linear theories on the mechanical behavior of quasi-periodic alloys
are special cases. Unaspected results on wave propagation in Al PbMn-based alloys,
obtained in the linearized setting, are also summarized in the same section.

• There are circumstances in which wall defects are present in quasi-periodic alloys and
evolve relative to the body itself. They are represented in this paper by means of sur-
faces where some fields suffer bounded discontinuities: Their evolution is influenced
by phason activity, as shown in Section 7. We focus attention on a single discontinuity
surface, consider it coherent and anisotropic, and assume also that it is structured in
the sense that it may sustain standard and phason surface stresses, also a surface self-
force. We derive an evolution equation by exploiting the action of the special group
of isochoric diffeomorphisms that relabel points on the discontinuity surface. Such
an evolution equation is a generalization of the motion-by-curvature and accounts for
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both macroscopic deformations and phason activity. Interface balances of standard
(phonon) and phason interactions are also derived in a covariant way (Theorem 5).

• The covariance of all balance equations obtained below suggests that they are more
fundamental (in a certain sense, more universal) in the physics we are considering
than suggested by the standard requirement of invariance with respect to changes
in observers governed by rigid body motions (ruled by SO (3)). However, SO (3)
invariance allows one to get a nontrivial interpretation of global integral balances and
the pointwise balance of phonon interactions in the bulk. The latter balance follows,
in fact, by requiring that the external power of all actions over any arbitrary part
(with nonvanishing volume) of the body be SO (3) invariant. In doing calculations, in
fact, we find the existence of an internal self-force of phason nature independently of
constitutive assumptions, a self-force that is commonly postulated. The structure of
such a self-force is then specified by constitutive laws, namely for quasicrystals it has
only dissipative nature, while for IIC and IMC it also admits a conservative part.

Some notations. For any pair of vector spaces A and B (with duals A∗ and B∗),
Hom (A, B) is the space of linear maps from A to B. For any manifold M , Tm M is
the tangent space of M at m ∈ M , while T ∗m M is the relevant cotangent space. Moreover,
Aut (A) indicates the space of automorphisms of A. By the letters B0 and B we will
indicate two different regular bounded regions of the three-dimensional Euclidean point
space E3, and by Vu and Vw two different copies of the translation space of E3 (we may
also identify them as copies of R3). Capital letters A, B,C . . . used as indices denote
coordinates inB0, while i, j, k . . . denote coordinates inB. The differential operators Div
and ∇ indicate respectively divergence and gradient calculated with respect to coordi-
nates inB0, while div and grad are their counterparts with respect to coordinates inB. The
superscript T means transposition. The symbol ∂y means partial derivative with respect
to the entry “y.” We indicate by the term part any subset ofB0 with nonvanishing volume
and the same regularity properties of B0. Let	 be any smooth surface in B0 oriented by
the normal m at each point, for any field e (·) defined on B0 and differentiable there; we
indicate by ∇	 its surface gradient along 	, namely, ∇	e (X) = ∇e (X) (I−m⊗m),
with I the second-order unit tensor. The trace of ∇	e is the surface divergence of e,
namely, Div	 e. Other notations will be explained later.

2. Configurations, Observers, and Relabeling

2.1. Configurations

A quasi-periodic crystalline body occupies in its reference place a fit region B0 of the
three-dimensional Euclidean point space E3. A generic point X ∈ B0 is identified with
the centre of mass of a crystalline cell (which is the characteristic material element) that
one may imagine collapsed at X in a coarse-grained representation of the quasi-periodic
structure.

A standard deformation of the body is given by such a sufficiently smooth injective

mapping B0 � X
x̃�−→ x = x̃ (X) ∈ E3 that the current place B = x̃ (B0) of the body is

a regular region too. The placement map x̃ is also orientation-preserving: at each X its
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gradient F = ∇x has positive determinant. F is the value of the map B0 � X
F̃�−→ F =

F̃ (X) ∈ Hom (TXB0, TxB).
Let g be the spatial metric in B and γ be the material metric in B0. The linear operator

FT F = C ∈ Hom
(
TXB0, T ∗XB0

)
is the pull-back at X of g through x̃, i.e., in coordinates,

CAB = F T i
A gi j F j

B . Then, the difference (C− γ) is twice the nonlinear deformation
tensor E.

If we consider each material element as a perfect crystalline cell, during a motion

B0 ×
[
0, t̄
] � (X, t)

x̃�−→ x = x̃ (X, t) ∈ E3, the standard displacement field u =
ũ (X, t) = x̃ (X, t) − X ∈ Vu is the descriptor of phonon degrees of freedom (the ones
associated with ordinary acoustic regime). Vu is a copy of the translation space V over
E3 and can be identified with R3.

In standard periodic crystals, the displacement field is the sole basic kinematical de-
scriptor of the gross behavior. When the crystalline structure is quasi-periodic, substruc-
tural events at the atomic scale occur “within” each material element and are of various
natures. To represent their effects at coarse scale, we attach at each point a morphological
descriptor of what happens “inside” the material element, and we find it convenient to
identify it with a three-dimensional vector w carrying information about local rearrange-
ments of the crystalline structure, the so-called phason degrees of freedom. A vector field

B0 � X
w̃�−→ w = w̃ (X) ∈ Vw is then defined, and we presume that it is sufficiently

smooth. During a motion, we get B0 ×
[
0, t̄
] � (X, t)

w̃�−→ w = w̃ (X, t) ∈ Vw, with a
slight abuse of notation.

From the point of view of the general setting of multifield theories, the copyVw of the
translation space V over E3, containing ws, plays the role of a manifold of substructural
shapes [5], [24].

Of course, the physical meaning of w changes according to the situation envisaged.

(i) In the case of incommensurate intergrowth compounds (IIC), w represents the shift
between mutually incommensurate lattices that occurs under mechanical loading.

(ii) For incommensurately modulated crystals (IMC), w represents the microdisplace-
ment needed locally to break the three-dimensional translation symmetry of the
original periodic structure to obtain the quasi-periodic (modulated) one.

(iii) For quasicrystals, w is a coarse-grained representative of the effects of substructural
rearrangements in the crystalline patches, such as relocation of atoms [18], due to
jumps of the atoms “from one position to another one nearby having a similar local
environment” [9], or collective atomic modes generated for example by the flipping
of crisscrossing worms needed to maintain matching rules [17].

In the case of incommensurate intergrowth compounds, since w represents a real local
microdisplacement, a global displacement ū belonging to Vu⊕Vw can be considered in
principle. A similar choice is also rather natural for IMC and is proposed even in the
case of quasicrystals (see [8], [17]).

By indicating by x′ = x̃′ (X) the point given by x′ = X + ū = X + ū + w, and
by F′ the gradient ∇x̃′ (X), we get additive and multiplicative decompositions given
respectively by F′ = F+∇w and F′ = FphF, with Fph = I+ (∇w)F−1. Really, since x̃
is one-to-one, one may construct a representation of w on the “apparent” current place
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B of the body. By indicating by wa = w̃a (x) the image of w attached at x = x̃ (X) ∈ B,
we get w̃a = w̃ ◦ x̃−1 so that (∇w)F−1 = grad wa . As a consequence, the interpretation
of the multiplicative decomposition of F may be the following: Ideally, in the case of
IIC we may deform first the body at a coarse-grained level, then we may allow the
sublattices to slip with one another. In other words, by indicating by x̃ph the mapping
x̃ph = x̃′ ◦ x̃−1, we realize that Fph = I + grad wa is the gradient of deformation from
B to x̃ph (B), and there is such a map F̃ph (considered here to be piecewise continuous)

that B0 � X
F̃ph�−→ Fph = F̃ph (X) ∈ Hom

(
TxB, Tx′ x̃ph (B)

)
. The map x̃′ describes the

shift of the centre of mass of the crystalline cell itself from its current (in a certain sense,
“apparent”) place x to another place x′ due to local rearrangements of atoms.

Finally, we indicate by ẋ = d
dt x̃ (X, t) and ẇ = d

dt w̃ (X, t) rates in the reference
description and might also use u̇ = d

dt ũ (X, t) instead of ẋ to put in evidence the role of
phonon and phason degrees of freedom.

If we restrict our attention to the infinitesimal deformation regime in which B can be
“confused” withB0 in the sense that ẋ ≈ u at each X, in addition to the standard compati-
bility condition curl curl sym∇u = 0, we also get a phason compatibility condition curl
curl ∇w = 0 that would eventually imply an energetic contribution of the phason spin.

2.2. Observers and Relabeling

Here we define an observer as a “representation” of all geometrical environments nec-
essary to describe a given body and its motion (see [27]).

The geometrical picture of a quasi-periodic alloy involves the point space E3 (i.e., the
ambient space), the translation space Vw (containing phason degrees of freedom), the
interval of time [0, t̄], and the fit region B0. An observer O is then a representation of
E3, Vw, [0, t̄], and B0.

The attention is here focused on the ones that I call synchronous semiclassical ob-
servers, i.e. observers that “evaluate” with one another the same representation of B0

and [0, t̄].
Changes in synchronous semiclassical observers. With the premises above, a gen-

eric change in synchronous semiclassical observers involves only a couple of transfor-
mations: one of the ambient space E3, the other of Vw. They are described respectively
by the parametrized families of mappings defined below, smooth with respect to the
relevant parameter.

• R+ � s2 �−→ f2
s2
∈ Aut

(
E3
)
, with f2

0 the identity. We put f2′
0 (X) = v, where the prime

denotes differentiation with respect to the parameter.
• A Lie group G, with Lie algebra g, acts over Vw. If ξ ∈ g, its action over w ∈Vw is

denoted by ξVw (w). By indicating by wg the value of w after the action1 of g ∈ G, if
we consider a one-parameter smooth curve R+ � s3 �−→ gs3 ∈ G over G such that

ξ = dgs3
ds3

∣∣
s3=0 and its corresponding orbit s3 �−→ wgs3

over Vw, starting from a given

w, we have ξVw (w) = d
ds3

wgs3

∣∣
s3=0 .

1 It is not essential to render precisely whether the action is from the left or from the right.
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In other words, two observers connected by the changes defined above differ in
the representation of the ambient space by arbitrary (sufficiently smooth) “deformative
motions” while in the representation of Vw by the action of an arbitrary Lie group. Of
course one obtains standard changes in observers ruled by rigid body motions when the
automorphisms altering the ambient space E3 are only isometries, induced by the action
of SO (3), and the same copy of SO (3) acts also on Vw.

Another type of transformation is involved in the developments below: the relabeling
of the reference place B0. Actually, each observer evaluates the same B0, but one may
imagine permuting the possible inhomogeneities in B0 itself and require invariance with
respect to these “permutations.” Formally one may act by relabeling the points of B0 by
means of the action of the special group of isochoric diffeomorphisms. In other words,
one requires invariance (specifically invariance of the Lagrangian density) with respect
to the superposition of arbitrary isochoric “deformations” of the reference place. Such a
requirement implies invariance with respect to a redistribution of possible defects.

Relabeling. The special group of isochoric point-valued diffeomorphisms SDiff acts
onB0. Such an action is represented by means of arbitrary smooth curves over SDiff (B0)

emanating from the identity and given formally by

• R+ � s1 �−→ f1
s1
∈ SDiff (B0), with f1

0 the identity.

At each s1 one finds X �−→ f1
s1
(X), with Div f1′

s1
(X) = 0. We put f1′

0 (X) = w.

3. Variational Orinciple for Phonon-Phason Interactions

In constructing a mechanical model of a body, after the description of its morphology,
where only geometry is involved, one discusses the representation of interactions and
the explicit structure of constitutive laws. The two issues are essentially separated. The
representation of interactions by means of appropriate vectors or higher-order tensors
is a consequence of the geometrical description of the body: Interactions are in fact
entities power-conjugated with the rates of morphological descriptors, and their balance
is independent of the constitutive nature of the material.

When we follow a variational approach involving Lagrangian and Hamiltonian for-
malism, in introducing the Lagrangian density, we put on the same ground the repre-
sentation of interactions and constitutive laws because they are mixed in the variational
description.

Let us consider a fiber bundle,

π : Y →B0 ×
[
0, t̄
]
, (1)

such that π−1 (X, t) = E3 × Vw is the prototype fiber. A generic section η ∈ � (Y) is
then a mapping η : B0 ×

[
0, t̄
] −→ Y such that η (X,t) = (X, t, x,w) with x and w in

the fiber π−1 (X, t). If sufficient smoothness for sections is allowed, the first jet bundle
J 1Y over Y is given by

J 1Y � j1 (η) (X, t) = (X, t, x, ẋ,F,w, ẇ,∇w) . (2)
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In the conservative case, we presume that the canonical Lagrangian 3+ 1 form

Lε : J 1Y → ∧3+1
(
B0 ×

[
0, t̄
])

(3)

admits such a sufficiently smooth density Lε that

Lε
(

j1 (η) (X, t)
) = Lεd3X∧dt, (4)

with Lε the value of a map L̃ε (·), namely,

Lε = L̃ε (X, x, ẋ,F, w, ẇ,∇w) = 1

2
ρ0 |ẋ|2 + 1

2
ε1ρ̄ |ẇ|2

−ρ0ẽε1ε2 (X,F,w,∇w)− ρ0w (x) , (5)

where ρ0 is the referential mass density (conserved during the motion), ρ̄ the inertia
coefficient of possible phason kinetics, e the elastic energy density, and w the density
of the potential of external actions, all per unit mass. Finally, ε1 and ε2 are parameters
belonging to {0, 1}: Their role is specified below. We write Lε instead of Lε1ε2 for the
sake of brevity and will use at times ε in the subscript position with the same meaning.
Finally, we do not consider here potential bulk external direct actions on phason changes.

Our attention is focused on the mechanics of quasi-periodic alloys that can be de-
scribed by a variational principle of the form

δ

( ∫
B0×[0,t̄]

Lε
(

j1 (η) (X, t)
)

d3X ∧ dt

)
+ (1− ε2)

∫
B0×[0,t̄]

zv · δw d3X∧ dt = 0, (6)

where zv = z̃v (F,w,∇w, ẇ) ∈ T ∗wVw accounts for phason friction and is intrinsically
dissipative in the sense that

zv · ẇ ≥ 0, (7)

for any choice of ẇ. A possible solution of the previous inequality is given by

zv = cẇ�, (8)

with ẇ� the one-form associated with ẇ, a form that we identify with ẇ itself for the sake
of simplicity, and c = c̃ (F,w,∇w, ẇ) with c̃ such a scalar definite positive function
that

c̃ (F,w,∇w, 0) = 0. (9)

Actually, a general solution to (7) is given by zv = Aẇ, with A a semidefinite positive
second-order tensor (the value of a tensor function of the local state and the phason rate,
a function analogous to c̃), but we restrict our attention to (8) for the sake of simplicity,
while keeping in mind the case Aẇ because the results below also hold for it.

The variational principle (6) is a Lagrange-d’Alambert principle accounting for non-
conservative effects (see on this matter [3]). The parametrization of (6) by means of
ε1 and ε2 allows us to represent the mechanics of quasi-periodic alloys from a unitary
standpoint. Namely, since ε1 and ε2 take values 0 and 1 only (they are elements of {0, 1}),
the cases listed below may occur.
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1. For ε1 = 0 and ε2 = 0, (6) reduces formally to

δ

( ∫
B0×[0,t̄]

L̃0
(
X, x, ˙x,F,w,∇w

)
d3X ∧ dt

)
+ ∫
B0×[0,t̄]

zv ·δw d3X∧dt = 0, (10)

where we put

e00 = ẽ00 (X,F,∇w) . (11)

This kind of variational principle covers the case of quasicrystals where only macro-
scopic kinetic energy appears. The absence of kinetic energy of a phason nature is
suggested by experimental results. In fact, the analysis of diffractions patterns, ob-
tained by exciting a quasi-crystalline specimen by means of X-ray beams, reveals
only three soundlike branches associated with standard phonon modes (see [34],
[36]). Phason changes are only of diffusive nature, as pointed out by the presence of
zv = cẇ, which might not depend on w alone because just ∇w is associated with
energetic changes in quasicrystals, so that we would get zv = z̃v (F,∇w, ẇ).

2. For ε1 = 1 and ε2 = 1, (6) reduces to

δ

( ∫
B0×[0,t̄]

L̃1 (X, x, ẋ,F,w, ẇ,∇w) d3X ∧ dt

)
= 0, (12)

which describes the pure elastic behavior of both IIC and IMC by taking into account
phason kinetics. Moreover, for the elastic energy we get

e11 = ẽ11 (X,F,w,∇w) . (13)

Phason friction is not accounted for.
3. For ε1 = 0 and ε2 = 1, (6) reduces to

δ

( ∫
B0×[0,t̄]

L̃01 (X, x, ẋ,F,w,∇w) d3X ∧ dt

)
= 0, (14)

with

e01 = e11. (15)

This variational principle describes the pure elastic behavior of both IIC and IMC
when phason kinetics is neglected. Even in this case one does not account for phason
friction.

4. For ε1 = 1 and ε2 = 0, (6) reduces to

δ

( ∫
B0×[0,t̄]

L̃10 (X, x, ẋ,F,w, ẇ,∇w) d3X ∧ dt

)
+ ∫
B0×[0,t̄]

zv · δw d3X ∧ dt = 0,

(16)
with

e10 = e11. (17)

This variational principle describes the mechanical behavior of both IIC and IMC
when both phason inertia and phason friction are considered.
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Remark 1. The idea of parametrizing (6) by means of ε1 and ε2, to cover various cases
of physical interest, accrues from a similar point of view adopted in geophysical fluid
dynamics where, in stratified flows, the kinetic energy in the “vertical” direction is
weighed by a parameter ε (see [16]).

The evaluation of the variations in (6) is a standard job, so that one gets appropriate
Euler-Lagrange equations under sufficient smoothness of Lε, namely,

·
∂ẋLε= ∂xLε − Div ∂FLε, (18)

·
∂ẇLε= ∂wLε − Div ∂∇wLε − (1− ε2) zv. (19)

Definition 1 (invariance of Lε). Lε is invariant with respect to changes in observers
and relabeling, i.e. with respect to the action of f1

s1
, f2

s2
, and G, if

L̃ε (X, x, ẋ,F,w, ẇ,∇w)

= L̃ε
(

f1, f2,
(
grad f2

)
ẋ,
(
grad f2

)
F
(∇f1

)−1
,wg, ẇg,

(∇wg
) (∇f1

)−1
)
, (20)

where we indicate by f1, f2, and wg the values f1
s1
(X), f2

s2
(x), wgs3

(X).

Let us define scalar Qε, mε (w) and vector Fε densities given respectively by

Qε = ∂ẋLε · (v− Fw)+ ∂ẇLε ·
(
ξVw (w)− (∇w)w

)
, (21)

mε (w) = (1− ε2) zv · (ξVw (w)− (∇w)w
)
, (22)

Fε = Lεw+ (∂FLε)T (v− Fw)+ (∂∇wLε)T
(
ξVw (w)− (∇w)w

)
. (23)

Theorem 1. If the Lagrangian density Lε is invariant under f1
s1

, f2
s2
, and G (as defined

in Section 2.2), for the variational principle (6) we get

Q̇ε + Div Fε −mε (w) = 0. (24)

It is a Noether-like theorem valid for the variational principle (6). With respect to the
statement of Noether theorem in multifield elasticity for complex bodies discussed in [6]
(where everything is developed in conservative setting), here we go beyond traditional
borders and account for the dissipative phason friction. In this way, the new term mε (w)
appears and is the density of the relative power that the dissipative self-force zv develops
with respect to the difference between the “virtual” rate ξVw (w) induced by G on Vw
(i.e. by the change in observer) and the push-forward in TwVw of the “virtual” velocity
of relabeling.

Proof. The request of invariance of Lε is equivalent to imposing

d

ds1
Lε
∣∣∣∣
s1=0,s2=0,s3=0

= 0, (25)
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d

ds2
Lε
∣∣∣∣
s1=0,s2=0,s3=0

= 0, (26)

d

ds3
Lε
∣∣∣∣
s1=0,s2=0,s3=0

= 0, (27)

which lead to

∂XLε ·w−∂FLε · (F∇w)− ∂∇wLε · ((∇w)∇w)=0, (28)

∂xLε · v+ ∂ ẋLε · ((grad v) ẋ)+∂FLε · ((grad v)F)=0, (29)

∂wLε · ξVw (w)+ ∂ẇLε · ξ ′Vw (w)+ ∂∇wLε · ∇ξVw (w) = 0. (30)

We then compute the time derivative ofQε and the divergence of Fε. By using (28)–
(30), thanks to the validity of (18) and (19), we get

Q̇ε + Div Fε = (1− ε2) zv · (ξVw (w)− (∇w)w
)
. (31)

Remark 2. The proof of Noether theorem relies upon two main ingredients: (i) the
invariance of the Lagrangian with respect to the action of certain groups and (ii) Euler-
Lagrange equations of the variational principle under examination. In the standard con-
servative case, say the one of nonlinear elasticity of simple bodies, the two points are
strictly interconnected because Euler-Lagrange equations are expressed only in terms of
the derivatives of the Lagrangian density. In the nonconservative setting treated here, the
special structure of the variational principle under examination generates in the Euler-
Lagrange equations the term zv , which is not related to the Lagrangian density: This is
the reason for the occurrence of mε (w).

When f2
s2

alone acts on Lε leaving v arbitrary, from (24) we get in covariant way,
as a standard result, the balance of phonon interaction (standard Cauchy’s balance of
momentum)

ρ0ẍ = b+ Div P, (32)

where P = −∂FLε is the first Piola-Kirchhoff stress and b = ∂xLε the vector of body
forces. At each X in B0, P maps linearly normal to surfaces through X into tensions at
x in B. There is then a map P̃ such that B0 ∈ X �−→ P = P̃ (X) ∈ Hom

(
T ∗XB0, T ∗x B

)
.

Corollary 1. If G acts alone on Lε, from (24) and the arbitrariness of G, the balance
of phason interactions

ε1ρ̄ẅ = −z− (1− ε2) zv + DivS (33)

follows. S = −∂∇wLε represents phason stress due to the relative influence of the pha-
son activity between neighboring material elements; z =ρ0∂weε1ε2 (self-force) describes
conservative self-interactions of a phason nature within each material element, while
zv describes the relevant phason friction. At each X, S ∈ Hom

(
T ∗XB0, T ∗wVw

)
and
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z, zv ∈ T ∗wVw. The phason stress S maps linearly normal to surfaces through X in B0

into tensions of a phason nature, i.e., elements of T ∗wVw � R3. The balance of phason
interactions is covariant thanks to the arbitrariness of G.

(a) For ε1 = 0 and ε2 = 0, (33) becomes

cẇ = DivS, (34)

which is the balance of phason interactions for quasicrystals
(b) For ε1 = 1 and ε2 = 1, (33) reduces to

ρ̄ẅ = DivS − z, (35)

which holds for both IIC and IMC in the absence of phason friction.
(c) For ε1 = 0 and ε2 = 1, the last balance reduces to

DivS − z = 0, (36)

which is still valid for both IIC and IMC at equilibrium in the pure elastic setting.
(d) Finally, the case ε1 = 1 and ε2 = 0 corresponds to

ρ̄ẅ+ cẇ = DivS − z, (37)

which holds for both IIC and IMC when both phason inertia and friction are accounted
for. Of course phason inertia may be negligible at times; in this case one gets

cẇ = DivS − z. (38)

Corollary 2. Let G = SO (3) and, for any element q̇× of its Lie algebra, let f2
s2

be such
that v = q̇× (x− x0) with x0 a fixed point in space. From (24) one obtains

skw
(
∂FeFT + w⊗ (∂we + zv)+ ∂∇weT (∇w)

) = 0, (39)

where skw (·) extracts the skew-symmetric part of its argument.

In the absence of phason activity, i.e. for common periodic alloys, (39) reduces to

skw
(
∂FeFT

) = 0, (40)

which is the standard requirement that the Cauchy stress be symmetric. Corollary 2
points out that the presence of phason interactions renders nonsymmetric Cauchy stress
in a way in which the nonsymmetric part is strictly determined by the phason self-force
and the phason stress.

Corollary 3. If f1
s1

alone acts on Lε, with w arbitrary, from (24) one gets

·(
FT ∂ẋLε + ∇νT ∂ν̇Lε

) +Div

(
P−1

2

(
ρ0 |ẋ|2 + ε1ρ̄ |ẇ|2

)
I
)
− ∂XLε

− (1− ε2) (∇w)T zv + FT b = 0, (41)
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where P = ρ0eε1ε2 I−FT P−∇wTS ∈ Aut
(
R

3
)
, with I the second-order unit tensor, is a

generalized Eshelby tensor accounting for phason activity (a special case of the general
one obtained in [24]).

The balance (41) involves measures of interaction likeP that play a role in the evolution
of defects (as we shall see later in analyzing the evolution of discontinuity surfaces).
However, since (41) follows from the sole requirement of invariance with respect to the
“permutation” of possible bulk inhomogeneities, no dissipative additional force driving
bulk defects appears because at this stage the defects themselves are considered fixed.

Corollary 4. Let G = SO (3) and, for any element q̇× of its Lie algebra, f1
s1

is such
that w =q̇× (X− X0) with X0 a fixed point in B0. If the body is homogeneous, and only
the special choices of f2

s2
and G just defined act on Lε, P is symmetric.

Remark 3. Notice that, for fixed w and ∇w, a standard result of nonlinear elasticity
must hold: namely, e (·,w,∇w) cannot be convex in F for reasons of SO (3) invariance
when large deformations occur. The same property needs to be satisfied by e (·,∇w) in
the case of quasicrystals. In addition, in the so-called unlocked phase in which phonons
may have thermal excitation analogous to phonon one, so that phason Debye-Waller
contribution can be recognized, we may find quadratic dependence of ẽ (F,∇w) on ∇w
(see [18]). Further restrictions on the constitutive structure of the energy can be obtained
by using requirements of material objectivity or covariance (see [29] for the relevant
treatment in the case of simple bodies); however, the issue is not developed here.

3.1. Universal Phonon-Phason Changes in Quasicrystals
with Vanishing Phason Friction

Phason friction is always present in quasicrystals. However, we may imagine that its
effects may be neglected at mechanical equilibrium in some special circumstances in
which deformation processes develop almost “instantaneously,” in the sense that they
are faster than the “activation time” of phason friction. In this case we may recognize a
universal character of affine deformations.

When we adopt for quasicrystals the point of view leading to the definition of a global
displacement ū ∈ Vu⊕Vw (see [8], [17]), as mentioned in Section 2, we say that the
deformation is affine when F′ does not depend on X.

Moreover, if we consider deformations that can be controllable only by applied macro-
scopic tractions, excluding in this way body forces, we call universal all deformations
that can occur for bodies in a given class.

Theorem 2. Let the mappings (F,∇w)
P̃�−→ P = P̃ (F,∇w) and (F,∇w)

S̃�−→ S =
S̃ (F,∇w) admit bounded partial derivatives with respect to their entries and, at each X,

det

(
∂FP ∂∇wP
∂FS ∂∇wS

)
�= 0. (42)

All universal static deformations of homogeneous (purely) elastic quasicrystals satisfying
the restriction (42) are affine.
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Such a theorem is in a certain sense a generalization of a standard result in nonlinear
elasticity theory of simple bodies (see [1, p. 506]). Here the difference relies upon the
circumstance that phason degrees of freedom are involved and one needs to account for
condition (42).

Proof. First recall that in absence of body forces and with negligible phason friction,
in conditions of homogeneity, the equilibrium equations for quasicrystals read

Div P = 0, DivS = 0. (43)

We have also

Div P = (∂FP)∇F+ (∂∇wP)∇∇w = 0, (44)

DivS = (∂FS)∇F+ (∂∇wS)∇∇w = 0, (45)

i.e.,

A1∇F+ A2∇∇w = 0, (46)

A3∇F+ A4∇∇w = 0, (47)

with Ai ’s fourth-order tensors that are arbitrary because the explicit form of the map-
pings P̃ and S̃ is not specified. They are also constant because the material is homoge-
neous. Consequently, thanks to (42), the solution to (46) and (47) provides ∇F = 0 and
∇∇w = 0, i.e., F and ∇w must be constant. As a consequence, thanks to the additive
decomposition, F′ = F+ ∇w, F′ is constant as well.

3.2. Mutations of Material Metric

The extended Eshelby tensor P = ρ0eε1ε2 I − FT P − ∇wTS, accounting for phason
effects, appears in the picture of the interactions involved in mutations (such as evolu-
tion of defects, interfaces, etc.) [24]. These mutations may be represented by means of
“alterations” of the geometrical structure of B0, which, in contrast, would remain fixed
once and for all. In particular, we focus our attention here only on mutations that may
involve changes in the material metric γ, as it occurs in plastic flows (see [31]) or in the
alteration of possible prestressed states (see, e.g., [26]). From now on we assume in this
section ρ0 = 1 for notational convenience.

We then consider (with some slight abuse of notation) a density of elastic energy of
the form

e = ẽ (γ,F,w,∇w) , (48)

in which we express explicitly the presence of γ and require that ẽ be invariant under the
action of the group of point-valued diffeomorphisms defined on B0 and altering it. The
previous choice of the energy is valid for IIC and IMC. Namely, here e = e11 = e01 = e10,
as introduced previously in displaying special cases of eε1ε2 .
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In other words, we require that ẽ be invariant under virtual superposition of suffi-
ciently smooth deformations altering the reference configuration. Notice that this kind
of requirement of invariance is more stringent than the one with respect to relabeling
because here it is not required that the diffeomorphisms involved be isochoric.

We then consider a one-parameter family hs of sufficiently smooth point-valued
diffeomorphisms defined over B0 and indicate by u and Hs the derivatives d

ds hs |s=0 and
∇hs , respectively. After the action of hs , the density e changes as

e
hs�−→ ehs = (det Hs) ẽ

(
H−T

s γH−1
s ,FH−1

s ,w, (∇w)H−1
s

)
. (49)

Theorem 3. If the energy density e depends on the metric γ in B0 and is invariant in
the sense defined above, we get

P
A
B = 2

(
∂γ e

)AC
γC B . (50)

Proof. The proof relies upon the circumstance that the requirement of invariance of e
under the action of hs implies d

ds ehs |s=0 , i.e.,

ẽ (γ,F,w,∇w) tr∇u− ∂γ e · ((∇u)T γ + γ (∇u)
)

−∂Fe · F∇u− ∂∇we · (∇w)∇u = 0, (51)

since d
ds H−1

s |s=0 = −∇u. As a consequence of the symmetry of γ, we then get

(
eI− FT P− ∇wTS − 2

(
∂γ e

)
γ
) · ∇u = 0, (52)

which implies (50), thanks to the arbitrariness of ∇u.

The result in Theorem 3 is the counterpart for the extended Eshelby stress P of
Doyle-Ericksen formula valid for Cauchy stress in the mechanics of simple bodies. The
Doyle-Ericksen formula tells us that Cauchy stress is generated by the variations of
the energy with respect to the variations of the spatial metric (remember for further
clarification that the right Cauchy-Green tensor C is the pull-back in B0 of the spatial
metric g by means of the deformation x̃). In the same way, Theorem 3 states that the
tensor P is associated with the variation of the energy with respect to the variations of the
material metric, variations determined by changes in the defect structure. In this sense,
Theorem 3 enforces the physical meaning attributed to the balance (41).

Remark 4. Notice that

P
AD = PA

Bγ
B D = 2

(
∂γ e

)AC
γC Bγ

B D = 2
(
∂γ e

)AD
(53)

is symmetric since γ does.

Remark 5. Notice also that the result of Theorem 3 is also valid for quasicrystals. In
fact, in the proof above, w plays just a parametric role.
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4. Elementary Hamiltonian Structures for IIC and IMC

For IIC and IMC, Hamiltonian structures follow in a natural way. Here we restrict our
treatment to the case in which phason inertia is accounted for and write L instead of L1

for notational convenience.
Let p and µ be respectively the canonical momentum and the canonical phason

momentum defined respectively by p =∂ẋL and µ =∂ẇL. The Hamiltonian densityH is
then given by

H (X, x,p,F,w,µ,∇w) = p · ẋ+ µ · ẇ− L (X, x, ẋ,F,w, ẇ,∇w) . (54)

In terms of partial derivatives ofH, the balances (18) and (19) with ε1 = 1 and ε2 = 1
can be written as

ṗ = −∂xH+ Div ∂FH,
ẋ = ∂pH, (55)

µ̇ = −∂wH+ Div ∂∇wH,
ẇ = ∂µH, (56)

which are Hamilton equations for both IIC and IMC when phason inertia occur and
phason friction is neglected. General boundary conditions of the type

x (X) = x̄ on ∂(x)B0, (57)

∂FHn = t on ∂(t)B0, (58)

w (X) = w̄ on ∂(w)B0, (59)

∂∇wHn =t on ∂(t)B0 (60)

hold, where x̄, t, w̄, and t are prescribed on the relevant parts ∂(·)B0 of the boundary,
chosen to be such that ∂(x)B0 ∩ ∂(t)B0 = ∅ with Cl (∂B0) = Cl

(
∂(x)B0 ∪ ∂(t)B0

)
, and

∂(w)B0 ∩ ∂(t)B0 = ∅ with Cl (∂B0) = Cl
(
∂(ν)B0 ∪ ∂(t)B0

)
, where Cl indicates closure

and n is the outward unit normal to ∂B0 at all points in which it is well defined.
Hamilton equations above are special cases of the ones discussed in [6], where mor-

phological descriptors selected as elements of an abstract manifold are accounted for to
describe general complex bodies.

It is rather difficult to imagine a loading device prescribing phason tractions t at the
boundary. Problems with traction data might thus involve the existence of at least one
surface density U (w) such that t = ρ0∂wU and another density of the type Ū (x) with
t = ρ0∂xŪ. In this way one considers the external boundary as a structured surface
enveloping the body.

In this case, the Hamiltonian H of the whole body is then given by

H (x,p,w,µ) =
∫
B0

H (X, x,p,w,µ) d3X

−
∫
∂(2)B0

(
Ū (x)− U (w)

)
dH

2, (61)
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where ∂(2)B0 = ∂(t)B0 ∪ ∂(t)B0 and dH2 is the two-dimensional Hausdorff measure
over ∂(2)B0. Notice that we writeH (X, x,p,w,µ) instead ofH (X, x,p,F,w,µ,∇w)
because below we consider directly variational derivatives.

Theorem 4. The canonical Hamilton equation

Ḟ = {F, H} (62)

is equivalent to the Hamiltonian system of balance equations (55)–(56) for both IIC and
IMC, where F is any functional of the type

∫
B0

f (X, x,p,w,µ), with f a sufficiently
smooth scalar density, and the bracket {·, ·} is defined by

{F, H} =
∫
B0

(
δ f

δx
· δH
δp
− δH
δx
· δ f

δp

)
d3X

+
∫
∂(t)B0

(
δ f

δx
· δH
δp

∣∣∣∂(t)B0
− δH
δx
· δ f

δp

∣∣∣∂(t)B0

)
dH

2

+
∫
∂(t)B0

(
δ f

δw
· δH
δµ

∣∣
∂(t)B0

− δH
δw

· δ f

δµ

∣∣
∂(t)B0

)
dH

2

+
∫
B0

(
δ f

δw
· δH
δµ

− δH
δw

· δ f

δµ

)
d3X, (63)

where the variational derivative δH
δx is obtained, fixing p and allowing x to vary; an

analogous meaning is valid for the variational derivative with respect to the phason
degree of freedom.

The proof follows by direct calculation (a version of this theorem is in [6]).

Remark 6. The bracket {·, ·} is bilinear and skew-symmetric and satisfies the Jacobi
identity.

Remark 7. For F = H , (62) coincides with the equation of conservation of energy.

Let us consider a boundary value problem in which traction data are not prescribed
at the boundary, where only conditions like (57) and (59) hold. In this case, (63) reduces
to

{F, H} =
∫
B0

{ f,H}P d3X, (64)

where

{ f,H}P =
(
δ f

δx
· δH
δp
− δH
δx
· δ f

δp

)
+
(
δ f

δw
· δH
δµ

− δH
δw

· δ f

δµ

)
. (65)

It is simple to verify that {·, ·}P is bilinear and skew-symmetric, and satisfies both
Jacobi identity and Leibniz identity. Then, {·, ·}P induces relevant Poisson structures.
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4.1. Purely Spatial Representation

A purely spatial representation of all structures described above is available with all
fields defined over B rather than B0. Then B0 does not appear more neither as a reference
place nor as a paragon for quantities involved.2 In a purely spatial representation we start
by assuming for the Hamiltonian density a structure of the form

H̃
(
x,p, g,wa,µa, grad wa

)
, (66)

where now µa is the canonical momentum conjugated with ẇa and H depends also on
the spatial metric g rather than on the gradient of deformation F because no reference to
B0 is made. In this case, Hamilton equations for both IIC and IMC in pinning free states
are given by

ṗ = −∂ẋH+ div
(
2∂gH− (grad w)T ∂grad wH

)
,

ẋ = ∂pH, (67)

µ̇ = −∂ẇH+ div ∂grad wH,
ẇ = ∂µH. (68)

Here, the Cauchy stress σ is given by

σ = 2∂gH− (grad w)T ∂grad wH. (69)

Equation (69) is a generalized version of the Doyle-Ericksen formula: The basic
difference is the second addendum on the right-hand side, besides the presence of w and
its gradient in the list of constitutive variables. The term (grad w)T ∂grad wH rules the
exchange of energy between the gross scale of macroscopic deformation and the finer
scale of phason changes and vice versa. An analogous phenomenon occurs in complex
fluids where topological transitions along flows may be generated by this type of energy
transfer [25].

5. Dissipative Brackets in the Presence of Phason Friction

The bracket formalism can be extended also to cover dissipative processes such as
phason friction. The possible construction of dissipative brackets for various types of
nonconservative processes has been discussed variously. We refer mainly to [3], [13],
[14], and [15] (see also [2] for dissipation in complex bodies).

To account for phason friction described by zv , we introduce first a dissipation function
R of the type

R = (1− ε2)
1

2
cẇ� · µ#, (70)

2 For a pure spatial formulation of variational principles, see also [4], [15].
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with µ# the vector associated with the co-vector µ, a form that we identify with µ itself
for the sake of simplicity and write just as ẇ ·µ. The global counterpart R ofR is given
by

R =
∫
B0

Rd3X. (71)

Then, we define the bracket [·, ·] by

[F, R] = −
∫
B0

[ f,R]P d3X, (72)

with

[ f,R]P =
δ f

δµ
· δR
δµ
. (73)

(i) [·, ·]P is symmetric by definition,
(ii) [R,R]P ≥ 0.

Property (ii) underlines the circumstances that, by definition, zv = ∂µR is intrinsically
dissipative.

With these premises, the equations of motion for both IIC and IMC can be put in the
form

Ḟ = {F, H} + [F, R] . (74)

Remark 8. Since the manifold of substructural shapes isVw for quasi-periodic alloys, it
could be rather natural to develop appropriate Euler-Poincaré and Lie-Poisson equations,
with and without dissipation, by using reduction theory (see [3], [7], [30]) in the form
discussed in [15].

6. Linearized Setting

The microstress S, the self-force z+ zv , and Piola-Kirchhoff stress P have counterparts
defined overB, namelySa , za+zva and Cauchy stressσ. They are linked with one another
by Piola transform, so that one gets

σ = (det F)−1 PFT , (75)

Sa = (det F)−1 SFT , (76)

za + zva = (det F)−1 (z+ zv) . (77)

In the case of infinitesimal deformations and displacements, one may “confuse” B0

with B in the sense that
∣∣∣ ∂xi

∂X J

∣∣∣� 1 so that

P ≈ σ, S ≈ Sa, z+ zv ≈ za + zva . (78)
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6.1. Linear Constitutive Equations for Quasicrystals and Their
Application to Al70.3 Pb21.5 Mn8.2

In the case of quasicrystals, the conservative part of the self-force vanishes, i.e. z = 0
(see (34)), while zv = cẇ where c can be considered constant. The elastic energy is a
quadratic form in ∇u and ∇w, and one gets

σ = C∇u+K′∇w, (79)

Sa = K
′∇u+K∇w, (80)

whereC,K′, andK are constitutive fourth-order tensors. In the case of fivefold symmetry,
the constitutive tensors have componentwise expressions given by [17],

(C)i jkl = λδi jδkl + µ
(
δikδjl + δilδjk

)
, (81)

(K)i jkl = K1δikδjl + K2
(
δi jδkl − δilδjk

)
, (82)(

K
′)

i jkl = K3 (δi1 − δi2)
(
δi jδkl − δikδjl + δilδjk

)
, (83)

where δi j is Kronecker symbol and no summation is assumed over repeated indices in
the last expression. Substitution of the constitutive laws above in the balance equations,
written in terms of actual measures of interactions (σ,Sa , and zva), allows one to recognize
linear theories proposed in the current literature about quasicrystals (see the review article
[17]). Basic differences are not in the structure of pointwise balance equations but in
their integral counterparts: In Section 8 below we show how integral balances follow
naturally from the requirement of SO (3) invariance of the power of all (phonon and
phason) external actions over any arbitrary part of B0; they are different from those
postulated in [17] even if they furnish the same set of pointwise balances.

Even in the linearized setting one finds results rather surprising. For example, if the
constitutive equations above are applied to analyze the behavior of Al70.3 Pb21.5 Mn8.2,
exact values of K1 and K2 can be found, but there are experimental uncertainties about
the value of the coupling coefficient K3. For this reason, in analyzing the dynamic
problem of propagation of linear waves, one investigates the spectral properties of the
associated acoustic tensor (generalized to account for phason effects) by varying K3

between experimental limits. Relevant numerical analyses have been developed in [28].
Some results are summarized below.

Proposition 1 ([28]). In quasicrystals, the cooperation between phonon and phason
modes may generate wave localization (in the sense of standing waves) already in a
linear constitutive setting; such a localization may accrue even in the theoretical limit
of vanishing phason friction and consequent pure elastic behavior.

Proposition 2 ([28]). In two-dimensional ambient space, in addition to quasi-
longitudinal and quasi-transversal waves, polarized elliptically, another wave (that we
call quasi-phasonic) may arise and is almost spherically polarized: It is a peculiar effect
of phonon-phason interaction.
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Above, the prefix “quasi-” is used to remind readers that the resulting longitudinal
and transversal waves are different from the analogous waves in linear elasticity, due to
the influence of phason activity. In the limit case of vanishing phason friction, harmonic
waves can propagate only below a critical threshold and the wave localization quoted
in Proposition 1 appears. The presence of nonvanishing phason friction eliminates the
above-mentioned thresholds. The influence of phason friction is prominent only in a
certain range. Moreover, beyond a certain value of phason friction, phason degrees of
freedom are essentially frozen. No quasi-phasonic wave exists when phason and phonon
wave-vectors are aligned; moreover, it is possible to find localization effects of quasi-
phasonic waves in the sense of standing waves. Quasi-phasonic and quasi-longitudinal
waves interact at certain values of phason friction. Relevant proofs can be found in [28].
These types of results cannot by obtained by making use of the sole setting of the standard
linear elasticity of simple bodies.

Of course, the linear theory cannot describe all phenomena that may occur in quasi-
periodic alloys. Finite deformations drastically alter the energetic content of each crys-
talline cell, favouring or obstructing phason activity in a manner different from the one
of the infinitesimal deformation regime. The interaction between phonon and phason
modes becomes more complex, and a fully nonlinear theory is necessary (see remarks
in [33]).

7. Evolution of Wall Defects

Surfaces across which some quantities undergo bounded jumps may occur in quasi-
periodic alloys. They may be shock or acceleration waves, dislocations, cracks, and
so on (see [23]). To describe their evolution, one needs to account not only for their
geometry and the action of standard interactions due to deformation processes, but also
for the effects of phason interactions.

Below we consider discontinuity surfaces endowed with their own surface energy.
In this way we model the physical circumstance that wall defects are often regions
in a metastable state with a high concentration of energy [23]. We allow not only for
discontinuities of the standard gradient of deformation F across some surface but also
for bounded jumps of w and its gradient. Really, one may argue that the presence of ∇w
in the list of entries of the energy takes into account in a regularized way possible grain
boundaries and, in general, possible diffused interfaces generated by phason activity. This
is true when the grain boundary is between two regions with constant phason activity.
However, in the presence of defects or in the presence of subgrains containing “worms”
(i.e. the topological alterations of lattices assuring quasiperiodicity in quasicrystals), we
may have interaction between diffuse interfaces and sharp discontinuity surfaces. This
is exactly the situation that we are analyzing here.

7.1. Geometry of a Discontinuity Surface in B0

Let 	 be a single surface coinciding with {X ∈ clB0, g (X) = 0}, where g is a smooth
function (smoothness chosen for the sake of simplicity) with nonsingular gradient. It is
oriented by the normal vector field m = m̃ (X) = ∇g (X) / |∇g (X)|.
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Let B0 � X �−→ a = ã (X) be a field taking values in a linear space and suf-
fering bounded discontinuities across 	. For η > 0 we indicate by a± the limits
lim

η→ 0
X ∈ 	

a (X± ηm). The jump [a] across 	 is defined by [a] = a+ − a−, while the

average 〈a〉 is defined by 2 〈a〉 = a+ + a−. If fields a1 and a2 have the same properties
of a, we have [a1a2] = [a1] 〈a2〉 + 〈a1〉 [a2] with the product a1a2 defined in some way
assuring distributivity.
	 is coherent when at each X one gets [F] (I−m⊗m) = 0.
For any (even “virtual”) motion of 	 prescribed by means of a vector field

	 � X
�̃�−→� = �̃ (X) ∈ R3, (84)

with normal component U = � · m, if we assume that the standard velocity ẋ may
suffer bounded jumps across 	, we get the condition [ẋ] = −U [F] m.

At each X ∈ 	 we define the surface deformation gradient F to be the “projection”
over 	 of the average 〈F〉, namely,

F = 〈F〉 (I−m⊗m) ∈ Hom (TX	, TxB) , (85)

and indicate by N the projection over 	 of the average of ∇w, namely,

N = 〈∇w〉 (I−m⊗m) ∈ Hom (TX	, TwVw) . (86)

7.2. Phonon and Phason Surface Measures of Interaction and Their Balance

We consider	 to be endowed with a surface energy density φ assumed to be sufficiently
smooth and given by

(m,F, 〈w〉 ,N) φ̃�−→ φ = φ̃ (m,F, 〈w〉,N) . (87)

The dependence of φ on m accounts for the anisotropy of 	.
We require the invariance of φ with respect to

(i) changes in observers and
(ii) relabeling of 	.

As discussed above, changes in observers are characterized by the action of the group
of automorphisms of E3 and a generic Lie group over Vw. However, the definition of
relabeling needs to be modified because we need f1

s1
to leave points of 	 over 	 itself

and permute them only over the surface.
We should then consider time-parametrized families s1 �−→ f̂1

s1
of elements of

SDiff (B0) characterized by the properties listed below (see [10]).

1. The map s1 �−→ f̂1
s1

satisfies the definition of relabeling in Section 2. Moreover,

the field B0 � X �−→ w = w̃ (X) = f̂1′
0 (X) is at least of class C1 (B0). It is then

continuous and differentiable across and along 	.
2. Each f̂1

s1
preserves the elements of area of 	. Namely, if d A is the element of area of

	 in B0, d A = f̂1∗
s1
◦ d A, where the asterisk indicates push forward.
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3. (∇w)m = 0.
4. ∇	vm = 0, with vm = w ·m.

Definition 2 (invariance of φ). A surface energy density φ is invariant with respect to
changes in observers and relabeling, i.e. with respect to the action of f̂1

s1
, f2

s2
and G, if

φ̃ (m,F, 〈w〉,N) = φ̃
(
∇ f̂1T m,

(
grad	 f2

)
F

(
∇ f̂1

)−1
, 〈w〉g,Ng

(
∇ f̂1

)−1
)
, (88)

for any g ∈ G and s1, s2 ∈ R+, where Ng =
〈∇wg

〉
(I−m⊗m) and we have used

notations common to Definition 1.

Let X be a sufficiently smooth vector density defined over 	 by

X = −φ�w+ (∂Fφ)T (v− 〈F〉w)+ (∂Nφ)T
(
ξVw (〈w〉)− 〈∇w〉w)− (∂mφ ⊗m)w.

(89)
This is the surface counterpart of F. No surface counterpart of Q exists, because 	

has no intrinsic inertia relative to the rest of the body (see [10] for additional details
about the nature of X for general complex bodies).

We consider surface effects of phason friction given by a surface self-force zv which
is over 	 the counterpart of zv . It is intrinsically dissipative in the sense that

z
v · w� ≥ 0, (90)

for any choice of the rate w�, i.e. the rate of w following the motion of 	, and given by

w� = 〈ẇ〉 + 〈∇w〉�. (91)

We presume that zv has a constitutive structure of the type

z
v = z̃

v
(
m,F, 〈w〉,N,w�

) ∈ T ∗〈w〉Vw, (92)

so that a solution of the inequality (90) is

z
v = aw��, (93)

with w�� the one form associated with w� (a form that we identify with w� for the sake
of simplicity) and a the value a = ǎ

(
m,F, 〈w〉 ,N,w�

)
of a definite positive scalar

function ǎ (·).
We then define nε (〈w〉) by

nε (〈w〉) = (1− ε2) z
v · (ξVw (〈w〉)− 〈∇w〉w) . (94)

It is the “relative” power developed by zv in the difference between the rate induced by
G on Vw at 〈w〉 and the push-forward on Vw of the virtual velocity of relabeling.

When the motion of 	, described by the vector field �̃, is not virtual—rather it is
the real irreversible motion of	 with respect to B0—dissipation is associated with such
an evolution, during which we presume that 	 remains coherent. A dissipative surface
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driving force f	 along	 occurs; coherence allows us to write the condition of dissipation
for f	 only on the normal component to 	, so that we require

(f	 ·m)U ≤ 0, (95)

for any choice of U . Such a condition implies that the normal component f	 = f	 ·m
be of the form f	 = − f̃	U with f̃	 a positive diffusion coefficient.

Theorem 5. Let 	 be a structured surface with surface energy φ. Let us assume

d

dt

∫
b	

Qεd3X+
∫
∂b	

Fε · ndH2 −
∫

b	

mε (w) d3X

−
∫

b	∩	
nε (〈w〉) dH2 +

∫
∂(b	∩	)

X · ndl +
∫

b	∩	
f	 ·wdH2 = 0, (96)

for any part b	 of B0 crossing 	. If Lε and φ are invariant with respect to f̂1
s1

, f2
s2
, and

G, covariant pointwise balances across 	 follow as in the list below.

1. The action of f2
s2

alone implies the interfacial balance of standard interactions

[P] m+ Div	 T = −ρ0 [ẋ] U, (97)

where T = −∂Fφ ∈ Hom
(
TX	, T ∗x B

)
is the surface Piola-Kirchhoff stress.

2. The action of G alone implies the interfacial balance of substructural interactions

[S] m+ Div	 S− z− (1− ε2) z
v = −ε1ρ̄ [ẇ] U, (98)

where S = −∂Nφ ∈ Hom
(
TX	, T ∗wVw

)
is the surface microstress and z = ∂〈w〉φ ∈

T ∗〈w〉Vw the surface self-force.

3. The action of f̂1
s1

alone implies the evolution equation of 	 along the normal m,
namely,

m · [P] m+ Ctan · L+ Div	 c+ (1− ε2) 〈∇w〉T z
v ·m =

= ε1ρ̄U
[
(∇w)T ẇ

] ·m+ 1

2
ε1ρ̄

[|ẇ|2]− 1

2
ρ0U 2

[|Fm|2]+ f̃	U, (99)

where

Ctan = φ�− FT
T− NT

S (100)

is a generalized version of the surface Eshelby stress accounting for phason surface
interactions and

c = −∂mφ − TT 〈F〉m− ST 〈∇w〉m (101)

a surface shear.

Of course, the evaluation of the special cases corresponding to the combinations of
the values of ε1 and ε2 is immediate and is left to the reader. In the case of quasicrystals,



70 P. M. Mariano

the conservative part z of the surface self-force may disappear because φ may not depend
on 〈w〉.

An analogous theorem valid for abstract complex bodies can be found in [10], where
only the conservative behavior is considered and dissipative effects are not accounted
for, contrary to the theorem above. Moreover, though in [10] the morphological descrip-
tors are elements of an abstract differentiable manifoldM (so one follows a unifying
framework for models of condensed matter physics), the morphological descriptor map
is continuous across	. Here, in contrast, we allow bounded jumps of w. When in multi-
field theories morphological descriptors are selected in a linear space, in fact, the related
field can be considered discontinuous at 	. On the contrary, when the manifoldM of
substructural shapes does not coincide with a linear space, the jump of the morpholog-
ical descriptor across 	 could not be defined. However, sinceM has finite dimension,
it can be embedded isometrically in an appropriate linear space, so that the definition
of the jump could make sense, but the embedding itself becomes a prominent part of
modeling. In fact, although the isometric embedding is preferable because it preserves
the quadratic part of the substructural kinetic energy (if it exists as in IIC and IMC in
pinning free states), such an embedding is not unique (as the non-isometric ones) and
also not “rigid.” Then, the selection of the appropriate embedding (if necessary in the
case of abstract order parameters) is not simple and general criteria suggested by physical
instances seems not to be available yet.

Proof. Conditions assuring the invariance of φ̃ with respect to changes in observers and
relabeling are given by d

dsi
φ
∣∣
s1=0,s2=0,s3=0 = 0, with i = 1, 2, 3. They correspond to

F
T
T · ∇	w+ NT

S · ∇	w+∂mφ · (∇w)m = 0, (102)

T · ∇	v = 0, (103)

z · ξVw (〈w〉)+ S · ∇	ξVw (〈w〉) = 0. (104)

If we shrink b	 to b	 ∩	 uniformly in time, we get the pointwise balance

− [Qε]U + [Fε] ·m+ Div	 X− nε (〈w〉)+ f	 ·w = 0, (105)

as a consequence of the arbitrariness of b	 .
If f2 acts alone, then

X = TT v, Qε = ρẋ · v, Fε = −PT v, (106)

so that, as a consequence of (103), Div	 X = v · Div	 T. The arbitrariness of v and its
continuity across 	 implies (97) from (105).

If G acts alone, we get

X = ST ξVw (〈w〉) , Qε = ε1ρ̄ẇ·ξVw (〈w〉) ,
Fε = −ST ξVw (〈w〉) , nε (〈w〉) = (1− ε2) z

v · ξVw (〈w〉) , (107)

and, from (104),

Div	 X = ξVw (〈w〉) · (Div	 S− z) . (108)
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Then, from (105) we obtain (98) thanks to the arbitrariness of the element ξ selected in
the Lie algebra of G.

If f̂1 acts alone, then

Qε = −ρ0FT ẋ ·w−ε1ρ̄ (∇w)T ẇ ·w, (109)

Fε =
((

1

2
ρ0 |ẋ|2 + 1

2
ε1ρ̄ |ẇ|2

)
I−P

)T

w+ ρ0w (x)w, (110)

X = −CT
tanw−cvm, (111)

nε (〈w〉) = − (1− ε2) 〈∇w〉T zv ·w, (112)

with Ctan and c defined respectively by (100) and (101) and vm = w ·m.
Terms of equation (105) then become in this case

−[Qε]U + [Fε] ·m = ρ0[FT ẋ]U ·w+ε1ρ̄[(∇w)T ẇ]U ·w
+ 1

2ρ0[|ẋ|2]w ·m+ 1
2ε1ρ̄[|ẇ|2]w ·m− [P]w ·m, (113)

Div	
(
C

T
tanw+ cvm

) = w · (Div	 Ctan + (Div	 c)m) , (114)

where the second equation is a consequence of (102), the circumstance that

(I−m⊗m) · ∇	w = ((∇w)m) ·m, (115)

since w is isochoric, and properties 3 and 4 of the definition of the relabeling f̂1 of B0

including 	.
By inserting (113) and (114) into (105), the arbitrariness of w implies

ρ0[FT ẋ]U + ε1ρ̄[(∇w)T ẇ]U + 1
2ρ0[|ẋ|2]m+ (1− ε2) 〈∇w〉T zv

+ 1
2ε1ρ̄[|ẇ|2]m = [PT ]m+ Div	 Ctan + (Div	 c)m+ f	 ·w, (116)

and we shall evaluate the component along m of (116).
By indicating with v̄ the averaged velocity v̄ = 〈ẋ〉 +U 〈F〉m and using the relation

[ẋ] = −U [F]m mentioned previously, we then get

ρ0[FT ẋ]U ·m = −1

2
[ρ0 |ẋ− v̄|2] = ρ0[ẋ] · v̄− ρ0[ |ẋ|2 ], (117)

where 1
2 = ρ0 |ẋ− v̄|2 is the relative kinetic energy referred to 	. We also get

1

2
ρ0[|ẋ|2] = −ρ0[ẋ] · v̄+ 1

2
ρ0U 2[|Fm|2], (118)

by using once more [ẋ] = −U [F]m and the definition of v̄. By evaluating the normal
component of (116), using (117), (118), and taking into account that

m · Div	 Ctan = Ctan · L, (119)

as it is simple to verify (see Lemma 2 in [10]), we get (99), and the final part of the
theorem follows.
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Corollary 6. In absence of surface energy and surface friction, interfacial balances
become respectively

[P] m = −ρ0 [ẋ] U, (120)

[S] m = −ε1ρ̄ [ẇ] U, (121)

m · [P] m =ε1ρ̄U
[
(∇w)T ẇ

] ·m+ 1
2ε1ρ̄

[|ẇ|2]− 1
2ρ0U 2

[|Fm|2]+ f̃	U. (122)

8. SO (3) Invariance and the Nature of the Balance of Phason Interactions

In deriving the balance (33), we have mixed the representation of phason interactions
(phason stress and phason self-force) and their constitutive structure declared through
the derivatives of the Lagrangian with respect to ∇w and w respectively, together with
(8). A question is whether the pointwise balance of phason interactions holds before
inserting constitutive laws. Another connected question is whether an integral (global)
version of the pointwise balance of phason interactions can be postulated a priori as a
balance of phason-momentum.

• The answer to the first question is affirmative: The balance of phason interactions
holds in the form

DivS − z̄+ β = 0, (123)

independently of constitutive laws, where β represents possible phason inertia and
the self-force z̄ includes both conservative and dissipative components in an additive
way (as it will be clear below).

• As regards the second question, though an integral version of (123) can be postulated
in principle because Vw is a linear space, it is not necessary because just the integral
balance of standard forces and a nonstandard balance of moments suffices to get
pointwise balances.

To prove previous statements, we leave constitutive laws out of consideration and
try to represent interactions only in their purely geometric nature, i.e. the one of objects
power conjugated with the rates of the descriptors of the morphology of the body, namely
phonon and phason degrees of freedom.

Let b be any part of B0, i.e., any subset of B0 with nonnull volume measure and the
same regularity properties of B0. We presume that b interacts with the rest of the body
and the external environment by means of interactions of bulk and contact nature, the
latter exerted through the boundary ∂b. The external power Pext

b
(ẋ, ẇ) of all external

actions over b, a linear functional over the space of rates ẋ and ẇ, is then given by

Pext
b (ẋ, ẇ) =

∫
b

(
b̄ · ẋ+ β · ẇ) d3X+

∫
∂b

(Pn · ẋ+ Sn · ẇ) dH
2. (124)

Here, b̄ represents standard bulk forces and is decomposed as b̄ = b+ bin, where b
is the objective part coincident with the analogous b in Corollary 1, and bin is of pure
inertial phonon nature. β is of pure inertial phason nature (if phason inertia exists, as



Mechanics of Quasi-Periodic Alloys 73

in IIC and IMC in pinning free states), while P and S are respectively the first Piola-
Kirchhoff stress and the phason stress, as in previous sections. Pn represents the traction-
developing power in the relative change of place of neighboring material elements at
the boundary ∂b, by imagining the phason activity frozen. Sn pictures interactions
developed across the boundary ∂b between neighboring material elements which do not
change place but display different phason activity. As pointed out above, at each X we
get P ∈ Hom

(
T ∗XB0, T ∗x B

)
and S ∈ Hom

(
T ∗XB0, T ∗wVw

)
. Over ∂b we indicate by dH2

the relevant two-dimensional Hausdorff measure.
We now require the invariance of Pext

b
(ẋ, ẇ) with respect to (classical) changes in

observers ruled by SO (3). For such changes, the time-parametrized family of automor-
phisms acting on the ambient space E3 is the one of isometries so that, as usual, if ẋ∗ is
the value of the velocity ẋ after the change in observer, we get

ẋ∗ = c (t)+ q̇ (t)× (x− x0)+ ẋ, (125)

where c (t) is the translational velocity, constant in space, x0 a point chosen arbitrarily
and q̇× ∈ so (3) at each t . Moreover, still for such changes in observers, SO (3) itself
acts also over Vw, and if we indicate with ẇ∗ the rate ẇ measured after such a change,
we get

ẇ∗ = ẇ+ q̇ (t)× w. (126)

Then, the requirement of invariance is

Pext
b

(
ẋ∗, ẇ∗

) = Pext
b (ẋ, ẇ) , (127)

for any choice of translational c and rotational q̇ velocities and for any part b (see [24]
for a more general setting involving abstract morphological descriptors).

The arbitrariness of c and q̇ and their independence of space imply from (127) the
integral balances ∫

b

b̄d3X+
∫
∂b

PndH
2 = 0, (128)

∫
b

(
(x− x0)× b̄+ w× β) d3X+

∫
∂b

((x− x0)× Pn+ w× Sn) dH
2 = 0, (129)

which are respectively the standard integral balance of forces and a nonstandard (due
to the presence of phason interactions) integral balance of moments. They are the sole
global conservation laws associated with the Killing fields of the metric in the ambient
space.

The arbitrariness of b implies

b̄+ Div P = 0, (130)

from (128), and

ePFT = w× (β+DivS)+ (∇w)T S, (131)

from (129), with e Ricci’s alternating symbol.
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From (131) we get two pieces of information:

1. At each X ∈ B0, the term ePFT − (∇w)T S is given by the cross product between w
and an element of T ∗wVw � R3 that we indicate by z̄;

2. z̄ is just equal to DivS − ρ̄ẅ, so that we get (123).

The inertial component of b̄, namely bin , and the explicit expression of β can be
identified by requiring that their power is the opposite of the rate of the kinetic energy,
i.e.,

d

dt
{kinetic energy in b} −

∫
b

(
bin · ẋ+ β · ẇ) d3X = 0, (132)

for any choice of b and of the velocity fields. When soundlike modes of phason na-
ture appear (this is the case of IIC and IMC), the kinetic energy in b is given by
1
2

∫
b

(
ρ0 |ẋ|2 + ε1ρ̄ |ẇ|2

)
d3X, as in IIC and IMC, the arbitrariness of b and of the velocity

fields implies

bin = −ρ0ẍ, β = −ε1ρ̄ẅ. (133)

In this way (130) reduces formally to (32).
Moreover, we may assume that z̄ admits an additive decomposition in its conservative

(z) and nonconservative (zv) parts as

z = z̄+ zv, (134)

with zv purely dissipative in the sense defined in Section 3, so that we get (8).

Remark 9. In summary, when we represent interactions due to phason activity in quasi-
periodic crystalline structures, an internal self-force appears a priori just as a consequence
of requirements of SO (3) invariance of the external power. Constitutive laws render
explicit its structure as a function of state, and we find that the conservative part of z
disappears for quasicrystals because the relevant elastic energy does not depend on w
while its dissipative part plays a role.

9. Concluding Remarks

Quasi-periodic alloys are a paradigmatic example of complex bodies: bodies for which
microstructural (or, more generally, substructural) changes prominently influence the
gross mechanical behavior in a way in which the conjugated interactions cannot be
neglected. For IIC and IMC these changes are relative shifts between atomic lattices with
incommensurate period or “modulations” of standard periodic crystalline lattices that
become quasi-periodic. For quasicrystals, substructural changes are collective atomic
modes and tunneling of atoms below energetic barriers that generate worms (topological
alterations with respect to the prevailing crystal symmetry which do not fit the standard
crystallographic classification). These changes are referred to as “phason activity” in this
paper. Information about them in the geometrical description of the body is carried by
a morphological descriptor of the substructural changes “within” each material element
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(crystalline patch). The descriptor is a vector w prompted by the Fourier representation
of the mass density on quasi-periodic lattices (as specified in the Introduction).

Differences between incommensurate structures (the ones of IIC and IMC) and qua-
sicrystals are of a constitutive nature; moreover, phason kinetic energy can be attributed
to both IIC and IMC, while it is not present in quasicrystals.

Phason activity alters the energetic landscape of the body from place to place so
that substructural interactions appear and are power-conjugated with phason activity
itself. These interactions satisfy an appropriate pointwise balance in the bulk material:
a balance covariant in the sense that it derives from a requirement of invariance under
changes in observers governed by the action of an arbitrary Lie group G on the space of
ws. When G reduces to SO (3), one recovers classical invariance with respect to changes
in observers differing by rigid body motions. Our invariance requirement is stronger than
this classical one, and Corollary 1 shows that the balance of substructural interactions is,
in a certain sense, more fundamental than expected. In particular, the arbitrariness of G
renders it unimportant to specify how w transforms under changes in spatial coordinates.
The proof of the covariance of the balance of phason interactions is based on a Noether-
like theorem (Theorem 1). Such a theorem is not derived in the standard conservative
setting and, in contrast to a similar proposal in the general setting of multifield theories
for the mechanics of complex bodies, it accounts for nonconservative effects due to
the presence of phason friction. The presence of substructural interactions also leads to
nonsymmetric Cauchy stresses as pointed out by the requirement of SO (3) invariance
(Corollary 2).

Invariance with respect to relabeling is also assured for a balance of configurational
forces acting on nonevolving bulk defects, as shown in Corollary 3. An extended version
of the Eshelby tensor is involved: It accounts for the influence of phason activity on
possible defects (their motion and/or their equilibrium) and is generated by the variation
of the energy with respect to variations of the material metric, the latter variations induced
by the defects themselves (Theorem 3).

When deformation processes are faster than the “activation time” of phason friction
in quasicrystals, the balance equations at equilibrium admit universal solutions (i.e.,
solutions independent of constitutive laws) that describe both affine macroscopic defor-
mations and affine phason activity. However, in contrast to the proof of the analogous
result on universal solutions in standard nonlinear elasticity of simple bodies, here the
derivatives of the first Piola-Kirchhoff stress and the phason stress must satisfy an addi-
tional pointwise algebraic condition, a circumstance that “diminishes” in a certain sense
the generality of the result.

It is rather immediate to show how existing linear theories on the mechanics of quasi-
periodic alloys, and quasicrystals in particular, are contained in the general nonlinear
theory proposed here. Implications of the present multifield modeling are illustrated
by an application of the linearized theory to quasicrystals, in particular to Al PbMn-
based alloys (Section 6): The resulting localization and quasi-phasonic waves cannot be
obtained from standard linear elasticity.

Wall defects may occur and possibly evolve in quasi-periodic alloys. They are rep-
resented by surfaces across which some fields suffer bounded discontinuities. Surface
energy is accounted for: Its presence models the circumstance that wall defects are often
thin layers capable of sustaining surface stresses. An evolution equation can be derived
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(Theorem 5) that accounts for the influence of phason activity and describes a gener-
alized version of the motion-by-curvature. Interfacial pointwise balances of standard
and phason interactions can also be derived in a covariant manner (Theorem 5) from an
integral balance involving the relative power densities that appear in Theorem 1, their
surface counterparts and the power of the force irreversibly driving wall defects. Such
an integral balance is also the source of the pointwise evolution equation of the wall
defects, an equation which is materially covariant, in the sense that it accrues from an
invariance request with respect to relabeling.

By exploiting SO (3) invariance of the power of external actions over an arbitrary
part of the body, one gets the existence of the internal self-force (which, in contrast, is
commonly postulated), independent of constitutive laws that specify it subsequently.

In describing the mechanics of quasi-periodic alloys, as in all cases of complex bodies,
one faces phenomena occurring at different scales: here, macroscopic and atomic. The
multifield modeling of quasi-periodic alloys proposed here (as in all cases in which one
adopts a multifield point of view for some special class of complex bodies) allows one
to represent everything at a unique macroscopic scale.
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