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1. Introduction and Summary of Results

Reduction methods decrease the size and complexity of systems of kinetic equations.
They are effective when a small number of variables can be singled out as evolving on
a “slow manifold” and the remaining (fast) variables somehow follow from the slow
variables. In such cases, the system of kinetic equations can be reduced to a much
smaller system for the evolution of only the slow variables, and the fast variables can be
determined simply by table look-ups or by direct computation. Over the years, a large
number of reduction methods have been proposed and implemented in computer codes;
references can be found in our earlier article [12], and additional references are [1], [7],
[22].

The focus of [12] was on the Intrinsic Low-Dimensional Manifold (ILDM) method
due to Maas and Pope [19] and an iterative method proposed by Fraser [6] and further
developed by Roussel and Fraser [31]. In this article, the focus is on the Computational
Singular Perturbation (CSP) method developed by Lam and Goussis [8], [9], [13], [15],
[16], [17], [18], [20], [21], [32]. The CSP method, although developed originally for
chemical kinetics equations, is generally applicable to multiple-time scale problems.
Recently, for example, it has been applied to a number of problems with two time scales
in control theory [14], [24], [29], [30].

A chemical kinetic equation is an ordinary differential equation (ODE),

dx

dt
= g(x), (1.1)

for a vector x of species concentrations; g is a smooth vector field, and t is time. Reduction
methods are effective when the variables fall into two classes, fast and slow, as is the
case when the Jacobian of the vector field has a spectral gap. For the analysis, it is
convenient to identify the spectral gap with the inverse of a small parameter ε, but we
emphasize that this restriction is not necessary for the applicability of the CSP method.
The characteristic time scales for the fast and slow species are given by the “fast” time t
and the “slow” time τ = εt , respectively. We assume that the entries of x are ordered in
such a way that the first m components evolve on the slow time scale and the remaining
n components on the fast time scale. Then the vector field g has the form

g =
(
εg1

g2

)
=
(

Im 0
0 In

)(
εg1

g2

)
, (1.2)

where Im and In are the identity matrices in Rm and Rn , respectively, and the system (1.1)
is a fast-slow system of ODEs. Both g1 and g2 may depend on ε, but the entries of these
vectors as well as their partial derivatives are all O(1) as ε ↓ 0, uniformly in x .

Geometric singular perturbation theory (GSPT) [5], [11] provides a natural framework
for the analysis of fast-slow systems of ODEs. If such a system has a compact slow
manifold,M0, in the limit as ε ↓ 0 and this manifold is normally hyperbolic, then GSPT
identifies a (usually nonunique) slow manifoldMε for ε sufficiently small. In the case of
nonuniqueness, all of the slow manifoldsMε nearM0 are exponentially close (O(e−c/ε)

for some c > 0) to each other, and therefore their asymptotic expansions will agree to
all powers of ε. GSPT also gives a complete geometric and analytical description of all
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solutions nearMε, including how trajectories approachMε. The goal of any reduction
method is to findMε, if it exists.

Typically, the vector field g is written in a form suggested by chemical kinetics,
namely, as a weighted sum of the stoichiometric vectors, the weights being the associ-
ated reaction rates. But this representation is in no way unique. In fact, (1.2) shows an
equivalent representation of g as a weighted sum of the standard basis vectors of Rm+n ,
the weights being the coordinates εg1, . . . , εgm, gm+1, . . . , gm+n . The objective of the
CSP method is to express g in yet another basis, one that is tuned to the dynamics of
the system, where the fast and slow coordinates (amplitudes) evolve independently of
each other. The CSP method achieves this objective constructively by successive ap-
proximation. Starting with a more or less arbitrary initial basis, one derives the evolution
equations for the fast and slow amplitudes and updates the basis iteratively in such a
way that the evolution equations for the updated fast and slow amplitudes decouple to
increasingly higher order in the small parameter ε. Each iteration consists of two steps.
The first step deals with the dependence of the fast amplitudes on the slow amplitudes,
the second step with the dependence of the slow amplitudes on the fast amplitudes.

After each iteration, one identifies the CSP manifold (CSPM) as the locus of points
where the then-current fast amplitudes vanish. The CSPM is an approximation to the
slow manifoldMε. The question is: How good is the approximation? In this paper, we
analyze the general class of fast-slow systems of ODEs (1.1)–(1.2) and show (Theo-
rem 3.1) that the CSP method generates term by term the asymptotic expansion of the
slow manifoldMε. After q iterations (q = 0, 1, 2, . . .), the asymptotic expansions of
the CSPM and Mε agree up to and including terms of O(εq); they differ in general
at O(εq+1). Also, the qth application of the CSP algorithm leaves the terms at O(1)
throughO(εq−1) invariant. (This observation is important because the lower-order terms
have already been determined correctly in the preceding applications.) We illustrate
Theorem 3.1 with an example from the Michaelis-Menten-Henri mechanism of enzyme
kinetics [4], [10], [26], [27], [28]. Similar results (for q = 1, 2) have been obtained by
Valorani, Goussis, and Najm [33] for a model equation due to Davis and Skodje [3].

The CSP method leads not only to an approximation of the slow manifoldMε, but also
to an approximation of the reduced dynamics on the slow manifold. After q iterations,
this approximation is obtained by substituting the fast variables in terms of the slow
variables in (1.1)–(1.2), using the expression for the CSPM of order q. Thus, one obtains
a system of m first-order ODEs that depends only on the slow variables. Since m is
usually much smaller than n, the reduced system is much smaller than the full (n +m)-
dimensional system and, hence, computationally much less expensive. Moreover, since
the slow manifoldM0 is assumed to be exponentially attracting, it follows from center
manifold theory (for example, see [2]) that solutions with initial conditions near the
manifoldMε approach solutions of the reduced system exponentially in time. A study
of the truncation errors may be carried out based on the results presented here.

Our proof of Theorem 3.1 proceeds via an intermediate result for a one-step CSP
method. The one-step CSP method is the same as the full two-step CSP method but
involves only the first step. Like the full CSP method, it yields a sequence of slow
manifolds whose asymptotic behavior as ε ↓ 0 can be compared with that of the slow
manifold Mε. We show that, at each application of the one-step CSP algorithm, the
dependence of the slow amplitudes on the fast amplitudes is pushed up one order in
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ε. The result (Theorem 4.1) is that q applications of the one-step CSP algorithm yield
an approximate slow manifold that agrees asymptotically withMε up to and including
terms of O(εq). In other words, the one-step CSP method is as accurate as the full CSP
method; and, to prove the main result for the full CSP method, one needs only to show
that the second step does not affect the lower-order terms in the asymptotic expansion
of the CSPM. Although the second step of the CSP method does not play a role in
the approximation ofMε, it does play a constructive role in the approximation of the
dynamics in the directions transverse toMε, as we shall demonstrate in the special case
of the Michaelis–Menten–Henri equations.

In writing (1.1)–(1.2), we assumed that the variables were separated into two cat-
egories, fast and slow, to allow for an asymptotic analysis and a quantification of the
accuracy of the CSP method. It is important to note that, in numerical implementations,
the CSP method can be applied directly to (1.1); there is no need to separate the variables.

In [12], we showed that the ILDM method yields an approximate slow manifold that
is asymptotically accurate up to and including terms of O(ε), with an error of O(ε2)

proportional to the curvature ofM0. The CSP method, on the other hand, can generate an
approximate slow manifold that is asymptotically accurate up to any order. The difference
can be traced to two facts, namely, the choice of the fundamental operator governing
the dynamics of the system and the retention of the variation of the Jacobian over the
manifold M0. While the ILDM method is designed to transform the Jacobian of the
vector field into triangular form (and often also into diagonal form), the CSP method
is an algorithm to diagonalize the (nonlinear) Lie bracket involving the vector field to
successively higher orders in ε. The Jacobian is a linear approximation, so the ILDM
method never gets beyond a linear approximation. The variation of the Jacobian overM0

introduces an extra term in the Lie bracket. By retaining it, the CSP method preserves
the nonlinear character of the operator governing the dynamics of the system. A detailed
discussion of the relation between the two methods is given in Section 7.

This article is organized as follows. In Section 2, we recall the Fenichel theory of
GSPT and give the asymptotic expansion of the slow manifold Mε. In Section 3, we
describe the full CSP method for fast-slow systems and state Theorem 3.1. The one-step
CSP method is introduced in Section 4. The approximation result for the slow manifold
is given in Theorem 4.1; its proof occupies most of Section 4 and uses two lemmas that
are given in the Appendix. In Section 5, we return to the full CSP method and prove
Theorem 3.1. In Section 6, we illustrate the CSP method and the results of this paper on
a planar system of equations for the Michaelis–Menten–Henri mechanism of enzyme
kinetics. Section 7 is devoted to a discussion of the relation between the CSP and ILDM
methods.

2. Fast-Slow Systems of ODEs

Collecting the slow variables in a single (column) vector y ∈ Rm and the fast variables
in a (column) vector z ∈ Rn , we rewrite (1.1)–(1.2) as a fast-slow system,

y′ = εg1(y, z, ε), (2.1)

z′ = g2(y, z, ε), (2.2)
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where the properties of g1 and g2 are stated above. (A prime ′ denotes differentiation
with respect to t .) The long-term dynamics of this system are more naturally studied on
the time scale of the slow variable τ = εt , where the system (2.1)–(2.2) assumes the
form

ẏ = g1(y, z, ε), (2.3)

εż = g2(y, z, ε). (2.4)

(A dot ˙ denotes differentiation with respect to τ .)
In the limit ε ↓ 0, (2.4) reduces formally to the algebraic equation g2(y, z, 0) = 0.

We assume that there exists a compact domain K ∈ Rm and a smooth single-valued
function h0 on K such that

g2(y, h0(y), 0) = 0, y ∈ K . (2.5)

Then the long-time dynamics of the system (2.1)–(2.2) are confined to the reduced slow
manifoldM0,

M0 = {(y, z) ∈ Rm+n : z = h0(y), y ∈ K }. (2.6)

We assume, furthermore, that the real parts of the eigenvalues of the matrix Dzg2(y,
h0(y), 0) are all negative, soM0 is asymptotically stable. Then the Fenichel theory [5],
which applies more generally to normally hyperbolic invariant manifolds, guarantees that
M0 persists as a slow manifold, so for all sufficiently small ε there exists a slow manifold,
Mε, that is invariant under the dynamics of the system (2.1)–(2.2). Moreover,Mε has
the same dimension asM0 and lies nearM0, all nearby solutions relax exponentially
fast toMε, and the long-term dynamics of the system (2.1)–(2.2) are governed by an
equation on Mε. The manifold Mε is not unique; typically, there is a family of slow
manifolds, all exponentially close (O(e−c/ε) for some c > 0). The following theorem is
essentially a restatement of [11, Theorem 2].

Theorem 2.1. For all sufficiently small ε, there is a function hε such that the graph

Mε = {(y, z) : z = hε(y), y ∈ K } (2.7)

is locally invariant under the dynamics of (2.1)–(2.2). The function hε admits an asymp-
totic expansion as ε ↓ 0,

hε(y) = h0(y)+ εh1(y)+ ε2h2(y)+ · · · , (2.8)

and hε ∈ Cr (K ) for any finite r . The long-term dynamics of the system (2.1)–(2.2) are
governed by the equation

ẏ = g1(y, hε(y), ε) (2.9)

onMε, where ˙ = d/dτ with τ = εt .

The coefficients h1, h2, . . . are found from the invariance equation,

g2(y, hε(y), ε)− ε(Dhε)(y)g1(y, hε(y), ε) = 0, y ∈ K , (2.10)
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in the following manner. (The invariance equation follows immediately from the chain
rule, z′ = Dhε(y)y′, and (2.1)–(2.2).) Each of the functions g1(· , hε, ε) and g2(· , hε, ε)
admits a Taylor expansion near ε = 0,

g1(· , hε, ε) =
∞∑

q=0

g1,qε
q , g2(· , hε, ε) =

∞∑
q=0

g2,qε
q , (2.11)

with coefficients

g1,q =
q−1∑
k=0

q−k∑
j=1

1

k! j!
(D j

z Dk
εg1)0

∑
|i |=q−k

(hi1 , ..., hij )+
1

q!
(Dq

ε g1)0, (2.12)

g2,q =
q−1∑
k=0

q−k∑
j=1

1

k! j!
(D j

z Dk
εg2)0

∑
|i |=q−k

(hi1 , ..., hij )+
1

q!
(Dq

ε g2)0. (2.13)

The notation ( · )0 indicates that the quantity inside the parentheses is evaluated on
M0—that is, at (y, h0(y), 0). Note that (D j

z Dk
εg) is a multilinear operator, which maps

a j-form to a vector. The inner sum in (2.12) and (2.13) is taken over all multi-indices
i = (i1, . . . , i j ) of j positive integers i1 through i j subject to the constraint |i | =
i1+ · · · + i j = q − k. The expressions (2.12) and (2.13) hold for all q if it is understood
that a sum is empty whenever its lower bound exceeds its upper bound. Substituting the
expansions (2.12) and (2.13) into the invariance equation (2.10) and setting the coefficient
of εq equal to zero, we obtain an infinite set of equations,

g2,q −
q−1∑
�=0

(Dh�)g1,q−1−� = 0, q = 0, 1, . . . . (2.14)

The first few equations are

g2,0 = 0, (2.15)

(Dzg2)0h1 + (Dεg2)0 − (Dh0)g1,0 = 0, (2.16)

(Dzg2)0h2 + 1
2 (D

2
z g2)0 (h1, h1)+ (Dz Dεg2)0h1 + 1

2 (D
2
εg2)0

− (Dh1)g1,0 − (Dh0) ((Dzg1)0h1 − (Dεg1)0) = 0. (2.17)

Equation (2.15) is satisfied identically, (2.16) yields the coefficient h1, (2.17) the coef-
ficient h2, and so on.

Remark 2.1. The assumption that the chemical species can be divided into fast and slow
species, as in (2.1)–(2.2), is made for convenience. Our analysis can also be applied to
general chemical systems where each species may be involved in both fast and slow
reactions and for which there is a slow manifold.

3. The CSP Method for Fast-Slow Systems

In (1.2), the vector field g is represented in terms of the standard orthonormal basis. It is
useful to examine the representation of g in terms of other bases, especially bases whose
entries depend on x .
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Let A be an (m + n) × (m + n) matrix whose entries may depend on x and whose
columns form a basis for the space Rm+n for each x . The vector field g may be expressed
in terms of this (variable) basis A as

g = A f, (3.1)

where f is the vector of the coordinates (amplitudes) of g. If B is the left-inverse of A,
then

f = Bg. (3.2)

The amplitudes can be split into two classes, f =
(

f 1

f 2

)
, where f 1 is an n-vector

representing the fast amplitudes and f 2 an m-vector representing the slow amplitudes.
The splitting suggests that we consider a decomposition of A, namely, A = (A1, A2),
where A1 is (m + n) × n and A2 is (m + n) × m, and a corresponding decomposition

of B, namely, B =
(

B1

B2

)
, where B1 is n × (m + n), and B2 is m × (m + n). Thus,

f 1 = B1g and f 2 = B2g. Also, the identity B A = I on Rm+n implies that B1 A1 = In ,
B2 A1 = 0 on Rn , B2 A2 = Im , and B1 A2 = 0 on Rm .

Remark 3.1. Typically, the number of stoichiometric vectors exceeds n + m, and they
are not all linearly independent. Therefore, if the columns of A are chosen from the set
of stoichiometric vectors (in which case the amplitudes are precisely the reaction rates),
then one needs to choose a set that forms a basis if possible. In the remaining cases, i.e.,
when the stoichiometric vectors span only a subspace of Rm+n , A must be complemented
with a basis for the orthogonal complement of this subspace [13].

The fast and slow amplitudes evolve in time. Differentiating (3.2) along solutions of
the system (1.1), we obtain

d f

dt
= B

dg

dt
+ d B

dt
g = B(Dg)g + d B

dt
g,

where Dg is the Jacobian of g. Hence, f satisfies the nonlinear ODE

d f

dt
= 	 f, (3.3)

where 	, the generator of the dynamics for the amplitudes, is given by

	 = B(Dg)A + d B

dt
A. (3.4)

Since B A = I and I is time invariant, A, B, and their time derivatives satisfy the identity

(d B/dt)A + B(d A/dt) = 0 (3.5)
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at all times. Hence, the definition (3.4) is equivalent to

	 = B(Dg)A − B
d A

dt
, (3.6)

where d A/dt = (D A)g. For completeness, we note that the identity (3.5) implies that
((DB)A f )A + B((D A)A f ) = 0.

In general, the operator	 is not diagonal, and the equations governing the evolution of
f 1 and f 2 are coupled. An ideal basis A is one in which	 is block-diagonalized, so that
the ODEs for f 1 and f 2 decouple. The CSP method approaches this ideal by successive
refinements of the basis matrices A and B. The algorithm starts from a constant matrix
A(0),

A(0) =
(

A(0)1 , A(0)2

)
=
(

A(0)11 A(0)12

A(0)21 A(0)22

)
. (3.7)

Here, A(0)11 is an m × n matrix, A(0)22 an n × m matrix, and the off-diagonal blocks A(0)12

and A(0)21 are full-rank square matrices of order m and n, respectively. A common choice
is A(0)11 = 0, so every column vector of A(0)1 lies in the fast subspace. We follow this
convention and assume, henceforth, that A(0)11 = 0,

A(0) =
(

A(0)1 , A(0)2

)
=
(

0 A(0)12

A(0)21 A(0)22

)
. (3.8)

A more general choice of A(0) is discussed below, after Theorem 3.1. The left-inverse of
A(0) is

B(0) =
(

B1
(0)

B2
(0)

)
=
(

B11
(0) B12

(0)
B21
(0) 0

)

=
(−(A(0)21 )

−1 A(0)22 (A
(0)
12 )
−1 (A(0)21 )

−1

(A(0)12 )
−1 0

)
. (3.9)

The algorithm then proceeds iteratively. For q = 0, 1, . . . , one first defines the matrix
	(q) in accordance with (3.6),

	(q) = B(q)(Dg)A(q) − B(q)
d A(q)

dt
=
(
	11
(q) 	12

(q)

	21
(q) 	22

(q)

)
, (3.10)

and matrices U(q) and L(q),

U(q) =
(

0 (	11
(q))
−1	12

(q)

0 0

)
, L(q) =

(
0 0

	21
(q)(	

11
(q))
−1 0

)
. (3.11)

Then one updates A(q) and B(q) according to the formulas

A(q+1) = A(q)(I −U(q))(I + L(q)), (3.12)
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B(q+1) = (I − L(q))(I +U(q))B(q), (3.13)

and returns to (3.10) for the next iteration.
At each iteration, one imposes the CSP condition,

B1
(q)g = 0, q = 0, 1, . . . , (3.14)

to identify those points where the fast reaction rates vanish with respect to the then-
current basis. For q = 0, B1

(0) is constant and given by (3.9); for q = 1, 2, . . . , the CSP
condition takes the form

B1
(q)(y, ψ(q−1)(y, ε), ε)g(y, z, ε) = 0, q = 1, 2, . . . . (3.15)

If, for any q , the CSP condition is satisfied by a function z = ψ(q)(y, ε), then

K(q)ε = {(y, z) : z = ψ(q)(y, ε), y ∈ K }, q = 0, 1, . . . (3.16)

is defined as the CSP manifold (CSPM) of order q.

Theorem 3.1. The CSP manifold K(q)ε agrees asymptotically with Mε up to and in-
cluding terms of O(εq) for q = 0, 1, . . . ,

ψ(q)(·, ε) =
q∑

j=0

ε j h j +O(εq+1), ε ↓ 0. (3.17)

Our proof of Theorem 3.1 proceeds via an intermediate result, which is of independent
interest. We introduce a “truncated” CSP method, where we apply, at each iteration, only
the first of the two steps of the full CSP method and skip the second step. This one-step
CSP method reduces the matrix 	 to lower block-triangular form. We show that, after
q iterations, the one-step CSP method generates a manifold K̃(q)ε , whose asymptotic
expansion agrees with that ofMε up to and including terms ofO(εq) (Theorem 4.1). In
other words, the one-step CSP method is as accurate as the full CSP method is claimed to
be in Theorem 3.1. We then return to the full CSP method and analyze the modifications
introduced by the second step. This second step reduces	 further to block-diagonal form.
We show that, at the qth iteration, the second step affects only terms of O(εq+1) and
higher. Hence, K(q)ε approximatesMε as accurately as K̃(q)ε , and Theorem 3.1 follows.

Theorem 3.1 extends readily to the case where the eigenvectors of the Jacobian Dg are
used, instead of the stoichiometric vectors, to form the initial basis A(0). In that case, the
slow subspace of the leading-order Jacobian coincides with the tangent space TpM0 at
any point p ∈M0, so the columns of A(0)2 are tangent toM0 to leading order. In turn, this
implies that the rows of B1

(0)(p) span the orthogonal complement of the tangent space,
also to leading order. As a result, the initial CSPM, the solution of B1

(0)g = 0, coincides
withMε up to and including terms of O(ε), which is one order higher than is the case
when A(0) is given by (3.8). Moreover, for each q = 1, 2, . . . , the proof of Theorem 4.1
generalizes directly to this case. The asymptotic expansion of ψ̃(q) coincides with that
of hε up to and including terms of O(εq+1), which is one order higher than is the case
when A(0) is given by (3.8).
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Remark 3.2. Lam and Goussis, in their presentation [13] of the CSP method, perform the
update (3.12) and (3.13) in two steps. The first step corresponds to the postmultiplication
of A(q) with I −U(q) and premultiplication of B(q) with I +U(q), the second step to the
subsequent postmultiplication of A(q)(I −U(q)) with I + L(q) and premultiplication of
(I +U(q))B(q) with I − L(q). The nonzero entries of U(q) and L(q) are chosen so that 	
is block-diagonalized to successively higher order in ε.

Remark 3.3. The definition (3.6) implies that	 is the product of B with the Lie bracket
of A (considered column by column) and g,

	 = B [A, g] = B([A ·,1, g], . . . , [A ·,m+n, g]). (3.18)

The Lie bracket of two vector fields a and g is [a, g] = (Dg)a − (Da)g [25].

Remark 3.4. If the Jacobian Dg is symmetric, the Lie bracket inherits a certain structure,
depending on the choice of A. Symmetric Jacobians arise, for example, when the system
of chemical reactions is closed, due to the structure imposed on the vector field g by
the law of mass action. It would be of interest to explore the consequences of symmetry
further.

Remark 3.5. It is of central importance to state how 	 transforms to understand its
properties as an operator. If Â = AC and B̂ = C−1 B, where C is an invertible square
matrix representing a coordinate transformation in Rm+n , then

	̂ = B̂(Dg) Â − B̂
d Â

dt
= C−1 B(Dg)AC − C−1 B

d(AC)

dt

= C−1 B(Dg)AC − C−1 B

(
d A

dt
C + A

dC

dt

)

= C−1	C − C−1 dC

dt
, (3.19)

where dC /dt = (DC)g. The presence of the term C−1dC /dt in (3.19) shows that 	̂ and
	 are not similar unless C is constant. We will make extensive use of the transformation
rule (3.19) when we analyze the updating of 	 in the CSP iterations.

4. The One-Step CSP Method

The goal of the one-step CSP method is to reduce the matrix	 to lower block-triangular
form—that is, to push the matrix 	12 to increasingly higher order in ε. The method is
identical to the full CSP method except for the updating of the matrices A and B. One
starts from the same bases, Ã(0) = A(0) and B̃(0) = B(0), and instead of (3.12) and (3.13),
uses the one-step expressions

Ã(q+1) = Ã(q)(I − Ũ(q)), (4.1)

B̃(q+1) = (I + Ũ(q))B̃(q), (4.2)
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where the matrix Ũ(q) is defined as in (3.11) with	 replaced by 	̃. (A tilde ˜distinguishes
a quantity from its counterpart in the full CSP method.)

The update rule for 	̃ follows immediately from (3.19),

	̃(q+1) = (I + Ũ(q))	̃(q)(I − Ũ(q))+ (I + Ũ(q))
dŨ(q)

dt
. (4.3)

(Note that the identities Ã(0) = A(0) and B̃(0) = B(0) imply that 	̃(0) = 	(0).) The matrix
Ũ(q) and its time derivative have the same block structure; only the upper right block is
nonzero, so Ũ(q)dŨ(q)/dt = 0, and (4.3) reduces to

	̃(q+1) = (I + Ũ(q))	̃(q)(I − Ũ(q))+ dŨ(q)

dt
. (4.4)

In terms of the constituent blocks, we have

	̃11
(q+1) = 	̃11

(q) + Ũ(q)	̃
21
(q), (4.5)

	̃12
(q+1) = Ũ(q)	̃

22
(q) − Ũ(q)	̃

21
(q)Ũ(q) + dŨ(q)

dt
, (4.6)

	̃21
(q+1) = 	̃21

(q), (4.7)

	̃22
(q+1) = 	̃22

(q) − 	̃21
(q)Ũ(q), (4.8)

where we have used (3.11) to simplify (4.6). Note that we freely use Ũ(q) to denote both
the full update matrix and its restriction to the subspace Rm ; the latter is represented by
the matrix (	̃11

(q))
−1	̃12

(q). The appropriate interpretation is clear from the context.
The one-step CSP method generates a sequence of manifolds,

K̃(q)ε = {(y, z) : z = ψ̃(q)(y, ε), y ∈ K }, q = 0, 1, . . . , (4.9)

just like the full CSP method; cf. (3.16). The functions ψ̃(q) are defined by the conditions

B̃1
(q)g = 0, q = 0, 1, . . . , (4.10)

where B̃1
(q) is obtained from (4.2).

Theorem 4.1. The manifold K̃(q)ε agrees asymptotically withMε up to and including
terms of O(εq) for q = 0, 1, . . . ,

ψ̃(q)(·, ε) =
q∑

j=0

ε j h j +O(εq+1), ε ↓ 0. (4.11)

The proof of the theorem is by induction on q.
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4.1. The Induction Hypothesis

The central idea of the proof of Theorem 4.1 is to express the CSP condition (4.10)
in a form that resembles that of the invariance equation (2.10) and then to derive the
conditions under which the left and right members of the two equations are the same at
each order.

We begin by expressing the quantities Ã(q+1), B̃(q+1), and 	̃(q+1) in terms of the
original quantities A(0), B(0), and	(0). Applying the definition (4.1) recursively, we find

Ã(q+1) = A(0)
q∏

j=0

(I − Ũ( j)).

Since each Ũ( j) is nilpotent, it follows that

Ã(q+1) = A(0)(I − P̃(q)), (4.12)

where

P̃(q) =
q∑

j=0

Ũ( j) =
(

0
∑q

�=0(	̃
11
(�))
−1	̃12

(�)

0 0

)
. (4.13)

Similarly,

B̃(q+1) = (I + P̃(q))B(0). (4.14)

Substituting (4.12) and (4.14) into the transformation formula (3.19), and recalling that
	̃(0) = 	(0) and P̃(q)d P̃(q)/dt = 0, we find

	̃(q+1) = (I + P̃(q))	(0)(I − P̃(q))+ d P̃(q)
dt

. (4.15)

We use these expressions to rewrite (4.10). Since B22
(0) = 0, the equation becomes

B12
(0)g2 + ε

[
P̃(q−1)B

21
(0) + B11

(0)

]
g1 = 0,

or, since B12
(0) = (A(0)21 )

−1,

g2 + εA(0)21

[
P̃(q−1)B

21
(0) + B11

(0)

]
g1 = 0. (4.16)

The last equation has the same form as the invariance equation (2.10). The solution of
(2.10) is z = hε(y), which definesMε, while the solution of (4.16) is z = ψ̃(q)(y, ε),
which defines K̃(q)ε .

We analyze the CSP condition (4.16) order by order, up to and including the terms
of O(εq). We recall that the components of the vector field g(y, z, ε) are evaluated at
z = ψ̃(q)(y, ε), the matrix P̃(q−1) is evaluated at z = ψ̃(q−1)(y, ε), and the blocks of A(0)

and B(0) are constant. Substituting the asymptotic expansion of ψ̃(q),

ψ̃(q)(y, ε) =
∞∑

j=0

ε j ψ̃(q, j)(y), ε ↓ 0, (4.17)
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into (4.16) and setting the coefficients of 1, ε, . . . , εq equal to zero, we obtain a set of
equations,

g2, j + A(0)21

[
P̃(q−1,0)B

21
(0) + B11

(0)

]
g1, j−1 +

j−1∑
�=1

A(0)21 P̃(q−1,�)B
21
(0)g1, j−�−1 = 0, (4.18)

for j = 0, 1, . . . , q . Here, P̃(q−1,�) is the coefficient of theO(ε�) term in the asymptotic
expansion of P̃(q−1).

Equation (4.18) defines ψ̃(q, j) for j = 0, 1, . . . , q. The leading-order ( j = 0) equation
in the system (4.18) is the same for all q,

g2(y, ψ̃(q,0)(y), 0) = 0, q = 0, 1, . . . . (4.19)

This is also the equation defining h0. Its solution need not be unique, but we can identify
each ψ̃(q,0) with h0,

ψ̃(q,0)(y) = h0(y), q = 0, 1, . . . . (4.20)

Then also ψ̃(q)(·, 0) = h0 for q = 0, 1, . . . , so to leading order each manifold K̃(q)ε
coincides withM0.

We wish to show that ψ̃(q, j) = hj also for j = 1, 2, . . . , q. To this end, we compare
(2.14) and (4.18). For a fixed j , the two equations match if

A(0)21

[
P̃(q−1,0)B

21
(0) + B11

(0)

]
= −Dh0, (4.21)

A(0)21 P̃(q−1,�)B
21
(0) = −Dh�, � = 1, . . . , j − 1. (4.22)

Conversely, if (4.21) and (4.22) hold, then ψ̃(q, j) = hj . Notice that (4.21) and (4.22) are
independent of j ; hence, they are nested, in the sense that, when j is increased by one,
the equations for lower values of j remain the same. Thus, it suffices to prove (4.21)
and (4.22) for j = q . The proof is by induction on q, where the induction hypothesis is

Ũ(q−1)(·, ψ̃(q−1), ε) = O(εq−1), (4.23)

A(0)21

[
P̃(q−1)(·, ψ̃(q−1), ε)B

21
(0) + B11

(0)

]
= −

q−1∑
j=0

ε j Dhj +O(εq), (4.24)

ψ̃(q)(·, ε) =
q∑

j=0

ε j h j +O(εq+1). (4.25)

The validity of these equations for q = 1 is shown in Section 4.2. The induction step is
carried out in Section 4.3.

4.2. Proof of Theorem 4.1 for q = 1

We fix q = 1 and consider the O(ε) terms of (4.16),

(Dzg2)0ψ̃(1,1) + (Dεg2)0 + A(0)21

[
P̃(0,0)B

21
(0) + B11

(0)

]
g1,0 = 0. (4.26)
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The first and second terms in this equation are exactly the same as those in the equation
for h1; see (2.16). Therefore, we need only to show that the third term equals−(Dh0)g1,0

in order to prove the theorem for q = 1.
According to the definitions (4.13) and (3.11) with q = 0, we have

P̃(0) = Ũ(0) = (	̃11
(0))
−1	̃12

(0) = (	11
(0))
−1	12

(0), (4.27)

where 	(0) = B(0)(Dg)A(0), according to the definition in (3.10). Now, 	(0) admits an
asymptotic expansion,	(0) =

∑∞
j=0 ε

j	(0, j), and each of the coefficient matrices	(0, j)

consists of four blocks,

	11
(0, j) =

[
B12
(0)(Dzg2)j + B11

(0)(Dzg1)j−1

]
A(0)21 , (4.28)

	12
(0, j) = B12

(0)

[
(Dy g2)j A(0)12 + (Dzg2)j A(0)22

]
+ B11

(0)

[
(Dy g1)j−1 A(0)12 + (Dzg1)j−1 A(0)22

]
, (4.29)

	21
(0, j) = B21

(0)(Dzg1)j−1 A(0)21 , (4.30)

	22
(0, j) = B21

(0)

[
(Dy g1)j−1 A(0)12 + (Dzg1)j−1 A(0)22

]
. (4.31)

The notation ( · )j indicates the j th term in the asymptotic expansion of the quantity
inside the parentheses, and it is understood that such a term is absent if the subscript is
negative.

A direct evaluation shows that the blocks 	11
(0,0) and 	12

(0,0) are nonzero. Therefore,
	11
(0) and 	12

(0) are both O(1), and

P̃(0,0) = Ũ(0,0) = (	11
(0,0))

−1	12
(0,0) = B12

(0)

[
(Dzg2)

−1
0

(
Dy g2

)
0 A(0)12 + A(0)22

]
. (4.32)

Here, all the quantities are evaluated onM0, where the identity

(Dzg2)
−1
0

(
Dy g2

)
0 = −Dh0 (4.33)

holds. Hence, (4.32) implies

P̃(0,0) = Ũ(0,0) = B12
(0)

(
A(0)22 − (Dh0)A

(0)
12

)
. (4.34)

Finally, substituting this expression for P̃(0,0) into (4.26) and using the identity A(0)21 B11
(0) =

−A(0)22 B21
(0), we obtain

(Dzg2)0ψ̃(1,1) + (Dεg2)0 − (Dh0)g1,0 = 0. (4.35)

This equation for ψ̃(1,1) is the same as (2.16) for h1; hence, ψ̃(1,1) = h1 and ψ̃(1) =
h0 + εh1 +O(ε2). This proves the theorem for q = 1.
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4.3. Proof of Theorem 4.1 for q = 2, 3, . . .

We prove that (4.23)–(4.25) hold for q + 1, assuming that they hold for 0, 1, . . . , q.
According to our discussion of (4.21) and (4.22), (4.25) follows immediately from (4.24),
so we need only to consider (4.23) and (4.24).

4.3.1. Establishing Equation (4.23). We first consider (4.23). The induction hypoth-
esis gives the estimate Ũ(i)(·, ψ̃(i), ε) = O(εi ) for i = 0, 1, . . . , q − 1. Also, ψ̃(q) =
ψ̃(i)+O(εi+1) for i = 0, 1, . . . , q−1. Hence, Ũ(i)(·, ψ̃(q), ε) = Ũ(i)(·, ψ̃(i), ε)+O(εi+1),
from which it follows that

Ũ(i)(·, ψ̃(q), ε) = O(εi ), i = 0, 1, . . . , q − 1. (4.36)

In particular, Ũ(0)(·, ψ̃(q), ε) = O(1), so

P̃(q−1) =
q−1∑
�=0

Ũ(�) = O(1) on K̃(q)ε .

This asymptotic estimate can be used to derive asymptotic expansions of the blocks of
	(q). We begin with 	̃11

(q). From (4.15), we have

	̃11
(q) = 	11

(0) + P̃(q−1)	
21
(0). (4.37)

Since 	21
(0) = O(ε) by (4.30), we see immediately that

	̃11
(q) = 	11

(0,0) +O(ε). (4.38)

Next, we examine the block 	̃12
(q). From (4.6), we have

	̃12
(q) = Ũ(q−1)	̃

22
(q−1) − Ũ(q−1)	̃

21
(q−1)Ũ(q−1) + dŨ(q−1)

dt
.

First, Ũ(q−1)(·, ψ̃(q), ε) = O(εq−1) by (4.36). Also, 	̃21
(q−1) = 	21

(0) = O(ε) on K̃(q)ε by

(4.15) and (4.30). Moreover, 	̃22
(q−1) = 	22

(0) −	21
(0) P̃(q−2) = O(ε) by (4.15) and (4.31).

Finally, by applying Lemma A.2 with V = Ũ(q−1), we find that dŨ(q−1)/dt is O(εq).
Putting these estimates together, we obtain the estimate

	̃12
(q) = εq	̃12

(q,q) +O(εq+1), (4.39)

where we grouped all of theO(εq) terms into εq	̃12
(q,q). By combining the definition (3.11)

with (4.38) and (4.39), we derive the desired estimate, Ũ(q) = (	̃11
(q))
−1	̃12

(q) = O(εq).

Remark 4.1. While the estimates of 	̃21
(q) and 	̃22

(q) are not needed here, they will be

needed in Section 5. First, 	̃21
(q) = 	21

(0) = O(ε) on K̃(q)ε , by (4.15) and (4.30). Then,

	̃22
(q) = 	22

(0)−	21
(0) P̃(q−1) by (4.15). Now,	22

(0) = O(ε) by (4.31), and thus the discussion
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for the size of 	̃11
(q) also yields that 	̃22

(q) = O(ε). Putting the estimates of this section
together, we obtain

	̃(q)(·, ψ̃(q), ε) =
(
	11
(0,0) +O(ε) εq	̃12

(q,q) +O(εq+1)

ε	21
(0,1) +O(ε2) ε	̃22

(q,1) +O(ε2)

)
. (4.40)

4.3.2. Establishing Equation (4.24). Next, we consider (4.24). The induction hypoth-
esis gives the estimate A(0)21 [P̃(i)(·, ψ̃(i), ε)B21

(0) + B11
(0)] = −

∑i
j=0 ε

j Dhj +O(εi+1) for
i = 0, 1, . . . , q − 1. Our goal is to show that this equation also holds for i = q. We first
show that the terms up to and includingO(εq−1) in both members of the equation agree
for i = q . Then we analyze the terms of O(εq).

By the induction hypothesis, we have the asymptotic expansion

A(0)21

[
P̃(q−1)(·, ψ̃(q−1), ε)B

21
(0) + B11

(0)

]
= −

q−1∑
j=0

ε j Dhj +O(εq). (4.41)

Also by the induction hypothesis, ψ̃(q) = ψ̃(q−1) +O(εq). Hence,

A(0)21

[
P̃(q−1)(·, ψ̃(q), ε)B21

(0) + B11
(0)

]
= −

q−1∑
j=0

ε j Dhj +O(εq). (4.42)

The definition (4.13) of P̃(q) yields the update formula

P̃(q) = P̃(q−1) + Ũ(q). (4.43)

We already showed that Ũ(q)(·, ψ̃(q), ε) = O(εq), so (4.43) implies that the asymptotic
expansions of P̃(q)(·, ψ̃(q), ε) and P̃(q−1)(·, ψ̃(q), ε) agree up to and including terms of
O(εq−1). The same, then, holds for the asymptotic expansions of A(0)21 [P̃(q)(·, ψ̃(q), ε)B21

(0)+
B11
(0)] and A(0)21 [P̃(q−1)(·, ψ̃(q), ε)B21

(0) + B11
(0)]. Therefore,

A(0)21

[
P̃(q)(·, ψ̃(q), ε)B21

(0) + B11
(0)

]
= −

q−1∑
j=0

ε j Dhj +O(εq). (4.44)

In other words,

A(0)21

[
P̃(q,0)B

21
(0) + B11

(0)

]
= −Dh0, (4.45)

A(0)21 P̃(q, j)B
21
(0) = −Dhj , for all j = 1, . . . , q − 1, (4.46)

which establishes (4.24) for all terms up to and including O(εq−1).
It remains to show that the terms of O(εq) in both members of (4.24) agree, that is,

A(0)21 P̃(q,q)B
21
(0) = −Dhq . (4.47)

We achieve this by deriving an explicit formula for A(0)21 P̃(q,q)B21
(0) and comparing it to

that for Dhq , which is given in the Appendix (Lemma A.1). We proceed in two steps.
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In step one, we express A(0)21 P̃(q,q)B21
(0) in terms of P̃(q−1,0), . . . , P̃(q−1,q−1). Then, in step

two, we obtain the explicit formula for A(0)21 P̃(q,q)B21
(0) in terms of the vector field and of

Dhi , i = 0, 1, . . . , q − 1.
Step 1. Recall the update formula (4.43), P̃(q) = P̃(q−1) + Ũ(q). Using the defini-

tion (3.11) of Ũ(q) and the explicit formula (4.15) for 	̃(q), we can express Ũ(q) in terms
of 	(0) and P̃(q−1). In particular, (4.40) implies that Ũ(q,q) = (	11

(0,0))
−1	̃12

(q,q). Also,
(4.15) gives

	̃12
(q) = 	12

(0) −	11
(0) P̃(q−1) + P̃(q−1)	

22
(0) − P̃(q−1)	

21
(0) P̃(q−1) + d P̃(q−1)

dt
. (4.48)

It follows that

Ũ(q,q) = (	11
(0,0))

−1


	12

(0,q) −
(
	11
(0) P̃(q−1)

)
q
+
(

P̃(q−1)	
22
(0)

)
q

−
(

P̃(q−1)	
21
(0) P̃(q−1)

)
q
+
(

d P̃(q−1)

dt

)
q


 , (4.49)

where we recall the notational convention that (·)q stands for the coefficient of theO(εq)

term in the asymptotic expansion of the quantity in parentheses. Using Lemma A.2 with
V = P̃(q−1) and the fact that 	22

(0,0) and 	21
(0,0) are both zero, we rewrite (4.49) as

Ũ(q,q) = (	11
(0,0))

−1
[

J1 + (J2 −	11
(0,0) P̃(q−1,q))+ J3 + J4 + J5

]
, (4.50)

where

J1 = 	12
(0,q), J2 = −

q−1∑
�=0

	11
(0,q−�) P̃(q−1,�), J3 =

q−1∑
�=0

P̃(q−1,�)	
22
(0,q−�),

J4 = −
q−1∑
i=0

q−1−i∑
j=0

P̃(q−1, j)	
21
(0,q−i− j) P̃(q−1,i), J5 =

q−1∑
�=0

d P̃(q−1,�)

dy
g1,q−1−�. (4.51)

Substituting the expression (4.50) into the update formula (4.43) for P̃(q), we find

A(0)21 P̃(q,q)B
21
(0) = A(0)21 (	

11
(0,0))

−1 [J1 + J2 + J3 + J4 + J5] B21
(0). (4.52)

Step 2. We rewrite the terms J1, . . . , J5 by means of the induction hypothesis and the
explicit formulas (4.28)–(4.31) for the blocks of 	(0).

Equation (4.28) and the identity A(0)21 B12
(0) = In imply that

A(0)21

(
	11
(0,0)

)−1 = ((Dzg2)0)
−1 A(0)21 . (4.53)

Here, (Dzg2)0 stands for the leading-order term in the asymptotic expansion of (Dzg2)

(·, ψ̃(q), ε). Since ψ̃(q) and hε agree up to and includingO(εq) terms by assumption, the
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asymptotic expansions of (Dzg2)(·, ψ̃(q), ε) and (Dzg2)(·, hε, ε) also agree up to and
including O(εq) terms. For the remainder of this section, it does not matter whether
quantities are evaluated on K̃(q)ε or on Mε, since only the coefficients of εq or lower
appear in our formulas. Accordingly, we make no distinction between the asymptotic
expansions of a quantity evaluated on the two manifolds.

Using (4.29) and the identities B12
(0) = (A(0)21 )

−1, B21
(0) = (A(0)12 )

−1, and B11
(0) =

−B12
(0)A

(0)
22 B21

(0), we find

A(0)21 J1 B21
(0) = (Dy g2)q + (Dzg2)q A(0)22 B21

(0) − A(0)22 B21
(0)(Dy g1)q−1

− A(0)22 B21
(0)(Dzg1)q−1 A(0)22 B21

(0). (4.54)

Next, substituting for A(0)21 P̃(q−1,�)B21
(0) from the induction hypothesis (4.24), we obtain

A(0)21 J2 B21
(0) =

q−1∑
�=0

(Dzg2)q−�Dh� − (Dzg2)q A(0)22 B21
(0)

−
q−1∑
�=0

A(0)22 B21
(0)(Dzg1)q−1−�Dh� + A(0)22 B21

(0)(Dzg1)q−1 A(0)22 B21
(0). (4.55)

Then, using (4.31) and the assumptions of the lemma, we find

A(0)21 J3 B21
(0) = −

q−1∑
�=0

Dh�(Dy g1)q−1−� −
q−1∑
�=0

Dh�(Dzg1)q−1−�A(0)22 B21
(0)

+ A(0)22 B21
(0)(Dy g1)q−1 + A(0)22 B21

(0)(Dzg1)q−1 A(0)22 B21
(0). (4.56)

In the same vein, we use the induction hypothesis on J4,

A(0)21 J4 B21
(0) = −

q−1∑
i=0

q−1−i∑
j=0

Dhj (Dzg1)q−1−i− j Dhi +
q−1∑
i=0

A(0)22 B21
(0)(Dzg1)q−1−i Dhi

+
q−1∑
j=0

Dhj (Dzg1)q−1− j A(0)22 B21
(0) − A(0)22 B21

(0)(Dzg1)q−1 A(0)22 B21
(0). (4.57)

The terms in (4.52) containing A(0)22 sum to zero, which may be seen as follows. The second
and fourth terms in (4.54) cancel against the second and fourth terms in (4.55); the third
term in (4.54) cancels against the third term in (4.56); the third term in (4.55) cancels
against the second term in (4.57); and the second and fourth terms in (4.56) cancel against
the third and fourth terms in (4.57). These cancellations were to be expected because the
approximation should be independent of the choice of A(0).

Carrying out the same type of calculation as above, we obtain

A(0)21 J5 B21
(0) = −

q−1∑
�=0

D2h�g1,q−1−�, (4.58)

where we have used the symmetry of the bilinear form D2h�.
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Equations (4.53)–(4.58), together with the observed cancellations, yield

A(0)21 P̃(q,q)B
21
(0)

= ((Dzg2)0)
−1

[
(Dy g2)q +

q−1∑
�=0

(Dzg2)q−�Dh� −
q−1∑
�=0

D2h�g1,q−1−�

−
q−1∑
�=0

Dh�(Dy g1)q−1−� −
q−1∑
i=0

q−1−i∑
j=0

Dhj (Dzg1)q−1−i− j Dhi

]
. (4.59)

A term-by-term comparison with the expression for−Dhq given in the Appendix, (A.3),
shows that A(0)21 P̃(q,q)A21

(0) = −Dhq . Thus, the proof of Theorem 4.1 is complete.

Remark 4.2. In general, the error term is nontrivial, as can already be seen at q = 0.
The equation determining ψ̃(0,1) is

(Dzg2)0ψ̃(0,1) + (Dεg2)0 − A(0)22 B21
(0)g1,0 = 0. (4.60)

This equation is not the same as (2.16), which determines h1. Where (2.16) has the term
Dh0, (4.60) has the term A(0)22 B21

(0). When the slow manifold is nonlinear, Dh0 depends

on y, whereas A(0)22 B21
(0) is a constant matrix. Therefore, in general ψ̃(0,1) �= h1, and the

strongest claim we can make is ψ̃(0) = h0 +O(ε). A similar argument applies to higher
values of q .

5. Analysis of the Full CSP Method

We now return to the full CSP method and prove Theorem 3.1. Since the full CSP method
and the one-step CSP method start from the same basis, the conditions (3.14) and (4.10)
are the same for q = 0,

B1
(0)g = 0. (5.1)

Therefore, we can choose ψ(0) = ψ̃(0) = h0.

5.1. Proof of Theorem 3.1 for q = 1

In this section, we carry out the first iteration of the full CSP method and determine the
resulting approximation K(1)ε of the slow manifold. We then compare K(1)ε and K̃(1)ε .

The update quantities U(0) and L(0) follow from the definition (3.11),

U(0) = (	11
(0))
−1	12

(0), L(0) = 	21
(0)(	

11
(0))
−1. (5.2)

(We recall that we use the same notation U(0) and L(0) for the full matrix and the nonzero
block.) In particular, (5.2) and (4.27) imply that U(0) = Ũ(0). Next, we update the matrix
B(0). Following (3.13), we find

B(1) = (I − L(0))(I +U(0))B(0). (5.3)
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The upper and lower row blocks of B(1) are

B1
(1) = B1

(0) +U(0)B
2
(0), (5.4)

B2
(1) = (I − L(0)U(0))B

2
(0) − L(0)B

1
(0). (5.5)

Since P̃(0) = Ũ(0) = U(0) and ψ(0) = ψ̃(0), (4.14) and (5.4) imply that

B1
(1) = B̃1

(1), (5.6)

so after the first iteration the CSP condition is the same as for the one-step method.
Therefore, ψ(1) = ψ̃(1) and, by Theorem 4.1,

ψ(1) = h0 + εh1 +O(ε2). (5.7)

This proves Theorem 3.1 for q = 1.

5.2. The Induction Hypothesis

So far, we have established the identities B1
(0) = B̃1

(0) and B1
(1) = B̃1

(1), from which we

could conclude that K(0)ε = K̃(0)ε and K(1)ε = K̃(1)ε . In general, though, it is not true that
B1
(q) = B̃1

(q) for higher values of q, as we now demonstrate.
In the one-step CSP method, (4.14) yields

B̃1
(2) = B1

(0) + (Ũ(0) + Ũ(1))B
2
(0).

By contrast, in the full CSP method, we obtain from (3.13)

B1
(2) =

(
In −U(1)L(0)

)
B1
(0) +

(
U(0) +U(1) −U(1)L(0)U(0)

)
B2
(0). (5.8)

The rows of B1
(0) and B2

(0) are linearly independent, as can be seen from (3.9), so the

presence of the premultiplier of B1
(0) in the expression (5.8) implies that B1

(2) �= B̃1
(2). A

similar argument shows that B1
(q) �= B̃1

(q) for q = 2, 3, . . . . Consequently, the proof of
Theorem 3.1 for q = 1 given in Section 5.1 does not generalize to higher values of q.

The matrix B̃1
(q) has an important property. Using (4.14), we write

B̃1
(q) =

(
P̃(q−1)B

21
(0) + B11

(0), B12
(0)

)
= B12

(0)

(
A(0)21

[
P̃(q−1)B

21
(0) + B11

(0)

]
, In

)
.

Given the induction hypothesis (4.24), we rewrite this expression once more,

B̃1
(q) = B12

(0)

(
−

q−1∑
j=0

ε j Dhj +O(εq), In

)
. (5.9)

Take any y ∈ K , and let the points Q̃ ∈ K̃(q−1)
ε , Q ∈ K(q−1)

ε , and Q′ ∈Mε be defined
by

Q̃ = (y, ψ̃(q−1)(y, ε)), Q = (y, ψ(q−1)(y, ε)), Q′ = (y, hε(y)).
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The n row vectors of the matrix (−Dhε(y), In) form an exact basis for NQ′Mε, the
space normal toMε at Q′. Therefore, by (5.9), B̃1

(q)(Q̃) is a linear combination of the
basis vectors ofNQ′Mε, up to and including terms ofO(εq−1), via the invertible matrix
B12
(0). Hence, the columns of B̃1

(q)(Q̃) form a basis forNQ′Mε up to and including terms

of O(εq−1). This property of B̃1
(q)(Q̃) was central to the proof of Theorem 4.1. We seek

to prove a similar result for the rows of B1
(q)(Q).

The rows of B(q)(Q) can be written as linear combinations of the rows of B̃(q)(Q̃),

B(q)(Q) = T(q)(y, ε)B̃(q)(Q̃), (5.10)

because B̃(q)(Q̃) is invertible (see (4.14)). In terms of the constituent blocks,

B1
(q) = T 11

(q) B̃
1
(q) + T 12

(q) B̃
2
(q), (5.11)

B2
(q) = T 21

(q) B̃
1
(q) + T 22

(q) B̃
2
(q). (5.12)

Equation (5.11) shows that the requirement that the rows of B1
(q)(Q) spanNQ′Mε up to

and including terms of O(εq−1) is equivalent to the conditions

T 11
(q)(y, ε) = O(1) and invertible, T 12

(q)(y, ε) = O(εq). (5.13)

Assume for the moment that these conditions are satisfied. Then the CSP condition (3.14)
after the qth iteration can be recast as[

T 11
(q)(y, ε)B̃

1
(q)(y, ψ(q−1)(y, ε), ε)+ T 12

(q)(y, ε)B̃
2
(q)(y, ψ(q−1)(y, ε), ε)

]
g(y, z, ε) = 0,

or, since T 11
(q)(y, ε) is invertible,

B̃1
(q)g +

(
T 11
(q)

)−1
T 12
(q) B̃

2
(q)g = 0. (5.14)

The second term is at least ofO(εq), by the second assumption in (5.13), so the terms of
O(ε j ) in (4.10) and (5.14) are equal for j = 0, 1, . . . , q−1. AtO(εq), the two equations
differ by the term (T 11

(q,0))
−1T 12

(q,q) B̃
2
(q,0)g(y, ψ(q,0), ε). Since the O(1) terms of the two

equations agree, it follows that ψ(q,0) = ψ̃(q,0) = h0 and, therefore, g(y, ψ(q,0), ε) = 0.
Hence, (4.16) and (5.14) agree up to and including terms ofO(εq), and so (5.14) produces
the asymptotic expansion of the slow manifold up to and including terms of O(εq), by
Theorem 4.1.

To complete the proof of Theorem 3.1, we need to verify the conditions (5.13) for
q = 2, 3, . . . , which we do by induction on q. The induction hypothesis is

T(q)(·, ψ(q−1), ε) =
(

In +O(ε2) εq T 12
(q,q) +O(εq+1)

εT 21
(q,1) +O(ε2) Im +O(ε2)

)
, (5.15)

ψ(q)(·, ε) =
q∑

j=0

ε j h j +O(εq+1). (5.16)
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5.3. Proof of Theorem 3.1 for q = 2, 3, . . .

In this section, we carry out the induction step of the proof. We assume that (5.15)
and (5.16) hold for 0, 1, . . . , q and prove that they also hold for q + 1. It suffices to
establish (5.15); (5.16) follows immediately from (5.15) and our discussion of the CSP
condition (5.14).

Before carrying out the induction step, we derive an update formula for T(q). Using
(5.10) with q replaced by q + 1, we obtain

T(q+1) = B(q+1) Ã
(q+1). (5.17)

(Here, we used the identity (B̃(q+1))
−1 = Ã(q+1).) Next, we use the update formulas (3.13)

and (4.1) for B(q+1) and Ã(q+1), respectively, to rewrite (5.17),

T(q+1) =
(
I − L(q)

) (
I +U(q)

)
T(q)(I − Ũ(q)). (5.18)

Equation (5.10) also relates A(q+1) to Ã(q+1),

A(q+1) = Ã(q+1)
(
T(q+1)

)−1
. (5.19)

Taking C = (T(q))−1
in (3.19), we express 	(q) in terms of 	̃(q),

	(q) = T(q)	̃(q)
(
T(q)

)−1 − T(q)
d
(
T(q)

)−1

dt
,

or, equivalently,

	(q) = T(q)	̃(q)
(
T(q)

)−1 + (T(q))−1 dT(q)
dt

. (5.20)

Next, we estimate the blocks of the matrices in (5.20). The estimate of T(q) is given in
the induction hypothesis (5.15); its inverse satisfies a similar estimate,

(
T(q)

)−1
(·, ψ(q), ε) =

(
In +O(ε2) −εq T 12

(q,q) +O(εq+1)

−εT 21
(q,1) +O(ε2) Im +O(ε2)

)
. (5.21)

Also, the induction hypothesis (5.16) and Theorem 4.1 guarantee that ψ(q) = ψ̃(q) +
O(εq+1), so the expansions of 	̃(q)(y, ψ̃(q), ε) and 	̃(q)(y, ψ(q), ε) are equal up to and
including terms of O(εq). It follows from (4.40) that

	̃(q)(·, ψ(q), ε) =
(
	11
(0,0) +O(ε) εq	̃12

(q,q) +O(εq+1)

ε	21
(0,1) +O(ε2) ε	̃22

(q,1) +O(ε2)

)
. (5.22)

Taking V = T(q) in Lemma A.2, we conclude from (5.15) that

DT(q)g =
(
O(ε3) O(εq+1)

O(ε2) O(ε3)

)
. (5.23)
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The desired estimate of 	(q) now follows immediately from (5.15), (5.21), (5.22), and
(5.23),

	11
(q) = 	11

(0,0) +O(ε), (5.24)

	12
(q) = εq [	̃12

(q,q) −	11
(0,0)T

12
(q,q)]+O(εq+1), (5.25)

	21
(q) = ε[	21

(0,1) + T 21
(q,1)	

11
(0,0)]+O(ε2), (5.26)

	22
(q) = ε	̃22

(q,1) +O(ε2). (5.27)

The definition (3.11) and (5.24) and (5.25) imply that U(q) = O(εq), with the leading-
order coefficient given by

U(q,q) =
(
	11
(q,0)

)−1
	12
(q,q) = Ũ(q,q) − T 12

(q,q). (5.28)

Furthermore, the definition (3.11) and (5.24) and (5.26) imply that

L(q) = 	21
(q)

(
	11
(q)

)−1 = O(ε). (5.29)

Finally, we observe that, to leading order, the blocks of T(q)(·, ψ(q), ε) are all equal
to the corresponding blocks of T(q)(·, ψ(q−1), ε). The latter are given by the induction
hypothesis (5.15).

We are now ready to estimate the size of the blocks of T(q+1)(·, ψ(q), ε).
The update formula (5.18) gives T 11

(q+1) = T 11
(q)+U(q)T 21

(q). According to the induction
hypothesis, T 11

(q) = In +O(ε2) and T 21
(q) = O(ε). Furthermore, U(q) = O(εq), by (5.28).

Thus, T 11
(q+1) = In +O(ε2), as desired.

The update formula (5.18) also gives T 12
(q+1) = T 12

(q)−T 11
(q)Ũ(q)+U(q)T 22

(q)−U(q)T 21
(q)Ũ(q).

According to the induction hypothesis, T 12
(q) = O(εq), T 11

(q) = In +O(ε2), T 21
(q) = O(ε),

and T 22
(q) = Im + O(ε2). Furthermore, U(q) = O(εq), by (5.28), and Ũ(q) = O(εq), by

(4.23). Thus, the terms in the formula for T 12
(q+1) are all at least O(εq). The same is then

true for T 12
(q+1). We will now show that T 12

(q+1) is, in fact, at leastO(εq+1) by showing that
T 12
(q+1,q) = 0. To leading order, the update formula for T 12

(q+1) is

T 12
(q+1,q) = T 12

(q,q) − Ũ(q,q) +U(q,q). (5.30)

Equation (5.28) implies that the right member of (5.30) vanishes. Therefore, T(q+1,q) = 0,
as desired. We emphasize again that the choice of U(q) is central to the working of the
CSP method.

Next, the update formula (5.18) gives T 21
(q+1) = T 21

(q) − L(q)U(q)T 21
(q) − L(q)T 11

(q). Ac-
cording to the induction hypothesis, T 21

(q) = O(ε) and T 11
(q) = In +O(ε2). Furthermore,

U(q) = O(εq) and L(q) = O(ε), by (5.28) and (5.29). Thus, the terms in the update
formula for T 21

(q+1) are all at least O(ε). Hence, T 21
(q) is also at least O(ε), as desired.

Lastly, the update formula (5.18) gives T 22
(q+1) = T 22

(q)−L(q)T 12
(q)−T 21

(q)Ũ(q)+L(q)T 11
(q)Ũ(q)−

L(q)U(q)T 22
(q) + L(q)U(q)T 21

(q)Ũ(q). According to the induction hypothesis, T 22
(q) = Im +

O(ε2). The remaining terms have already been shown to be at least O(ε2). Hence,
T 22
(q+1) = Im +O(ε2).

The proof of Theorem 3.1 is complete.
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6. The Michaelis–Menten–Henri Reaction

In this section, we apply the CSP method to the Michaelis–Menten–Henri (MMH) mech-
anism of enzyme kinetics to illustrate Theorems 3.1 and 4.1. We consider the planar
system of ODEs for a slow variable s and a fast variable c,

s ′ = ε(−s + (s + κ − λ)c), (6.1)

c′ = s − (s + κ)c. (6.2)

The parameters satisfy the inequalities 0 < ε � 1 and κ > λ > 0. Only nonnegative
values of s and c are relevant. The system (6.1)–(6.2) is of the form (2.1)–(2.2) with
m = 1, n = 1, y = s, z = c, g1 = −s + (s + κ − λ)c, and g2 = s − (s + κ)c.

In the limit as ε ↓ 0, the dynamics of the MMH equations are confined to the reduced
slow manifold

M0 = {(c, s) : c = s

s + κ , s ≥ 0}. (6.3)

The manifoldM0 is normally hyperbolic, so according to Theorem 2.1 there exists, for
all sufficiently small ε, a slow manifoldMε that is O(ε) close toM0 on any compact
set. Moreover,Mε is the graph of a function hε,

Mε = {(c, s) : c = hε(s), s ≥ 0}, (6.4)

and hε admits an asymptotic expansion hε = h0 + εh1 + ε2h2 + · · ·. The coefficients
are found from the invariance equation,

s − (s + κ)hε(s) = εh′ε(s)(−s + (s + κ − λ)hε(s)). (6.5)

The first few coefficients are

h0(s) = s

s + κ , h1(s) = κλs

(s + κ)4 , h2(s) = κλs(2κλ− 3λs − κs − κ2)

(s + κ)7 .

(6.6)

6.1. Application of the One-Step CSP Method

Both the one-step and two-step CSP methods start from the same initial basis. We choose
the stoichiometric vectors as the basis vectors, so

A(0) = (A(0)1 , A(0)2 ) =
(

0 1
1 0

)
, B(0) =

(
B1
(0)

B2
(0)

)
=
(

0 1
1 0

)
. (6.7)

The CSP condition B1
(0)g = 0 is satisfied if c = h0(s), so the CSP manifolds K̃(0)ε and

K(0)ε coincide withM0. With this choice of initial basis, we have

	(0) = B(0)(Dg)A(0) =
( −(s + κ) −(c − 1)
ε(s + κ − λ) ε(c − 1)

)
. (6.8)
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First iteration. At any point (s, c), we have

Ã(1) =
(

0 1
1 − c−1

s+κ

)
, B̃(1) =

( c−1
s+κ 1
1 0

)
. (6.9)

On K̃(0)ε , these expressions reduce to

Ã(1) =
(

0 1
1 κ

(s+κ)2

)
, B̃(1) =

( −κ
(s+κ)2 1

1 0

)
. (6.10)

The CSP condition

B̃1
(1)g = s − (s + κ)c − ε κ(−s + (s + κ − λ)c)

(s + κ)2 = 0 (6.11)

is satisfied if

c = s

s + κ + ε
κλs

(s + κ)4 − ε
2 κ

2λs(s + κ − λ)
(s + κ)7 +O(ε3). (6.12)

Comparing this result with (6.6), we see that the asymptotic expansions of K̃(1)ε andMε

coincide up to and including O(ε) terms, in accordance with Theorem 4.1 for q = 1;
however, the O(ε2) terms differ at this stage.

Second iteration. The blocks of 	̃(1) are

	̃11
(1) = −(s + κ)+ ε

(s + κ − λ)(c − 1)

s + κ , (6.13)

	̃12
(1) =

s

s + κ − c + ε (c − 1)[λ(c − 1)− (−s + (s + κ − λ)c)]
(s + κ)2 , (6.14)

	̃21
(1) = ε(s + κ − λ), 	̃22

(1) = ε
λ(c − 1)

s + κ . (6.15)

On K̃(1)ε , the blocks reduce to

	̃11
(1) = −(s + κ)− ε

κ(s + κ − λ)
(s + κ)2 + ε2 κλs(s + κ − λ)

(s + κ)5 , (6.16)

	̃12
(1) = ε

κλ(κ − 2s)

(s + κ)4 + ε
2 κλs(2κ(s + κ − 2λ)+ λs)

(s + κ)7 , (6.17)

	̃21
(1) = ε(s + κ − λ), 	̃22

(1) = −ε
κλ

(s + κ)2 + ε
2 κλ2s

(s + κ)5 . (6.18)

The second update is

Ã(2)1 =
(

0
1

)
, (6.19)
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Ã(2)2 =
(

1
κ

(s+κ)2

)
+ ε

(
0

κλ(κ−3s)
(s+κ)5

)

+ ε2

(
0

κλ[κ(5s−κ)(s+κ−λ)+λs(s−2κ)]
(s+κ)8

)
+O(ε3), (6.20)

B̃1
(2) =

(
− κ

(s + κ)2 , 1

)
+ ε

(
−κλ(κ − 3s)

(s + κ)5 , 0

)

+ ε2

(
−κλ[κ(5s − κ)(s + κ − λ)+ λs(s − 2κ)]

(s + κ)8 , 0

)
+O(ε3), (6.21)

B̃2
(2) = (1, 0) . (6.22)

The CSP condition

B̃1
(2)g = s − (s + κ)c − ε κ(−s + (s + κ − λ)c)

(s + κ)2

+ ε2κλ
(3s − κ)(−s + (s + κ − λ)c)

(s + κ)5 +O(ε3)

= 0 (6.23)

is satisfied if

c = s

s + κ + ε
κλs

(s + κ)4 + ε
2 κλs(2κλ− 3λs − κs − κ2)

(s + κ)7 +O(ε3). (6.24)

Comparing this result with (6.6), we see that the asymptotic expansions of K̃(2)ε andMε

coincide up to and including O(ε2) terms, in accordance with Theorem 4.1 for q = 2.

6.2. Application of the Full CSP Method

First iteration. At any point (s, c), we have

A(1)1 =
(

0
1

)
− ε s + κ − λ

s + κ
(

1
− c−1

s+κ

)
, A(1)2 =

(
1
− c−1

s+κ

)
, (6.25)

B1
(1) =

(
c − 1

s + κ , 1

)
, B2

(1) = (1, 0)+ ε s + κ − λ
s + κ

(
c − 1

s + κ , 1

)
. (6.26)

On K(0)ε , these quantities reduce to

A(1)1 =
(

0
1

)
− ε s + κ − λ

s + κ
(

1
κ

(s+κ)2

)
, A(1)2 =

(
1
κ

(s+κ)2

)
, (6.27)

B1
(1) =

(
− κ

(s + κ)2 , 1

)
, B2

(1) = (1, 0)+ ε s + κ − λ
s + κ

(
− κ

(s + κ)2 , 1

)
.

(6.28)
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The matrix relating B(1) to its one-step counterpart B̃(1) is

T(1) =
(

1 0
ε s+κ−λ

s+κ 1

)
, (6.29)

so T(1) is indeed of the form (5.15) on K(0)ε .
Equations (6.10) and (6.28) imply that B(1) = B̃(1), so the CSP condition yields

ψ(1) = ψ̃(1). Thus, after one iteration, the full CSP method also finds the expansion of
Mε up to and including O(ε) terms.

Second iteration. The blocks of 	(1) are

	11
(1) = −(s + κ)+ ε

(s + κ − λ)
s + κ

[
(c − 1)+ (c − s

s + κ )
]

+ ε2 (c − 1)(s + κ − λ)
(s + κ)3 [−λ(c − 1)+ (−s + (s + κ − λ)c)] , (6.30)

	12
(1) =

s

s + κ − c + ε c − 1

(s + κ)2 [λ(c − 1)− (−s + (s + κ − λ)c)] , (6.31)

	21
(1) =

ε2

(s + κ)2
[
(c − 1)(s + κ − λ)(s + κ − 2λ)

+λ(−s + (s + κ − λ)c)+ (s + κ − λ)2
(

c − s

s + κ
)]
, (6.32)

	22
(1) =

ε

s + κ
[
λ(c − 1)+ (s + κ − λ)( s

s + κ − c)

]

+ ε2 (c − 1)(s + κ − λ)
(s + κ)3 [λ(c − 1)− (−s + (s + κ − λ)c)] , (6.33)

with remainders of O(ε3). On K(1)ε , the blocks reduce to

	11
(1) = −(s + κ)− ε

κ(s + κ − λ)
(s + κ)2 + ε2 κλ(s + κ − λ)(3s − κ)

(s + κ)5 , (6.34)

	12
(1) = ε

κλ(κ − 2s)

(s + κ)4 + ε
2 κλs(2κ(s + κ − 2λ)+ λs)

(s + κ)7 , (6.35)

	21
(1) = −ε2 κ(s + κ − λ)(s + κ − 2λ)+ λ2s

(s + κ)3 , (6.36)

	22
(1) = −ε

κλ

(s + κ)2 − ε
2 κλ((2s − κ)(s + κ − λ)− λs)

(s + κ)5 , (6.37)

with errors of O(ε3). The result of the second iteration is

A(2)11 = −ε
s + κ − λ

s + κ + ε2 κ(s + κ − 2λ)(s + κ − λ)+ λ2s

(s + κ)4 , (6.38)

A(2)12 = 1+ ε2 κλ(2s − κ)(s + κ − λ)
(s + κ)6 , (6.39)
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A(2)21 = 1− ε κ(s + κ − λ)
(s + κ)3

+ ε2 (s + κ − λ)(κ2(s + κ − 2λ)+ κλs)+ κλ2s

(s + κ)6 , (6.40)

A(2)22 =
κ

(s + κ)2 + ε
κλ(κ − 3s)

(s + κ)5

+ ε2 κ
2λ(7s − 2κ)(s + κ − λ)+ κλ2s(s − 2κ)

(s + κ)8 , (6.41)

B11
(2) =

−κ
(s + κ)2 − ε

κλ(κ − 3s)

(s + κ)5

− ε2 κ
2λ(7s − 2κ)(s + κ − λ)+ κλ2s(s − 2κ)

(s + κ)8 , (6.42)

B12
(2) = 1+ ε2 κλ(2s − κ)(s + κ − λ)

(s + κ)6 , (6.43)

B21
(2) = 1− ε κ(s + κ − λ)

(s + κ)3

+ ε2 (s + κ − λ)(κ2(s + κ − 2λ)+ κλs)+ κλ2s

(s + κ)6 , (6.44)

B22
(2) = ε

s + κ − λ
s + κ − ε2 κ(s + κ − λ)(s + κ − 2λ)+ λ2s

(s + κ)4 , (6.45)

up to and including terms of O(ε2). Also, on K(1)ε ,

T 11
(2) = 1+ ε2 κλ(s + κ − λ)(2s − κ)

(s + κ)6 ,

T 12
(2) = 0,

T 21
(2) = ε

(s + κ − λ)
s + κ − ε2 κ(s + κ − λ)(s + κ − 2λ)+ λ2s

(s + κ)4 ,

T 22
(2) = 1− ε2 κλ(2s − κ)(s + κ − λ)

(s + κ)8 ,

with remainders of O(ε3). Thus, T(2) is indeed of the form (5.15) on K(1)ε .
The CSP condition

B1
(2)g = s − (s + κ)c − ε κ(−s + (s + κ − λ)c)

(s + κ)2

+ ε2κλ

(
(3s−κ)(−s+(s+κ−λ)c)

(s+κ)5 + (2s−κ)(s+κ−λ)(s−(s+κ)c)
(s + κ)6

)
+O(ε3)

= 0 (6.46)

is satisfied if

c = s

s + κ + ε
κλs

(s + κ)4 + ε
2 κλs(2κλ− 3λs − κs − κ2)

(s + κ)7 +O(ε3). (6.47)
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Therefore, after two iterations, the full CSP method finds the expansion ofMε up to and
including O(ε2) terms.

6.3. The Second Step and the Fast Fibers ofMε

The preceding analysis of the full CSP method shows that, at the qth iteration, the second
step alters only the terms ofO(εq+1), leaving the terms ofO(1) throughO(εq) invariant.
Here, we observe that the second step also plays a constructive role for the dynamics in
the directions transverse to the slow manifold. As can be seen in the MMH example, the
second step yields the asymptotic expansions of the tangent spaces of the fast fibers at
their basepoints up to and including terms of O(εq+1) for q = 0, 1, 2. This additional
information is contained in the columns of A(q)1 . We remark here that this property is not
shared by the one-step CSP method, since the columns of Ã(q)1 remain tangent to the fast
fibers at their basepoints only to leading order after each iteration. Details about the fast
fibers and their tangent spaces will be presented in a future publication.

7. Relation between CSPM and ILDM

As noted in Section 1, the fundamental difference between the CSP method and the
ILDM method can be traced to (1) the choice of the fundamental operator governing the
dynamics of the system, and (2) the retention of the variation of the Jacobian over the
manifoldM0. The CSP iteration procedure is designed to diagonalize the Lie bracket
[·, g]. (Recall the discussion following Theorem 3.1 and Remark 3.2.) At each iteration,
the then-current basis is updated in such a way that [·, g] is block-diagonalized to the
next-higher order in ε. Thus, each iteration improves the quality of the basis of the
orthogonal complement of the tangent space. The CSPM is defined as the locus of points
where the vector field is orthogonal to that orthogonal complement.

The ILDM method works, instead, with the Jacobian, Dg, of (2.3)–(2.4). A Schur
decomposition transforms Dg into upper triangular form,

Dg = QN Q′, N =
(

Ns Ns f

0 Nf

)
, (7.1)

where Q = (Qs Q f ) is unitary. The eigenvalues of Dg appear on the diagonal of N in
descending order of their real parts, from least negative in the upper left to most negative
in the lower right. The first m Schur vectors (the columns of Qs) form an orthogonal
basis of the slow subspace, and the remaining n Schur vectors (the columns of Q f ) form
an orthogonal basis of the orthogonal complement of the slow subspace. The vector field
g is entirely in the slow subspace if it is orthogonal to this orthogonal complement—that
is, if

Q′f g = 0. (7.2)

This equation defines the ILDM; see [12, Section 3].
As we showed in [12], the ILDM is only a first-order approximation toMε. The error

is always O(ε2) unlessM0 is linear. The error can be traced back to the choice of the
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operator. The tangent space is a left-invariant subspace of the Jacobian only to leading
order, so putting Dg in upper triangular form yields the orthogonal complement only
to leading order. Since the linearized system is only an approximation of the original
ODEs (2.1)–(2.2), this choice does not produce an exact result unless g is linear. The
success of the CSP method in approximating the slow manifold is due to the fact that
the ODEs for the amplitudes f are equivalent to the ODEs (2.1)–(2.2). That is, the full
nonlinearity is retained.

The time-derivative term must be included in the evaluation of	; see (3.6). Otherwise,
the accuracy of the CSP method is compromised. In fact, such an omission results in
implementing the ILDM rather than the CSP method, which may be seen as follows.
With our initial choice of a point-independent basis A(0), the matrix 	(0) is similar to
Dg; see (3.10). The omission of the term (d B(q)/dt)A(q) in the calculation of 	(q), for
q = 1, 2, . . . , would lead to the formula 	(q) = (I + P̃(q))B(0)(Dg)A(0)(I − P̃(q)),
which would imply that 	(q) is similar to Dg. Therefore, the one-step CSP method
would put Dg, rather than	, in lower-triangular form, just like the ILDM method. After
the second iteration, one would make an error (proportional to the curvature ofM0) at
O(ε2), which subsequent iterations would not remove. The MMH example in Section 6
illustrates these observations.

Appendix A. Auxiliary Lemmas

Lemma A.1. The quantity Dhq is given by the formula

Dhq = − ((Dzg2)0)
−1

[(
Dy g2

)
q +

q−1∑
i=0

(Dzg2)q−i Dhi −
q−1∑
�=0

D2h�g1,q−�−1

−
q−1∑
�=0

(Dh�)(Dy g1)q−1−� −
q−1∑
i=0

q−1−i∑
�=0

Dh�(Dzg1)q−1−i−�Dhi

]
. (A.3)

Proof. The coefficient hq is found from the O(εq) terms in the invariance equation
(2.10),

g2,q =
q−1∑
�=0

(Dh�)g1,q−�−1. (A.4)

Taking the total derivative with respect to y of both sides of (A.4), we find

d

dy
g2,q =

q−1∑
�=0

(D2h�)g1,q−�−1 +
q−1∑
�=0

(Dh�)
d

dy
g1,q−�−1. (A.5)

The operations of taking the total derivative with respect to y and expanding with respect
to ε commute, because the Fenichel theory guarantees Cr smoothness in ε and y for each
r . Therefore,

d

dy
g2,q =

(
dg2

dy

)
q

= (Dy g2
)

q
+

q∑
i=0

(Dzg2)q−i (Dhi ), (A.6)
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d

dy
g1,q−1−� =

(
dg1

dy

)
q−1−�

= (Dy g1
)

q−1−� +
q−1−�∑

i=0

(Dzg1)q−1−�−i (Dhi ). (A.7)

Substituting (A.6) and (A.7) into (A.5), we obtain

(
Dy g2

)
q
+

q∑
i=0

(Dzg2)q−i Dhi =
q−1∑
�=0

(D2h�)g1,q−�−1 +
q−1∑
�=0

(Dh�)(Dy g1)q−1−�

+
q−1∑
�=0

q−1−�∑
i=0

(Dh�)(Dzg1)q−1−�−i (Dhi ). (A.8)

Separating the i = q term in the sum of the left member, changing the order of summation
in the last sum of the right member, and solving for Dhq , we obtain (A.3).

Lemma A.2. Let V be a matrix-valued function of y, z, and ε that, together with its
first-order derivatives, is smooth and O(1) as ε ↓ 0. If z = ψ(q)(y, ε) and

V (·, ψ(q), ε) =
q∑
�=0

ε�V�+O(εq+1), g1(·, ψ(q), ε) =
q∑
�=0

ε�g1,�+O(εq+1), (A.9)

then

dV

dt
(·, ψ(q), ε) =

q∑
i=0

εi+1
i∑
�=0

dV�
dy

g1,i−� +O(εq+1). (A.10)

Proof. A direct computation gives

dV

dt
= (DV )g = ε(Dy V )g1 + (Dz V )g2, (A.11)

where all the terms are evaluated at (y, ψ(q)(y, ε), ε). Since ψ(q) approximates the slow
manifold up to and including O(εq) terms,

g1(·, ψ(q), ε) = g1(·, hε, ε)+O(εq+1), (A.12)

g2(·, ψ(q), ε) = g2(·, hε, ε)+O(εq+1), (A.13)

and also

Dψ(q) = Dhε +O(εq+1). (A.14)

Using (2.10), (A.12), and (A.14), we rewrite (A.13) as

g2(·, ψ(q), ε) = ε(Dψ(q))g1(·, ψ(q), ε)+O(εq+1). (A.15)

Equation (A.15) is an equation for K(q)ε . We recast it so that the right member involves
a total derivative with respect to y,

(DV )g = ε (Dy V + Dz V Dψ(q)
)

g1 +O(εq+1) = ε dV

dy
g1 +O(εq+1), (A.16)
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or, expanding in powers of ε,

(DV )g =
q∑

i=0

εi+1
i∑
�=0

(
dV

dy

)
�

g1,i−� +O(εq+1). (A.17)

The operations of taking the total derivative with respect to y and expanding with respect
to ε commute, so (dV /dy)� = dV�/dy and (A.10) follows.
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