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Summary. A phenomenon commonly encountered during machining operations is chat-
ter. It manifests itself as a vibration between workpiece and cutting tool, leading to poor
dimensional accuracy and surface finish of the workpiece and to premature failure of the
cutting tool. A chatter suppression method that has received attention in recent years is
the spindle speed variation method, whereby greater widths of cut are achieved by mod-
ulating the spindle speed continuously. By adapting existing mathematical techniques, a
perturbative method is developed in this paper to obtain finite-dimensional equations in
order to systematically study the mechanism of spindle speed variation for chatter sup-
pression. The results indicate both modest increase of stability and complex nonlinear
dynamics close to the new stability boundary. The method developed in this paper can
readily be applied to any other system with time-delay characteristics.
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1. Introduction

Manufacturing technology relies heavily on material removal processes such as turning,
milling, and drilling, where bulk material from a workpiece is removed by a tool which
is much harder than the workpiece. Chatter, the self-excited relative vibration between
workpiece and cutting tool, is a common problem in the machining process. Its adverse
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effects include noise, poor surface finish, reduced dimensional accuracy, and shortened
machine tool life. The onset of chatter acts as an upper bound on the width of cut for
a specific cutting speed, limiting material-removal rates and productivity. The purpose
of this paper is to clarify the mechanism of suppression of regenerative chatter through
modulating the spindle speed continuously. We achieve this by analytical methods and
evaluate the effects of the system parameters such as the amplitude and frequency of the
spindle speed variation on the chatter suppression.

Various models have been developed to study chatter, all of which incorporate several
mechanisms involved in different types of machining process. However, there is no
widely accepted model in chatter studies. The models that take into consideration the
so-called regenerative effect have gained more interest from researchers. Because of the
existence of the regenerative effect, the forces acting on the cutting tools depend not
only on the current states but on the past states as well. The equations governing the
tool motion are differential equations with time-delay terms referred to as functional
differential equations (FDE) [6], [27].

A recent book edited by Moon [20] explores both modeling and nonlinear dynamics
phenomena in material-removal processes such as turning, milling, grinding, and rolling.
While chatter in a turning operation is associated with the loss of fixed point stability of
the corresponding FDE, the onset of chatter in a milling operation is related to the loss
of stability of a periodic motion of the corresponding FDE. Furthermore, in a milling
process, in addition to regenerative effect, it is important to consider loss of contact or
impact dynamics as indicated by Balachandran [1].

Chatter can usually be avoided by maintaining a low material-removal rate, but clearly
this is undesirable. Chatter suppression, a challenging problem in machining process
research, is far from being solved. The need to suppress chatter has become stronger,
especially in recent years, as the demands for high precision, high productivity, lower
cost, and better working conditions are increasing. Intensive study has been done in
this area, and various methods have been developed which may be used to overcome
the problem of chatter without reducing material-removal rates. These methods involve
passively modifying either the structure or the cutting tool and have included the use of
vibration absorbers, variable pitch cutters, etc. In many cases, structural modifications
may be expensive or technically difficult. A method of chatter suppression or elimination,
applicable irrespective of machine cutter class and physical configuration, would clearly
be beneficial.

One such method is the so-called Spindle Speed Variation (SSV), where the spin-
dle speed is varied continuously to improve chatter performance. Takemura et al. [28]
were the first to experimentally investigate the effect of spindle speed variation on tool
vibration. Inamura and Sata [12], [13] provided, for the first time, a simple function
space-based analysis of the stability of variable speed cutting. It was shown that a large
increase in stability was attainable compared to cutting at constant speed. However,
the limited experimental results indicated far more modest increases in stability. It was
confirmed by Sexton et al. [24] that an invalid approximation in the theory [12], [13]
resulted in predictions of large stability improvements. Sexton et al. [24], [25] used
both experiments and analogue computer simulations to verify more modest increases
in stability and thus explained some of the discrepancies in the previous theoretical
work.
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This method of continuous modulation of the spindle speed is attracting increasing at-
tention because of its simplicity and effectiveness in chatter suppression (for details, see
Lin et al. [18], Tsao et al. [29], Zhang et al. [30], and Jayaram et al. [15]). In this context,
a numerical study based on Floquet theory for FDE was reported by Insperger et al. [14].
Typically the spindle speed is continuously varied through the superposition of a sinu-
soidally varying speed upon the original spindle speed, that is �(t) = �0 +�� sin νt ,
where �0 is the mean spindle speed, ��, and ν are amplitude and frequency of the
spindle speed variation. The determination of the amplitude�� and the frequency ν for
chatter suppression, at this stage, can be obtained only through experimentation or simu-
lation. Thus the mechanism for this chatter suppression and the effects of nonlinearities
on the periodically varying system are unclear.

The purpose of this paper is to study the delay differential equations with periodically
perturbed delays using a functional analytic approach. Time delays are natural compo-
nents of both biological [19] and physiological [10] systems, and there are numerous
reasons for including them in the mathematical models to represent resource regeneration
times, maturation periods, or reaction times, or to take into account the age structure in
the population. Hence the unifying theme of stabilization of delay differential equations
with periodic delay has broad applications beyond that of the machining or manufactur-
ing processes. However, our focus in this paper is on the nonlinear dynamics and control
of variable speed machining processes.

It would be of great significance if the mechanism of the SSV could be made clear
through the development of a systematic analytic method, therefore obtaining the param-
eters crucial for SSV chatter control. The goal is to clarify the mechanism of suppression
of regenerative chatter through modulating the spindle speed continuously and to deter-
mine stability boundaries and compute bifurcating solutions. Furthermore, experimental
results and analogue computer simulations [24], [25] have confirmed that there were
significant transient phenomena associated with variable speed cutting. Hence, a nonlin-
ear investigation is essential to make sure that large amplitude transient tool vibrations
do indeed decay with time. The main goal of this paper is to evaluate the effects of the
system parameters such as the amplitude and frequency of the spindle speed variation
on the chatter performance. To this end, we apply multiple-time scale sequential com-
putations using the Fredholm alternative to determine stability boundaries and compute
bifurcating solutions.

In a recent paper, Demir et al. [5] and Namachchivaya and Van Roessel [21] have
examined the problem of suppression of regenerative chatter by augmenting the explicit
time-dependent delay terms as new state variables to the original equations of motion with
appropriate initial conditions. Both the Lyapunov-Schmidt [5] and center-manifold [21]
methods were used to examine such augmented systems of delay differential equations
with state dependent delay.

In Section 2, we present a widely accepted one degree of freedom model for the
machine cutting process and incorporate the spindle speed variation in the mathematical
model. In Section 3, we formulate the problem as perturbative functional differential
equations and introduce the linear algebra on the space of continuous functions. We
apply multiple-time scale sequential computations, using the Fredholm alternative, to
determine two-dimensional reduced nonlinear equations, which represent the “normal
form” of the original system with small periodic time delay. In Section 4, we examine the
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Fig. 1. Diagram of cutting wheel configuration and equivalent
dynamical system.

stabilization or further destabilization of the trivial solution of the reduced equations and
explain the mechanism of SSV in chatter suppression. We then present the bifurcating
solutions of the reduced nonlinear system. In Section 5 the results and discussions of the
analysis are presented with some recommendations for possible future work.

2. Hanna-Tobias Model and Spindle Speed Variation

Of the several mechanisms involved in chatter, the mechanism associated with the regen-
erative effect has gained the greatest attention from researchers. In regenerative chatter,
the surface generated by the tool on one pass becomes the upper surface of the chip
on the subsequent pass. Thus, the thickness of the chip and hence the forces acting on
the cutting tool depend not only on its current state, but on its past state one revolution
ago. Hence, nonlinear differential equations with time delay serve as convenient models.
A widely accepted one degree of freedom model to describe regenerative cutting-tool
chatter in turning or milling was developed by Hanna and Tobias [8]. A diagram of the
cutting wheel configuration and effective spring-mass system is shown in Figure 2. Here,
k(x) is the “nonlinear” spring coefficient, and d is the effective damping. In this paper,
we shall present a perturbative method to study the effects of spindle speed variation on
the Hanna and Tobias model

ẍ(t)+ 2ζ pẋ(t)+ p2[x(t)+ β2x2(t)+ β3x3(t)]

= −κp2{x(t)− x(t − τ)+ β̂2(x(t)− x(t − τ))2 + β̂3(x(t)− x(t − τ))3},
p2 = k0

m
, ζ = �

2

p

ω̂
, � = h

k0
, κ = k1

k0

(1)

where x(t) is the displacement normal to the machined surface at time t , m is the
equivalent mass of the tool, k0 is the linear stiffness, p is the natural frequency of the
system, h = ω̂d is the hysteretic damping coefficient, ω̂ is the chatter frequency which
depends on system parameters, k1 is the width-of-cut parameter. The regenerative effect
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enters the equation of motion through chip thickness

s
def= x(t)− x(t − τ), τ = 1

N
and N = z�,

where � is the spindle speed, z is the number of cutter blades. Coefficients β2 and
β3 are two constants describing the nonlinear stiffness of the machine tool such that
the stiffness function is described by k0[x(t)+ β2x2(t)+ β3x3(t)], and β̂2 and β̂3 are
constant coefficients of the nonlinear cutting force function which depends on chip
thickness. These parameters are often evaluated empirically, and representative values
are given in Appendix A. Details can be found in [8].

In order to obtain stability properties, we must first study the linear part of the Hanna-
Tobias model (1),

ẍ(t)+ 2ζ pẋ(t)+ p2x(t) = −κp2{x(t)− x(t − τ)}. (2)

The corresponding characteristic equation is

ρ2 + 2ζ pρ + p2 = −κp2(1− e−ρτ ). (3)

For τ = 0, equation (3) has two roots with negative real parts. As soon as τ > 0,
equation (3) is a transcendental equation and has infinitely many solutions for ρ(κ, τ ) =
δ̂(κ, τ ) + iω̂(κ, τ ); hence it is an infinite-dimensional problem. These new roots may
cross the imaginary axis as τ or κ is further increased. Thus, the first task is to determine
these crossings which give rise to instability. Assuming that at κ = κc and τ = τc we
have such a crossing, i.e.,

ρ = iω̂c, where ω̂c
def= ω̂(κc, τc),

is the critical chatter frequency, equation (3) yields

−ω̂2
c + p2 = −κc p2(1− cos ω̂cτc), � = −κc sin ω̂cτc.

From the above equation, we find the critical value of the width-of-cut as

κc = ω̂2
c − p2

2p2
+ �2 p2

2(ω̂2
c − p2)

. (4)

Since the width-of-cut is positive, κc > 0, it is obvious from (4) that ω̂c > p. It clearly
states that the chatter frequency, ω̂c, is always greater than the natural frequency, p, of
the system. In addition, we have

τc =
2(arctan( p2−ω̂2

c
�p2 )+ kπ)

ω̂c
, k = 1, 2, 3, . . . , (5)

and the width-of-cut κ and time delay τ are the natural control parameters in the machine
cutting process. Equations (4) and (5), which are solved parametrically in terms of critical
chatter frequency, ω̂c, yield the conventional stability chart [8], given in Figure 2. The
region within the parabolic lines (representing stability limits) is unstable. Furthermore,
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Fig. 2. Stability chart for p = 173.25, � = 0.041845.

there is a lower bound of the stability limit which can easily be calculated from (4)
as the minimum of the critical width-of-cut. The critical chatter frequency can also be
explicitly calculated from the width-of-cut κc as

ω̂2
c = p2(1+ κc)± p2

√
κ2

c − (�)2.

2.1. Spindle Speed Variation

As mentioned in the introduction, it has been shown by previous research [12], [13], [24]
that greater widths of cut could be achieved without chatter by modulating the spindle
speed continuously. To this end, we let

τ → τ0 + εσ̂ (t), where σ̂ (t)
def=

1∑
n �=0
−1

µ̂neinν̂t , (6)

as in Inamura and Sata [13], where µ̂−n = ¯̂µn and ε  1. The mean value of the period
of spindle rotation, τ0, and complex constant, µ̂n , are related to mean cutting speed, N ,
and the amplitude of spindle speed variation, ±δN , as follows:

τ0 = N

N 2 − (δN )2
, 2 |µ̂n| = δN

N 2 − (δN )2
, arg(µ̂n) = arccos

(
δN

N

)
.
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It has been found in experiments conducted by Inamura and Sata [13], Hosi and Sato [11],
and Sexton et al. [24] that when the amplitude µ̂n and the frequency ν̂ are within some
range, the chatter can be greatly suppressed or eliminated. Furthermore, it was shown
that the natural frequency p of the machine tool is much higher than the frequency of
spindle speed variation. Hence we shall assume that

ν̂ < p < ω̂c.

Rescaling time t → t
ω̂c

with r0 = ω̂cτ0 and defining the new variables

u(t)
def= x

(
τ0

r0
t

)
, u(t − r0 − εσ (t)) = x

(
τ0

r0
(t − r0 − εσ (t))

)
,

σ (t)
def= r0

τ0
σ̂

(
τ0

r0
t

)
,

yield

ü(t)+ 2ζωpu̇(t)+ ω2
p(1+ κ)u(t)− κω2

p u(t − r0 − εσ (t))
= −ω2

p[β2u2(t)+ κβ̂2(u(t)− u(t − r0 − εσ (t)))2]

−ω2
p[β3u3(t)+ κβ̂3(u(t)− u(t − r0 − εσ (t)))3],

(7)

where the normalized chatter, natural, and forcing frequencies are given as

ω(κ, r0) = ω̂(κ, τ0)

ω̂c
, ωp = p

ω̂c
, ν = ν̂

ω̂c
.

The damping parameter, ζ , by definition is a function of the chatter frequency, and hence
a function of the control parameters, κ and τ0. This fact, as we shall show later, makes the
calculation of the transversality (or, crossing condition) (see Appendix A) more difficult.
Since we are mainly interested in the effects of nonlinearities and spindle speed variations
close to instability, we shall henceforth take the bifurcation parameter to be α, which can
be either (r0 − rc) or (κ − κc). Furthermore, we shall denote the normalized eigenvalue
of the linearized equations corresponding to (7) as λ(κ, r0) = δ(κ, r0)+ i ω(κ, r0).

The purpose of this paper is to examine the effects of this periodic variation in
delay (ε �= 0) on the asymptotic stability of the trivial solution of (2) and the associated
bifurcations close to the critical parameter, α = 0. We hope that stabilization or further
destabilization of the trivial solution for α > 0 may explain the mechanism of SSV in
chatter suppression.

3. Perturbative Analysis of Functional Differential Equations

Letting x1(t) = u(t), x2(t) = u̇(t), and after simplification, we can write the original
equation (7) into a set of first-order form as

Ẋ(t) =
(

0 1

−B(α) −A(α)

)
X (t)+

(
0 0

−C(α) 0

)
X (t − r0 − εσ (t))

+
(

0

f (X (t), X (t − r0 − εσ (t)), α)

)
,

(8)
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where

f (X (t), X (t − r0 − εσ (t)), α) = c20(α)x2
1(t)+ c11(α)x1(t)x1(t − r0 − εσ (t))

+ c02(α)x2
1(t − r0 − εσ (t))+ c30(α)x3

1(t)+ c21(α)x2
1(t)x1(t − r0 − εσ (t))

+ c12(α)x1(t)x2
1(t − r0 − εσ (t))+ c03(α)x3

1(t − r0 − εσ (t)),
and the linear and nonlinear coefficients are given in Appendix A.

For the unperturbed (ε = 0) system (corresponding to (8)), the characteristic equation
at α = αc = 0 has a pair of pure imaginary roots, which we normalize to one, λ = ±i .
This normalization of chatter frequency gives the following relations between the mean
delay and the linear critical coefficients:

C0 cos r0 = 1− B0, C0 sin r0 = A0, (9)

where A0
def= A(0), B0

def= B(0),C0
def= C(0). We shall use the relations (9) to simplify

some of the expressions in the subsequent sections. All the other roots of the characteristic
equation, at α = αc = 0, have negative real parts.

Both the center-manifold [3], [4], and the Lyapunov-Schmidt [9] reduction have been
applied to determine the finite-dimensional bifurcation equations for the autonomous
regenerative system (7) [17]. Though they can be used with some modifications to
construct solutions in the periodically modulated delay equations (8) as shown in [5], [21],
they in fact involve some redundant computations. Instead, we apply the multiple-time
scale method with sequential computations using the Fredholm alternative to determine
the stability boundary and to compute bifurcating solutions.

The growth or decay of the solutions of (8), close to the critical bifurcation parameter,

due to periodic variation is expected to occur in a much slower time scale s
def= ε2t . This

was also pointed out by Nayfeh et al. [22] in the context of Hopf bifurcations in constant
speed chatter dynamics. Hence, we introduce a third-order multiple-time solution of the
form

X (t) = X (t, s; ε) def=
3∑

i=1

εi X i (t, s)+ h.o.t. (10)

Then we can evaluate

Ẋ(t) = Ẋ(t, s; ε) =
3∑

i=1

(
εi ∂Xi

∂t
+ εi+2 ∂Xi

∂s

)
+ h.o.t., (11)

and expand Xi (t − r0 − εσ (t), s − ε2(r0 + εσ (t))) as a Taylor series in ε

Xi (t − r0 − εσ (t), s − ε2(r0 + εσ (t))) = Xi (t − r0, s)− εσ (t)∂Xi

∂t
(t − r0, s)

+ ε2

(
σ 2(t)

2

∂2 Xi

∂t2
(t − r0, s)− r0

∂Xi

∂s
(t − r0, s)

)
+ h.o.t.

Substituting these expressions, taking α → ε2α in (8), and equating coefficients of the
first three orders of ε, we obtain

L(X1)(t, s) = 0, L(X2)(t, s) = F2(t, s), L(X3)(t, s) = F3(t, s), (12)
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where we define

L(Xi )(t, s)
def= −∂Xi

∂t
(t, s)+

(
0 1

−B0 −A0

)
Xi (t, s)+

(
0 0

−C0 0

)
Xi (t − r0, s),

and the inhomogeneous terms are given explicitly as

F2(t, s) = C0

(
0

−σ(t) x1
2(t − r0, s)

)

+
(

0

−c20(x1
1)

2(t, s)− c11x1
1(t, s)x1

1(t − r0, s)− c02(x1
1)

2(t − r0, s)

)

F3(t, s) = C0

(
0

−σ(t)x2
2(t − r0, s)+ σ 2(t)

2
∂x1

2
∂t (t − r0, s)− r0

∂x1
1

∂s (t − r0, s)

)

+ α
(

0

A1x1
2(t, s)+ B1x1

1(t, s)+ C1x1
1(t − r0, s)

)
+

 ∂x1

1 (t,s)
∂s

∂x1
2 (t,s)
∂s




+ σ(t)
(

0

+c11x1
1(t, s)+ 2c02x1

1(t − r0, s)

)
x1

2(t − r0, s)

− 2

(
0

c20x1
1(t, s)x2

1(t, s)+ c02x2
1(t − r0, s)x1

1(t − r0, s)

)

− c11

(
0

x2
1(t, s)x1

1(t − r0, s)+ x1
1(t, s)x2

1(t − r0, s)

)

−
(

0

c30(x1
1)

3(t, s)+ c03(x1
1)

3(t − r0, s)

)

−
(

0

c21(x1
1)

2(t, s)x1
1(t − r0, s)+ c12x1

1(t, s)(x1
1)

2(t − r0, s)

)
.

It is worth pointing out that, although the highest derivative term in the expression for
F3(t, s) contains delay, we shall treat the resulting perturbation equations as DDE (as
opposed to Neutral DE) due to the fact it enters at O(ε2). Further, the scaling of the
unfolding parameter α to O(ε2) is natural since the system has both quadratic and
qubic nonlinearities and exhibits a Hopf bifurcation. It is the correct scaling because the
unfolding parameter has to be at the same order as the leading order nonlinear term in
the normal form, which in our case will clearly be O(ε2).

Equation (12) represents an inhomogeneous FDE of the form

L(Xi )(t, s) = F i (t, s), (13)

with a solution space of infinite dimension. The theory of the FDE [2], [4], [6], [7] has
been developed well enough to a point of high sophistication and provides amazingly
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successful descriptions of the nonlinear cutting tool dynamics. Suppose r0 ≥ 0 is a
given real number, R2 is a two-dimensional linear vector space over the reals with norm
| · |, C([−r0, 0],R2) is the Banach space of continuous functions mapping the interval
[−r0, 0] into R2 with the topology of uniform convergence, and designate the norm of
an element φ in C by |φ| = sup−r0≤θ≤0 |φ(θ)|. If

σ ∈ R, a ≥ 0, X ∈ C([−σ − r0, σ + a],R2),

then for any t ∈ [σ, σ + a], we let Xt ∈ C be defined by Xt (θ; s) = X (t + θ; s),−r0 ≤
θ ≤ 0. Introducing the “new variable” Xi

t (θ; s) = Xi (t + θ; s), we have

Ẋ i
t (θ; s) =

{
dXi

t (θ
+;s)

dθ , −r0 ≤ θ < 0,

LXi
t − F i (t, s), θ = 0,

i = 1, . . . , 3, (14)

where

LXi
t (θ) =

∫ 0

−r0

[dη(θ)]Xi (t + θ; s) (15)

and

[dη(θ)] =
(

0 1

−B0 −A0

)
δ(θ)+

(
0 0

−C0 0

)
δ(θ + r0). (16)

It is very important to realize that (14) is the starting point for the rest of our analysis.
Some facts about the homogeneous equation are given in Appendix B.

At θ = 0, equation (14) is just equation (13)

Ẋ i (t, s) =
∫ 0

−r0

[dη(θ)]Xi (t + θ; s)− F i (t, s), i = 1, . . . , 3, (17)

which is to be solved at each stage of the perturbations. Hence, before proceeding with
the determination of solutions, let us state an important result (Lemma 3.1).

We seek a 2π -periodic solution of (17), where F i (t, s) 2π -periodic. To this end,
suppressing the slow-time parameter s, define the operator J acting on a Banach space

C2π
def={ f : f (s+2π)= f (s), f ∈C([0, 2π ],R2)}, with norm ‖ f ‖= sup

0≤s≤2π
| f (s)|,

as

JXi (t)
def= − d

dt
Xi (t)+ LXi

t , (18)

where the domain ofD(J ) is C1
2π with the standard norm. From the definition, it is easy

to show that the null space of J is

N (J ) =
(
η

def= ξ(0)eis, η̄
def= ξ̄ (0)e−is

)
,

where ξ(0) satisfies (39). Also the formal adjoint operator, J ∗, of J is defined as

J ∗Xi (t)
def= d

ds
Xi (t)+ L∗Xi

t , (19)
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and the null space of J ∗,

N (J ∗) =
(
η∗ def= ξ ∗(0)eis, η̄∗ def= ξ̄ ∗(0)e−is

)
,

where ξ ∗(0) satisfies (40). The linear operator, J , has the Fredholm alternative property
in the space C2π (see [6], Chapter 9) where the inner product is defined by

 v(t), u(t)�def= 1

2π

∫ 2π

0
(v(t), u(t)) dt. (20)

This implies that R(J ) = N⊥(J ∗) and N (J ) = N (J ∗). It is also easy to check that
N (J ) ∩R(J ) = {0}.

Rewriting the inhomogeneous equations (17) as

JXi (t) = F i (t), F i ∈ C2π , i = 2, 3, (21)

we have

Lemma 3.1. Equation (21) is solvable for Xi (t; s) ∈ D(J ) if and only if

 F i , η∗ �= F i , η̄∗ �= 0. (22)

Furthermore, there is a continuous projection, P: C2π → C2π , such that the range of
J is obtained by subtracting off part of f ∈ C2π , namely P f , so that the orthogonality
conditions (22) are satisfied, that is,

R(J ) = (I− P)C2π ,

and there is a continuous linear operator

K: (I− P)C2π → (I−�)C2π ∩D(J),

such that KF i is a solution of (21) for each F i ∈ (I− P)C2π , where� is a continuous
projection of C2π onto N (J ).

Proof. Straightforward application of Hale’s ([6]; Chapter 7) results on necessary and
sufficient conditions for the existence of periodic solutions of nonhomogeneous linear
functional equations.

The Fredholm alternative and the solvability condition (22) will be used in the se-
quential computations to determine and compute bifurcating solutions.

3.1. The Solution to O(1)

From the discussions in Appendix B, it is clear that the solution of

Ẋ1
t (θ; s) = AX1

t (θ; s) (23)



276 N. Sri Namachchivaya and R. Beddini

is given by

X1
t (θ; s) = z(s)ξ(θ) exp{it} + c.c., where ξ(θ) =

(
1

i

)
eiθ , (24)

where c.c. is the abbreviation for complex conjugate and z(s) is an unknown function of
the slow-time s.

3.2. The Solution to O(ε)

Inserting the expression for X1
t (θ; s) from (24) into (14) and using the definition of σ(t)

from (6) yields

Ẋ2
t (θ; s) =

{
dX2

t (θ
+;s)

dθ , −r0 ≤ θ < 0,

LX2
t (θ; s)− F2(t; s), θ = 0,

where

F2(t; s) = −iz(s)
1∑

n �=0
−1

(
0

C0ξ1(−r0)µn

)
ei(1+nν)t+c.c.

− z2(s)

(
0

c11ξ1(0)ξ1(−r0)+c02ξ
2
1 (−r0)+c20ξ

2
1 (0)

)
e2it+c.c.− |z(s)‖2

×
(

0

c11(ξ1(0)ξ̄1(−r0)+ξ̄1(0)ξ1(−r0))+2c20|ξ1|2(0)+2c02|ξ1|2(−r0)

)

Making use of the fact that the frequency of the spindle speed modulation, ν, is much
smaller than the chatter frequency, the nonhomogeneous equation at θ = 0,

JX2(t; s) = F2(t; s), (25)

is solvable for X2(t; s) ∈ D(J ). The solution is given explicitly as

X2
t (θ; s) = z(s)C0ξ1(−r0)

1∑
n �=0
−1

µn

N1n

(
i

−(1+ nν)

)
ei(1+nν)θ exp(i(1+ nν)t)+ c.c.

+ z2(s)
(c11ξ1(0)ξ1(−r0)+ c02ξ

2
1 (−r0)+ c20ξ

2
1 (0))

N20

×
(

1

2i

)
e2iθ exp(2it)+ c.c.

+ |z(s)|2
(c11(ξ1(0)ξ̄1(−r0)+ ξ̄1(0)ξ1(−r0))

+ 2c20|ξ1|2(0)+ 2c02|ξ1|2(−r0))

N00

(
1

0

)
,

where

Nmn = B0 − (m + nν)2 + i A0(m + nν)+ C0e−i(m+nν)r0 . (26)
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3.3. The Solution to O(ε2)

Employing the above results yields

Ẋ3
t (θ; s) =




d X3
t (θ
+;s)

dθ , −r0 ≤ θ < 0,

L X3
t (θ; s)−

(
F3

1 (t; s)+ F̂3
1 (t; s)

F3
2 (t; s)+ F̂3

2 (t; s)

)
, θ = 0,

(27)

where the terms that are linear in z(s) are given by

F3
1 (t; s) = ξ1(0)ż(s) exp(it),

F3
2 (t; s) = [ξ2(0)− r0C0ξ1(−r0)]ż(s) exp(it)

+ C0ξ1

1∑
m,n �=0
−1

(
C0(1+ nν)e−i(1+nν)r0

N1n
− 1

2

)
µnµmei(m+n)νt z(s) exp(it)

+ α(A1ξ2(0)+ B1ξ1(0)+ C1ξ1(−r0))z(s) exp(it),

and the expression for the nonlinear terms F̂3(t; s) are long and most of these terms
do not contribute to the dynamics of z(s) governed by the bifurcation equations. Hence
F̂3(t; s) is not explicitly given here. The nonhomogeneous equation at θ = 0,

JX3(t; s) =
(

F3
1 (t; s)+ F̂3

1 (t; s)
F3

2 (t; s)+ F̂3
2 (t; s)

)
, (28)

is solvable for X3(t; s) ∈ D(J ), if and only if (22) holds, i.e.,

1

2π N̄

∫ 2π

0


A0 + i

1




T (
F2

1 (t; s)
F2

2 (t; s)

)
dt = 0. (29)

This yields the necessary differential equation in terms of the slow-time s for the unknown
amplitude, z(s), i.e.,

ż(s)− αλ′z(s)− |µ|2S(r0, ν)z(s)−�(r0), |z(s)|2 z(s) = 0 , (30)

where

λ′ = − 1

N
(C1e−ir0 + iA1 + B1), N = A0 + 2i − r0C0 exp(−ir0),

S(r0, ν) = C0e−ir0

N

1∑
n �=0
−1

(
1

2
− C0(1+ nν)e−i(1+nν)r0

B0 − (1+ nν)2 + C0e−i(1+nν)r0 + i(1+ nν)A0

)
,

�(r0) =
(

c12 + c11(2c02 + c11)

B0 + C0
+ 2c11c02 + c11c20 + 2c20c02

2iA0 − 4+ B0 + C0e−2ir0

)
e−2ir0

N
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+
(

c21 + c11(c11 + 2c20)

B0 + C0
+ c11c20

2iA0 − 4+ B0 + C0e−2ir0

)
eir0

N

+
(

3c03 + 2c21 + 4c02
2 + c11

2 + 4c20c02 + 4c11c20 + 2c11c02

B0 + C0

+2c20c02 + 2c11c20 + c11c02

2iA0 − 4+ B0 + C0e−2ir0

)
e−ir0

N

3c30 + 2 c12

N
+ 4c20c02 + c11

2 + 4c20
2 + 2c11c20 + 4c11c02

N (B0 + C0)

+ 2c02
2e−3ir0 + c11

2e−3ir0 + c11c02e−4ir0 + 2c20
2 + c11

2

N (2iA0 − 4+ B0 + C0e−2ir0)
,

and the coefficients in terms of machine tool parameters are defined in Appendix A.
Hence, the main objective of this paper can now be answered by studying the reduced
nonlinear equation (30), which represents the “normal form” of the original system (7)
with periodic time delay.

4. Stability and Bifurcation Analysis

Letting z(s) = r(s) exp(iφ(s)), we can rewrite (30) in polar coordinates as

ṙ(s) = [αδ′c +R(r0, ν)|µ|2 +�Re(r0)r2(s)]r(s),

φ̇(s) = αω′ + I(r0, ν)|µ|2 +�Im(r0)r2(s),
(31)

where δ′c is the crossing condition,R(r0, ν) and I(r0, ν) are the real and imaginary parts
of S(r0, ν), and �Re(r0) and �Im(r0) are the real and imaginary parts of the nonlinear
coefficient �(r0). Since there are no resonances, the bifurcation equations (31) have S1

symmetry and the phase is decoupled from the amplitude of the nonlinear response.
First, we clarify the mechanism for the suppression of regenerative chatter, by exam-

ining the stability of the trivial solution of (31), which is governed by

ṙ(s) = (αδ′c + |µ|2R(r0, ν))r(s), (32)

where an explicit formula for the crossing condition, δ′c, is given in Appendix C, and
the variation of δ′c is given in Figure 4. When µ = 0, it is obvious that the machine tool
system is unstable for α > 0; chatter instability for constant spindle speed is discussed in
Section 2 (see Figure 2). Hence, stabilization is possible only if the real part of S(r0, ν)

is negative, i.e.,

R(r0, ν) =
1∑

n �=0
−1

Ac
n cos(nνr0)+As

n sin(nνr0)+A0
n

Bc
n cos(nνr0)+ Bs

n sin(nνr0)+ B0
n

< 0 , (33)

where the coefficients Ans and Bns are given in Appendix C. It is obvious from the
above expression (33) that R(r0, ν) fluctuates with ν, and it is important to determine
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Fig. 3. Crossing condition, δ′ for p = 173.25, and� =
0.041845.

the optimal value of ν for whichR(r0, ν) has an infimum. Since the coefficientsAns and
Bns are long and contain various powers of ν, it involves some tedious computations to
determine this optimal value of ν explicitly. Instead, by plotting the variation ofR(r0, ν)

and its derivative with ν, we identify the optimal frequency of the spindle speed variation.
They are obtained in each parabolic lobe, and the variation for the second parabolic lobe
at three values of τc is shown in Figure 4.

As expected, the stability of the system improved with increasing SSV-frequency ν,
and the value of the optimal SSV-frequency varies from region to region. From (33),
we derive a new stability boundary which depends on the SSV-amplitude µ and SSV-
frequency ν and the bifurcation parameter α. The new stability boundary, in terms of the
width of cut, is given as

αssv
cr = −|µ|2

R(r0, ν)

δ′c
. (34)

Hence, positive values of αssv
cr imply stabilization and greater widths of cut that could

be achieved without chatter, while negative values of αssv
cr imply further destabilization.

For a fixed value of amplitude µ = 1 of the spindle speed modulation, we determine
the new critical value of α for three different values of frequency ν = 0.1, ν = 0.2, and
ν = 0.3. The new widths of cut are plotted in Figure 4, which also shows that for the
value close to ν = 0.3, we obtain better widths of cut as indicated in Figure 4. Finally,
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Fig. 4. Variation of Stability Index R(r0, ν) with SSV
frequency ν at τc = 0.05361 (◦), τc = 0.04886 (−),
τc = 0.04552 (+).

we show in Figure 4 a modest level of increase of stability, and the curves have similar
parabolic lobes as the constant stability curves. The actual value of the improved width
of cut can easily be calculated by multiplying the value from Figure 4 by the factor |µ|2,
which denotes the square of the amplitude of the spindle speed modulation.

From (31), we have

r1 = 0, r2 =
√
−αδ

′ +R(r0, ν)|µ|2
�Re(r0)

(35)

as the stationary solutions. The nontrivial solution indicates a delayed Hopf bifurcation,
and the sign of �Re(r0) governs the qualitative behavior close to the new bifurcation
point αssv

cr . The variation of�Re(r0) is given in Figure 4. The bifurcation is supercritical
when �Re(r0) < 0, and subcritical when �Re(r0) > 0. In both cases the trivial solution
becomes unstable for widths of cut larger than αssv

cr . However in subcritical bifurcations
the increase of oscillation amplitude is sudden and sometimes very dangerous—a well-
known result in classical bifurcation theory.

From the numerical values of the bifurcation coefficient �Re(r0) presented in Fig-
ure 4, it is clear that for the nonlinear parameter values case (i) β2 = 479.3, β3 =
264500.0, β̂2 = 5.668, β̂3 = −3715.2; case (ii) β2 = 0.0, β3 = 0.0, β̂2 = 5.668, β̂3 =
−3715.2, the delayed chatter is supercritical, while for the nonlinear parameter values
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Fig. 5. Greater widths of cut for ν = 0.10 (+), ν =
0.20 (◦), ν = 0.30 (−).

case (iii) β2 = 0.0, β3 = 0.0, β̂2 = 5.668, β̂3 = +3715.2, the delayed chatter is sub-
critical. Since the nonlinear parameters β2 and β3 are related to the nonlinear stiffness
of the machine structure, it was pointed out by Shi and Tobias [26] that these parameters
have much less influence on the nonlinear dynamics than the nonlinear cutting force pa-
rameters β̂2 and β̂3. Further, if the cubic cutting force term of Kalmár-Nagy et al. [16] is
compared to the β̂3 term in (1), it is found that both have the same sign for case (iii). Hence,
the delayed subcritical bifurcation behavior corresponding to case (iii) agrees with the
results of Kalmár-Nagy et al. [16], and correspondingly, with the experiments of Shi and
Tobias [26]. Similar bifurcation behavior for the autonomous regenerative system (7)
was obtained by Liang [17], for the first time, using both the Lyapunov-Schmidt and
center-manifold methods.

5. Results and Conclusions

In this paper we have provided a more transparent derivation of the chatter suppression
results than those available in the literature [24], [25], [18], [30], [15], which show sta-
bilization by periodic fluctuations in delay of a second-order delay differential equation.
An explicit formula (34) for the stability boundaries was obtained in terms of modulation
amplitude, µ, and frequency, ν. Since these results are explicit, making use of the ex-
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unstablestable stabilized

Fig. 6. Stability chart for constant speed and SSV with
ν = 0.30.

pression (33), we have showed how an optimal frequency ν can be determined to achieve
greater widths of cut. We have also emphasized several key points that shed light on the
underlying mathematical structure and the stabilization mechanism that exist in such
infinite-dimensional systems with one critical mode. Finally, we predicted analytically
the nonlinear behavior beyond the new threshold of chatter using three possible combi-
nations of the nonlinear stiffness and cutting force coefficients. The delayed subcritical
bifurcation behavior corresponding to case (iii), for the problem with only cutting force
characteristics, agrees with the results of Kalmár-Nagy et al. [16].

As indicated in Section 1, experimental results and analogue computer simulations
[24], [25] have confirmed that there were significant transient phenomena associated
with SSV. The transient vibrations often attained very large amplitudes before decaying.
Furthermore, the amplitude of the transient vibrations increased with increased width of
cut. Hence, in the presence of SSV, the stability boundary from the linear model provides
an improved chatter threshold only if the delayed bifurcation is supercritical. However, if
the delayed bifurcation is subcritical, the stabilization due to SSV will not be significant
due to the fact that any small disturbance can cause the oscillations to jump from small
to large amplitudes. In this situation, designers can develop systematic control design
techniques, based on (34) and (35), in order to suppress undesirable vibrations which
can lead to poor surface finish and component failures. Such control techniques are of
critical importance to operational safety as well as cost.
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Fig. 7. Bifurcation coefficient �Re(r0) for case (i) (−)
β2 = 479.3, β3 = 264500.0, β̂2 = 5.668, β̂3 = −3715.2;
case (ii) (+) β2 = 0.0, β3 = 0.0, β̂2 = 5.668, β̂3 = −3715.2);
case (iii) β2 = 0.0, β3 = 0.0, β̂2 = 5.668, β̂3 = +3715.2) (◦).

Appendix A. Coefficients of Linear and Nonlinear Terms

The linear and nonlinear terms in (8) are given explicitly as

A(α) = A0 + A1α, B(α) = B0 + B1α, C(α) = C0 + C1α.

In the case of fixed spindle speed, with varying width-of-cut, we choose κ as the bifurca-
tion parameter while r0 is fixed. The coefficients, in terms of machine tool parameters,
are given as

A0 = 2ζcωp = �ω2
p, B0 = ω2

p(1+ κc), C0 = −κcω
2
p,

A1 = 2ζ ′cωp = −�ω2
pω
′
c, B1 = ω2

p, C1 = −ω2
p,

c20(0) = −ω2
p(β2 + κcβ̂2), c11(0) = 2κcω

2
pβ̂2, c02(0) = −κcω

2
p β̂2,

c30(0) = −ω2
p(β3 + κcβ̂3), c03(0) = κcω

2
pβ̂3, −c12(0) = c21(0) = 3c03(0).
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The machine tool parameters are evaluated empirically through experiments and are
given below: 



h = 78250 lb rad/in, k0 = 1.87 106 lb rad/in,

p = 173.25 c/sec, z = 24 HSS blades,

β2 = 479.3 1/in, β3 = 264500 1/in2,

β̂2 = 5.668 1/in, β̂3 = −3715.2 1/in2.

(36)

Appendix B. Analysis of Functional Differential Equations

Here we state some facts about the homogeneous equation

Ẋ1
t (θ) = AX1

t (θ),

where the operator A is

Aφ(θ) =
{

dφ(θ+)
dθ , −r0 ≤ θ < 0,∫ 0

−r0
[dη(θ)]φ(θ), θ = 0,

(37)

and the adjoint operator of A is

A∗ψ(τ) =
{ − dψ(τ)

dτ , 0 < τ ≤ r0,∫ 0
−r0

[dη(θ)]
T
ψ(−θ), τ = 0.

(38)

Suppressing the slow-time parameter s, the eigenfunction ξ(θ),−r0 ≤ θ ≤ 0 corre-
sponding to simple eigenvalue i or the basis of N (A− λI) for λ = i , is

ξ(θ) = ξ(0)eiθ and ξ(0) =
(

1

i

)
, (39)

where ξ(0) satisfies

iξ(0) =
0∫

−r0

{(
0 1

−B0 −A0

)
δ(θ)+

(
0 0

−C0 0

)
δ(θ + r0)

}
ξ(0)eiθ dθ.

Similarly the eigenfunction ξ ∗(τ ), 0 ≤ τ ≤ r0, corresponding to simple eigenvalue −i
or the basis of N (A∗ − λ̄I) for λ̄ = −i is given by

ξ ∗(τ ) = ξ ∗(0)eiτ and ξ ∗(0) = 1

N

(
A0 − i

1

)
, (40)

where ξ ∗(0) satisfies

−iξ ∗(0) =
0∫

−r0

{(
0 −B0

1 −A0

)
δ(θ)+

(
0 −C0

0 0

)
δ(θ + r0)

}
ξ ∗(0)e−iθ dθ.
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The bilinear form that determines the formal adjoint operator A∗ simplifies to

〈ξ ∗(τ ), ξ(θ)〉 = ξ̄ ∗T

(0) · ξ(0)− C0

∫ 0

−r0

ξ̄ ∗2 (s − θ)ξ1(s) ds. (41)

The normalization condition

〈ξ ∗(τ ), ξ(θ)〉 = 1, 〈ξ ∗(τ ), ξ̄ (θ)〉 = 0, 〈ξ̄ ∗(τ ), ξ(θ)〉 = 0 (42)

yields

N = A0 + 2i − r0C0 exp(−ir0).

Making use of the above definitions, it can be shown ([6], Chapter 7) that any function
φ ∈ C([−r0, 0],R2) belongs to the range of the operator (A− i) if and only if φ satisfies
〈φ, ξ ∗〉=0. The consequence of this is the fact C([−r0, 0],R2) has a decomposition of
the form

C([−r0, 0],R2) = N (A− iI)⊕R(A− iI),

where

N (A− iI) def= {φ: (A− iI)φ = 0} and R(A− iI) def= {φ: 〈φ, ξ ∗〉 = 0}.

Appendix C. Coefficients of Stability Index

The transversality condition at the criticality is given by the derivative of the real part of
the normalized eigenvalue, which can be found from equation (3) as

δ′c =
χ + ((�− κcr0) cos(r0)−�+ κcr0)ωp

4 − 2ωp
2 sin(r0)

(�2 + 2�r0κc cos(r0)+ r0
2κc

2)ωp
4 − 4r0κcωp

2 sin(r0)+ 4
,

χ
def= (2− ωp

2r0κc sin(r0))�ωp
2ω′c,

ω′c = −
ωp

2(ωp
2(�+ κcr0) sin(r0)+ 2 cos(r0)− 2)

�ωp
4r0κc cos(r0)+ 4− 4r0κcωp

2 sin(r0)+ r0
2κc

2ωp
4
,

whereω′c is the derivative of the imaginary part of the normalized eigenvalue at criticality.
The coefficients Ans and Bns of the stability index (33) are given below:

Ac
n = −2nνr0(1+ nν)A0

4 + (−4nν(1+ nν)B0 − 2nν(nν + 2)(1+ nν))A0
3

+ (−2nνr0(nν + 2)B0
2 + 2nνr0(nν + 2)2 B0 − 2nνr0(nν + 2)(1+ nν))A0

2

+ (−2B0
3nν + 2nν(nν + 3)(1+ nν)B0

2 + 2nν(1+ 2nν + 2n2ν2)B0

− 6nν(1+ nν)2)A0 − 2r0 B0
4nν + 2nνr0(4+ 2nν + n2ν2)B0

3

− 6nνr0(2+ 2nν + n2ν2)B0
2 + 2nνr0(6nν + 4+ 3n2ν2)B0

− 2nνr0(1+ nν)2,
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As
n = −2(1+ nν)2 A0

4 + (2r0 B0n2ν2 + 2ν2r0n2(1+ nν))A0
3

+ ((−2+ 2n2ν2 − 2nν)B0
2 + 2(nν + 2)(2n2ν2 + 2+ 3nν)B0

− 2(1+ nν)(4nν + 3))A0
2 + (2r0 B0

3n2ν2 + 2ν2r0n2(nν − 1)B0
2

− 2ν2r0n2(2nν + 1)B0 + 2ν2r0n2(1+ nν))A0 + (4+ 4nν)B0
3

− 4(1+ nν)(n2ν2 + 3+ 2nν)B0
2 + 4(1+ nν)(2n2ν2 + 3+ 4nν)B0

− 4(1+ nν)3,

A0
n = −nν(−2B0

2 − 2B0nν + 6nν + nνA0
2 + 2+ n3ν3 + 4n2ν2)

· (A0 + r0 + A0
2r0 − 2r0 B0 + B0 A0 + r0 B0

2),

Bc
n = 4(A0

2 + 2r0 A0 + 2A0r0 B0 + r0
2 − 2r0

2 B0 + r0
2 B0

2 + 4+ r0
2 A0

2)

· (−B0
2 + 2B0 + 2B0nν + B0n2ν2 − 2nν − n2ν2 − 1− nνA0

2 − A0
2),

Bs
n = 4ν(A0

2 + 2r0 A0 + 2A0r0 B0 + r0
2 − 2r0

2 B0 + r0
2 B0

2 + 4+ r0
2 A0

2)

· n A0(nν + 1+ B0),

B0
n = 2(A0

2 + 2r0 A0 + 2A0r0 B0 + r0
2 − 2r0

2 B0 + r0
2 B0

2 + 4+ r0
2 A0

2)

· (2B0
2 − 2B0n2ν2 − 4B0 − 4B0nν + 2A0

2 + 2+ n4ν4 + 2nνA0
2

+ 4nν + n2ν2 A0
2 + 6n2ν2 + 4n3ν3).
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