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Summary. We consider the Becker-Döring equations for large times. It is well-known
[2] that if the total density of monomers exceeds a critical value, the excess density is
contained in larger and larger clusters as time proceeds. We rigorously derive for general
coefficients that the evolution of these large clusters is described by a nonlocal transport
equation, which is for specific coefficients the classical coarsening model by Lifshitz,
Slyozov, and Wagner (LSW). Our proof exploits the estimate of the energy and the energy
dissipation rate given by the Lyapunov functional for the Becker-Döring equations. We
also provide a detailed asymptotic expansion of the higher-order dynamics.

1. Introduction

1.1. The Becker-Döring Equations

The Becker-Döring equations are an infinite set of kinetic equations that describe the
dynamics of cluster formation in a system of identical particles. In this model, clusters
can coagulate to form larger clusters or fragment to smaller ones by gaining or losing one
particle respectively. In particular, the Becker-Döring equations can be used to investigate
various aspects in the kinetics of phase transitions, such as nucleation, metastability, and
coarsening.

In the following, clusters are described by their size l, the number of atoms in the
cluster. We denote by cl(t) the concentration of l-clusters at time t , and we assume that
the clusters are uniformly distributed in space, such that there is no dependence on the
space variable.

The crucial assumption in the Becker-Döring theory is that an l-cluster can change
its size only by gaining a free atom (coagulation) to form an (l + 1)-cluster, or lose an
atom (fragmentation) to form an (l − 1)-cluster. The net rate of conversion of l-clusters
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into (l +1)-clusters is denoted by Jl , which is measured in units of clusters per unit time
per unit volume. The rate of change of the density of l-clusters is thus given by

d

dt
cl(t) = Jl−1(t)− Jl(t), for l ≥ 2. (1.1)

To describe the rate of change of the density of free atoms, in the following called
monomers, a different equation is needed since monomers are involved in the rate of
change of all clusters. In the classical Becker-Döring theory [3] the concentration of
monomers was just assumed to be constant. However, for the case of density-conserved
systems, one would like to have the total number density of atoms to be preserved, i.e.,

ρ :=
∞∑

l=1

lcl(t) ≡ const., for all t ≥ 0. (1.2)

This implies with (1.1) that

d

dt
c1(t) = −J1 −

∞∑
l=1

Jl . (1.3)

This modified version of the Becker-Döring equations was introduced in [4], [26].
To complete the system of equations, a constitutive relation which gives Jl in terms

of cl is required. For that, one assumes that the number of times an l-cluster gains a
monomer per unit time per unit volume is proportional to the density of l-clusters and
the density of monomers. The number of times that an (l + 1)-cluster breaks up per unit
time per unit volume is, however, independent of c1 but proportional to cl+1. Thus, one
finds

Jl(t) = alc1(t)cl(t)− bl+1cl+1(t), (1.4)

with positive kinetic coefficients al , bl which are assumed to be independent of time. We
assume in the following that the coefficients al , bl are given by

al = lα, for some 0 ≤ α < 1, (1.5)

bl = al

(
zs + q

lγ

)
, where zs > 0, q > 0 and 0 < γ < 1, (1.6)

which are the same assumptions as those used in [23], except that we also allow for
α = 0. These coefficients typically arise in density-conserving phase transitions as e.g.
the formation of liquid droplets in a supersaturated vapor or the phase segregation in
a binary alloy after quenching. The Becker-Döring equations apply to the case of a
nonuniform mixture, i.e., when the saturation density is small or respectively when one
component of the alloy has small volume fraction.

In Appendix A.1 we review the heuristic derivation of typical coefficients, when
the clusters are spheres and the growth of clusters either is dominated by diffusion of
monomers between the clusters or is limited by the reaction rate at the boundary of the
cluster, respectively. One obtains (1.5), (1.6) with

α = 1/3, γ = 1/3 (diffusion-controlled kinetics in 3-D)
α = 0, γ = 1/2 (diffusion-controlled kinetics in 2-D)
α = 2/3, γ = 1/3 (interface-reaction-limited kinetics in 3-D)
α = 1/2, γ = 1/2 (interface-reaction-limited kinetics in 2-D)
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Within these applications, zs is just the equilibrium monomer concentration at a flat
phase interface and q is proportional to surface tension. We also refer to [25] for a
derivation of the coefficients for diffusion-controlled kinetics from an Ising model with
Kawasaki dynamics. The relationship between this microscopic model and the Becker-
Döring equations is also further investigated in [27], [28].

Different exponents can arise, for example, if the clusters cannot be reasonably char-
acterized as spheres, but rather have the shape of snowflakes or are thin needles or
plates.

1.2. Existence, Uniqueness, and Convergence to Equilibrium

We now summarize briefly the main mathematical results which have been obtained
for the Becker-Döring equations with coefficients satisfying (1.5), (1.6). For a more
extensive overview of the subject, we also refer to the review article [30].

The existence of positive solutions of the Becker-Döring equations has been shown in
the seminal mathematical paper [2] under quite general assumptions on the coefficients,
which are also satisfied by (1.5), (1.6). Uniqueness was shown only for a smaller class of
coefficients, but more recently the uniqueness result has been extended to a larger class
of coefficients in [15], which also covers the coefficients in (1.5), (1.6).

We now turn to the simplest solutions of the Becker-Döring equations, which are
equilibrium solutions. By (1.1) equilibrium solutions (c̄l)l are given by Jl ≡ const. for
all l, but then due to (1.3) it must hold that

Jl = 0, for l ≥ 1.

This implies

c̄l = Ql z
l , l ≥ 1,

with a parameter z > 0, where Ql are given by

Q1 = 1,
Ql+1

Ql
= al

bl+1
, and thus Ql = a1a2 · · · al−1

b2b3 · · · bl
. (1.7)

Depending on the coefficients, the equilibrium density
∑∞

l=1 l Ql zl is bounded for z in a
certain range.

With the assumptions (1.5), (1.6) we easily obtain for large l that

Ql
∼= C0

lαzl−1
s

exp

{
− q

(1 − γ )zs
l1−γ (1 + O(l−γ ))

}
. (1.8)

Then the series
∞∑

l=1

l Ql z
l

has the convergence radius liml→∞
bl+1

al
= zs and the series also converges for z = zs .

In the following we denote

ρs :=
∞∑

l=1

l Ql z
l
s < ∞, (1.9)
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which can be interpreted as the density of saturated vapor. In the following we will denote
by cs

l = Ql zl
s , l = 1, 2, . . . , the equilibrium configuration with density ρs .

Convergence of solutions to equilibrium was shown in [2] under some assumptions
on coefficients and data, and was further generalized in [1], [29]. The proof is based on
the fact that there is a Lyapunov functional available, given by

L(c(t)) :=
∞∑

l=1

cl

(
ln

(
cl

Ql

)
− 1

)
. (1.10)

In fact, it holds that

d

dt
L(c(t)) = −

∞∑
l=1

Jl ln

(
alc1cl

bl+1cl+1

)
≤ 0.

Since L is bounded below, it follows that Jl → 0 as t → ∞ such that cl → Ql zl for
some z > 0. The question remains: What is z, and what happens to density conservation
(1.2) in the limit as t → ∞? It is shown in [2], [1], [29] that if ρ ≤ ρs then

lim
t→∞

∞∑
l=1

l|cl(t)− Ql z
l | = 0,

where ρ = ∑∞
l=1 l Ql zl . However, if ρ > ρs , we have

lim
t→∞ cl(t) = Ql z

l
s, for each l ≥ 1,

but the convergence is only weak and the density drops to ρs in the limit t → ∞.
The so-called excess density is contained in larger and larger clusters as times evolves.
In phase transformations, these large clusters represent the stable nuclei of the new
thermodynamic phase, e.g., the liquid droplets formed out of the supersaturated vapor.

1.3. Metastability

In case ρ > ρs , i.e., when a phase transformation occurs in the sense described above,
it turns out that the Becker-Döring model can describe another important feature, the
occurrence of metastable states.

Existence of metastable states in the Becker-Döring model has been established in
[23]. More precisely, specific solutions of the Becker-Döring equations are constructed,
for data with density ρ > ρs , which stay very long, that is, at least exponentially long in
1/(ρ − ρs), close to the data, before they converge to their corresponding equilibrium.
The crucial idea in the analysis is the following (for more details see [23], [30]): One
looks for so-called steady-state solutions, such that Jl ≡ const. 
= 0. These are not exact
solutions of the equation, but turn out to persist for a very long time. The common value
of Jl is called the nucleation rate and gives the rate per unit volume at which clusters
gain new clusters in the steady state. In fact, it is shown that if c1 − zs is small, then the
nucleation rate is extremely small, such that large clusters form extremely slowly.

Thus, this analysis gives an example of initial data for which a metastable state
occurs. In fact, numerical simulations [5] suggest that the system always goes through a
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metastable state: If one starts with data with c1(0) = ρ, then the value of c1 drops quickly
to a value larger than zs , where it remains extremely long before finally converging
to zs .

It is interesting to note that metastability also occurs in the classical Becker-Döring
equations where c1 is constant, which is established in [23], [13]. We also refer to [10],
[11] for a study of corresponding truncated systems.

1.4. Dynamics of Large Clusters: Heuristics

We now investigate the governing dynamics of the large clusters which form the new
thermodynamic phase, once any possible metastable state has broken down.

For the special case of diffusion-controlled growth in three dimensions, i.e., α =
γ = 1

3 in (1.5), (1.6), it is argued formally in [24] that the evolution of these clusters is
governed by the classical coarsening model by Lifshitz, Slyozov, and Wagner [16], [33],
nowadays known as the classical LSW model.

We recall briefly the argument in [24] for this case (see also [30]). To consider large
times, we introduce a new time scale τ = εt for a small parameter ε → 0, such that

d

dτ
cl = 1

ε
(Jl−1 − Jl). (1.11)

We write

Jl = al((c1 − zs)− q)cl − (bl+1cl+1 − blcl), (1.12)

and choose as a cut between small and large clusters l0 = l0(ε), which can be chosen as
l0 = ln

(
1
ε

)
for example. For l ≥ l0 one substitutes λ = εl and treats λ as a continuous

variable. Furthermore one introduces the rescaled cluster densities and fluxes as

cl = ε2ν(λ, τ ), (1.13)

Jl = ε2v(λ, τ ), (1.14)

and the rescaled monomer density

c1 − zs = ε1/3u(τ ). (1.15)

This gives

∂τ ν + ∂λv = o(1),

v = (λ1/3u(τ )− q)ν + o(1).

Now one considers the small clusters. It is argued in [24] that one can expect from (1.14)
that Jl0 = O(ε2) and then from (1.11) that Jl = O(εl0) for l ≤ l0. Furthermore, by
solving (1.1) in terms of Jl , one obtains with (1.15) that

cl = Qlc
l
1

(
1 −

l−1∑
k=1

Jk

ak Qkck
1

)

= Ql z
l
s(1 + O(lε1/3))(1 + O(εl2

0e
3q
2zs

l2/3
0 )),
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and hence

cl = Ql z
l
s(1 + o(1)). (1.16)

Density conservation (1.2) now gives

ρ =
∞∑

l=1

lcl =
l0−1∑
l=1

lcl +
∞∑

l=l0

lcl

=
l0−1∑
l=1

l Ql z
l
s +

∞∑
l=l0

lcl + o(1)

= ρs +
∫
λν(λ, τ ) dλ+ o(1).

Hence, one finds to leading order that

∂τ ν + ∂λ((λ
1/3u(τ )− q)ν) = 0, (1.17)∫

λν dλ = ρ − ρs, (1.18)

which implies

u(τ ) = q
∫
ν dλ∫

λ1/3ν dλ
.

The system (1.17), (1.18) is just the classical LSW model for coarsening (cf. [16], [33]).
We will explain the scenario described by this model in more detail in Section 1.5.4
below.

Let us now briefly point out how the above argument applies to the case of general
coefficients as given in (1.5), (1.6). For that 1/ε will again be a measure for the large
clusters, but for general coefficients the time scale is given by τ = ε1−α+γ t and the
rescaled clusters and fluxes by

cl = ε2ν, Jl = ε2+α−γ v, c1 − zs = εγ u.

We obtain to leading order

∂τ ν + ∂λ

(
λα
(

u − q

λγ

)
ν
)

= 0, (1.19)∫
λν dλ = ρ − ρs, (1.20)

which gives

u(τ ) = q
∫
λα−γ ν dλ∫
λαν dλ

. (1.21)
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1.5. Aims and Results of the Paper

1.5.1. Preliminary Considerations. A main goal in this paper is to justify the argu-
ments in [24], respectively Section 1.4, by a rigorous analysis for the class of coefficients
given in (1.5), (1.6). Our analysis will in particular also give an interpretation of the so-far
ad hoc chosen parameter ε, which is related to the energy of the system.

Let us explain the main ideas in a bit more detail. The key idea is to exploit the estimate
given by the Lyapunov functional (1.10), in physical terms the free energy density. To
that aim we redefine the energy

F(c) :=
∞∑

l=1

cl

(
ln

(
cl

Ql zl
s

)
− 1

)
+ Ql z

l
s . (1.22)

Since

F(c) = L(c)− ln zs

∞∑
l=1

lcl +
∞∑

l=1

Ql z
l
s

and
∑∞

l=1 lcl is preserved during the evolution, we find d
dt F = d

dt L . Indeed, without the
constant term

∑∞
l=1 Ql zl

s , this is just the specific functional which is called Vzs in [2] and
is found to be continuous under weak∗ convergence in the space of positive sequences
which satisfy

∑∞
l=1 lcl < ∞. Our definition ensures that F(c) ≥ 0 and F(c) = 0 if

and only if (cl) = (Ql zl
s) = (cs

l ), i.e., if c is the equilibrium cluster distribution for the
critical density ρs .

With this definition and the results in [2], [1], [29], we know that F(c(t)) → 0 as
t → ∞.

It is also instructive to write F in the following way:

F(c(t)) =
∞∑

l=1

cl

(
ln

(
cl

cs
l

)
− 1

)
+ cs

l =
∞∑

l=1

cs
l f

(
cl − cs

l

cs
l

)
, (1.23)

with f (z) = (1 + z) ln(1 + z)− z, which resembles the notion often used in the study of
the Boltzmann equation, where F is usually called the relative entropy. We also notice

that f behaves quadratically for bounded
cl−cs

l
cs

l
, whereas the growth is only superlinear

for large
cl−cs

l
cs

l
, which is the case for the large clusters.

We now ask for the leading order term in the energy for large clusters. Using (1.8),
we find

∞∑
l=l0

cl

(
ln

(
cl

cs
l

)
− 1

)
+ cs

l =
∞∑

l=l0

cl ln

(
1

Ql zl
s

)
+

∞∑
l=l0

cl(ln cl − 1)+ cs
l

≈ q

zs(1 − γ )

∞∑
l=l0

l1−γ cl + O

( ∞∑
l=l0

l1−2γ cl

)

+
∞∑

l=l0

cl(ln cl − 1)+ cs
l .
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It is easily seen that
∑∞

l=l0
cl(ln cl −1) = o(

∑∞
l=l0

l1−γ cl) and the same holds for
∑∞

l=l0
cs

l
if l0 is just moderately large, since (cs

l ) is decreasing exponentially fast.
Thus, the leading order term in the energy is

q

zs(1 − γ )

∞∑
l=l0

l1−γ cl ,

which in the applications given in Section 1.1 is just the surface energy density of the
clusters. Recalling the scaling introduced in Section 1.4, we find

q

zs(1 − γ )

∞∑
l=l0

l1−γ cl ≈ εγ
q

zs(1 − γ )

∫
λ1−γ ν dλ.

Hence, a natural criterion for the system being in the last stage is that the energy scales
like εγ if ε−1 is a measure for the large clusters. (To be precise, it should be the other
way: If the energy is small, the measure for the large clusters is given by the appropriate
power of the energy.)

1.5.2. The Main Result. In the following we consider the solution c(t) to the Becker-
Döring equations (1.1), (1.2) for data c(0) such that

∑∞
l=1 lcl(0) = ρ > ρs , where ρs is

the maximal density for which an equilibrium solution exists, i.e., ρs = ∑∞
l=1 lcs

l .
It is easily seen that for coefficients (1.5), (1.6) we have F(c(0)) < ∞ if

∑∞
l=1 lcl(0) <

∞. Then we have the energy identity

F(c(t))+
∫ t

0

∞∑
l=1

Jl ln

(
alc1cl

bl+1cl+1

)
ds = F(c(0)), (1.24)

and we know that F(c(t)) → 0 as t → ∞.
As in [24] we consider the system for large times when all possible metastable states

have broken down. For a small parameter ε > 0 we will in the following use ε−1 as a
measure for the large clusters. Motivated by the considerations in Section 1.5.1, we will
consider times larger than a time tε with

F(c(tε)) = εγ (1.25)

and introduce a new time scale

t̃ = ε1+γ−α(t − tε), for t ≥ tε. (1.26)

We define

cεl (t̃) := cl(t), for t ≥ tε,

such that (1.25) reads

F(cε(0)) = εγ , (1.27)
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and (1.1) gives

d

dt̃
cεl = 1

ε1+γ−α (J
ε
l−1 − J εl ) (1.28)

with J εl = alcε1cεl − bl+1cεl+1 and cε1 is such that
∑∞

l=1 lcεl (t̃) = ρ for all t̃ .
We also need a cut-off l0 = l0(ε) between small and large clusters. For the level of

approximation considered in this paper, l0 only needs to satisfy

|cs
l0
|η ≤ CF(cε(0)), for any η > 0,

lim
ε→0

lγ0
√

F(cε(0)) = 0. (1.29)

These requirements are needed to ensure that, on the one hand, l0 is large enough such
that some moment of the rescaled size distribution is bounded (cf. Lemma 2.1), and on
the other hand, l0 is small enough such that the excess density is contained in the clusters
larger than l0 (cf. Lemma 2.2).

For convenience we choose

l0 ≈ 1

εx
, for some x ∈ (0, 1

2 ). (1.30)

Dropping the tilde in the new time scale, we introduce the new variable

λ = εl (1.31)

and the rescaled monomer density

uε(t) = ε−γ (cε1(t)− zs). (1.32)

The rescaled densities are defined as measures {νεt }t ⊂ C0
0(R

+)∗ via

∫ ∞

0
ζ(λ) dνεt := 1

ε

∞∑
l=l0

ζ(εl) cεl (t),

i.e., on the ε-level νεt is a sequence of properly rescaled Dirac measures. In the following
we will usually omit the integration limits and write

∫
ζ dνεt ,

∫
ζ dνt , etc. Later we want

to extend the definition to test functions which have not necessarily compact support in
(0,∞). Then, we understand the integral as

∫
dνt = ∫∞

0+ dνt , i.e., the point λ = 0 is
not included.

Our aim is to pass to the limit ε → 0 and to show that the limits of νε, uε satisfy
(1.19), (1.20). For that we would like to make as few assumptions as possible on the
data, given by (cεl (0)) = (cl(tε)). It turns out that we only have to make one assumption
to ensure that the limit will be nontrivial. We have to assume that at the time when the
energy is appropriately small, as in (1.27), not too many very large clusters have formed.
More precisely we assume

∞∑
l≥[M /ε]

lcεl (0) =
∫
λ≥M

λ dνε0 → 0 as M → ∞ uniformly in ε. (1.33)



124 B. Niethammer

Theorem 1.1. Assume that (1.27) and (1.33) hold. Then there exist a subsequence, again
denoted by ε → 0, and a weakly continuous map [0,∞) � t �→ νt ∈ C0

0((0,∞))∗ such
that ∫

ζ dνεt →
∫
ζ dνt locally uniform in t ∈ R+ for all ζ ∈ C0

0((0,∞)).

Furthermore there exists u = u(t) ∈ L2
loc([0,∞)) such that

uε(t) ⇀ u weakly in L2
loc([0,∞)).

The limit satisfies

∂t νt + ∂λ

(
λα
(

u(t)− q

λγ

)
νt

)
= 0 (1.34)

in D′((0,∞)× (0,∞)) and∫
λ dνt = ρ − ρs, for all t ≥ 0. (1.35)

In addition, if α ≥ 1 − 3γ , we find that (1.35) is equivalent to

u(t) = q
∫
λα−γ dνt∫
λα dνt

for a.e. t ≥ 0. (1.36)

It seems on first glance a bit unfortunate that we cannot conclude (1.36) for all
exponents α, γ ∈ (0, 1). We are, however, not aware of any example coming from
applications where this condition is not satisfied. In particular, it is satisfied for diffusion-
controlled as well as interface-reaction-controlled kinetics in two and three dimensions
(cf. Section 1.1).

A main ingredient in the proof of Theorem 1.1 is the following estimate, which for
the sake of lucidity we state separately.

Proposition 1.2. The solution νt , found in Theorem 1.1, satisfies the following energy
estimate: For any t > 0, we have

q

zs(1 − γ )

∫
λ1−γ dνt + 1

zs

∫ t

0

∫
λα
(

u(t)− q

λγ

)2
dνs ds

≤ lim inf
ε→0

F(cε(0))

εγ
≤ 1.

(1.37)

1.5.3. Outline of Proofs and Further Results. The proofs of Theorem 1.1 and Propo-
sition 1.2 are the contents of Section 2.1 and 2.2. Section 2.1 provides several a pri-
ori estimates which in principle are all based on the energy estimate given by (1.24).
Lemma 2.1 shows how the free energy on the one hand controls the surface energy of
the large clusters, i.e.,

∫
λ1−γ dνεt , and on the other hand, also gives an estimate of the

deviation of the small clusters from their respective equilibrium values cs
l . Indeed, we

will show (cf. (2.2)) that
∞∑

l=1

l1−γ |cl − cs
l | ≤ C

√
F,
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which replaces the formal argument leading to (1.16) and then to (1.18). This result is
used in Lemma 2.2 to conclude that the excess density is contained in the large clusters.
In Lemma 2.3 we provide suitable estimates on the fluxes, which can first be used in
Lemma 2.4 to show that the tightness property (1.33) is preserved in time.

In Section 2.2 we pass to the limit as ε → 0. With the estimates from Section 2.1 we
easily obtain a weak limit νt of νεt .

The difficulty that remains is to identify the structure of the limit flux, which requires
some compactness of the rescaled monomer density uε. Unfortunately we cannot use
(1.3) to obtain a uniform bound on uε. For that it would be necessary to have much
better estimates on

∑∞
l=l0

Jl and
∑l0−1

l=1 Jl respectively. More precisely, in the limit, the
properly rescaled version of the first quantity vanishes, due to the density conservation
(1.20). To use (1.3) for a bound on uε, we would need a quantitative version of this fact
already on the ε-level, which is not available and most likely in general not true. Hence,
we will need a different argument in Lemma 2.6 to gain some compactness of uε. Finally,
Lemma 2.7 provides formula (1.36) for the limit u(t).

In Section 2.3 we investigate further regularity properties of the solution. We will
show for a certain range of coefficients that if the data satisfy

∫
dν0 < ∞, then

∫
dνt ,

i.e., the fraction of clusters remaining at time t is decreasing in time.
An important question is whether the tightness assumption on the data is reasonable.

We will discuss this issue in detail in Section 1.5.4 below. In Section 2.4 we will present
a sequence of data which is motivated by numerical simulations in [5] and show that this
sequence satisfies assumption (1.33) as well as several further regularity properties.

In Section 3 we identify by a formal asymptotic expansion higher-order terms in the
evolution of both small and large clusters.

We have seen that to leading order the large clusters satisfy the transport equation
(1.19) with characteristics which leave the domain atλ = 0. That is, there are no boundary
conditions which couple the evolution of the large clusters to the evolution of the small
clusters, and the large clusters evolve independently of the small ones.

Going one step further in the expansion, the formal asymptotic expansion in Sec-
tion 3.1 reveals that the small clusters are in quasi-steady equilibrium with the large
clusters and uniquely determined by the rescaled monomer density u (cf. equation
(3.15)). Then, the density belonging to these small clusters determines a constraint for
the next term in an expansion of the large clusters (cf. (3.17)) and so on. Furthermore, we
compute in Section 3.2 a detailed asymptotic expansion of the energy estimate through
which additional energy-type identities emerge on various levels of approximations (cf.
(3.33)–(3.35)).

Let us mention here another rigorous study of the transition from the Becker-Döring
equations and (1.19), which is complementary to ours. In [15], the case of homogeneous
coefficients is studied, i.e., (1.5), (1.6) with the assumption zs = 0 and α ≥ γ , or in other
words, the case where coagulation dominates fragmentation. In this case there exists no
nontrivial equilibrium and no useful Lyapunov functional; in [6] weak convergence of
the solution to zero is shown. Thus, in this case the total density ρ is contained in the
large clusters, or in other words, all clusters are large clusters, and one can in this special
case use (1.3) to derive a uniform bound on uε.

In principle, the method we developed here can be directly applied to generalized
Becker-Döring models for which a bounded Lyapunov functional exists—for example,
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Becker-Döring models which allow for multiple components (see e.g. [11] and [9]) or
which take into account the autocatalytic production of monomers [8]. For a different
scaling limit of the Becker-Döring equations for uniformly bounded coefficients we also
refer to [7].

1.5.4. Remarks on the Data for the Large-Time Regime and a Review of Coars-
ening Dynamics. We obtain under the single assumption (1.33) on the data that the
large clusters are in the long-time limit described by (1.19). One might wonder whether
assumption (1.33) is a natural one. Of course, one could easily construct a sequence of
data with small energy but violating (1.33). The question of interest is, however, whether
the Becker-Döring equations can create such data for the time regime of interest here,
starting from generic data, e.g. only monomers.

The problem in analyzing the long-time behavior of the Becker-Döring system is the
appearance of metastable states which have been described in Section 1.3. Since we
expect that any solution typically goes through a metastable state, the task would be to
analyze how the solution leaves this metastable state. It is hard to imagine a mechanism,
which, at least for data which are for example only monomers, creates very large clusters
in the sense that (1.33) would be violated; numerical simulations in [5] confirm this, but
a proof is presently not available.

However, we construct in Section 2.4 a sequence of data which is motivated by the sim-
ulations in [5]. A striking similarity is observed between a solution of the Becker-Döring
equations going through a metastable state and a sequence of equilibrium solutions for a
finite system of size n, letting n → ∞. We use the latter to construct a sequence of data
for the regime under consideration. Indeed, we can show that these data behave nicely
in an appropriate sense and, in particular, satisfy assumption (1.33).

To understand what type of data can be created by the Becker-Döring equations is
also of interest for another reason, which concerns the large-time behavior of solutions
to (1.19), (1.21) and is related to the classical LSW theory of coarsening. Let us explain
this issue briefly, since it is a major motivation for studying the connection of the Becker-
Döring equations and their scaling limit.

For this discussion let us concentrate on the specific case of diffusion-controlled
cluster growth in three dimensions, i.e., coefficients with α = γ = 1/3, which leads
to (1.17), (1.18), the classical LSW model. The qualitative features we describe now
for this specific case are the same for solutions of equation (1.19), (1.21) with general
coefficients. The LSW model describes the large-time behavior of the stable nuclei in a
phase transition in the regime of small volume fraction of the new phase. The driving
force in this last stage of the phase transition is the surface energy, and to reduce this
surface energy, clusters interact by diffusional mass exchange, such that atoms diffuse
from small to large clusters. Thus, large clusters grow, and smaller ones shrink and
disappear, a process which leads to an increase in the typical length scales in the system,
i.e., to coarsening of the microstructure. This form of competitive growth is also known
as Ostwald Ripening and is a fundamental process in the aging of materials (see [32]
for a review on the physical background). The LSW model can also be derived as a
homogenization limit of the Mullins-Sekerka free boundary problem [17], [18].



On the Evolution of Large Clusters in the Becker-Döring Model 127

As part of their classical theory, LSW predicted that the large-time behavior of so-
lutions to (1.17), (1.18) is universal and characterized by a smooth self-similar solution
with compact support. As a consequence, one obtains universal power laws for aver-
aged quantities, characterizing the dynamics of a system undergoing Ostwald Ripening.
However, the LSW theory has a major drawback. For equation (1.17), (1.18) there exists
a one-parameter family of self-similar solutions, and a rigorous analysis in [19], [21]
for data with compact support shows that the long-time behavior is not at all universal
but depends, on the contrary, very sensitively on the data. More precisely, it depends
on the detailed behavior of the initial distribution of large clusters, i.e., on the details
at the end of the support. Indeed, the size distribution approaches the particular self-
similar solution, which displays the same behavior at the end of its support (for details
see [19], [21]).

The question is now: What are natural modifications to overcome this nonphysical
weak selection criterion of asymptotic states?

In [31], the formal relation between the Becker-Döring and the LSW model is used,
but the second-order term represented by bl+1cl+1 − blcl , (cf. (1.12)) is kept, and it
is argued for a corresponding continuous partial differential equation that the solution
predicted by LSW is the only possible limit in self-similar variables. The main effect of
this additional term is to create a fast-decaying infinite tail for compactly supported data.

Another argument in favor of universal self-similar asymptotics would be that the
data for the coarsening regime exhibit a certain universal behavior. Even though the
Becker-Döring equations can only give a simplified picture of the subtle phenomenon of
nucleation, having established the connection with the LSW model and the sensitivity
of the LSW model with respect to the data, it would be very interesting to understand
which data are typically created by the Becker-Döring dynamics. As we have explained
before, the existence of metastable states indicates that a rigorous answer to this question
will be difficult to obtain.

2. Rigorous Derivation of Leading Order Dynamics

2.1. A Priori Estimates

In this section and in Section 2.2 we provide the proofs of Theorem 1.1 and Proposition 1.2
respectively.

In the following we will for convenience drop the superscript ε in cεl and J εl . Recall
that due to (1.27),

F(c(t))+ 1

ε1+γ−α

∫ t

0

∞∑
l=1

Jl ln

(
alc1cl

bl+1cl+1

)
ds = F(c(0)) = εγ , (2.1)

for all t ∈ [0,∞).
We start with some a priori bounds which follow from the convexity properties of f

as in (1.23), the first being a simple version of the so-called Csiszar-Kullback inequality.
In the following C will denote a generic constant which in general will depend on the
parameters α, γ, q, zs , and ρ.
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Lemma 2.1. If (1.27) holds, then we have for all t ≥ 0,

∞∑
l=1

l1−γ |cl(t)− cs
l | ≤ C

√
F(c(t)) ≤ Cεγ /2, (2.2)

q

zs(1 − γ )

∞∑
l=l0

l1−γ cl(t) ≤ 1
1−η F(c(t))+ Cη,pε

p, (2.3)

for any small η > 0 and any p < ∞.

Proof. We use the duality relation

yz ≤ f (z)+ f ∗(y), (2.4)

where f ∗ is the dual of f and is given by

f ∗(y) = ey − y − 1. (2.5)

Notice that f and f ∗ satisfy

f (|z|) ≤ f (z) and f ∗(r y) ≤ r2 f ∗(y), for r ∈ [0, 1]. (2.6)

With y = δ(1 − η)
q

(1−γ )zs
l1−γ for some δ, η ∈ (0, 1] and z = cl−cs

l
cs

l
, we find with (2.4),

(2.5), and (2.6) that

δ
(1 − η)q

(1 − γ )zs
l1−γ |cl − cs

l |
cs

l

≤ δ2 exp

{
(1 − η)q

(1 − γ )zs
l1−γ

}
+ f

(
cl − cs

l

cs
l

)
.

If we multiply with cs
l , sum over l ≥ L , and use the fact that due to (1.8) it follows that

cs
l ≤ C exp{− q

(1−γ )zs
l1−γ }, we find

q

(1 − γ )zs

∞∑
l=L

l1−γ |cl − cs
l | ≤ Cδ

1 − η

∞∑
l=L

exp

{
− ηq

(1 − γ )zs
l1−γ

}

+ 1

δ(1 − η)
F(c).

Now we observe that
∞∑

l=L

exp

{
− ηq

(1 − γ )zs
l1−γ

}
≤ C

∫ ∞

L
exp

{
− ηq

(1 − γ )zs
l1−γ

}
dl

≤ Cη exp

{
− ηq

(1 − γ )zs
L1−γ

}
.

Hence, if we choose L = 1, δ = √
F , and η = 1

2 , for example, we find (2.2). On the
other hand, if we choose δ = 1 and L = l0 and recall (1.30), we obtain

q

zs(1 − γ )

∞∑
l=l0

l1−γ |cl − cs
l | ≤ 1

1 − η
F(c(t))+ Cη,p O(ε p), (2.7)
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for any p < ∞. Since ∫ ∞

L
lx e−c0l1−γ

dl ∼ Lx+γ e−c0 L1−γ
, (2.8)

it follows
∞∑

l=l0

l1−γ cs
l ≤ Cpε

p

for any p < ∞, which together with (2.7) proves (2.3).

Now we are in the position to prove that the excess density is almost completely
contained in the clusters which are larger than l0.

Lemma 2.2. Under the assumption (1.27) we find for all t ≥ 0,∣∣∣∣∣
∞∑

l=l0

lcl(t)− (ρ − ρs)

∣∣∣∣∣ ≤ C lγ0
√

F(c(t))+ Cpε
p ≤ Cεγ (1/2−x),

with p < ∞ and x as in (1.30).

Proof. We conclude with (1.2), (1.9), (1.30), (2.2), and (2.8) that∣∣∣∣∣
∞∑

l=l0

lcl(t)− (ρ − ρs)

∣∣∣∣∣ =
l0−1∑
l=1

l(cl − cs
l )+

∞∑
l=l0

lcs
l

≤ Clγ0
√

F(c(t))+ Cpε
p.

In the following lemma we use the bound on the energy dissipation rate to derive a
bound on the flux Jl .

Lemma 2.3. Under the assumption (1.27) the following inequalities hold:

∫ ∞

0

∞∑
l=1

|Jl |2
max(alc1cl , bl+1cl+1)

dt ≤ ε1+γ−α F(c(0)) = ε1+2γ−α, (2.9)

∫ ∞

0
η(t)

∞∑
l=l0

lκ |Jl | dt ≤ C ‖η‖L2((0,∞))ε
1−α+γ−κ , (2.10)

for η ∈ L2((0,∞)) and κ ∈
[

1 − α − γ

2
,

1 − α

2

]
.

Proof. Inequality (2.9) is a direct consequence of (1.27), (2.1) and the fact that

(x − y) ln
(

x
y

)
≥ (x−y)2

max(x,y) .
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To see (2.10) we first use Cauchy-Schwarz’s inequality and recall (1.5), (1.6) to get

∞∑
l=l0

lκ |Jl | ≤ C

( ∞∑
l=1

|Jl |2
max(alc1cl , bl+1cl+1)

)1/2 ( ∞∑
l=l0

l2κ+αcl

)1/2

.

Now we use Hölder’s inequality to find

∞∑
l=l0

l2κ+αcl ≤
( ∞∑

l=l0

lcl

)x1
( ∞∑

l=l0

l1−γ cl

)x2

,

with

x1 = 2κ + α + γ − 1

γ
and x2 = 1 − 2κ − α

γ
,

with the requirement that 1 −α ≥ 2κ ≥ 1 −α− γ . Summarizing these inequalities and
using (1.2), (2.3), and (2.9) we find

∫ ∞

0
η(t)

∞∑
l=l0

lκ |Jl | ds ≤ C‖η‖L2((0,∞)) ε
(1−α)/2+γ ε(1−2κ−α)/2,

which finishes the proof of the Lemma.

The bound on the flux now enables us to show that the tightness property (1.33) is
preserved in time.

Lemma 2.4. If (1.27) and (1.33) hold, then for all t ≥ 0,

∞∑
l=[M /ε]

lcl(t) → 0, as M → ∞ uniformly in ε > 0.

Proof. Let N � M � 1 and let φ ∈ C1(R+) be a cut-off function such that φ(l) = 0
for l ≤ M

2ε and l ≥ 2N
ε

, φ(l) = 1 for M
ε

≤ l ≤ N
ε

and such that φ′ ≤ C ε
M for l ∈ (M

2ε ,
M
ε
)

and |φ′| ≤ ε
N for l ∈ ( N

ε
, 2N
ε
). Then we find using (1.2),

d

dt

∞∑
l=1

φ(l)lcl(t) = − 1

ε1−α+γ

∞∑
l=1

φ(l)l(Jl − Jl−1)

= 1

ε1−α+γ

∞∑
l=1

(φ(l + 1)(l + 1)− φ(l)l)Jl

= 1

ε1−α+γ

( ∞∑
l=1

φ(l + 1)Jl +
∞∑

l=1

(φ(l + 1)− φ(l))l Jl

)

≤ C

ε1−α+γ

( ∑
l≥[M /2ε]

|Jl | + ε

M

[M /ε]∑
l=[M /2ε]

l|Jl | + ε

N

[2N /ε]∑
l=[N /ε]

l1+αcl

)
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≤ C

ε1−α+γ

(( ε
M

)(1−α)/2 ∞∑
l=l0

l(1−α)/2|Jl |

+ ε

M

(
M

ε

)1−(1−α)/2 ∞∑
l=l0

l(1−α)/2|Jl | +
( ε

N

)1−α
)

≤ C

M (1−α)/2 ε
−(1−α)/2−γ

∞∑
l=l0

l(1−α)/2|Jl | + C
ε−γ

N 1−α .

Integrating over time and using (2.10) for κ = (1 − α)/2, we find

[N /ε]∑
l≥[M /ε]

lcl(t) ≤
[N /ε]∑

l≥[M /2ε]

lcl(0)+ C
t1/2

M (1−α)/2 + C
tε−γ

N 1−α .

If we let N tend to ∞, the assertion of the Lemma follows by (1.33).

2.2. Passage to the Limit

For the following we define the rescaled fluxes as signed measures {µεt }t ⊂ C0
0(R

+)∗ by∫
ζ(λ) dµεt := 1

ε1+γ−α

∞∑
l=l0

ζ(εl) Jl(t). (2.11)

For later purposes we also define

Dε := 1

ε1−α+2γ

∞∑
l=l0

Jl ln

(
alc1cl

bl+1cl+1

)
, (2.12)

and note that due to (2.1) the inequality∫ ∞

0
Dε(t) dt ≤ 1 (2.13)

holds.
Then the a priori estimates in Lemmas 2.1–2.4 translate into the following bounds

for νεt and µεt respectively:

sup
t∈(0,∞)

∫
λ1−γ dνεt ≤ C, (2.14)

sup
t∈(0,∞)

∣∣∣∣
∫
λ dνεt − (ρ − ρs)

∣∣∣∣ ≤ Cεγ (1/2−x), (2.15)

sup
ε→0

∫ ∞

M
λ dνεt → 0, as M → ∞ for all t ≥ 0, (2.16)

∫ ∞

0
η(t)

∫
λκ | dµεt | dt ≤ C‖η‖L2((0,∞)) (2.17)

for κ ∈
[

1 − α − γ

2
,

1 − α

2

]
.
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Furthermore we immediately conclude with (2.10) the following weak Hölder regularity
of νεt . For all t1, t2 ∈ [0,∞) and all ζ ∈ C1

0((0,∞)), we find for l̃ ∈ [l, l + 1],∣∣∣∣
∫
ζ dνεt1 −

∫
ζ dνεt2

∣∣∣∣ = 1

ε1−α+γ

∫ t2

t1

d

dt

∞∑
l=l0

ζ(εl) cl(t) dt

≤ 1

ε1−α+γ

∫ t2

t1

∞∑
l=l0

ζ ′(εl̃) |Jl(t)| dt

≤ 1

ε1−α+γ sup
λ

|ζ ′(λ)|
λ(1−α)/2 ε

(1−α)/2
∫ t2

t1

∞∑
l=l0

l(1−α)/2|Jl(t)| dt

≤ C sup
λ

|ζ ′(λ)|
λ(1−α)/2 |t1 − t2|1/2. (2.18)

The uniform bounds (2.14) and (2.18) ensure with Arzela-Ascoli that there exists a
weakly continuous family {νt }t of nonnegative Borel measures on (0,∞) such that for
a subsequence ∫

ζ dνεt →
∫
ζ dνt , locally uniform in t ∈ [0,∞), (2.19)

for ζ in a countable subset of C1
0((0,∞)). Again by (2.14), (2.15), and (2.16) we find

that we can extend the convergence in (2.19) to all ζ ∈ C0((0,∞)) which satisfy

lim sup
λ→∞

|ζ(λ)|
λ

< ∞ and lim
λ→0

|ζ(λ)|
λ1−γ = 0,

and this implies ∫
λ dνt = ρ − ρs, for all t ∈ [0,∞). (2.20)

In addition, the bounds (2.14) and (2.15) give by weak lower semicontinuity that

sup
t∈(0,∞)

q

zs(1 − γ )

∫
λ1−γ dνt ≤ 1. (2.21)

For the fluxes (2.17) ensures that there exists a signed measureµ ∈ C0
0((0,∞)×(0,∞))∗

such that for a further subsequence∫ ∫
ξ(λ, t) dµεt dt →

∫ ∫
ξ dµ, (2.22)

for all ξ ∈ C0
0((0,∞) × (0,∞)). The following lemma shows that µ is absolutely

continuous with respect to the limit density.

Lemma 2.5. There exists a function v ∈ L2(λ−α dνt dt) such that∫ ∫
ξ(λ, t) dµ =

∫ ∫
ξ(λ, t) v(λ, t) dνt dt,
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and for all t > 0 we find

1

zs

∫ t

0

∫ |v|2
λα

dνs ds ≤ lim inf
ε→0

∫ t

0
Dε(s) ds. (2.23)

Proof. We introduce dµ̃εt dt = λ−(1+α)/2dµεt dt. Due to (2.22) there exists for a sub-
sequence a weak∗ limit dµ̃ = λ−(1+α)/2dµ. With (2.9) we obtain for any T < ∞ and
ξ ∈ C0

0((0, T )× (0,∞)),∫ ∫
ξλ dµ̃εt dt =

∫ ∫
ξλ(1−α)/2 dµεt dt

= ε(α−1)/2−γ
∫ ∞∑

l=l0

ξ l(1−α)/2 Jl(t) dt

≤
(∫ T

0
Dε(t) dt

)1/2

·
(∫ ∞∑

l=l0

ξ 2l1−α max(alc1cl , bl+1cl+1) dt

)1/2

=
(∫ T

0
Dε(t) dt

)1/2

·
(

max

(
c1

∫ ∞∑
l=l0

ξ 2lcl ,

∫ ∞∑
l=l0

ξ 2l
(

zs + q

lγ

)
cl

))1/2

.

The right-hand side is uniformly bounded due to (1.2). We take a subsequence ε → 0
such that ∫ T

0
Dε(t) dt → lim inf

ε→0

∫ T

0
Dε(t) dt =: K ,

and we find for fixed ξ that∫ ∫
ξλdµ̃t dt ≤

(
Kzs

∫ ∫
ξ 2λ dνt dt

)1/2

.

Since continuous functions with compact support are dense in L2(λdνt dt), there exists
by Riesz a function ṽ ∈ L2(λdνt dt) such that∫ ∫

ξλ dµ̃ dt =
∫ ∫

ξ ṽλ dνt dt,

and we have ∫ ∫
ξλṽ dνt dt ≤

(
Kzs

∫ ∫
ξ 2λ dνt dt

)1/2

. (2.24)

With v = λ(1+α)/2ṽ the first part of the lemma is proved. By approximation we can also
take ξ = v

zsλ(1+α)/2 in (2.24), and the second part follows.
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From now on we fix a subsequence ε → 0 such that the convergence in (2.19) and
(2.22) holds. Notice that

∂t νt + ∂λ(v νt ) = 0 (2.25)

holds in the sense of distributions.
The next lemma provides weak convergence in L2, and consequently a bound, for

uε(t) and it identifies the structure of v.

Lemma 2.6. There exists u ∈ L2
loc([0,∞)) such that

uε ⇀ u, in L2
loc([0,∞)), (2.26)

and

v(λ, t) = λα
(

u(t)− q

λγ

)
, for a.a. t and νt − a.e. in R

+. (2.27)

Proof. We choose for any given T < ∞,

η = η(t) ∈ L2((0, T )) and ζ = ζ(λ) ∈ C1
0((0,∞)).

We will show∫ T

0
η

∫
ζ dµεt dt =

∫ T

0
η

(
uε
∫
ζλα dνεt − q

∫
ζλα−γ dνεt

)
dt

+
∫ T

0
ηω(ζ, t, ε) dt, (2.28)

with

sup
t∈(0,∞)

|ω| ≤ C sup
λ∈(0,∞)

|ζ ′(λ)| ε1−γ
(∫

supp(ζ )
λα dνεt + εγ

∫
supp(ζ )

λα−γ dνεt

)
.

Notice that, once we have proved (2.28) as well as (2.26), the formula (2.27) follows
directly. To prove (2.28) we recall with (1.5), (1.6), and (2.11) that∫

ζ dµεt = 1

ε1−α+γ

∞∑
l=l0

ζ Jl

= 1

ε1−α+γ

∞∑
l=l0

ζal

(
(c1 − zs)− q

lγ

)
cl(t)

− 1

ε1−α+γ

∞∑
l=l0

ζ(bl+1cl+1 − blcl).

Now, since ζ has compact support,

∞∑
l=l0

ζ(εl)(bl+1cl+1 − blcl) =
∞∑

l=l0

(ζ(ε(l − 1))− ζ(εl))blcl ,
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and hence taking into account (1.6) and (1.31),∫
ζ dµεt =

∫
ζλα

(
uε(t)− q

λγ

)
dνεt

− 1

εγ

∫
(ζ(λ− ε)− ζ(λ))λα

(
zs + qεγ

λγ

)
dνεt .

Then (2.28) follows, since |ζ(λ− ε)− ζ(λ)| ≤ ε supλ |ζ ′|.
We know by (2.19) that

zε(t) :=
∫
ζλα dνεt →

∫
ζλα dνt =: z(t),

and ∫
ζλα−γ dνεt →

∫
ζλα−γ dνt

locally uniform in t ∈ [0,∞). Furthermore, due to (2.20) we can find for all T < ∞ a
ζ and a constant cT > 0 such that

z(t) ≥ cT and consequently zε(t) ≥ cT

2
, (2.29)

for t ≤ T and for sufficiently small ε. For η ∈ C0([0, T ]) we find with (2.28) that∫
ηuεzε dt =

∫ ∫
ηζ dµεt dt + q

∫ ∫
ηζλα−γ dνεt dt +

∫ ∫
ηω

→
∫ ∫

ηζv dνt dt + q
∫ ∫

ηζλα−γ dνt dt.

Since C0
0([0, T )) is dense in L2((0, T )) and v ∈ L2(λ−α dνt dt), the bound (2.10) also

ensures that the above convergence holds for η ∈ L2((0, T )).
Hence, uεzε → z̃ in L2

loc([0,∞)). Since zε → z uniformly and due to (2.29), the
assertion of the lemma follows.

The energy estimate (1.37) is now an immediate consequence of (2.1), (2.3), (2.23),
and (2.27).

We still do not have an explicit expression for u(t). Formally, we conclude from the
equation for νt and density conservation (2.15) that (1.36) holds. However, we do not
a priori know whether the lower moments are finite. One can show that the moments
are finite for almost all times, but we omit the proof here since it is not very useful to
proceed further.

With some additional assumptions on α and γ (which include all cases interesting
for applications), we can conclude that these moments are integrable in time and (1.36)
holds for almost all times.

Lemma 2.7. If α ≥ 1 − 3γ , the formula

u(t) = q
∫
λα−γ dνt∫
λα dνt

holds for almost all t > 0.
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Proof. We first note

∫ ∫
|v| dνt dt ≤

(∫ ∫ |v|2
λα

dνt dt

)1/2 (∫ ∫
λα dνt dt

)1/2

. (2.30)

Let us for the moment assume that∫
λα dνt ∈ L1((0, T )), (2.31)

for any T < ∞. Then, due to (2.30) and density conservation (2.20), we can conclude
that

∫
v dνt = 0 for almost all t . This follows by an approximation argument: For any

0 ≤ t1 < t2 < ∞ and a suitable cut-off function ζδ(λ), we find with (2.25),∫ t2

t1

d

dt

∫
ζδλ dνt dt =

∫ t2

t1

∫
ζδv dνt dt +

∫ t2

t1

∫
ζ ′
δλv dνt dt. (2.32)

Now the last term on the right-hand side can be estimated as∫ t2

t1

∫
ζ ′
δλv dνt dt ≤

∫ t2

t1

[
1

δ

∫ 2δ

δ

λ|v| dνt + δ

∫ 2/δ

1/δ
λ|v| dνt

]
dt

≤ C
∫ t2

t1

[∫ 2δ

δ

|v| dνt +
∫ 2/δ

1/δ
|v| dνt

]
dt

→ 0, as δ → 0.

Since the term on the left-hand side of (2.32) converges to zero as δ → 0 due to (2.20)
and the first term on the right-hand side converges to

∫ ∫
v dνt dt due to the integrability

of v, we find
∫
v dνt = 0 for almost all t . The formula for u follows then from (2.27).

Let us now investigate when (2.31) holds. We first note that if α ≥ 1 − γ , it follows
from (2.20) and (2.21) that

∫
λα dνt ∈ L∞((0,∞)). Otherwise we can conclude that∫

λ1−γ−αv dνt ∈ L2((0, T )). This follows from

∫ T

0

(∫
(0,1)

λ1−γ−αv dνt

)2

dt ≤
∫ (∫ |v|2

λα
dνt

∫
(0,1)

λ2−2γ−α dνt

)
dt

≤ C sup
t∈(0,T )

∫
(0,1)

λ2−2γ−α dνt ,

which is bounded if 1−γ ≥ α. Hence, due to v = λα(u(t)− q
λγ
), we find

∫
λ1−2γ dνt ∈

L2((0, T )), and consequently
∫
λα dνt ∈ L2((0, T )) if α ≥ 1 − 2γ .

Furthermore,

∫ T

0

∣∣∣∣
∫
(0,1)

λ1−2γ−αv dνt

∣∣∣∣ dt ≤
(∫ ∫ |v|2

λα
dνt dt

)1/2 (∫ ∫
(0,1)

λ2−4γ−α dνt dt

)1/2

.

The second factor is bounded for α ≤ 1 − 2γ , and we find in this case
∫
λ1−3γ dνt ∈

L1((0, T )), which finishes the proof of the lemma.
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2.3. Further Regularity

In this section we show that for a certain range of coefficients the total number density
is indeed decreasing for all times.

Let us explain the general difficulties we face if we want to prove such a statement.
Naively, we would expect in the case α ≥ γ that, even if

∫
dν0 is not finite, after an

initial time layer, the mass sitting at zero would be transported to the left and afterwards∫
dνt would decrease. This in particular would imply that u(t) is bounded for all t > 0.

Slightly less ambitious, one would like to show that this scenario is true, if
∫

dν0 < ∞.
For this setting, uniqueness of solutions has been shown in [22] (see also [14] for a study
of L1-solutions). As a consequence one obtains the following: If for a sequence ε → 0,
it is satisfied that νε0 ⇀ ν0, we have νεt ⇀ νt for all t , and νt is the unique solution of
(1.34), (1.35).

However, the proof that
∫

dνt is indeed decreasing turns out to be difficult. The main
reason is that

∫
dνt is not necessarily continuous in time, so we cannot use a bootstrap-

type argument. Another strategy is to regularize either νt or u(t), but then we have to
prove that the regularized solution converges to the original one, which either requires
a uniqueness result for the limit equation, which is not available for u ∈ L2((0, T )), or
a strong type of convergence. The following Lemma 2.8 shows that we can prove the
latter for a certain range of coefficients.

Before we proceed, we remark that another approach to improve the regularity of the
solution would be to rigorously justify an additional energy-type estimate. Indeed, one
easily checks that formally the following formula is satisfied for γ > 1/2:

d

dt

(
q2

z2
s (1 − 2γ )

∫
λ1−2γ dνt

)
= − u

z2
s

∫
(λαu − qλα−γ )2

λα
dνt

− q

z2
s

∫
(λαu − qλα−γ )2

λα+γ dνt .

A rigorous justification would give additional bounds on lower moments by proceeding
as in the proof of Lemma 2.7.

Lemma 2.8. Assume that

α > γ and α ≥ 1 − γ, (2.33)

and ∫
dν0 =: C0 < ∞. (2.34)

Then
∫

dνt is decreasing for all t > 0.

Proof. For the proof we use an equivalence between size distributions νt and so-
called size orderings, which is also useful in the study of uniqueness of solutions
(cf. [20], [22]).

For that, we introduce the cumulative distribution

ϕ(λ) :=
∫ ∞

λ−
dνt ,
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which is decreasing and left continuous at jumps. Next we take the inverse of ϕ, such
that we regard λ as a function of ϕ. The precise definition is

λ(t, x) := sup{y | ϕ(t, y) > x},
such that λ(t, ·) is decreasing and right continuous. If νt is a weak solution of (1.34),
(1.35), then λ satisfies

∂tλ(t, ϕ) = λα(t, ϕ)u(t)− λα−γ (t, ϕ), for a.e. t, if λ(t, ϕ) > 0,∫ ∞

0
λ(t, ϕ) dϕ =

∫ ∞

0
λ0(ϕ) dϕ,

and vice versa. The equivalence of these concepts of solutions has been established in
[20], [22].

We notice that ∫
dνt = sup{ϕ | λ(t, ϕ) > 0} =: ϕ̄(t).

Hence, our aim is to show that if ϕ̄(0) < ∞, then it is decreasing in time.
For the proof, we first recall that due to α ≥ 1 − γ and u ∈ L2

loc([0,∞)), we have∫
λα(t, ϕ) dϕ ∈ L∞((0,∞)) and

∫
λα−γ (t, ϕ) dϕ ∈ L2

loc([0,∞)).

Let ψη be a standard Dirac sequence. We extend u(t) by zero to (−∞, 0) and let
uη := u ∗ ψη, such that uη is bounded uniformly in time in any finite interval.

We now define λη as the solution of

∂tλη = λαηuη(t)− λα−γ
η , as long as λη(t, ϕ) > 0,

λη(0, ϕ) = λ0(ϕ). (2.35)

With given bounded uη, a solution is easily constructed by solving the corresponding
differential equation in each point ϕ. Again, since uη is bounded, once λ(tϕ, ϕ) = 0 it
remains zero for all t > tϕ . Hence ϕ̄η := sup{ϕ | λη(t, ϕ) > 0} is decreasing in time.

We now argue that if λ(t, ϕ) denotes the size ordering corresponding to νt , then∫ ∞

0
|λη(t, ϕ)− λ(t, ϕ)| dϕ → 0, as η → 0 for all t > 0, (2.36)

if (2.33) is satisfied.
Assume for the moment that (2.36) holds, which immediately implies for almost all

t that ϕ̄(t) ≤ ϕ̄η(t) ≤ ϕ̄(0) = C0. Then

u(t) =
∫
λα−γ (t, ϕ) dϕ∫
λα(t, ϕ) dϕ

≤ (
∫
λ(t, ϕ) dϕ)α−γ (ϕ̄(t))1−α−γ∫

λα(t, ϕ) dϕ

≤ CC1−α−γ
0∫

λα(t, ϕ) dϕ
.
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However, since
∫
λ(t, ϕ) dϕ ≡ const. for all t ≥ 0, we find that for t ≤ T it must hold

that
∫
λα(t, ϕ) dϕ ≥ cT > 0. Hence, for any finite time interval, u is bounded. But then

again, as in the argument for ϕ̄η, ϕ̄(t) = ∫
dνt is indeed decreasing for all t > 0.

To prove (2.36) we first notice that λη − λ satisfies

∂t (λη − λ) = uη(λαη − λα)− (λα−γ
η − λα−γ )+ λα(uη − u)

=: f (λ̃)(λη − λ)+ λα(uη − u), (2.37)

for some λ̃(t, ϕ) ∈ (λη(t, ϕ), λ(t, ϕ)) with

f (λ) := αλα−1uη − (α − γ )λα−γ−1.

We find by elementary calculus that f attains its maximum at

λ0 =
(

1

uη
(α − γ )(α − γ − 1)

α(α − 1)

)1/γ

=: (uη)−1/γ cα,γ ,

and due to α > γ we find λ0 > 0. Hence, this implies

f (λ0) ≤ Cα,γ (u
η)1−(α−1)/γ ≤ Cα,γ (u

η)2, (2.38)

where the last inequality follows if α ≥ 1 − γ . Since u ∈ L2
loc([0,∞)), we have

(λη−λ)(·, ϕ) ∈ H 1
loc([0,∞)) for all ϕ, and thus it follows that ∂t (λη−λ)sign(λη−λ) =

∂t |λη − λ| (cf. e.g. [12], Lemma 7.6). Now, we multiply (2.37) by sign(λη − λ) and
integrate to obtain that

∫ ∞

0
|λη(t, ϕ)− λ(t, ϕ)| dϕ ≤

∫ t

0
|uη − u|

∫ ∞

0
λα(s, ϕ) dϕ

∫ t

0

∫ ∞

0
f (λ̃)|λη(s, ϕ)− λ(s, ϕ)| dϕ ds

and (2.38) implies

∫ ∞

0
|λη(t, ϕ)− λ(t, ϕ)| dϕ ≤

∫ t

0
|uη − u|

∫ ∞

0
λα(s, ϕ) dϕ

+ C
∫ t

0
|uη|2

∫ ∞

0
|λη(s, ϕ)− λ(s, ϕ)| dϕ ds.

Now
∫
λα(t, ϕ) dϕ ∈ L∞((0, T )), uη → u in L2((0, T )) and uη is uniformly bounded

in L2((0, T )) for any T < ∞. Hence we obtain (2.36) via Gronwall’s lemma.

2.4. A Sequence of Data Mimicking Nucleation

In this section we construct a sequence of data which is motivated by numerical simula-
tions of the large-time behavior of the Becker-Döring equations in [5].
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A striking similarity is observed between the following two scenarios. First, one
computes for given density ρ and finite system size n the equilibrium solution cn = (cn

l ),
given by

cn
l = Ql z

l
n, l ≤ n,

zn such that
n∑

l=1

lcn
l = ρ. (2.39)

Clearly, for given ρ > ρs and n there exists zn > zs such that (2.39) is satisfied.
Furthermore, as n → ∞, it must hold that zn → zs , since otherwise (2.39) could not be
satisfied.

If one plots zn versus n (cf. Fig. 2.2 in [5]), one observes that zn decreases rapidly for
small n before it reaches a plateau where the rate of change with n is extremely small.
The width of this plateau rapidly increases as ρ − ρs decreases.

In the simulations for the Becker-Döring equations with data c1(0) = ρ, one obtains
the same picture: First c1(t) decreases rapidly, then it reaches a plateau, which corre-
sponds to the metastable state (with the same value as the plateau for zn), before it finally
converges steadily to equilibrium (cf. Fig. 4.1 in [5]).

These observations suggest that in order to mimic nucleation of large clusters, i.e., the
way the system leaves the metastable state, one might consider the sequence of equilibria
for finite system size n, and replace t → ∞ by n → ∞.

More precisely, we define for given ε > 0 a number n = n(ε) and cn = (cn
l ) such

that

cn
l =

{
Ql zl

n : l = 1, . . . , n

0 : l ≥ n
,

with zn such that (2.39) is satisfied and n is such that

F(cn−1) :=
n−1∑
l=1

cn−1
l

(
ln

(
cn−1

l

cs
l

)
− 1

)
+ cs

l

≥ εγ

>

n∑
l=1

cn
l

(
ln

(
cn

l

cs
l

)
− 1

)
+ cs

l = F(cn). (2.40)

Indeed, this is possible, since F(cn) → 0 as n → ∞, which follows from the
continuity of F under weak∗ convergence, which has been established in [2]. For the
convenience of the reader, we show here that F(cn) → 0. For that we recall

F(cn) =
n∑

l=1

cs
l f

(
cn

l − cs
l

cs
l

)
,

with f (z) = (1 + z) ln(1 + z)− z. Since f (z) ≤ z2 and due to (1.8), we find for m < ∞
that

m∑
l=1

cs
l f

(
cn

l − cs
l

cs
l

)
≤

m∑
l=1

|cn
l − cs

l |2
cs

l

≤ Cem1−γ
m∑

l=1

|cn
l − cs

l |2, (2.41)

which for fixed m converges to zero, since zn → zs .
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On the other hand,

n∑
l=m

cn
l

(
ln

(
cn

l

cs
l

)
− 1

)
+ cs

l =
n∑

l=m

cn
l ln

1

cs
l

+
n∑

l=m

cn
l (ln cn

l − 1)+ cs
l , (2.42)

and with (1.8),

n∑
l=m

cn
l ln

1

cs
l

= q

zs(1 − γ )

n∑
l=m

l1−γ cn
l + o

(
n∑

l=m

l1−γ cn
l

)
. (2.43)

Furthermore, for small η > 0,

n∑
l=m

cn
l (ln cn

l − 1) ≤ C

(
n∑

l=m

|cn
l |1−η +

n∑
l=m

|cn
l |1+η

)

and

n∑
l=m

|cn
l |1+η ≤ ρη

n∑
l=m

|cn
l | ≤ ρ1+η

m
. (2.44)

In addition we estimate

n∑
l=m

|cn
l |1−η ≤

n∑
l=m

l2ηl−2η|cn
l |1−η

≤
(

n∑
l=m

l2η/(1−η)|cn
l |
)1−η ( n∑

l=m

l−2

)η

≤ ρ1−ηm3η−1m−η = ρ1−ηm2η−1. (2.45)

Finally, as we have seen now several times,

n∑
l=m

cs
l ≤ Ce−m1−γ

. (2.46)

Thus, summarizing (2.41)–(2.46), we find

F(cn) ≤ Cem1−γ
m∑

l=1

|cn
l − cs

l |2 + C

(
n∑

l=m

l1−γ cn
l + m−1+η

)

≤ Cem1−γ
m∑

l=1

|cn
l − cs

l |2 + C(m−γ + m−1+η).

Hence, we can first choose m large and then n large enough to conclude that F(cn) → 0
as n → ∞.
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Lemma 2.9. If (2.40) and (2.39) are satisfied, then the following inequalities hold:

1

C
εγ ≤ (zn−1 − zs) ≤ Cεγ , (2.47)

1

Cε
≤ n ≤ C

ε
, (2.48)

n∑
l=l0

cn
l ≤ Cε, (2.49)

with l0 as in (1.30), i.e., l0 = ε−x for some x ∈ (0, 1/2).

Proof. We first notice that due to cn−1
l > cs

l we have

εγ ≤ F(cn−1) =
n−1∑

l

cn−1
l ln

(
cn−1

l

cs
l

)
−

n−1∑
l

(cn−1
l − cs

l )

≤ ln

(
zn−1

zs

) n−1∑
l

l Ql z
l
n−1

= ln

(
zn−1

zs

)
ρ ≤ (zn−1 − zs)

zs
ρ, (2.50)

which proves the first inequality in (2.47).
Now we consider (2.39), i.e.,

ρ =
n−1∑
l=1

lcn−1
l =

n−1∑
l=1

l Ql z
l
n−1 ≈ zs

n−1∑
l=1

l exp

{
− q

zs(1 − γ )
l1−γ + l ln

zn−1

zs

}
. (2.51)

We recall that, for large l due to (1.8),

ln(l Ql z
l
n−1) ∼ l ln

(
zn−1

zs

)
− q

zs(1 − γ )
l1−γ + O(l1−2γ ).

Hence, (2.51) can only be satisfied if

(n − 1) ln

(
zn−1

zs

)
≤ C(n − 1)1−γ (2.52)

holds uniformly in n, and and with (2.50) we find

n − 1 ≤ C

ε
and n ≤ C + 1

ε
. (2.53)

To prove the lower bound on n, we first recall Lemma 2.1 which implies

n∑
l=1

l1−γ (cn
l − cs

l ) ≤ εγ /2, (2.54)

n∑
l=l0

l1−γ (cn
l − cs

l ) ≤ εγ . (2.55)
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First, we notice that (2.54) implies

εγ /2 ≥ 1

nγ

n∑
l=1

l(cn
l − cs

l ) = 1

nγ
(ρ − ρs),

such that

n ≥ 1

Cε1/2
, (2.56)

and in particular n � l0.
We now claim that for sufficiently small δ, one finds

n∑
l=δn

l(cn
l − cs

l ) ≥ ρ − ρs

2
. (2.57)

First, we recall

n∑
l=δn

l(cn
l − cs

l ) = ρ − ρs +
∞∑

l=n

lcs
l

−
δn∑

l=l0

l(cn
l − cs

l )−
l0∑

l=1

l(cn
l − cs

l ). (2.58)

With (2.53) and (2.56) we have

∞∑
l=n

lcs
l ≤ n1+γ e−c0n1−γ � ε.

Furthermore, using (2.54), we find

l0∑
1

l(cn
l − cs

l ) ≤ Clγ0 ε
γ /2 ≤ Cεγ (1/2−x).

Finally, (2.53) implies

δn∑
l0

l(cn
l − cs

l ) ≤ δnγ εγ ≤ Cδ,

and thus (2.57) follows from (2.58).
Now (2.57) implies together with (2.55) that

εγ ≥
n∑
δn

l1−γ (cn
l − cs

l ) ≥ 1

nγ

n∑
δn

l(cn
l − cs

l ) ≥ ρ − ρs

2nγ
,

and hence

n ≥ 1

Cε
. (2.59)

Then, the upper bound on zn−1 − zs follows from (2.52) and (2.59).
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Finally, to prove (2.49), we first notice that due to (2.59) we find for some δ > 0 that

n∑
δn

(cn
l − cs

l ) ≤ ρ − ρs

δn
≤ C

δ
ε.

On the other hand, for a suitable c0 > 0, one has

δn∑
l0

(cn
l − cs

l ) ≤
δn∑
l0

el ln
(

zn
zs

)
−c0l1−γ

.

For sufficiently small δ we have

l ln

(
zn

zs

)
− c0l1−γ ≤ −c0

2
l1−γ ,

for l ∈ (l0, δn). Hence

δn∑
l0

(cn
l − cs

l ) ≤ Clγ0 e− c0
2 l1−γ

0 ≤ Cε ,

if l0 satisfies (1.30). This finishes the proof of (2.49) and hence the proof of the lemma.

We remark that for the data constructed in this section the rescaled densities νε0
have uniformly compact support due to (2.48). However, even though the numerical
simulations suggest that this sequence of data resembles closely the average behavior
of the solutions, as well as the behavior of the small clusters, to conclude also on the
detailed behavior of the tail might be a bit daring.

3. Higher-Order Dynamics

In this section we go a step further than in Section 2 and provide a detailed asymptotic
expansion of solutions to the Becker-Döring equation in the parameter ε. In the first
part we compute the expansion of the equation, whereas the second part provides an
expansion of the energy identity of the Becker-Döring equations, which gives additional
energy-type identities on the different levels of the expansion.

3.1. Expansion of the Equation

In the following we describe in detail how to systematically derive an asymptotic expan-
sion for the solution of the Becker-Döring equations in the large-time regime, i.e., for
the solution of

∂t cl = 1

ε1−α+γ (Jl−1 − Jl), l ≥ 2, (3.1)
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where c1 is determined by

∞∑
l=1

lcl(t) = ρ, for all t ≥ 0. (3.2)

We choose the following ansatz for the expansion for the large and small clusters re-
spectively for some powers {xi }i , {yi }i , which have to be determined. In the following,
l0 will denote as before the cut between small and large clusters and can be chosen to be
l0 ∼ C | ln ε| or l0 ∼ ε−x , x ∈ (0, 1/2), for example.

Large cluster expansion:

cl(t) = ε2

(
ν0(t, λ)+

∞∑
i=1

εxi νi (t, λ)

)
, l ≥ l0, λ = εl, (3.3)

Small cluster expansion:

cl − cs
l = εγ

(
f0,l +

∞∑
i=1

εyi fi,l

)
, 2 ≤ l, (3.4)

where fi,l denotes the l-th component of a sequence fi .
Since the monomers play a special role, we use the following notation.
Monomer expansion:

c1 − zs = εγ

(
u0 +

∞∑
i=1

εyi ui

)
. (3.5)

The scale ε2 for the large clusters and εγ for the small clusters has been justified heuris-
tically in Section 1.4 of the introduction and rigorously in Section 2; hence, we do not
repeat the argument here.

For l ≥ l0 we write

Jl = (al(c1 − zs)− q/lγ )cl − (bl+1cl+1 − blcl)

≈ ε2−α+γ [(λα(u0 + · · ·)− qλα−γ )(ν0 + · · ·)
− ε1−γ ∂λ(zsλ

αν0 + · · ·)]
and find with (3.1) that

0 = ∂t

(
ν0 +

∞∑
i=1

εxi νi

)

+ ∂λ

(
λα

(
εy

(
u0 +

∞∑
i=1

εyi ui

)
− qεγ

λγ

)(
ν0 +

∞∑
i=1

εxi νi

)

− ε1−γ ∂λ

(
λα
(

zs + εγ q

λγ

)(
ν0 +

∞∑
i=1

εxi νi

)))
, (3.6)
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whereas the constraint (3.2) gives

ρ − ρs =
∞∑

l=l0

lcl −
∞∑

l=l0

lcs
l +

l0−1∑
l=1

l(cl − cs
l )

=
∫
λν0 dλ+

∞∑
i=1

εxi

∫
λνi dλ

+ εγ

(
l0−1∑
l=1

l f0,l +
∞∑

i=1

εyi

l0−1∑
l=1

l fi,l

)
+ o(ε). (3.7)

Collecting the leading order terms gives the now well-known

∂tν0 + ∂λ

(
λα
(

u0 − q

λ

)
ν0

)
= 0,∫

λν0 dλ = ρ − ρs, (3.8)

which implies

u0 = q
∫
λα−γ ν0 dλ∫
λα ν0 dλ

. (3.9)

As we have seen before, to leading order, the evolution of the large clusters decouples
from the evolution of the small clusters.

To compute higher-order expansions, we now turn to the small clusters. First, recall
that al zscs

l = bl+1cs
l+1 such that we can rewrite the flux as

Jl = alc1cl − bl+1cl+1

= al zs(cl − cs
l )− bl+1(cl+1 − cs

l+1)+ alc
s
l (c1 − zs)

+ al(c1 − zs)(cl − cs
l ), (3.10)

and with (3.4) we can write

Jl = εγ

(
J0,l +

∞∑
i=1

εyi Ji,l

)

with

J0,l = al zs f0,l − bl+1 f0,l+1 + alc
s
l u0 (3.11)

and

J1,l = al zs f1,l − bl+1 f1,l+1 + alc
s
l u1 + alu0 f0,l , (3.12)

etc. Now, (3.1) implies

0 = ε1−α+γ ∂t

(
f0,l +

∞∑
i=1

εyi fi,l

)

+ J0,l−1 − J0,l +
∞∑

i=1

εyi (Ji,l−1 − Ji,l), (3.13)
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for all l ≥ 2. Thus, we find

J0,l ≡ const. =: C0, for all l.

With (3.11) and (3.4) this implies that f0,l is determined by

f 0
1 = u0,

f0,l+1 = 1

bl+1
(al zs f0,l + alc

s
l u0 + C0). (3.14)

We see that, if C0 
= 0, then | f0,l | grows very fast as l → ∞, which would not agree
with (3.7). Hence, we conclude C0 = 0 and we easily derive by induction that

f0,l = l Ql z
l−1
s u0 = lcs

l

u0

zs
, for all l ≥ 1. (3.15)

Hence, f0,l is in quasi-steady equilibrium with the monomer-density u0, which is deter-
mined by the evolution of the large clusters. With (3.15) we compute

lim
l0→∞

l0−1∑
l=1

l f0,l = lim
l0→∞

u0

zs

l0−1∑
l=1

l2cs
l = u0

zs

∞∑
l=1

l2cs
l =:

u0

zs
�0, (3.16)

where the constant�0 only depends on the parameters in the system and can in principle
be computed explicitly.

Plugging (3.16) into (3.7), we find

x1 = γ

and ∫
λν1 dλ = −u0

zs
�0. (3.17)

Going back to (3.6) we see that a sensible expansion is possible if nγ = 1 for some
n = 2, 3, . . . . This is the case for all the examples given in Section 1.1, so we assume it
here. In addition, whether or not the second-order derivative plays a role depends now
on whether γ < 1

2 . In the first case we find

∂tν1 + ∂λ

(
λα
(

u0 − q

λγ

)
ν1 + u1λαν0

)
= 0, (3.18)

whereas if γ = 1
2 , as in two-dimensional cluster growth, (3.18) is replaced by

∂tν1 + ∂λ

(
λα
(

u0 − q

λγ

)
ν1 + u1λαν0

)
− ∂2

λ(zsλ
αν0) = 0. (3.19)

In both cases (3.17) is formally equivalent to∫
λα
(

u0 − q

λγ

)
ν1 + u1

∫
λαν0 = − d

dt

u0

zs
�0. (3.20)

This equation determines u1.
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Given u1, we go back to (3.10) and find that the term

al(c1 − zs)(cl − cs
l ) = ε2γ alu0 f0,l + o(ε2γ )

gives

y1 = γ.

From (3.13) it follows, since α < 1, that J1,l = const., but similarly as for J0,l we can
conclude that J1,l = 0 for all l. Then, f1,l is determined via

f 1
1 = u1,

f1,l+1 = 1

bl+1
(al zs f1,l + alc

s
l u1 + alu0 f0,l)

= 1

bl+1

(
al zs f1,l + alc

s
l u1 + al

cs
l

zs
l(u0)

2

)
, (3.21)

and thus, by induction we see that f1,l is given by

f1,l = cs
l

(
l
u1

zs
+ l(l − 1)

(
u0

zs

)2
)
. (3.22)

With this characterization of f1,l we can return to (3.7) to find x2 = γ . We compute

l0−1∑
l=1

l f1,l = u1

zs

l0−1∑
l=1

l2cs
l +

(
u0

zs

)2 l0−1∑
l=1

l2(l − 1)cs
l

→ u1

zs

∞∑
l=1

l2cs
l +

(
u0

zs

)2 ∞∑
l=1

l2(l − 1)cs
l

=:
u1

zs
�0 +

(
u0

zs

)2

�1,

and the equation for ν2 is given by by (3.6), which implies for γ = 1/3,

∂tν2 + ∂λ

(
λα
(

u0 − q

λγ

)
ν0 + λαu1ν

1 + λαu2ν0

)
= ∂λ(zsλ

αν0).

On the other hand, for γ = 1/2 we find

∂tν2 + ∂λ

(
λα
(

u0 − q

λγ

)
ν0 + λαu1ν

1 + λαu2ν0

)
= ∂λ(qλ

α−γ ν0 + zsλ
αν1),

and u2 has to be such that

u1

zs
�0 +

(
u0

zs

)2

�1 = −
∫
λν2 dλ
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is satisfied. We can summarize the general procedure:

Equation for large clusters + constraint ==> (ν0, u0)

Equation for small clusters + u0 ==> ( f0,l)l
Equation for large clusters + constraint + f0,l ==> (ν1, u1)

Equation for small clusters + u1 ==> ( f1,l)l
· · ·
· · ·

Obviously we can continue this procedure to compute even higher-order expansions.
We do not want to give the details here, but let us just mention that one obtains an
expansion in εγ and we notice that α enters at some later stage through (3.13), and a
useful expansion is possible if α is a multiple of γ (which is satisfied by the examples
in Section 1.1).

3.2. Expansion of the Energy Estimate

In this section we show how a careful expansion of the energy estimate for the Becker-
Döring equations enables one to identify further equalities in addition to (1.37).

For simplicity we confine ourselves in this section to the case of diffusion-controlled
cluster growth in 3D, i.e., to the specific coefficients α = γ = 1/3. We recall (2.1), i.e.,

F(c(t))+ 1

ε

∫ t

0
D(c(s)) ds = F(c(0)) = ε1/3, (3.23)

with

F(c(t)) =
∞∑

l=1

cl

(
ln

(
cl

cs
l

)
− 1

)
+ cs

l =
∞∑

l=1

cl f

(
cl − cs

l

cl

)
,

where f (z) = (1 + z) ln(1 + z)− z, and

D(c(t)) =
∞∑

l=1

Jl ln

(
alc1cl

bl+1cl+1

)
≥

∞∑
l=1

|Jl |2
max(alc1cl , bl+1cl+1)

. (3.24)

We first consider the energy for large clusters

Flarge :=
∞∑

l=l0

cl

(
ln

(
cl

cs
l

)
− 1

)
+ cs

l .

For that we compute with (1.8) that

ln

(
1

Ql zl
s

)
= ln

(
al

C0zs

)
+

l∑
k=2

ln

(
1 + q

zsk1/3

)

≈ ln

(
al

C0zs

)
+

l∑
k=2

(
q

zsk1/3
− q2

z2
s

1

2k2/3
+ · · ·

)

≈ ln

(
al

C0zs

)
+ ln C + 3q

2zs
l2/3 − 3q2

2z2
s

l1/3 + · · · ,
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and hence
∞∑

l=l0

cl ln

(
1

Ql zl
s

)
≈ 3q

2zs

∞∑
l=l0

l2/3cl − 3q2

2z2
s

∞∑
l=l0

l1/3cl + o

( ∞∑
l=l0

l1/3cl

)
. (3.25)

Furthermore, the remaining terms in Flarge can be estimated similarly to those in Sec-
tion 2.4 and thus shown to be of higher order:∣∣∣∣∣

∞∑
l=l0

cl(ln cl − 1)+ cs
l

∣∣∣∣∣ ≤ o

( ∞∑
l=l0

l1/3cl

)
.

Thus, (3.25) leads to

ε−1/3 Flarge = 3q

2zs

∫
λ2/3 (ν0 + ε1/3ν1 + · · ·)

− ε1/3 3q2

2z2
s

∫
λ1/3ν0 + · · · . (3.26)

For the small clusters we recall

Fsmall :=
l0−1∑
l=1

cl

(
ln

(
cl

cs
l

)
− 1

)
+ cs

l =
l0−1∑
l=1

cs
l f

(
cl − cs

l

cs
l

)
,

with f (z) = (1 + z) ln(1 + z) − z. For small z, a good approximation should be
f (z) ≈ 1

2 z2, and we write

Fsmall = 1
2

l0−1∑
l=1

(cl − cs
l )

2

cs
l

= ε2/3 1
2

l0−1∑
l=1

| f0,l |2
cs

l

+ o(ε2/3).

Recalling (3.15) and (3.16), we find

ε−2/3 Fsmall = |u0|2
2z2

s

l0−1∑
l=1

l2cs
l + o(1) = |u0|2

2z2
s

�0 + o(1).

Next, we expand the energy dissipation rate.
First, we recall that due to Jl = o(ε2/3) we have

ε−4/3
l0−1∑
l=1

Jl ln

(
alc1cl

bl+1cl+1

)
= o(ε1/3).

To expand the dissipation rate for the large clusters, we will make the assumption that
in view of (3.24) a good approximation is

ε−4/3 Dlarge := ε−4/3
∞∑

l=l0

Jl ln

(
alc1cl

bl+1cl+1

)

≈ 1

2ε4/3

∞∑
l=l0

|Jl |2
alc1cl

+ 1

2ε4/3

∞∑
l=l0

|Jl |2
bl+1cl+1

≈ 1
2

∫ |vε|2
λ1/3c1ν

+ 1
2

∫ |vε|2
λ1/3(zs + qε1/3

λ1/3 )ν
, (3.27)
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with

vε = (λ1/3u0 − q)ν0 + ε1/3[(λ1/3u0 − q)ν1 + u1λ1/3ν0] + o(ε1/3). (3.28)

We expand the denominators

1

λ1/3c1ν
= 1

λ1/3(zs + ε1/3u0 + · · ·)(ν0 + ε1/3ν1 + · · ·)

= 1

λ1/3zsν0

(
1 − ε1/3

(
u0

zs
+ ν1

ν0

)
+ o(ε1/3)

)
(3.29)

and

1

λ1/3(zs + qε1/3

λ1/3 )ν
= 1

λ1/3zsν0

(
1 − ε1/3

(
q

zsλ1/3
+ ν1

ν0

)
+ o(ε1/3)

)
. (3.30)

Thus, collecting (3.27)–(3.30), we find

ε−4/3 Dlarge =
∫
(λ1/3u0 − q)2

λ1/3zs
ν0

+ 2ε1/3
∫
(λ1/3u0 − q)2

λ1/3zs
ν1 + 2ε1/3

∫
(λ1/3u0 − q)ν0

− ε1/3
∫
(λ1/3u0 − q)2

λ1/3zs
ν1 − ε1/3

2

q

zs

∫
(λ1/3u0 − q)2

λ2/3zs
ν0

− ε1/3

2

u0

zs

∫
(λ1/3u0 − q)2

λ1/3zs
ν0 + o(ε1/3). (3.31)

However, since ∫
(λ1/3u0 − q)ν0 = 0,

equation (3.31) reduces to

ε−4/3 Dlarge =
∫
(λ1/3u0 − q)2

λ1/3zs
ν0

+ ε1/3
∫
(λ1/3u0 − q)2

λ1/3zs
ν1

− ε1/3

2

q

zs

∫
(λ1/3u0 − q)2

λ2/3zs
ν0

− ε1/3

2

u0

zs

∫
(λ1/3u0 − q)2

λ1/3zs
ν0 + o(ε1/3). (3.32)

Comparing now all the terms in the energy estimate (3.23) and requiring that the
terms with equal ε-powers add up to zero, we find first the well-known energy estimate
for ν0:

d

dt

(
3q

2zs

∫
λ2/3 ν0

)
+
∫
(λ1/3u0 − q)2

λ1/3zs
ν0 = 0.
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The terms with power ε1/3 give

d

dt

( |u0|2
2z2

s

�0 + 3q

2zs

∫
λ2/3 ν1 − 3q2

2z2
s

∫
λ1/3 ν0

)

+
∫
(λ1/3u0 − q)2

λ1/3zs
ν1 − q

2zs

∫
(λ1/3u0 − q)2

λ2/3zs
ν0

− u0

2zs

∫
(λ1/3u0 − q)2

λ1/3zs
ν0 = 0.

However, we notice that the terms with ν0 do not involve any higher-order terms, and
we expect that they should add up to zero. Indeed, one easily checks that

d

dt

(
3q2

z2
s

∫
λ1/3 ν0

)
+ q

zs

∫
(λ1/3u0 − q)2

λ2/3zs
ν0 + u0

zs

∫
(λ1/3u0 − q)2

λ1/3zs
ν0 = 0 (3.33)

as well as

d

dt

( |u0|2
2z2

s

�0 + 3q

2zs

∫
λ2/3 ν1

)
+
∫
(λ1/3u0 − q)2

λ1/3zs
ν1 = 0, (3.34)

which is just (3.35) for γ = 1/3.
It seems that (3.33) has in this form not been realized before, and we hope that it will

also be helpful in a study of the large-time behavior of ν0.
We conclude with the remark that the analogue of (3.34) for general coefficients

satisfying 1 − 2γ > 0 is given by

d

dt

(
�0
(u0)

2

2z2
s

+ q

1 − γ

∫
λ1−γ ν1 dλ

)
+ q

∫
(λαu0 − λα−γ )2

λα
ν1 dλ = 0. (3.35)

A. Appendix

A.1. Derivation of Coefficients

In this appendix we briefly describe the standard heuristic derivation of coefficients for
the Becker-Döring equations for diffusion-controlled and interface-reaction-controlled
cluster growth in a first-order phase transition. We assume that the clusters are compact,
that is, they have spherical shape, such that in three dimensions the radius rl of the cluster
is related to l by 4

3πr3
l = l.

To compute the rate at which a monomer is attached to an l-cluster, one solves the
steady-state diffusion equation for the local monomer density u with a sink boundary
condition at the cluster, i.e., u(rl) = 0, and the condition that, far away from the cluster,
it is equal to the overall monomer density, i.e., u(∞) = c1. We compute that u(r) =
c1(1−rl /r). The rate at which monomers hit the cluster is then given by −4πDr2

l u′(rl) =
4πDrlc1 with the diffusivity constant D, which implies

al = 4πDrl .



On the Evolution of Large Clusters in the Becker-Döring Model 153

The rate at which monomers leave an l-cluster is computed similarly, assuming there is a
sink of monomers at infinity and the density at the cluster boundary is in local equilbrium.
The corresponding value is given by the Gibbs-Thomson formula as zs(1 +�/rl), where
zs is the density of monomers in equilibrium with a plane surface and � is proportional
to surface tension. The solution to the quasi-steady diffusion field can again be computed
and we arrive at

bl = 4πDzs(rl + �) = al(zs + q/l1/3),

with q = ( 4π
3 )

1/3zs�.
For two-dimensional systems one proceeds analogously to obtain

al = 2πD and bl = 2πDzs(1 + �/rl) = al(zs + q/l1/2),

with q = π1/2zs�.
In interface-reaction-controlled systems, the rate of change of the cluster size is as-

sumed to be proportional to the surface of the interface times the difference between
monomer density inside and outside the cluster. In three dimensions that means that the
rate of change of cluster size is given by

4πr2
l k(c1 − c̄),

where k is a kinetic constant and c̄ the concentration of monomers in the cluster. Again,
if there is a sink of monomers, i.e., c̄ = 0, then the rate at which monomers are attached
is

al = 4πkr2
l = k(4π)2/331/3 l2/3,

whereas if there is a sink of monomers outside the cluster, and local equilibrium inside
the cluster, then

bl = 4πkr2
l zs

(
1 + �

rl

)
= al

(
zs + (4π /3)1/3zs�

l1/3

)
.

Analogously one obtains in two dimensions

al = 2πkrl = 2π1/2kl1/2

and

bl = 2πkrl zs

(
1 + �

rl

)
= al

(
zs + π1/2zs�

l1/2

)
.
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I am grateful to Philippe Laurençot for helpful comments on an early draft of Section 2.



154 B. Niethammer

References

[1] J. Ball and J. Carr. Asymptotic behavior of solutions to the Becker-Döring equations for
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