
Wu et al. European Radiology
https://doi.org/10.1007/s00330-024-11046-2

MUSCULOSKELETAL

Artificial intelligence assisted automatic
screening of opportunistic osteoporosis in
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Abstract

Objectives It is feasible to evaluate bone mineral density (BMD) and detect osteoporosis through an artificial
intelligence (AI)-assisted system by using quantitative computed tomography (QCT) as a reference without additional
radiation exposure or cost.

Methods A deep-learning model developed based on 3312 low-dose chest computed tomography (LDCT) scans
(trained with 2337 and tested with 975) achieved a mean dice similarity coefficient of 95.8% for T1–T12, L1, and L2
vertebral body (VB) segmentation on test data. We performed a model evaluation based on 4401 LDCT scans
(obtained from scanners of 3 different manufacturers as external validation data). The BMD values of all individuals
were extracted from three consecutive VBs: T12 to L2. Line regression and Bland‒Altman analyses were used to
evaluate the overall detection performance. Sensitivity and specificity were used to evaluate the diagnostic
performance for normal, osteopenia, and osteoporosis patients.

Results Compared with the QCT results as the diagnostic standard, the BMD assessed had a mean error of (− 0.28,
2.37) mg/cm3. Overall, the sensitivity of a normal diagnosis was greater than that of a diagnosis of osteopenia or
osteoporosis. For the diagnosis of osteoporosis, the model achieved a sensitivity > 86% and a specificity > 98%.

Conclusion The developed tool is clinically applicable and helpful for the positioning and analysis of VBs, the
measurement of BMD, and the screening of osteopenia and osteoporosis.

Clinical relevance statement The developed system achieved high accuracy for automatic opportunistic
osteoporosis screening using low-dose chest CT scans and performed well on CT images collected from different
scanners.

Key Points
● Osteoporosis is a prevalent but underdiagnosed condition that can increase the risk of fractures.
● This system could automatically and opportunistically screen for osteoporosis using low-dose chest CT scans obtained for
lung cancer screening.

● The developed system performed well on CT images collected from different scanners and did not differ with patient age or sex.
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Introduction
Osteoporosis is recognized as a latent metabolic bone
disease characterized by low bone mass and micro-
architectural deterioration resulting in increased bone
fragility [1–4]. Osteoporosis is underdiagnosed. It remains
asymptomatic for several years until the development of
fractures that limit daily life activities, especially for
elderly people [5–7]. As the population ages, the number
of patients in China with osteoporosis or osteoporotic
fractures is estimated to be 212 million and 5.99 million,
respectively, by 2050, which will lead to significant
increases in morbidity and mortality [8, 9]. Therefore,
early screening and monitoring of osteoporosis are crucial
for timely prevention and treatment of osteoporotic
fractures [10–12]. BMD is an important marker of bone
strength. Osteoporosis is diagnosed when the BMD falls
below a certain threshold and can also predict fracture
risk [1, 13–15]. Although dual-energy X-ray absorptio-
metry (DXA)-derived areal BMD is required for diag-
nosing osteoporosis according to the World Health
Organization criteria, Quantitative CT (QCT) is more
sensitive for monitoring bone loss and measuring trabe-
cular bone density because it is less affected by severe
degeneration of the spine, vascular calcification, oral
contrast agents, or body position [16–18]. Low-dose chest
computed tomography (LDCT) scans performed for lung
cancer screening, including lumbar spine images, can be
used to assess volumetric bone mineral density and screen
for osteoporosis simultaneously [19, 20].
Although QCT has been proposed as a relatively accu-

rate method for evaluating BMD, it requires appropriate
equipment to be deployed, which is expensive for many,
especially basic-level hospitals, to afford. In previous
studies [14, 21], conventional diagnostic CT scans were
used to measure BMD via direct measurement of the CT
values of cancellous bone, with correlation coefficients
ranging from 0.399 to 0.891. However, CT image analysis
requires frequent manual operations, including localiza-
tion of vertebral bodies (VBs) and extraction of the
volume of interest (VOI), which are heavy and redundant
tasks in large-scale osteoporosis screening [6, 22]. With
the current advancements in computational performance,
data processing, and the availability of large-scale datasets,
artificial intelligence (AI)-based medical image analysis
has played an essential role in extracting image features,
identifying lesion areas, and classifying disease types,
which provides helpful assistance in the diagnosis and
prevention of disease [23]. In particular, deep-learning
(DL) algorithms, especially convolutional neural network
(CNN) algorithms, have been applied to extract vertebral

CT values to determine BMD and related fractures from
CT images [11, 24]. DL is expected to replace manual
operation in BMD measurement, to liberate radiologists
for more important and meaningful tasks, and to reduce
the cost of osteoporosis screening [25, 26].
There have been a few studies reporting the application

of DL techniques for osteoporosis screening. Pan Yali et al
[27] developed a DL-based system to automatically mea-
sure BMD for opportunistic osteoporosis screening from
low-dose chest CT scans for lung cancer screening.
However, in this report, only images from a single CT
scanner were utilized for training and testing the DL-
based model. Yasaka et al [28] developed a DL model to
predict the BMD of lumbar vertebrae from unenhanced
abdominal CT images by using BMD levels obtained from
DXA as a reference. The model derived from this study
focused on the prediction of a real BMD but did not
provide information on VB location. Fang Yijie et al [29]
developed a deep CNN model to predict the BMD of
lumbar vertebrae (L1–L4) with BMD values obtained
from QCT as a reference. LDCT for lung cancer screen-
ing, which causes neither additional exposure nor sub-
stantial cost, is more common for spinal or abdominal CT
scans. Li Yali et al [30, 31] demonstrated that the qualities
of LDCT images obtained from various CT scanners sold
by five different manufacturers were comparable. The
linearity of CT values from those LDCT images was
unbiased and could be utilized to quantify the BMD
values accurately. However, few studies in the literature
have focused on the validation of DL-based automatic
osteoporosis screening models in LDCT images obtained
from different scanners because of their accuracy in
locating the thoracic and upper lumbar regions and in
calculating BMD values, which could be comparable to
those obtained from QCT.
In this study, we aimed to (I) identify the potential of CT

scans, which were originally used for lung cancer
screening, for both osteoporosis screening and bone
quality evaluation and (II) assess the performance of the
AI-based automatic osteoporosis screening model in both
locating the lumbar VB and calculating BMD values in CT
images obtained from different CT scanners.

Materials and methods
Study design
This retrospective, single-center study was approved by
the First Affiliated Hospital of Zhengzhou University’s
Institutional Review Board (No. 2021-KY-1222-002), and
the need for informed consent was waived. From the
electronic database of our hospital, we retrieved the data
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of individuals who underwent paired LDCT and QCT
examinations for screening both lung cancer and osteo-
porosis from September 2019 to January 2022. The col-
lected data were divided into two parts, and one part was
manually annotated to obtain the diagnostic standard for
segmenting vertebrae. It is used for training and testing to
explore the effect of different gender and age groups on
the model. The other part was used for external validation
to explore the effect of scanners from different manu-
facturers on the model. The development of a fully
automated BMD measurement system consisted of two
main steps. First, an end-to-end DL model was trained to
achieve automatic segmentation from the first thoracic
vertebra to the second lumbar vertebra (T1–T12, L1, and
L2). Second, the DL regression detection algorithm was
used to calculate the BMD from the twelfth thoracic
vertebra to the second lumbar vertebra (T12, L1, and L2).
The workflow is shown in Fig. 1.

Dataset
Individuals who had a history of prior spinal surgery or
primary or metastatic tumors were excluded. Finally, 7713
individuals were enrolled in this study. A total of 3312
LDCT scans were manually annotated by an experienced
radiologist for the contours and the anatomical names of
all VBs and were used to develop the DL-based system.
These images were randomly divided into a training set
(N= 2337) and a test set (N= 975). The categorization
process ensured that the gender distribution was balanced

and that the age distribution was realistic. The remaining
4401 unannotated LDCT scans obtained from 3 different
scanners (200 scans from GE, 2867 scans from Philips,
and 1334 scans from Siemens) were used as external
validation datasets to evaluate the developed system.

Data preparation
Data collection
We chose hospitals with QCT scanners from different
vendors to collect the data. QCT can be carried out
simultaneously with LDCT during plain-scan physical
examination. Both the low-dose chest CT images and the
corresponding BMD values could be collected via QCT.
In accordance with previous studies, all individuals were
scanned from the apical lung to the lower edge of L2 on
three different scanners at the same hospital ((I) Revolu-
tion CT, GE Healthcare; (II) Brilliance iCT, Philips Health
care; (III) Somatom Force, Siemens Healthineers). Non-
contrast chest CT was performed while the patient held
their mid-inspiratory breath. To calibrate the linear rela-
tionship between CT values and BMD values, QA phan-
tom data were acquired once a month by separately
scanning an asynchronous phantom (Mindways Software,
Inc.) with the same parameters as other scans. The scan
parameters are shown in Supplemental Table 1 [19]. BMD
values were recorded directly by the physician operating
the QCT equipment. The BMD values of all individuals
were extracted from three consecutive VBs, T12 to L2,
using QCT image analysis software (QCT Pro 6.1,

Fig. 1 Overview of this study
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Mindways Software, Inc.) [27]. The 9 mm-high VOIs
capturing the trabecular bone were manually placed in the
center of the targeted VBs, avoiding the basivertebral
veins, cortical bone, and any focal pathology [19]. Based
on the standard clinically utilized average BMD of L1–L2,
bone mass was categorized as normal (> 120 mg/cm³),
osteopenia (80–120mg/cm³), or osteoporosis (< 80mg/
cm³) [32]. The BMD values from T12 to L2 and the
assessment of bone mass constitute the final output of the
developed system.

Data annotation
The diagnostic standard of labeling specifications was
developed by three imaging physicians, two of whom were
annotators and one of whom was an arbitrator. The
annotator was a practising physician who had been
practising medical imaging diagnosis at a public medical
institution for more than 5 years, and the arbitrator was a
practising physician who had been practising medical
imaging diagnosis at a public medical institution for more
than 10 years [29]. The diagnostic standard was developed
as follows: two annotating physicians independently
reviewed the images, marked the target spine region in
their own images, and then passed their images and
annotation results to the arbitrator physician separately.
The arbitrator physician-reviewed and modified the
results of the two annotating physicians to form a unique
final annotation result.

Statistical analysis
Continuous variables with an abnormal distribution are
expressed as medians (IQRs), and categorical variables are
represented as frequencies. The chi-square test was car-
ried out to assess categorical variables. The Kruskal‒
Wallis test was used to compare abnormally distributed
continuous variables between the two datasets. The

Pearson correlation coefficient R was used in the corre-
lation evaluation for the bone density regression task. We
used the mean absolute error (MAE), coefficient of
determination (R2), and Bland‒Altman plot to evaluate
the overall regression detection performance. The Kol-
mogorov‒Smirnov test was used to test the normality of
all the continuous variables. p < 0.05 was considered to
indicate statistical significance. R software for Windows
(version 4.2.1) was used for the statistical analyses. Sen-
sitivity and specificity were used to evaluate the diagnostic
performance for normal, osteopenia, and osteoporosis
patients.

Results
Table 1 summarizes the demographic characteristics of all
patients (n= 3312) who were divided into a training set
(n= 2337) and a test set (n= 975). For all patients, the
median age was 54 years (IQR, 47–61 years), 1540 were
female (46.5%), and 1772 were male (53.5%). We then
divided the patients into four groups based on age dis-
tribution: under 45 years of age, between 45 and 55 years
of age, between 55 and 65 years of age, and over 65 years
of age, with 553 (16.7%), 1224 (37.6%), 989 (29.9%) and
526 (15.9%) patients, respectively. The median slice
number of each CT scan was 370 (IQR, 345–405). Age
and slice number exhibited statistically significant differ-
ences between the different groups (p < 0.05).
The segmentation results of the VBs for the test set are

shown below in Supplemental Fig. S2. The proposed
method achieved a mean Dice similarity coefficient (DSC)
of 95.8% for VB segmentation. The DSCs of the T12, L1,
and L2 vertebrae, which were the focus of the subsequent
BMD regression network, were 95.2%, 94.1%, and 95.6%,
respectively. Figure 2 shows the original images and the
AI automatic segmentation images of VBs from normal,
osteopenia, and osteoporosis patients.

Table 1 Baseline patient characteristics

Overall Train set Test set p-value

(N= 3312) (N= 2337) (N= 975)

Age Median (IQR) 54 (47, 61) 53 (47, 60) 55 (49, 61) < 0.0001

Age group (%) ≤ 45 553 (16.7) 434 (18.6) 119 (12.2) < 0.0001

45–55 1244 (37.6) 901 (38.6) 343 (35.2)

55–65 989 (29.9) 646 (27.6) 343 (35.2)

> 65 526 (15.9) 356 (15.2) 170 (17.4)

Sex (%) Female 1540 (46.5) 1090 (46.6) 450 (46.2) 0.8275

Male 1772 (53.5) 1247 (53.4) 525 (53.8)

BMI Median (IQR) 24.50 (22.30, 26.70) 24.20 (22.13, 26.37) 24.50 (22.40, 26.80) 0.172

Slicer number Median (IQR) 370 (345, 405) 370 (350, 463) 370 (345, 390) 0.0004

Wu et al. European Radiology Page 4 of 9



The experiments also evaluated the segmentation
performance of the model among different sex and age
groups, as shown in Table 2. For all VB segmentations
obtained from scanners from different manufacturers, R
was greater than 0.99, R2 was greater than 0.98, and the
MAE was less than 3.5. The test results showed that the
overall VB segmentation performance was better than
the segmentation performance of a specific VB. The
performance evaluation metrics of the segmentation
model in the male and female groups were very close to
each other; therefore, gender did not have a significant
influence on the segmentation network performance.
Similarly, there were no significant differences among
patients of different ages for the performance evaluation
metrics of the segmentation model, indicating that

patient age did not significantly affect segmentation
network performance.
The evaluation metrics indicating the overall perfor-

mance of the BMD regression algorithm model for dif-
ferent sex and age groups in the test set are shown in
Table 3. The Bland‒Altman plot of the test set is shown in
Fig. 3A, in which the abscissa is the mean value of the
predicted and actual BMD. The ordinate is the difference
between the predicted BMD and the actual value, and the
two dashed lines are the 95% consistency limits. The vast
majority of the differences are within this range. When
the algorithm model was applied to the validation dataset,
the overall correlation coefficient R was 0.994, the deter-
mination coefficient R2 was 0.987, and the MAE was 2.88.
To study the influence of the age of different patients on

Fig. 2 Segmentation masks with three categories were predicted by the AI model and visualized by ITK-SNAP (A1, A2) CT sagittal image (B1, B2) manual
segmentation (C1, C2) automated segmentation (D1, D2) automated VOI segmentation from T12–L2

Table 2 Overall segmentation results in different gender and
age groups on the test set

Type Distribution Overall DSC (%)

Gender Female 95.5

Male 96.0

Age group ≤ 45 96.1

45–55 95.9

55–65 95.5

Over 65 95.0

Table 3 Comparison of algorithm performance between
different genders and age groups on test set

Type Distribution MAE R R2

Test set 2.88 0.994 0.987

Gender Female 3.00 0.995 0.989

Male 2.75 0.993 0.985

Age group ≤ 45 2.29 0.995 0.989

45–55 2.63 0.993 0.986

55–65 2.85 0.987 0.973

Over 65 3.67 0.988 0.975
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the performance of the algorithm model, the patients
were divided into four groups based on their ages: under
45 years, 45–55 years, 55–65 years, and over 65 years.
There were no significant differences in algorithm per-
formance among the different sex and age groups.
There were 4401 patients in the external validation

datasets, including 2867 patients from Philips manu-
facturers (Set1), 1334 patients from Siemens manu-
facturers (Set2), and 200 patients from general
manufacturers (Set3). All the data were applied to the
previous segmentation network to obtain the vertebral
masks corresponding to T1–T12 and L1–L2. Linear
analysis of BMD values obtained from QCT and algo-
rithmic models based on T12, L1, and L2 vertebral
images from different manufacturers’ devices. The sta-
tistical results are shown in Table 4. A Bland‒Altman

plot comparing the BMD values obtained by using the
developed system and QCT with those obtained by
scanners from different manufacturers is shown in
Fig. 3B‒D. Most of the differences were within this
range. Compared with the QCT results as the diagnostic
standard, the BMD assessed by using the developed
algorithm model had a mean error of (− 0.28, 2.37) mg/
cm3, with the 95% consistency limits of Set1, Set2, and
Set3 falling in the ranges of (− 3.79, 3.67) mg/cm3,
(− 3.14, 2.58) mg/cm3 and (− 0.61, 5.35) mg/cm3,
respectively. Based on the results above, it could be
concluded that the BMD regression model exhibited an
accurate prediction, good generalization ability, and
robustness for CT scans obtained from all three different
scanners supplied by Philips, Siemens, and general
equipment manufacturers.

Fig. 3 Bland‒Altman plot comparing BMD values obtained by using the developed system and QCT on the test set (A) and on external validation sets
obtained from scanners of different manufacturers (B–D)
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We also converted the BMD values predicted by the
proposed algorithm model and obtained from QCT into a
three-class qualitative classification task for evaluation. A
confusion matrix is a cross-tabulation of the model’s
predicted results and the actual results. The predicted
results of the test set are shown in Fig. 4 (a confusion
matrix), and the higher the diagonal values are, the better
the model performance. However, the confusion matrix
only counts the number of cases, and it is difficult to
measure the quality of the model when a large amount of
data is available. Therefore, the confusion matrix extends
the following indicators based on the basic statistical
results: sensitivity, specificity, positive predictive value,
and negative predictive value. We calculated the above
evaluation indicators on the test set and three external

validation sets, as shown in Table 5. Overall, the sensi-
tivity of a normal diagnosis was greater than that of a
diagnosis of osteopenia or osteoporosis. The sensitivity of
the diagnosis of osteoporosis was greater in Set3 than in
the other two datasets, possibly due to the smaller sample
size of this test set compared to the other two datasets.
For the diagnosis of osteoporosis, the model achieved a
sensitivity of more than 86% and a specificity of more than
98% for different datasets, which could indicate excellent
performance.

Discussion
We proposed a model based on DL for fully automated
prediction of BMD from CT images with the bone density
values acquired from QCT as the gold standard. The
model could extract the T12, L1, and L2 vertebrae via
direct segmentation of VBs at the 3D level with the 3D-
UNet architecture [33]. Subsequently, the modified Den-
seNet121 network [34] was used for the end-to-end pre-
diction of BMD. We used 3312 cases of data after labeling
for the training and testing sets of the model and then
analyzed the robustness of the model among patients of
different genders and ages. A total of 4401 scans from
different CT scanners supplied by three different instru-
ment manufacturers were also collected as external vali-
dation sets to evaluate the stability of the algorithm across
different devices.
In terms of segmentation performance, our model had

an average DCE of 95.8% and showed good stability
among patients of different genders and ages. The seg-
mented VB targets in a previous study [29] were the

Table 4 Linear analysis of BMD values obtained from QCT and
from the algorithm model based on data collected from scanners
of different manufacturers on external validation sets

Different manufacturers VBs MAE R R2

Set1 T12 4.45 0.989 0.977

L1 4.31 0.987 0.974

L2 4.22 0.988 0.976

Overall 3.41 0.994 0.987

Set2 T12 3.35 0.995 0.990

L1 3.37 0.993 0.985

L2 3.59 0.992 0.985

Overall 2.60 0.997 0.993

Set3 T12 5.99 0.982 0.955

L1 4.47 0.988 0.971

L2 3.95 0.991 0.980

Overall 3.43 0.996 0.986

Fig. 4 Confusion matrix of the test set

Table 5 The diagnostic performance of normal, osteopenia,
and osteoporosis on test set and external validation sets

Dataset Sensitivity Specificity PPV NPV

Test set (N= 975)

Normal 96.65% 94.49% 91.05% 97.98%

Osteopenia 92.10% 93.72% 93.46% 92.42%

Osteoporosis 86.03% 99.52% 96.69% 97.78%

Validation Set1 (N= 2867)

Normal 98.17% 92.65% 91.89% 98.36%

Osteopenia 89.32% 95.51% 93.04% 93.02%

Osteoporosis 86.75% 99.64% 97.47% 97.89%

Validation Set2 (N= 1334)

Normal 99.41% 94.20% 94.67% 99.36%

Osteopenia 90.62% 96.61% 93.12% 95.32%

Osteoporosis 87.44% 99.65% 97.84% 97.74%

Validation Set3 (N= 200)

Normal 96.15% 97.97% 94.34% 98.64%

Osteopenia 93.41% 91.74% 90.43% 94.34%

Osteoporosis 87.72% 97.90% 94.34% 95.24%
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L1–L4 vertebrae, and the average segmentation accuracy
was approximately 82.3%. The task was trained based on
2D U-Net only, which missed the spatial features of
vertebrae and affected the subsequent analytical
results. A similar study [27] segmented T1–T6, T7–T12,
and L1–L2 separately based on a 2D network and sub-
sequently segmented the T12, L1, and L2 vertebrae using
a conventional image processing algorithm. The average
segmentation accuracy was 86.6%. Our approach, dif-
ferent from previous studies, was based on 3D image
analysis with an end-to-end network model to obtain
results for each individual VB segmentation, achieving
much greater accuracy than previous 2D models.
In terms of the accuracy of BMD regression prediction,

our model had a high R2 of 0.987 and an MAE of only
2.88 in the validation set. The MAEs for patients of
different sexes ranged from 2.75–3.00, and the MAEs for
patients of different age groups ranged from 2.29–3.67,
both of which demonstrated a high degree of stability.
We also collected CT scans from devices supplied by
three different manufacturers for validation of the
regression model. The model achieved R2 values of
0.987, 0.993, and 0.986 and R values of 0.994, 0.992,
and 0.996 in Set1, Set2, and Set3, respectively, with
MAEs in the range of 2.60–3.41. Compared to previously
reported studies [27, 29], our models achieved the best
performance.
We also evaluated the diagnostic efficacy of qualitative

osteoporosis screening based on the predicted BMD
values. The sensitivity of the model was greater than 86%
for osteoporosis and greater than 89% for osteopenia
among the validation set and different external validation
sets. It should be noted that the attribution of BMD
values at the discriminant boundary (80 and 120 mg/
cm3) could influence the diagnostic efficacy of the clas-
sification. Therefore, comparing the assessed BMD
values acquired from the algorithm models and those
from the QCT method to evaluate bone quality is more
reasonable than attributing patients to only three
classifications.
In summary, a clinically useful opportunistic osteo-

porosis screening tool has been developed based on DL
combined with CT images from various scanners of
different manufacturers. This tool achieves excellent
accuracy for both the 3D segmentation of VBs and the
regression prediction of BMD. Therefore, it has a strong
ability to screen for osteoporosis with high efficacy and
sensitivity. In the near future, the proposed model can be
further improved in the following aspects. More special
cases of patients with incomplete numbers of vertebrae
for various reasons (e.g., injury, surgery, congenital
abnormalities, etc.) should be collected and utilized to
train the model for further improvement of the precision

of VB localization and segmentation for those special
patients (approximately 5% of all patients). More data
should be collected from different hospitals or medical
centers all over China to further validate the applic-
ability, adaptability, and robustness of this proposed
osteoporosis screening and bone quality assessment
algorithm model.
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