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Predicting long-term outcomes in
patients with classical trigeminal neuralgia
following microvascular decompression with
an MRI-based radiomics nomogram: a
multicentre study
Shuo Li1, Hongjin Chen2, Jiahao Chen3, Xiaosheng Yang1, Weijie Zhong1, Han Zhou1, Xuchen Meng1,
Chenlong Liao1* and Wenchuan Zhang1*

Abstract
Objectives This study aimed to develop a clinical-radiomics nomogram to predict the long-term outcomes of
patients with classical trigeminal neuralgia (CTN) following microvascular decompression (MVD).

Materials and methods This retrospective study included 455 patients with CTN who underwent MVD from three
independent institutions A total of 2030 radiomics features from the cistern segment of the trigeminal nerve were
extracted computationally from the three-dimensional steady-state free precession and three-dimensional time-of-
flight magnetic resonance angiography sequences. Using the least absolute shrinkage and selection operator
regression, 16 features were chosen to develop radiomics signatures. A clinical-radiomics nomogram was
subsequently developed in the development cohort of 279 patients via multivariate Cox regression. The predictive
performance and clinical application of the nomogram were assessed in an external cohort consisting of 176 patients.

Results Sixteen highly outcome-related radiomics features extracted from multisequence images were used to
construct the radiomics model, with concordance indices (C-index) of 0.804 and 0.796 in the development and test
cohorts, respectively. Additionally, a clinical-radiomics nomogram was developed by incorporating both radiomics
features and clinical characteristics (i.e., pain type and degree of neurovascular compression) and yielded higher
C-indices of 0.865 and 0.834 in the development and test cohorts, respectively. K‒M survival analysis indicated that the
nomogram successfully stratified patients with CTN into high-risk and low-risk groups for poor outcomes (hazard ratio:
37.18, p < 0.001).

Conclusion Our study findings indicated that the clinical-radiomics nomogram exhibited promising performance in
accurately predicting long-term pain outcomes following MVD.

Clinical relevance statement This model had the potential to aid clinicians in making well-informed decisions
regarding the treatment of patients with CTN.
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Key Points
● Trigeminal neuralgia recurs in about one-third of patients after undergoing MVD.
● The clinical-radiomics nomogram stratified patients into high- and low-risk groups for poor surgical outcomes.
● Using this nomogram could better inform patients of recurrence risk and allow for discussion of alternative treatments.

Keywords Radiomics, Trigeminal neuralgia, Microvascular decompression, Nomogram

Introduction
Trigeminal neuralgia is characterized by paroxysmal and
electric shock-like pain in the sensory distribution area of
the trigeminal nerve [1]. Microvascular decompression
(MVD) is one of the most commonly performed and
effective surgical procedures for treating classical tri-
geminal neuralgia (CTN), and its mechanism of pain relief
is based on relieving neurovascular compression (NVC)
[2, 3]. However, approximately 30% of patients may
experience pain recurrence within 10 years after MVD [4].
If an accurate prognostic model is available, patients at
high-risk for poor outcomes following MVD can be fully
informed and offered alternative surgical options such as
percutaneous surgeries and Gamma Knife procedures.
While these procedures may entail more complications
and be less effective than MVD, they can still be a viable
option for these patients [3]. To identify patients with
CTN at high-risk for poor outcomes before surgery,
previous studies have evaluated certain clinical char-
acteristics [5–7]. Unfortunately, these characteristics
are insufficient for accurately and consistently
predicting patient prognosis across independent studies.
Panczykowski et al developed a scoring system that
demonstrated good discrimination for predicting MVD
outcomes but only achieved moderate discrimination
in an independent study by Ishaque et al [8, 9]. Conse-
quently, there is an urgent need to establish a prediction
model that offers greater accuracy and more stable
performance.
Three-dimensional steady-state free precession

(3D-SSFP) is a gradient-echo MRI sequence and
three-dimensional time-of-flight magnetic resonance
angiography (3D-TOF-MRA) sequence is based on the
phenomenon of flow-related enhancement [10, 11]. Both
sequences are integral to the routine management
of patients with CTN because they can provide the
desired anatomic information and identify responsible
vessels [10]. In recent years, NVC and trigeminal
nerve characteristics have been found to be used as
prognostic biomarkers for MVD outcomes [5, 12, 13].
However, pathological changes in the microstructure of
the cistern segment of the trigeminal nerve, such as
axonopathy, axonal loss, and demyelination, cannot
be observed or quantified by using conventional MRI-
based imaging tools. Fortunately, with advancements in

imaging technology, the concept of radiomics has
emerged. Radiomics is a novel tool that can analyze the
digitally encrypted information of medical images, thus
enabling non-invasive quantification of pathophysiology
throughout the entire lesioned tissue volume by
extracting specific features [14–18]. Radiomics features
of the cistern segment of the trigeminal nerve have the
potential to add extra predictive capability and stability
on traditional models. Although previous studies have
identified some texture features associated with NVC,
no study has focused on the predictive role of radiomics
signatures in predicting MVD outcomes [19–21]. Thus,
our objective was to to create a clinical-radiomics
nomogram that combines radiomics features and clin-
ical characteristics to predict MVD outcomes, with
external validation.

Materials and methods
Patient selection
This retrospective multicentre study was approved by the
review boards of all of the involved institutions, and the
need to obtain written informed consent was waived.
Six hundred thirty-five patients who were refractory to
medical treatment and who underwent MVD at three
hospitals from March 2016 to March 2023 were screened.
The diagnosis of TN and classification of different sub-
types followed the latest criteria established in 2018 by the
International Headache Society [22]. The inclusion cri-
teria for this study were patients with CTN who under-
went MVD and MRI examinations. The exclusion criteria
included: (1) patients diagnosed with idiopathic TN; (2)
those without suitable MRI examinations; (3) individuals
with an unidentified trigeminal root due to vertebrobasilar
dolichoectasia; (4) patients with a history of previous TN-
related surgeries; and (5) individuals who were lost to
follow-up. A flowchart illustrating patient selection and
screening is provided in Fig. 1.

Clinical characteristics and definitions
A response to initial medication was defined as experi-
encing no or tolerable pain after taking the medication,
whereas no response was defined as experiencing intol-
erable pain that needed additional treatments for control.
The pain type was categorized as either typical (purely
paroxysmal pain) or atypical (paroxysmal pain combined
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with concomitant continuous pain). Two independent
neuroradiologists reviewed all sequences to evaluate the
degree, location, and vessel type of NVC. The degree of
NVC was classified into three grades: I, II, and III. Grade I
indicated slight direct contact between the surrounding
vessels and the nerve, whereas grades II and III indicated
that the responsible vessels were compressing the nerve,
with grade III indicating nerve distortion [23]. To sim-
plify, the degree of trigeminal nerve compression was
classified into two levels: slight NVC (grade I) and severe
NVC (grade II or III). The vessel type of NVC was clas-
sified as artery, vein, or both artery and vein. The location
of the NVC was defined as the location of the most severe
compression, and the NVC was categorized as the prox-
imal segment (≤ 5mm from the pons) or the distal seg-
ment [24, 25].

Outcome evaluation and follow-up
All of the patients were followed up for at least 6 months
after MVD. Pain grade, medicine usage, and postoperative

complications were assessed by contacting patients via phone.
In cases where pain recurred, the duration from initial relief to
recurrence was recorded. Pain outcomes were evaluated and
scored by using the Barrow Neurological Institute (BNI) pain
intensity grades [26]. MVD outcomes were classified as
favorable if the pain was effectively relieved without the need
for medication (BNI I or II) 6 months after MVD and if there
was no relapse until the latest follow-up. A poor outcome
indicated that patients did not experience significant pain
relief upon discharge or pain recurrence during the follow-up
period (BNI ≥ IIIa). Pain-free survival (PFS) was defined as the
time period from the date of pain relief to the date of the first
recurrence or the last follow-up.

Image processing and radiomics feature extraction
The workflow of this radiomics study is depicted in Fig. 2.
Prior toMVD, all of the patients underwent 3D-SSFP and 3D-
TOF-MRA examinations within a month. The examination
protocols and the detailed scanner parameters are provided
in Supplementary Table 1. All of the DICOM images were

Fig. 1 Flowchart of patient recruitment and grouping
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imported into 3D-Slicer (version 4.9.0; http://www.slicer.org/)
to delineate the cistern segment of the trigeminal nerve on
each transverse section. The region of interest (ROI) was
independently delineated by two neuroradiologists at hospital
A and B, both of whom had more than 5 years of clinical
experience. Additionally, 50 randomly selected patients were
segmented twice by the neuroradiologist at hospital A after
1month. The reproducibility of the data was assessed by using
the intra and interclass correlation coefficients (ICC). When
considering the inconsistency of MRI scan parameters among
institutions, the segmented images of all patients were
resampled to a voxel size of 1 × 1 × 1mm to standardize the
normal image intensity distribution through z-score normal-
ization. A total of 2030 radiomics features were extracted and
categorized into three groups: geometry, intensity, and tex-
ture. The detailed explanations of these features and extrac-
tion methods are presented in Appendix E1.

Radiomics feature selection
The robust radiomics features were selected in four steps.
First, only features with high reproducibility (ICCs > 0.9)
were retained. Second, the Mann‒Whitney U-test was
applied to identify outcome-related features in each
sequence, and only those factors that achieved sig-
nificance at p < 0.05 were included in further screening.

Third, for features with high repeatability, Spearman’s
rank correlation coefficient was used to calculate the
correlation between the features. One of the features with
a correlation coefficient greater than 0.9 between any two
features was retained. To preserve the ability to depict
features to the greatest extent possible, a greedy recursive
deletion strategy was employed for feature filtering.
Finally, the least absolute shrinkage and selection operator
(LASSO) regression model was used on the discovery
dataset to construct radiomics signatures. The LASSO
method shrinks all of the regression coefficients towards
zero and sets the coefficients of many irrelevant features
exactly to zero, depending on the regulation weight λ. To
identify the optimal λ, a 10-fold cross-validation with
minimum criteria is employed, wherein the final value of λ
yields the minimum cross-validation error. The retained
features with nonzero coefficients were used for model
fitting and combined into a radiomics signature. Subse-
quently, a radiomics score was obtained for each patient
by a linear combination of the retained features weighted
by their model coefficients.

Model construction and validation
The patients in the development cohort were used to
identify the predominant features and to develop predictive

Fig. 2 Flowchart of the study. This study included radiomics feature extraction, radiomics and clinical feature selection, model building, validation, and
clinical application
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models. A clinical model was established based on inde-
pendent predictors of MVD outcomes through univariate
and multivariate Cox analyses with stepwise selection.
Three models based on 3D-SSFP features, 3D-TOF-MRA
features, and a combination of both were constructed,
respectively. Additionally, a clinical-radiomics nomogram
was developed that incorporated the radiomics signature
with the best performance and clinical data via multivariate

Cox regression analysis. The concordance index (C-index),
integrated Brier score (IBS), time-dependent receiver
operating characteristic (time-dependent ROC) curve, and
area under the curve (AUC) were generated to evaluate the
performance of the models. Decision curve analysis (DCA)
was also conducted to assess the clinical net benefits and
applicability of the nomogram at different threshold
probabilities. The calibration efficiency of the nomogram
was evaluated by using calibration curves and the
Hosmer–Lemeshow test. Furthermore, the performances
of various models were compared by using integrated dis-
crimination improvement (IDI).

Statistical analysis
Independent t tests were used to compare the continuous
variables, whereas χ2 tests were used to compare the
categorical variables. K‒M survival analysis was also
conducted to evaluate PFS at various time points, and the
log-rank test was applied to compare the results. Com-
parisons of variables, univariate and multivariate Cox
regression analyses, and K‒M survival analysis were per-
formed by using IBM SPSS Statistics 27.0 for Windows.
The PyRadiomics package (version 2.12) in Python 3.7.1
(https://www.python.org) was used to extract the radio-
mics features. The LASSO Cox regression model, time-
dependent ROC curve analysis, and DCA were performed
by using the ‘glmnet’, ‘timeROC’, and ‘stdca. R’ packages
in R version 4.2.1 (https://www.r-project.org), respec-
tively. The C-index was calculated by using the ‘survcomp’
package. A statistical significance level of 0.05 was set.

Results
Clinical characteristics of patients in various hospitals
After screening, a total of 455 patients were included in
the current study, with 279 from hospital A in the
development cohort and 176 from hospital B and C in the
test cohort. The baseline demographic and clinical char-
acteristics of the individuals in the development and test
cohorts are compared in Table 1. The median follow-up
periods for the development and test sets were 34 (ran-
ging from 6 to 89 months) and 35 (ranging from 6 to
91 months) months, respectively. During the follow-up
period, poor outcomes occurred in 63 patients (22.6%) in
the development cohort and 49 patients (27.8%) in the
test cohort. The PFS rates were similar between the two
study cohorts (p= 0.40, log-rank test) (Supplementary
Fig. 1). Supplementary Table 2 presents the baseline
characteristics of patients with poor and favorable out-
comes in both cohorts.

Establishment and performance of the clinical model
Univariate Cox analysis demonstrated that the NVC degree
(p < 0.001) and pain type (p < 0.001) were associated with

Table 1 Clinical characteristics of patients in the development
and test cohorts

Characteristic Development

cohort, (N= 279)

Test cohort,

(N= 176)

p value

Age, median (range), y 59 (22–78) 57 (23–78) 0.033

Sex 0.609

Female 170 (60.9%) 103 (58.5%)

Male 109 (39.1%) 73 (41.5%)

Side 0.157

Right 174 (62.4%) 98 (55.7%)

Left 105 (37.6%) 78 (44.3%)

Symptoms duration,

median (range), mo

19 (3–360) 46 (3–360) 0.000

Division 0.771

V1 7 (2.5%) 1 (0.6%)

V2 150 (53.8%) 95 (54.0%)

V3 49 (17.6%) 30 (17.0%)

V1+2 17 (6.1%) 12 (8.0%)

V1+2+3 5 (1.8%) 4 (2.3%)

V2+3 51 (18.3%) 32 (18.2%)

Degree of NVC 0.075

Severe 157 (56.3%) 84 (47.7%)

Slight 122 (43.7%) 92 (52.3%)

Vessel type of NVC 0.247

Vein 24 (8.6%) 10 (5.7%)

Artery 237 (84.9%) 159 (90.3%)

Both 18 (6.5%) 7 (4.0%)

Location of NVC 0.659

Proximal 149 (53.4%) 99 (56.3%)

Distal 122 (43.7%) 74 (42.0%)

Both 8 (2.9%) 3 (1.7%)

Response to

medication

0.098

Yes 221 (79.2%) 151 (85.8%)

No 58 (20.8%) 25 (14.2%)

Pain type 0.077

Typical 209 (74.9%) 140 (79.5%)

Atypical 70 (25.1%) 36 (20.5%)

No. of poor outcomes 63 (22.6%) 49 (27.8%) 0.205

Follow-up time,

median (range), mo

34 (6–89) 35 (6–91) 0.701

NVC neurovascular compression, V1,2,3 the first, second, and third branches of
the trigeminal nerve
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MVD outcomes in the development cohort (Supplemen-
tary Fig. 2). Variables with p < 0.1 were further analyzed by
using multivariate analysis with the ‘Forward LR’ method.
The results showed that slight NVC and atypical pain were
independent risk factors for poor outcomes (p < 0.001).
Subsequently, a clinical model was established, which
exhibited C-indices of 0.758 and 0.691 in the development

and test cohorts. The time-dependent ROCs and K‒M
curves of the development and test cohorts are presented in
Fig. 3.

Radiomics feature extraction and selection
A total of 2030 radiomics features were extracted for each
patient, including 396 first-order features, 28 shape features,

Fig. 3 Performance of the clinical signature in predicting pain outcomes. ROC curves of the ability of the clinical signature to predict 1-, 3-, and 5-year
PFS in the development (a) and test (c) cohorts. K‒M plots for PFS according to clinical factors in the development (b) and test (d) cohorts. PFS, pain-free
survival; HR, hazard ratio; ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve
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and 1606 texture features. Among these features, 2004
(1073 from the 3D-SSFP sequence and 931 from the 3D-
TOF-MRA sequence) showed excellent reproducibility,
with intraclass correlation coefficient value ranging from
0.915 to 0.999 and interclass values ranging from 0.902 to
0.998. The Mann‒Whitney U-test identified 467, 307, and
774 features that were strongly associated with MVD out-
comes from the 3D-SSFP, 3D-TOF-MRA, and combined
features, respectively. After applying the Spearman’s rank
correlation coefficient, only 80, 80, and 40 features were
retained. Finally, the Lasso-Cox regression model was

utilized, thus resulting in the retention of 7, 3, and 16
features with nonzero coefficients to construct 3D-SSFP,
3D-TOF-MRA, and their combination signatures (referred
to as radiomics signature) (Supplementary Fig. 3). The
formulas for the 3D-SSFP, 3D-TOF-MRA, and radiomics
signatures and the corresponding contribution coefficients
are presented in Appendix E2 and Supplementary Fig. 4.

Radiomics signature construction and validation
The AUC values for 1-, 3-, and 5-year PFS of the pre-
diction models based on 3D-SSFP and 3D-TOF-MRA, as

Fig. 4 Performance of the radiomics signature in predicting pain outcomes and the radiomics scores of each patient. K‒M plots for PFS according to
radiomics features in the development (a) and test (b) cohorts. Radiomics score for each patient in the development (c) and test (d) cohorts. PFS, pain-
free survival; HR, hazard ratio; ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve
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well as radiomics signatures, are presented in Supple-
mentary Fig. 5. The prediction model performed best
when the radiomics signature was used, with C-indices of
0.804 and 0.796 in the development and external valida-
tion cohorts, respectively. The prediction model based on
3D-TOF-MRA yielded C-indices of 0.705 and 0.665,
whereas the 3D-SSFP signature yielded C-indices of 0.682
and 0.708 in the development and external validation
cohorts, respectively. The radiomics signature, which
showed the best performance, discriminated patients at
high-risk from those at low-risk in the development
(HR: 9.25; 95% CI: 4.56–18.75; p < 0.001) and test
(HR: 6.78; 95% CI: 3.51–13.08; p < 0.001) cohorts. The
distributions of radiomics scores in the development and
test cohorts are presented in Fig. 4.

Construction and clinical application of the clinical-
radiomics nomogram
The NVC degree (HR: 4.29; 95% CI: 2.46–7.49; p < 0.001),
pain type (HR: 4.37; 95% CI: 2.576–7.43; p < 0.001), and
radiomics signature (HR: 20.02; 95% CI: 9.42–42.54;
p < 0.001) were identified as being independent predictors
through univariate and multivariate Cox analyses and
used to establish the clinical-radiomics model. The
clinical-radiomics model is presented as a nomogram to
provide individualized risk estimates (Fig. 5). The C-index
and IBS of the nomogram for predicting MVD outcomes
were 0.865 and 0.108, respectively, in the development
cohort and 0.834 and 0.141, respectively, in the
external test cohort. The clinical-radiomics nomogram
successfully stratified patients into high-risk and low-risk
categories in both the development (HR: 38.75; 95%
CI: 16.40–91.54; p < 0.001) and test (HR: 37.18; 95%
CI: 13.35–103.59; p < 0.001) sets (Fig. 6). In the test
cohort, low-risk patients had significantly higher 1-, 3-, and
5-year PFS rates (99.2%, 96.7%, and 94.9%, respectively)
than high-risk patients did (58.8%, 39.3%, and 17.4%,
respectively), as presented in Table 2. Additionally, sub-
group analysis was conducted and the clinical-radiomics
model performed better in patients with severe NVC
or typical pain than in those with slight NVC or atypical
pain. The performance of the clinical-radiomics model
for MVD outcome prediction in CTN patients with
various degrees of NVC and pain types is summarized in
Table 3. Calibration plots for the clinical-radiomics
nomogram demonstrated that the model-predicted 1-, 3-,
and 5-year PFS rates were well calibrated in both the
development (HoSmer–Lemeshow test, p= 0.718) and test
(HoSmer–Lemeshow test, p= 0.214) cohorts, as shown in
Supplementary Fig. 6. DCA graphically demonstrated that
the nomogram provided the largest net benefit across the
range of most threshold probabilities compared with the
other models (Supplementary Fig. 7).

Model comparison
The nomogram showed the best C-index, AUC, and
IBS scores compared with the other models at various
time points in both cohorts (Supplementary Fig. 8 and
Table 4). Furthermore, the nomogram indicated an
improved prediction performance with significantly
positive IDIs when compared to the clinical model in
predicting 1-, 3-, and 5-year PFS (Table 5). The radiomics
features added value for the prediction of MVD outcomes
in both the development and test cohorts at three dif-
ferent time points.

Discussion
This was the first multi-institutional study to construct a
clinical-radiomics nomogram to predict the risk of
poor outcomes in patients with CTN following MVD.
The clinical-radiomics nomogram based on two clinical
factors and 16 radiomics features from 3D-SSFP and
3D-TOF-MRA sequences showed good performance
in predicting long-term outcomes following MVD and
remained stable across multiple centers. Furthermore, the
nomogram outperformed both the clinical and radiomics
models in terms of prognostic ability and clinical utility.
The clinical-radiomics nomogram could accurately cate-
gorize CTN into high-risk and low-risk subgroups
for poor MVD outcomes in advance, thus suggesting that
our findings may provide value in guiding therapeutic
strategies.
Although MVD is widely accepted as being the most

effective modality for treating CTN, it is important to note
that not all patients are suitable for this procedure and the
choice of surgical intervention should be carefully con-
sidered after evaluating the corresponding risks and
benefits. For example, if pain recurs soon after MVD, this

Fig. 5 Clinical-radiomics nomogram developed in the test cohort to
predict 1-, 3-, and 5-year PFS
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approach may not be cost-effective due to the greater
risks associated with surgery and anesthesia compared to
other surgical options [27–29]. Therefore, the pre-
operative prediction of MVD outcomes is of great clinical
importance in developing personalized surgical plans.
Several clinical models have recently been developed by
using clinical characteristics and MRI findings [30–33].
However, these models have shown limited accuracy and

have not performed well in external cohorts. Similarly,
our clinical model based on pain type and NVC degree
showed acceptable discriminatory ability (C-index=
0.758) in the development cohort, whereas it did not
perform well in the external validation cohort and only
showed low discrimination (C-index= 0.691) [34].
Given that clinical information and NVC characteristics

only reflect certain aspects of CTN, we introduced

Fig. 6 Performance of the nomogram in predicting pain outcomes. ROC curves of the nomogram for 1-, 3-, and 5-year PFS in the development (a) and
test (b) cohorts. K‒M plots for PFS according to the nomogram in the development (c) and test (d) cohorts. PFS, pain-free survival; HR, hazard ratio; ROC,
receiver operating characteristic; AUC, area under the receiver operating characteristic curve
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radiomics features in this study, which may provide
additional disease information and further improve the
performance and accuracy of the prediction model. As
previous studies have suggested that the primary location
of pathological changes in CTN is the trigeminal root, we
chose the cistern segment of the trigeminal nerve as the
ROI [24, 35–38]. Due to the diverse protocols and scan-
ners used by different institutions, z-score normalization
was conducted prior to feature extraction in order to
minimize variability. Fortunately, 7, 3, and 16 features
extracted from 3D-SSFP, 3D-TOF-MRA, and their

combination, respectively, were found to be strongly
correlated with MVD outcomes and were used to con-
struct radionics-based models. Notably, among these
features, most were textural features that reflected
microscopic descriptions of the trigeminal root. Addi-
tionally, we focused on the shape of the trigeminal root, as
previous studies have shown that trigeminal root atrophy
is associated with MVD outcomes [13, 39]. However, in
this study, we observed no relationship between trigem-
inal root volume and pain outcomes. This discrepancy
may be attributed to the fact that trigeminal root atrophy

Table 2 Median PFS and PFS rates according to risk group defined by the nomogram

Model and group No. of patients Median PFS (mo.) 1-Year PFS (%) 3-Year PFS (%) 5-Year PFS (%) Hazard ratio p value

Clinical model

Development cohort < 0.001

Low-risk group 120 NA 98.2 98.2 96.3 Reference

High-risk group 159 64 (60–74) 79.7 66.7 56.3 9.69 (4.56–20.58)

Test cohort < 0.001

Low-risk group 154 87 (85–90) 88.7 82.6 76.7 Reference

High-risk group 22 37 (20–81) 68.2 53.8 20.7 4.96 (2.76–8.94)

Nomogram

Development cohort < 0.001

Low-risk group 184 NA 98.8 98.8 97.3 Reference

High-risk group 95 35 (26–60) 66.0 46.0 31.7 38.75 (16.40–91.54)

Test cohort < 0.001

Low-risk group 127 NA 99.2 96.7 94.9 Reference

High-risk group 49 21 (12–41) 58.8 39.3 17.4 37.18 (13.35–103.60)

Note: numbers in parentheses are the 95% confidence interval
NA not applicable, PFS pain-free survival

Table 3 Subgroup analysis of the performance of the nomogram

Subgroup C-index 1-Year AUC 3-Year AUC 5-Year AUC

Development cohort

NVC degree

Severe NVC 0.874 (0.836–0.913) 0.874 (0.757–0.990) 0.899 (0.811–0.989) 0.883 (0.769–0.998)

Slight NVC 0.799 (0.768–0.831) 0.849 (0.773–0.926) 0.834 (0.722–0.940) 0.832 (0.702–0.963)

Pain type

Typical pain 0.882 (0.854–0.910) 0.896 (0.803–0.988) 0.909 (0.846–0.972) 0.889 (0.805–0.975)

Atypical pain 0.743 (0.696–0.791) 0.753 (0.620–0.885) 0.787 (0.617–0.958) 0.876 (0.735–0.978)

Test cohort

NVC degree

Severe NVC 0.910 (0.867–0.954) 0.922 (0.815–1.029) 0.900 (0.796–1.005) 0.934 (0.853–1.014)

Slight NVC 0.765 (0.715–0.815) 0.799 (0.684–0.914) 0.740 (0.609–0.871) 0.639 (0.456–0.823)

Pain type

Typical pain 0.858 (0.813–0.903) 0.879 (0.772–0.986) 0.861 (0.765–0.956) 0.837 (0.721–0.945)

Atypical pain 0.704 (0.619–0.789) 0.744 (0.521–0.967) 0.726 (0.524–0.928) 0.646 (0.376–0.916)

Note: numbers in parentheses are the 95% confidence interval
C-index concordance index, AUC area under the curve, NVC neurovascular compression

Li et al. European Radiology Page 10 of 13



is better reflected by the cross-sectional area than by the
volume, which can be influenced by the length variable
[40, 41]. The radiomics signature demonstrated superior
performance compared to either of the other two models
based on a single sequence. This finding suggested that
combining multiple MRI sequences could provide more
comprehensive information on the trigeminal root. By
combining 3D-SSFP and 3D-TOF-MRA, it becomes
possible to discover morphological information and
microscopic changes in both the trigeminal root and
microvessels simultaneously [16]. Importantly, the pre-
dictive performance of radiomics features remained
stable, whereas the predictive performance of clinical
factors decreased significantly in the external validation
set. This difference in stability between clinical and
radiomics features could be attributed to the subjective
nature of assessing certain clinical features, whereas
radiomics features are more objective.
When clinical factors were integrated with radiomics

features to establish a fusion model, we observed
improved performance. The clinical-radiomics model
outperformed both the clinical model and the radiomics
model in terms of predictive performance and clinical
utility. Based on the best model, we constructed a corre-
sponding nomogram that effectively distinguished
high-risk patients from low-risk patients in both the

development cohort (HR: 38.75; 95% CI: 16.40–91.54;
p < 0.001) and the test cohort (HR: 37.18; 95% CI:
13.35–103.59; p < 0.001). By grouping patients according
to the nomogram risk, we found that the 3-year PFS rate
for the high-risk group was 39.3%, which decreased to
only 17.4% at 5 years. In contrast, the PFS rate in the low-
risk group remained high at various time points. Inter-
estingly, the clinical-radiomics model demonstrated
superior predictive power in patients with severe NVC
and typical pain compared to those with slight NVC and
atypical pain. Our findings suggest that there may be
other factors (such as central mechanisms) involved in the
development of CTN with slight NVC or atypical pain,
which correspondingly affects the prognosis of MVD.
Our study had several limitations. First, the retro-

spective nature of the study may introduce inherent
biases, although we included external validation data
from two other independent hospitals. To validate the
model, further prospective studies are needed. Second,
we had to exclude CTN patients with vertebrobasilar
dolichoectasia because the trigeminal root was severely
detorted and could not be identified. Third, the MRIs
that are currently used include other sequences, such as
three-dimensional volumetric interpolated breath-hold
examinations and three-dimensional turbo spin echo
sequences, which are not commonly performed in these

Table 4 Predictive performance of nomogram compared with other models

Model Development cohort Test cohort

C-index AUC SEN SPE IBS C-index AUC SEN SPE IBS

Clinical 0.758 0.811 0.834 0.630 0.124 0.691 0.715 0.801 0.553 0.161

3D-TOF-MRA 0.705 0.708 0.813 0.539 0.146 0.665 0.664 0.614 0.782 0.175

3D-SSFP 0.682 0.713 0.816 0.572 0.151 0.708 0.662 0.820 0.541 0.184

Radiomic 0.804 0.831 0.843 0.731 0.135 0.796 0.775 0.757 0.725 0.166

Nomogram 0.865 0.894 0.933 0.833 0.108 0.834 0.827 0.908 0.806 0.141

Note: the AUC, SEN, and s SPE were the mean value at various time points
C-index concordance index, SEN sensitivity, SPE specificity, AUC time-dependent receiver operating characteristic curves and the area under the curve, IBS integrated
Brier score

Table 5 IDI of the nomogram versus clinical model and radiomics model

Comparison 1-Year IDI (%) p value 3-Year IDI (%) p value 5-Year IDI (%) p value

Development cohort

Nomogram vs clinical model 11.9 (0.7–21.5) < 0.001 7.2 (0.1– 9.4) < 0.001 13.9 (2.2–20.0) < 0.001

Nomogram vs radiomic model 13.7 (1.9–18.0) < 0.001 8.9 (1.6–16.9) < 0.001 8.9 (1.6–16.9) < 0.001

Test cohort

Nomogram vs clinical model 6.4 (0.5–11.3) < 0.001 5.1 (0.5–7.5) < 0.001 8.0 (0.6–17.5) < 0.001

Nomogram vs radiomic model 1.8 (1.0–4.1) 0.364 0.6 (-2.5–3.8) 0.545 5.3 (0.3–10.9) < 0.001

Note: numbers in parentheses are the 95% confidence interval
IDI integrated discrimination improvement
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centers. These additional sequences may provide addi-
tional features and further improve the predictive
accuracy. Fourth, a volume effect may exist and corre-
spondingly affect the boundary of the trigeminal root.
Fifth, MVD surgeries were performed by more than
three senior neurosurgeons in three independent hos-
pitals, leading to inevitable differences in MVD out-
comes. Finally, in this large-scale data study, two
neuroradiologists manually delineated the trigeminal
root. Therefore, it is important for future research to
develop more effective automatic segmentation tools.
The results of our study demonstrated that radiomics

features can add value to the existing predictive model. Our
clinical-radiomics nomogram is a robust and externally
validated prediction tool and has the potential to be utilized
in clinical practice. However, the clinical application of
nomograms in real-world practice still still has a long way
to go. Despite significant improvements in predictive
power and stability, there remains a risk of incorrect pre-
dictions that could harm patients’ interests. Furthermore,
challenges related to data accessibility, computational
resources, and the interpretability of radiomics features
also pose additional obstacles.
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DCA Decision curve analysis
IBS Integrated Brier score
ICC Interclass correlation coefficients
IDI Integrated discrimination improvement
LASSO Least absolute shrinkage and selection operator
MVD Microvascular decompression
NVC Neurovascular compression
PFS Pain-free survival
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