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Development and evaluation of two open-
source nnU-Net models for automatic
segmentation of lung tumors on PET and CT
images with and without respiratory motion
compensation
Montserrat Carles1* , Dejan Kuhn2,3, Tobias Fechter2,3, Dimos Baltas2,3, Michael Mix4, Ursula Nestle3,5,6,
Anca L. Grosu3,5, Luis Martí-Bonmatí1, Gianluca Radicioni3,5 and Eleni Gkika3,5

Abstract
Objectives In lung cancer, one of the main limitations for the optimal integration of the biological and anatomical
information derived from Positron Emission Tomography (PET) and Computed Tomography (CT) is the time and
expertise required for the evaluation of the different respiratory phases. In this study, we present two open-source
models able to automatically segment lung tumors on PET and CT, with and without motion compensation.

Materials and methods This study involved time-bin gated (4D) and non-gated (3D) PET/CT images from two
prospective lung cancer cohorts (Trials 108237 and 108472) and one retrospective. For model construction, the ground
truth (GT) was defined by consensus of two experts, and the nnU-Net with 5-fold cross-validation was applied to 560
4D-images for PET and 100 3D-images for CT. The test sets included 270 4D- images and 19 3D-images for PET and 80
4D-images and 27 3D-images for CT, recruited at 10 different centres.

Results In the performance evaluation with the multicentre test sets, the Dice Similarity Coefficients (DSC) obtained
for our PET model were DSC(4D-PET)= 0.74 ± 0.06, improving 19% relative to the DSC between experts and DSC(3D-
PET)= 0.82 ± 0.11. The performance for CT was DSC(4D-CT)= 0.61 ± 0.28 and DSC(3D-CT)= 0.63 ± 0.34, improving 4%
and 15% relative to DSC between experts.

Conclusions Performance evaluation demonstrated that the automatic segmentation models have the potential to
achieve accuracy comparable to manual segmentation and thus hold promise for clinical application. The resulting
models can be freely downloaded and employed to support the integration of 3D- or 4D- PET/CT and to facilitate the
evaluation of its impact on lung cancer clinical practice.

Clinical relevance statement We provide two open-source nnU-Net models for the automatic segmentation of lung
tumors on PET/CT to facilitate the optimal integration of biological and anatomical information in clinical practice. The
models have superior performance compared to the variability observed in manual segmentations by the different
experts for images with and without motion compensation, allowing to take advantage in the clinical practice of the
more accurate and robust 4D-quantification.
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Key Points
● Lung tumor segmentation on PET/CT imaging is limited by respiratory motion and manual delineation is time consuming
and suffer from inter- and intra-variability.

● Our segmentation models had superior performance compared to the manual segmentations by different experts.
● Automating PET image segmentation allows for easier clinical implementation of biological information.

Keywords Lung cancer, Positron emission tomography, Computed tomography, Deep learning, Respiratory motion

Introduction
In lung cancer, the ability of Positron Emission Tomo-
graphy (PET) with [18F]fluoro-2-deoxy-D-glucose
(FDG) to exploit the biochemical differences between
normal and neoplastic tissue [1] has been proven to be a
valuable tool for tumor detection [2], staging [3], treat-
ment planning [4], monitoring [5] and outcome pre-
diction [6, 7]. Based on the sensitivity and specificity
implied by FDG-PET imaging in NSCLC [8], the inte-
gration of FDG imaging in radiation therapy (RT) clin-
ical practice, which has been conventionally CT-only
based, has been recommended [9]. Recent studies have
evaluated the role of [18F]FDG PET/CT in the precise
definition not only of the target volume, but also of
subvolumes aiming at a further dose escalation [10–13].
However, the evaluation of the lesion by multimodality
PET and Computed Tomography (CT) imaging presents
challenges due to respiratory movement [14]. Tumor
motion due to the various breathing cycles involved
during PET scan acquisition results in inaccurate
quantification of tracer distribution, including erroneous
estimation of the shape, volume and location of the
lesion. Moreover, the different acquisition times of the
two studies (few seconds for a CT and several minutes
for PET) can result in a spatial mismatch, with artefacts
originated by the use of CT images for attenuation
correction in PET image reconstruction. Different stra-
tegies have been proposed for the management of
respiratory motion in PET/CT systems [15–17], such as
retrospectively respiratory gated (4D)-PET/CT [18]. As a
result of this data processing, an improvement in the
image quality and accuracy of estimation of the tracer
concentration and distribution should be obtained by
compensating for motion effects [19, 20]. The definition
of the target volume in RT includes safety margins
around the tumor given by geometrical uncertainties
(as for example, respiratory motion [21, 22]). The aim
of these safety margins is to minimise tumor under-
dosage. 4D-protocols have been proven to decrease
geometrical uncertainties due to respiratory motion and
consequently, their corresponding safety margins could
be reduced. Therefore, 4D-protocols would lead to a

smaller target volume definition and the dose delivered
at the organs at risk in the vicinity could be minimised,
facilitating dose escalation. In addition, 4D-protocols
have been demonstrated to significantly improve the
reproducibility of radiomics features [23, 24].
Manual contouring is the method most widely

employed for tumor segmentation in RT target deli-
neation, monitoring and radiomics. For these applica-
tions, higher accuracy and reproducibility are required
beyond what is required in diagnosis. Disadvantages
related to the manual approach are to be very laborious
and time consuming, especially for the number of ima-
ges involved in 4D-protocols and to lead to a significant
inter- and intra-variability even among experts. An
alternative approach consists in relying on automatic or
semi-automatic segmentation methods. PET segmenta-
tion methods have been proposed [25], ranging from
simple uptake thresholding to very elaborate probabil-
istic models. Applications of artificial intelligence
(AI, machine/deep learning) are extremely wide and
promising [26, 27]. Superiority of these methods in
image segmentation has been shown in many studies
[28]. Although the number of automatic AI segmenta-
tion algorithms for lung cancer is increasing, most of
them focus on CT or MR images [29, 30]. In addition,
the AI segmentation models already published for PET
have rarely involved 4DPET data [31, 32].
In this study, our primary aim was to develop an AI

model for lung tumor segmentation on PET images.
In order to facilitate the implementation of the PET seg-
mentation in the clinical workflow, a secondary aim was to
develop also an AI model for tumor segmentation on CT
images, which is the image modality most commonly
employed. In addition, to facilitate the simultaneous
implementation of both models, the same open-source
convolutional-neuronal-network (nnU-Net) was employed.
Finally, in order to maximise the probability that the
resulting models have good performance independently of
imaging systems and protocols (generalizability), image
data was collected from ten different institutions with dif-
ferent involved protocols with (4D) and without (3D)
respiratory motion compensation.
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Materials and methods
Patient cohorts and data sets
Our study included two prospective (PET-Plan and
STRIPE) and one retrospective (RC) cohort of lung cancer
patients. All patients gave written informed consent
according to institutional and federal guidelines. The
institutional ethics committee approved the study proto-
col (EK-Nr 21-1228-S1-retro, EK Nr 108237, EK 113/12,
EK-Nr Nr. 108472).
The main clinical characteristics of each trial are

described in the following subsections.

PET-Plan trial
The randomised controlled PET-Plan trial (ARO 2009-09,
NCT00697333, Deutsche Krebshilfe, German Cancer Aid
Organisation, Nr 108237) involved patients older than 18
years with histologically or cytologically proven inoper-
able stage II or III NSCLC. Eligibility criteria also included
having an Eastern Cooperative Oncology Group perfor-
mance status of less than 3; having adequate pulmonary,
cardiac, renal and haematological function and being
suitable for chemoradiotherapy. The PET-Plan trial was
conducted in 24 centres in Germany, Austria and Swit-
zerland, in accordance with the Declaration of Helsinki.
Study design, procedures and main outcome results have
been published elsewhere [9].

STRIPE trial
The prospective monocentre phase II STRIPE trial
(Deutsche Krebshilfe, German Cancer Aid Organisation,
Nr 108472) involved patients with pulmonary lesions with
a maximum diameter of 5 cm (early stage NSCLC or less
than 2 pulmonary metastases of a controlled primary
tumor), refusing surgery or inoperable due to comorbid-
ities. The study was performed at Medical University
Freiburg and the design, procedures and main outcome
results have been published elsewhere [33].

Retrospective cohort
For the retrospective cohort (RC), patients with primary
early-stage (N)SCLC or isolated pulmonary metastases
were recruited at the Medical University Freiburg between
December 2019 and July 2020. All patients were older
than 18 years and showed a maximum of two FDG-PET
positive pulmonary lesions with a maximum diameter
of 5 cm.
Patients from these three cohorts were split into the

training and test cohorts. A representation of the cohorts
division employed for the development of CT and PET
models is shown in Fig. 1. The training set involved 27
patients from PET-Plan trial and 29 from STRIPE for PET
model and 41 patients from PET-Plan trial and 59 from
STRIPE for CT model, all of them recruited in Medical

Centre Freiburg. The performance of the models was
independently tested on a multicentre cohort, which
includes prospective and retrospective patients: 36
patients from PET-Plan and 8 from retrospective cohort
for PET model and 19 patients from PET-Plan trial and 8
from retrospective cohort for CT model.

PET/CT acquisition
After a fasting period of at least 4 h (glucose level less
than 150 mg/dl), all patients underwent a diagnostic
whole-body [18F]FDG PET/CT scan at approximately
60 min following weight-adjusted [18F]FDG intravenous
injection.
All patients imaged at University Medical Centre Frei-

burg underwent a chest-limited 4D PET/CT scan for one
bed position (15min acquisition time) at approximately
102min after FDG injection. Patient respiration was
monitored with a belt (Mayo Clinic Respiratory feedback
system) and the respiratory curve was synchronised with
the acquisition time of scanner. The data was reconstructed
in 10 time-based [34] respiratory phases with a fully 3D list
mode LOR TOF algorithm, involving a relaxed List Mode
Ordered Subset (BLOB-OS-TF), resulting in 10 PET and 10
CT sets. 4DPET was reconstructed in a 144 × 144 matrix
and 4 × 4 × 4mm³ voxel size and the 4DCT with 512 × 512
matrix and 1.17 × 1.17 × 2mm³ voxel size. Attenuation
correction of 4DPET was based on the corresponding
respiratory-phase 4DCT. Correction for scatter and ran-
doms was applied and the standard uptake value (SUV) was
calculated with body weight.
At the University Medical Centre Freiburg scans were

performed on two different PET/CT systems from Philips:
GEMINI TF TOF 64 (TF64) and GEMINI TF 16 Big Bore
(BB). The imaging systems employed in the other nine
institutions were: two GEMINI TF TOF 16 from Philips,
two SIEMENS Biograph 64, two SIEMENS Biograph
40mCT, one SIEMENS Biograph 128, one Alegro Body
from Philips and one Guardian Body from Philips. The
scanners fulfilled the requirements indicated in the Eur-
opean Association of Nuclear Medicine (EANM) imaging
guidelines and obtained EANM Research Ltd. (EARL)
accreditation. PET image voxel size was 4 × 4 × 4mm3 for
eight patients, 4 × 4 × 5mm3 for seven patients and
2.65 × 2.65 × 3.37 mm3 for three patients. In CT, voxel
sizes varied more significantly across institutions, with a
thickness ranging from 1 to 5mm and transaxial pixel
ranging from 0.63 × 0.63 mm2 to 1.37 × 1.37 mm2.

Segmentation approaches employed for training and
validation
Tumor manual segmentation
Manual segmentation of the primary tumor and lymph
nodes based on PET and CT was performed according

Carles et al. European Radiology (2024) 34:6701–6711 6703



to the clinical study protocol and current guidelines for
contouring with standardised window-level [35]: on CT
the pre-set window should range from 600 to 1600 HU
for tumours surrounded by lung tissue and from 20 to
400 for lymph nodes and primary tumours invading the
mediastinum or chest wall. For PET a window with
standardised-uptake-values ranging from 2 to 10 was
recommended.
Ground truth was defined by the consensus of two

radiation oncologists. One additional expert contoured
the 3D- and 4D-CT sets for the eight patients for the
internal validation of CT. Three additional experts con-
toured each of the time-bins for the eight patients for the
retrospective cohort employed in the internal evaluation
of 4D-PET algorithm. Besides technical instructions for
the use of the delineation software, the readers received
no further assistance and were blinded to all other
delineations.

PET semiautomatic contrast-oriented algorithm
The semiautomatic approach employed for PET segmen-
tation was based on the application of an adaptive threshold
taking into account the contrast between tumor con-
centration (mean value for a 70% isocontour of maximum
intensity within the lesion) and background (automatically

derived from the whole image) [36]. The semi-automatic
character of this approach relied on the fact that the user
was required to indicate a tumor voxel (seed) and max-
imum intensity was automatically identified in its neigh-
borhood. In order to avoid disconnected regions, a
threshold was applied with a six-neighborhood 3D region-
growing algorithm from the seed. This approach required
phantom-based calibration.

nn-UNet
The nnU-Net [37] was employed for the development of (i)
a PET segmentation model, trained with 560 PET
respiratory motion compensated images and their corre-
sponding ground truth segmentations and (ii) a CT seg-
mentation model, trained with 100 CT non-motion
compensated images and their corresponding ground truth
segmentations. nnU-Net is a deep learning-based seg-
mentation method that automatically configures itself,
including preprocessing, network architecture, training and
post-processing. nnU-Net has a U-Net architecture with
plain convolutions, z-score normalisation, leaky ReLU and
two blocks (encoder-decoder) per resolution stage. From
the three configurations available, the 3D U-Net with full
image resolution was employed in this study. Based on the
results from a 5-fold cross-validation, the best model was

Fig. 1 Representation of the training and test sets with (4D) and without (3D) respiratory motion compensated images. External refers to the sets with
patients scanned at institutions different from the one in which training patients were scanned
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ensemble. The nnU-Net [37] and the resulting models
(GitHub_PETCTLungSegmentationModels_Link) can be
free download.

Metrics for accuracy evaluation
We evaluated the agreement between segmented volumes
by computing Dice Similarity Coefficient (DSC) [38],
which represents the size of the union of two volumes and
the formula is 2(A ∩ B)/(A+ B), where A is the ground
truth and B the segmented volume. We additionally
computed the Positive Predictive Value (PPV) in order to
account for the cases in which one set of segmented
volumes tends to be included within the other set [36].
The formula for PPV is (A ∩ B)/B=True-Positive/(True-
Positive+ False-Positive). The Hausdorff distance [39],
which represents the maximum distance between con-
tours surfaces is of interest in order to identify distant
regions incorrectly classified as tumour.

Results
PET segmentation model
After a 5-fold cross-validation training with 560 4D-PET
images, the resulting optimal PET segmentation model
was tested on three test sets, being the ground truth
defined by the same radiation oncologists as in the
training data. The accuracy of the segmentation provided
by the nnU-Net PET model, with respect to the GT, was
compared with the accuracy for the semiautomatic
contrast-oriented-algorithm (COA) and the accuracy for
the segmentation performed by other experts. Results for
DSC are shown in Fig. 2.

First, the model was tested with the 170 4D-PET images
of patients involved in the prospective PET-Plan trial, the
DSC(4D-PET) was 0.83 ± 0.13, improving 43% with respect
to the accuracy for the COA-algorithm, DSC(4D-COA)=
0.58 ± 0.15. Second, the model was tested with the 80 4D-
PET images of patients involved in the retrospective
cohort, the DSC(4D-PET) was 0.74 ± 0.06, improving 28%
with respect to the accuracy for the COA-algorithm with
DSC(4D-COA)= 0.58 ± 0.08 and improving 16%, 16%
and 28% with respect to the accuracy for the three other
experts, with DSC(4D-Expert1)= 0.64 ± 0.06, DSC(4D-
Expert2)= 0.64 ± 0.09 and DSC(4D-Expert3)= 0.58 ±
0.06. In Fig. 2 it is shown that the model accuracy for the
patient of this cohort with the best performance, DSC(4D-
PET)= 0.92, was better than for COA (0.79) and for the
three experts (0.80, 0.78 and 0.78) and the DSC for the
patient with worst performance by the AI-model (0.48) was
also better than for COA (0.38) and experts (0.38, 0.43 and
0.34). In addition, in order to reject distant false positives,
the Housdorff distance was computed. Values were com-
parable across the different approaches 2.1 ± 0.7 for AI-
model, 2.5 ± 0.5 for COA and 2.4 ± 0.4, 2.4 ± 0.5 and
2.6 ± 0.4 for the three experts. An example of the different
PET tumor segmentation approaches is shown in Fig. 3.
Finally, the model was tested with the 19 3D-PET

images of patients prospectively recruited in 9 different
centres involved in the PET-Plan trial. DSC(3D-PET) was
0.83 ± 0.11, improving 19% with respect to the accuracy
for the COA-algorithm, with DSC(4D-COA)= 0.70 ±
0.12. It should be remarked that for patients who received
whole-body PET scans, the AI-model also segmented the

Fig. 2 DSC for the different PET segmentations approaches (artificial- intelligence-algorithm AI, contrast-oriented-algorithm COA and experts E) with
respect to the ground truth defined by consensus of two radiation oncologists. Performance for the segmentation model on PET images with (4D) and
without (3D) respiratory motion compensation are presented. The average value is represented by the cross and the median by the line
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bladder and other tracer-enhanced pelvic structures. This
limitation was avoided by a simple lung region restriction
manually performed by interpolation of two regions of
interest, Fig. 4. The time invested for this lung mask was
comparable to the time required to place the seeds for the
COA algorithm (< 1min).

CT segmentation model
After a 5-fold cross-validation training with 100 3D-CT
images, the resulted optimal CT segmentation model was
tested on three test sets. In Fig. 5, values for the DSC are
shown.
First, the model was tested with the 8 3D-CT images

of patients retrospectively recruited. DSC(3D-CT) was
0.63 ± 0.34, improving 15% with respect to the experts
DSC(3D-Expert)= 0.55 ± 0.11. The nnU-Net model
showed an accuracy higher than 0.69, for all patients
apart from two. The two DSC values for these two
patients (0.12 and 0) are responsible of the difference
between the average value (0.63 box cross in Fig. 5) and
the median value (0.81, box line in Fig. 5). Second, the
model was tested with the 19 3D-CT images of patients
prospectively recruited in 9 different centres involved in
the PET-Plan trial. DSC(3D-CT) was 0.59 ± 0.24. Over-
all, a trend of good detection but an underestimation of
the size of the lesion was observed. This trend was
confirmed by an average value of positive-predictive-
value of 0.77 ± 0.23. In Fig. 6 examples of contours for
two patients are shown, being DSC and PPV values also
provided.

Finally, the model was tested with the 80 4D-CT images
of patients involved in the prospective PET-Plan cohort, the
DSC(4D-CT) was 0.61 ± 0.28, improving 4% with respect to
the accuracy for the expert, with DSC(3D-Expert)= 0.59
± 0.24. DSC= 0 for the expert data corresponding to a
patient for which one of the experts considered image
quality too poor in order to delineate the lesion. For this
patient, an algorithm was able to detect the lesion, but
segmentation accuracy was very poor (DSC= 0.33).

Discussion
In this study, we present a completely automatic algo-
rithm to segment lung cancer tumors on PET images,
with and without respiratory motion compensation. The
performance of the algorithm has been evaluated with
patients of ten different centres and by comparison with
respect to a previously evaluated semiautomatic algorithm
and with respect to the variability observed across dif-
ferent experts. In order to facilitate its clinical imple-
mentation, an automatic method for tumor segmentation
on CT images, with and without motion compensation,
based on the same nnU-Net has been additionally
developed. The convolutional–network employed by
training [38] and the resulting models (GitHub_
PETCTLungSegmentationModels_Link) are open source.
One of the clinical applications for the resulting models

would be their use for RT planning and monitoring
in lung cancer. According to the ESTRO-ACROP
guidelines for target volume (TV) definition in the
treatment of locally advanced non-small cell lung cancer,

Fig. 3 Different PET segmentations approaches (ground truth, artificial intelligence-algorithm AI, contrast-oriented-algorithm COA and expert with the
best DSC with respect to the ground truth) for a patient employed in the validation of the performance of the algorithm on PET images with respiratory
motion compensation
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Fig. 4 Workflow for the lung mask creation: left regions of interest (brown) are manually delineated surrounding the body by a 50 voxel circle (green) in
two slices located up and down the lung region;middle automatic interpolation is performed between the slices and lung region mask resulted (green)
and (right) boolean intersection (yellow) between the AI segmentation and the lung region mask is obtained and consequently, the bladder region is
rejected (segmentation pointed by the pink arrow)

Fig. 5 DSC of the different CT segmentation approaches (artificial- intelligence-algorithm AI and expert) with respect to the ground truth defined by
consensus of two radiation oncologists. Performance for the segmentation model on CT images with (4D) and without (3D) respiratory motion
compensation are presented. The average value is represented by the cross and the median by the line

Fig. 6 Different CT segmentation approaches for two PET-Plan patients involved in the external validation
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both a contrast-enhanced diagnostic CT scan and whole-
body diagnostic FDG-PET-CT are considered mandatory
in preparation for TV delineation for curative RT or
chemo-RT [38]. Typically, the definition of the target
volume is performed on the CT, adding the information
derived from PET. Assessment of respiratory motion on a
respiratory-correlated 4D CT scan is also recommended.
4D-gated PET/CT in the treatment position is optional
but may improve the sensitivity of nodal identification
and provide additional valuable information to help dif-
ferentiate between tumor extent and adjacent tissues
[39]. By applying our resulting models, the information
from both images could be automatically integrated.
Furthermore, with the advantage of the enhanced accu-
racy and robustness provided by 4D-protocolos, these
segmentations could be employed to improve the TV
definition, optimising therefore treatment planning and
monitoring.
Most of the previous convolutional-neural-network

(CNN) approaches for lung tumor segmentation have
been based on CT images [40–42] or on MR images [43]
with 330, 1210, 19 and 9 patients, respectively. The benefit
of PET imaging for lung cancer patients has been already
demonstrated and consequently, segmentation models
based on PET/CT images have been developed [44, 45],
with 84 and 32 patients, respectively. It is known that the
performance of AI segmentation models depends on the
availability of a large amount of data for its training step. In
PET, it is usually challenging to gather such large cohorts of
patients compared to other imaging modalities [29]. In our
study, the size of the PET cohort (100 patients) is larger than
the size of the cohorts commonly employed for PET seg-
mentation model development and validation [46]. It is also
known that segmentation CNN-based approaches are used
to perform well during training but demonstrate reduced
performance during the validation and test steps. Therefore,
cross-validation and testing of the model performance have
been strongly recommended [29]. Our initial training
cohort of 56 patients has been 5-fold cross-validated in
order to take more benefit from the limited size of the
sample. The performance of the resulting model after cross-
validation, has been tested with 25 patients prospectively
recruited at the same centre. Because the level of perfor-
mance of AI models, as well as their reproducibility and
robustness, is sensitive to imaging protocols and devices, we
additionally evaluated the performance of our model for 19
patients prospectively recruited at 9 other centres. Seg-
mentation accuracy in terms of DSC values was comparable
for both, internal and external cohorts, allowing concluding
an acceptable generalizability of the model. In terms of the
clinical acceptability, it is important to include a compar-
ison of the algorithm performance with respect to the
manual contours and the variability across experts, which is

the standard method commonly employed in our clinical
practice for tumor segmentation. In contrast to most of the
previous publications, our study not only includes the
comparison with respect to the established ground truth
(consensus of two experts), but the analysis also involved
the manual contours of three additional experts. From the
results in this comparison, it could be concluded that the
accuracy of the proposed model is promising in terms of
robustness. In terms of the viability of its clinical imple-
mentation, a CT-based segmentation model has been
developed with the same nnU-Net in order to facilitate the
integration of PET segmentation model in the clinical
workflow. Although the average values of DSC for the
resulting CT model were not high, the performance of the
algorithm was proved to be better than the variability
observed among experts. Finally, previous literature has
demonstrated that the compensation of respiratory motion
improves accuracy and reproducibility for the biomarker
distribution quantification [20, 23, 24]. However, 4D-PET
imaging implementation in the clinical workflow is hin-
dered by the time and expertise, required from the clinical
site, for a proper analysis and integration of the functional
information. The segmentation algorithm resulted from our
study has been proven to accurately segment tumors with
both imaging protocols, with (4D) and without (3D) motion
compensation. To evaluate the impact of motion compen-
sation on the performance of our model, images with and
without motion compensation for the same patients should
be compared. Unfortunately, only for 8 patients and only for
CT images, both imaging protocols (3D and 4D) were
available. For these patients, the better performance
obtained for the model with non-compensated images
(DSC(3D-CT)= 0.63 ± 0.34, improving 15% improvement
relative to experts) than with motion-compensated images
(DSC(4D-CT)= 0.61 ± 0.28, improving 4% relative to
experts), could be justified by the fact that the model has
been trained with non-compensated images. It is not the
case for the manual contours, where the accuracy with
motion-compensated images, DSC(4D-Expert)= 0.59 ±
0.24, was better than without motion compensation,
DSC(3D-Expert)= 0.55 ± 0.11. However, the accuracy for
the nnU-Net model is better than the variability observed
across experts in both 3D and 4D images, supporting the
applicability of the model independently of the imaging
protocol. Therefore, this segmentation model could facil-
itate the clinical implementation of 4D-PET images for
monitoring and for the development of prognosis models,
where the quantification of PET images plays a crucial role
in order to identify clinically relevant changes and where,
consequently, the accuracy and reproducibility provided by
these 4D-protocols are of special interest.
In order to quantify the performance of our models, 3D

computation of DSC was employed, because it is the most
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common and standardised method for the comparison of
segmentations in medical imaging [38]. However, a high
DSC does not necessarily indicate good agreement. An
example could be a prediction of a tumor similar in size and
location to the ground truth, but with a distant small region
incorrectly classified also as a tumor. This scenario is likely
to be found in lung tumor segmentation on 4D-PET thorax
images, because of the high uptake of the heart and the
noise implied by respiratory frames. For these reasons,
Hausdorff distance [39] was additionally computed, and the
results allowed us to confirm the good performance of our
model. In addition, a positive-predictive-value [36] per-
mitted to quantify the qualitatively observed trend in CT
model performance, i.e., a high positive-predictive-value
demonstrated that the model is able to detect the lesion and
its location, but underestimates its size.
The main advantages of nnU-Net are that a preprocessing

of the input data is not required, the non-fixed parameters
for the training process of the model are automatically
configured based on the input image data and the resulting
model is generated and optimised without user interaction.
In addition, the good performance of the nnU-Net method
has been proved in different data sets and the code can be
free to download [37]. For these reasons, the whole process
can be easily reproduced. Medical data sharing is one of the
most important concerns in AI development. It facilitates
the comparison of the performance for different algorithms,
can be used for the improvement of the generalizability of
the algorithms, and makes feasible for developers to
test their new CNNs. The main limitation in our study
was that the clinical data employed is not open access.
There are different CT and MR image repositories for lung
cancer. The Lung Image Database Consortium-Image
Database Resource Initiative (LIDC) is the world’s largest
publicly available database and contains 1018 CT scans of
1010 patients. The Automatic Nodule Detection 2009
(ANODE09) is another publicly available database consist-
ing of 55 CT scans, annotated by two radiologists. Also, the
TIME [47]; ELCAP [48] and LISS [49], are available in the
public domain for lung nodule research. Future work should
focus on PET image repositories that will also facilitate the
development of PET AI tools for its use in clinical practice.

Conclusion
We presented two open-source nnU-Net models for lung
tumor segmentation on PET and CT images, with and
without respiratory motion compensation. Performance eva-
luation demonstrated that the automatic segmentation
models have the potential to achieve accuracy comparable to
manual segmentation and thus hold promise for clinical
application. They could therefore be employed to facilitate the
integration of FDG-PET/CT in lung cancer and to take
advantage of the better quality provided by 4D quantification.
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