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Abstract 

Objectives This study explores whether textural features from initial non‑contrast CT scans of infarcted brain tissue 
are linked to hemorrhagic transformation susceptibility.

Materials and methods Stroke patients undergoing thrombolysis or thrombectomy from Jan 2012 to Jan 2022 were 
analyzed retrospectively. Hemorrhagic transformation was defined using follow‑up magnetic resonance imaging. 
A total of 94 radiomic features were extracted from the infarcted tissue on initial NCCT scans. Patients were divided 
into training and test sets (7:3 ratio). Two models were developed with fivefold cross‑validation: one incorporat‑
ing first‑order and textural radiomic features, and another using only textural radiomic features. A clinical model 
was also constructed using logistic regression with clinical variables, and test set validation was performed.

Results Among 362 patients, 218 had hemorrhagic transformations. The LightGBM model with all radiomics features 
had the best performance, with an area under the receiver operating characteristic curve (AUROC) of 0.986 (95% 
confidence interval [CI], 0.971–1.000) on the test dataset. The ExtraTrees model performed best when textural features 
were employed, with an AUROC of 0.845 (95% CI, 0.774–0.916). Minimum, maximum, and ten percentile values were 
significant predictors of hemorrhagic transformation. The clinical model showed an AUROC of 0.544 (95% CI, 0.431–
0.658). The performance of the radiomics models was significantly better than that of the clinical model on the test 
dataset (p < 0.001).

Conclusions The radiomics model can predict hemorrhagic transformation using NCCT in stroke patients. Low 
Hounsfield unit was a strong predictor of hemorrhagic transformation, while textural features alone can predict hem‑
orrhagic transformation.

Clinical relevance statement Using radiomic features extracted from initial non‑contrast computed tomography, 
early prediction of hemorrhagic transformation has the potential to improve patient care and outcomes by aiding 
in personalized treatment decision‑making and early identification of at‑risk patients.

Key Points 

• Predicting hemorrhagic transformation following thrombolysis in stroke is challenging since multiple factors are associated.

• Radiomics features of infarcted tissue on initial non-contrast CT are associated with hemorrhagic transformation.

• Textural features on non-contrast CT are associated with the frailty of the infarcted tissue.
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Introduction
The introduction of intravenous alteplase and mechani-
cal thrombectomy has significantly improved the out-
come of patients with acute ischemic stroke, but the 
serious adverse effects of these therapies mandate care-
ful patient selection [1]. Hemorrhagic transformation is 
considered one of the most serious complications [2]. 
Reperfusion therapy may lead to worse outcomes than 
the natural course of the disease if it causes hemor-
rhagic transformation [3–5].

Complex interactions between multiple factors influ-
ence the risk of hemorrhagic transformation. Clinical 
factors such as a history of atrial fibrillation, diabetes, 
congestive heart failure, advanced age, or severe neuro-
logic deficits are associated with hemorrhagic transfor-
mation [6–8]. Large infarction size and increased mean 
transit time on perfusion imaging have been associated 
with hemorrhagic transformation [9–12]. However, the 
identification of additional and novel imaging features 
that enhance the predictability of hemorrhagic trans-
formation would be helpful.

The recent radiologic predictions of hemorrhagic 
transformation (HT) are assessing the degree of 
ischemia or blood–brain barrier permeability [13]. 
Various imaging markers are related to the degree 
of ischemia, encompassing cerebral blood volume, 
Tmax from perfusion images, and Hounsfield unit 
from NCCT. Given the significance of blood–brain 
barrier disruption in HT, investigations into related 
image markers are well-established. Notably, model-
based approaches for computing  Ktrans using dynamic 
contrast enhancement images have been extensively 
explored. However, according to a recent review, the 
results are not yet satisfactory in terms of accuracy 
[13]. The radiomics approach examines CT Hounsfield 
units to analyze ischemia levels. The textural properties 
of the infarcted brain tissue on non-contrast computed 
tomography (NCCT) may incorporate information 
about tissue frailty. A larger area of the low Hounsfield 
unit is associated with an increased risk of hemorrhagic 
transformation [9, 12]. However, additional features 
associated with hemorrhagic transformation may exist 
on NCCT. Radiomics has been used to quantify imag-
ing features that may be related to underlying tissue 
characteristics [14]. Radiomics extract and quantify 
features that are not easily perceptible to the human 
eye and may provide a novel approach for predicting 
hemorrhagic transformation after reperfusion therapy. 

Scrutinizing tissue texture might has the potential to 
indirectly indicate blood–brain barrier functionality.

This study hypothesized that a machine learning model 
developed using radiomics features derived from NCCT 
may predict hemorrhagic transformation after reperfu-
sion therapy in acute ischemic stroke.

Materials and methods
This study was approved by the Institutional Review 
Board of the Yonsei University College of Medicine 
(approval number: 4–2022-0928). In accordance with the 
Institutional Review Board, informed consent was waived 
due to the retrospective nature of the study.

Patients
This retrospective study analyzed the post hoc data from 
a prospective registry (Specialized Multicenter Attrib-
uted Registry of Stroke (SMART) registry). Briefly, 
this registry enrolled consecutive patients with acute 
ischemic stroke within 7 days of symptom onset. Patients 
admitted between January 1, 2012, and January 31, 2022, 
who underwent intravenous thrombolysis or endovas-
cular thrombectomy, were included in this study. The 
enrolled patients all had NCCT scans before undergo-
ing thrombolysis, so they all had NCCTs. Only patients 
who underwent follow-up MRI after thrombolysis were 
included in this study given the greater sensitivity of MRI 
for detecting hemorrhage [15]. Our analysis did not dif-
ferentiate between anterior and posterior circulation, 
encompassing lacunar infarctions resulting from perfora-
tor occlusion. Baseline characteristics of the patients are 
detailed in Table 1.

Patients were excluded from the study if they had 
unsuccessful image processing, inadequate MRI scans, 
no follow-up imaging, initial hemorrhage, or an infarc-
tion size that was too small for evaluation. Following the 
application of exclusion criteria for patients with hem-
orrhagic transformation, we utilized a propensity score 
matching technique to select patients without hemor-
rhagic transformation from the remaining group. The 
dataset was semi-randomly split with stratification for 
hemorrhagic transformation into training and test sets 
in a 7:3 ratio (Fig. 1). All patients were managed accord-
ing to a standardized protocol that included an exten-
sive evaluation of the underlying stroke etiology. Cardiac 
evaluations included 12-lead electrocardiography, tran-
sthoracic and/or transesophageal echocardiography, 
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continuous electrocardiography monitoring in the stroke 
unit, and 24-h Holter monitoring.

Initial computed tomography imaging acquisition
NCCT was performed using SOMATOM Definition 
Flash (Siemens) with the following parameters: 120 kVp, 
135 mAs, and 5-mm slice thickness. Iterative reconstruc-
tion was applied with a low-pass filter J30s kernel.

Imaging analysis of hemorrhagic transformation
All patients underwent computed tomography angi-
ography as part of their initial assessment. After intra-
venous thrombolysis or endovascular thrombectomy, 

follow-up imaging studies were performed approxi-
mately 24  h later using magnetic resonance imaging 
(MRI), including gradient-recalled echo sequence or 
susceptibility-weighted imaging and MR angiogra-
phy. Additional imaging studies were performed in 
cases of clinical worsening at any time. The patient was 
determined to have hemorrhagic transformation if the 
patient showed a substantial lesion with susceptibil-
ity within the infarcted area on gradient-recalled echo 
sequence or susceptibility-weighted imaging, with or 
without hyperdensity on NCCT. The presence of hemor-
rhagic transformation was confirmed by a neuroradiolo-
gist with 11 years of experience.

Table 1 Baseline characteristics of the included patients

Values are represented as a number (%) or median (interquartile range)

NIHSS National Institute of Health Stroke Scale
* History of medication use

Hemorrhagic transformation group 
(n = 218)

Non-hemorrhagic transformation 
group (n = 144)

p-value

Age (years) 77.0 (68.0; 82.0) 78.0 (69.0; 84.0) 0.23

Sex (male) 113 (51.8) 72 (50.0) 0.82

Hypertension 164 (75.2) 112 (77.8) 0.67

Diabetes 87 (39.9) 53 (36.8) 0.63

Dyslipidemia 46 (21.1) 34 (23.6) 0.66

Atrial fibrillation 137 (62.8) 92 (63.9) 0.93

Chronic heart failure 16 (7.3) 11 (7.6) 1.00

Left ventricular thrombus 2 (0.9) 1 (0.7) 1.00

Left atrial or appendage thrombus 7 (3.2) 5 (3.5) 1.00

Antiplatelets* 69 (31.7) 49 (34.0) 0.72

Anticoagulation* 46 (21.1) 35 (24.3) 0.56

Statin* 74 (33.9) 51 (35.4) 0.86

Intravenous thrombolysis 84 (38.5) 48 (33.3) 0.37

Endovascular thrombectomy 193 (88.5) 136 (94.4) 0.08

Initial NIHSS 14.0 (10.0; 20.0) 15.0 (9.0; 19.0) 0.87

Hemoglobin, g/dL 13.5 (12.3; 14.7) 13.3 (11.9; 14.7) 0.28

Hematocrit, % 39.9 (36.7; 43.6) 39.2 (36.0; 43.5) 0.17

White blood cell count/µL 7715 (63.50; 9720) 7200 (5945; 9450) 0.15

Platelet count, ×  103 206.5 (172.0; 257.0) 205.0 (171.5; 245.5) 0.66

Low‑density lipoprotein level, mg/dL 92.5 (72.0; 121.0) 93.5 (68.5; 117.0) 0.57

Initial glucose level, mg/dL 137.0 (120.0; 169.0) 129.0 (111.5; 150.0) 0.01

Infarction location

  Cortex 198 (90.8) 137 (95.1) 0.19

  Subcortex 147 (67.4) 109 (75.7) 0.12

  Insular 115 (52.8) 88 (61.1) 0.14

  Corona radiata 54 (24.8) 31 (21.5) 0.56

  Basal ganglia 126 (57.8) 87 (60.4) 0.70

  Internal capsule 23 (10.6) 14 (9.7) 0.94

  Thalamus 23 (10.6) 11 (7.6) 0.46

  Brainstem 17 (7.8) 5 (3.5) 0.14

  Cerebellum 45 (20.6) 24 (16.7) 0.42
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Pre-processing and feature extraction
Digital Imaging and Communications in Medicine files 
were converted into Neuroimaging Informatics Technol-
ogy Initiative format. Utilizing 3D Slicer [16], a sphere 
with a diameter of 1 cm was manually drawn as the vol-
ume of interest (VOI) on the initial NCCT image. The 
VOI was placed at the location of the lowest attenuation 

on the NCCT scan, where the infarction was thought 
to be located. A neuroradiologist with 9 years of experi-
ence located the VOI, which was reconfirmed by a neu-
roradiologist with 11 years of experience. If there was a 
disagreement between the two radiologists, the VOI was 
located by consensus. Normalization was performed 
on the entire NCCT scan and windowing in the range 
of 20–50 Hounsfield units was applied. The NCCT was 
resampled to an isotropic voxel size of 1 × 1 × 1 mm using 
advanced normalization tools [17]. A total of 94 radiomic 
features of VOIs were extracted from NCCT images 
using PyRadiomics [18]. Included features are first-order 
statistics that detail voxel value distributions; texture 
matrices such as Gray Level Co-occurrence Matrix, Gray 
Level Run Length Matrix, Gray Level Size Zone Matrix, 
Gray Level Dependence Matrix, and Neighboring Gray 
Tone Difference Matrix that capture spatial relationships 
and patterns; and a range of filters and transformations 
including wavelet and Laplacian of Gaussian for multi-
resolution analysis and feature emphasis (Supplementary 
Table 1).

Model development
The basic unit of our models was a pipeline consisting of 
three components: a standardizer using Z-score normali-
zation, feature selection using the least absolute shrink-
age and selection operator, and finally, a classifier using 
a tree-based model [19, 20]. A classifier was selected 
between two tree-based models, the light gradient boost-
ing model (LightGBM) and ExtraTrees, with the intent of 
achieving a high-performing model [21, 22]. LightGBM is 
known for its effective handling of unbalanced data and 
ExtraTrees model for its computational efficiency. Two 
tree-based modeling methods were applied separately 
twice: once to all radiomic feature sets (i.e., first-order 
and texture), and once to texture features only. The best 
model was selected for each of the two types of radiomic 
feature sets, encompassing all kinds of features as well 
as texture features alone. During model training, five-
fold cross-validation was performed for hyperparameter 
optimization using the area under the receiver operating 
characteristic curve (AUROC) as an evaluation metric.

Model performance and feature importance
After training, the models were tested on a test dataset. 
The predictive performance of the models was evalu-
ated using the AUROC with a 95% confidence interval 
(CI). The best-performing models for each feature set 
(all features and textural features) were selected. The 
diagnostic performance (sensitivity, specificity, and accu-
racy) was derived, and the cutoff value of 0.5 was used. 
To examine which radiomic features are important for 

Fig. 1 Flowchart of the patients included in the current study. PS, 
propensity score
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predicting hemorrhagic transformation, we calculated 
the mean absolute Shapley value for each of the selected 
input features using the Shapley additive explanations 
(SHAP) algorithm [23]. A clinical model was developed 
using logistic regression with clinical variables previously 
reported to be associated with hemorrhagic transforma-
tion to compare its performance with that of the radiom-
ics model. The included variables were sex, age, history 
of hypertension, diabetes, dyslipidemia, atrial fibrillation, 
chronic heart failure, medication history of antiplatelets, 
oral anticoagulants, statins, presence of left ventricular, 
left atrial or appendage thrombus, location of infarction 
(represented as binary variables of cortex, subcortex, 
insular, corona radiata, basal ganglia, internal capsule, 
thalamus, and cerebellum), intravenous thrombolysis, 
endovascular thrombectomy, initial NIH Stroke Scale, 
hemoglobin level, hematocrit level, white blood cell 
count, platelet count, low-density lipoprotein level, and 
initial glucose level. The clinical model was built with the 
training dataset. The AUROC of the clinical model was 
compared with that of the radiomics model on the test 
dataset using DeLong’s test.

Statistical analysis
Descriptive statistics were calculated for the baseline 
characteristics of the included patients. The chi-square 
test was performed for categorical variables, and the 
Mann–Whitney U test for continuous variables. Pro-
pensity score matching was performed to eliminate con-
founding variables with a 1:1 ratio for patients with and 
without hemorrhagic transformation based on the scores 
from the logistic regression model. The logistic regres-
sion model incorporated all variables included in the 
clinical model, which were selected by their association 
with hemorrhagic transformation. Nearest neighborhood 

method was used, with a 1:1 ratio. Average treatment 
effect in the treated was used as the target estimand. 
Python 3 with the open-sourced ScikitLearn library 
version 0.21.2 was used [24]. Statistical analyses were 
performed using R version 4.0.0 (R Foundation for Sta-
tistical Computing), which was also open-sourced, with 
‘MatchIt’ package for propensity score matching [25, 26]. 
The schematic flow of the study is presented in Fig. 2.

Results
Patients
A total of 1268 patients underwent intravenous throm-
bolysis or endovascular thrombectomy during the study 
period. Hemorrhagic transformation occurred in 271 
(21.4%) patients. Of these patients with hemorrhagic 
transformation, 218 were included after excluding 53 
(19.5%) patients due to failure of image processing (42 
patients), low-quality imaging (five patients), infarction 
size being too small to draw the VOI (three patients), 
no follow-up MRI performed (two patients), and hem-
orrhage present on initial imaging (one patient). Using 
propensity score matching, 218 patients without hem-
orrhagic transformation were selected. After propen-
sity score matching, imaging analysis was performed 
in patients without hemorrhagic transformation; 74 
patients were further excluded because of failure of 
image processing (27 patients), no follow-up MRI was 
performed (10 patients), and the infarction size was too 
small to draw the VOI (37 patients). As a result, a total 
of 218 patients with hemorrhagic transformation and 144 
patients without hemorrhagic transformation were suc-
cessfully enrolled in the study. Representative images of 
patients who experienced hemorrhagic transformation 
and those who did not are shown in Fig. 3. In 6 out of 362 

Fig. 2 Diagram showing image pre‑processing and feature extraction. ANTs, advanced normalization tools
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cases, there was disagreement about the position of the 
VOI and it was repositioned by consensus.

The median age of the included patients was 77 years 
(interquartile range, 69–83  years), and 51.1% (185 
patients) were male. Of the 218 patients included in the 
hemorrhagic transformation group, 38.5% (84 patients) 
received intravenous thrombolysis and 88.5% (193 
patients) received endovascular thrombectomy. Simi-
lar proportions of patients received intravenous throm-
bolysis (33.3%, 48 patients, p = 0.37) and endovascular 
thrombectomy (94.4%, 136 patients, p = 0.08) in the non-
hemorrhagic transformation group (Table 1). Presence of 
risk factors were similar between the patients who suf-
fered hemorrhagic transformation and those who had 
not. Pre-stroke medications were similar between the two 
groups. The stroke severity, represented as NIH Stroke 
Scale, was similar between the two groups (median 14 
for the hemorrhagic transformation group and 15 for the 
non-hemorrhagic group). Initial glucose level was signifi-
cantly higher for the patients who suffered hemorrhagic 
transformation (137.0 mg/dL vs. 129.0 mg/dL, p = 0.01). 
Other laboratory values were similar between the two 

groups. The infarct topology was similar between the two 
groups. Also, there were no differences in onset to admis-
sion time between two groups (hemorrhagic transfor-
mation [175.5  min] vs non-hemorrhagic transformation 
[181.0 min], p = 0.839).

Performances of the models and feature importance
The best-performing model was the LightGBM when 
all features were used. The all-feature model showed an 
average AUROC of 0.992 on the fivefold validation and 
0.986 (95% CI, 0.971–1.000) on the test dataset (Table 2 
and Fig. 4). With a cutoff of 0.5, the model demonstrated 
an accuracy of 92.7%, a sensitivity of 93.9%, a specific-
ity of 90.9%, a positive predictive value of 93.9%, a nega-
tive predictive value of 90.9%, and an F1-score of 93.9%. 
The ExtraTrees model performed best when textural 
features were used. The textural model showed an aver-
age AUROC of 0.944 for the fivefold validation and 0.845 
(95% CI, 0.774–0.916) for the test dataset. With a cutoff 
of 0.5, the model demonstrated an accuracy of 73.4%, 
a sensitivity of 81.8%, a specificity of 60.5%, a positive 

Fig. 3 Representative images of the patients included in this study showing (A) non‑contrast brain computed tomography, (B) follow‑up magnetic 
resonance imaging of a patient who suffered hemorrhagic transformation, (C) non‑contrast brain computed tomography, and (D) follow‑up 
magnetic resonance imaging of a patient who did not suffer hemorrhagic transformation
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predictive value of 76.1%, a negative predictive value of 
68.4%, and an F1-score of 78.8%.

The extratrees model, utilizing only texture features, 
demonstrated a moderately high AUROC; however, its 
overall performance lagged behind that of the LightGBM 
model. Notably, the sensitivity reached 81.8%, while the 
specificity declined to 60.5%, signifying a reduction in 
specificity. The features selected for each model are listed 
in Supplementary Table 2.

For the best-performing all-feature model, the SHAP 
analysis showed that the minimum value of the VOI was 
the most important feature (Fig. 5). The Large Depend-
ence Low Gray Level Emphasis was the second most 
important feature of the model, which quantifies the 
prevalence of large clusters or groups of low-intensity 
voxels. The importance of the first-order features was 
approximately six times higher than that of the second-
most important feature. The five most important fea-
tures of the textural feature model are Sum Average, Joint 
Average, Low Gray Level Emphasis, Large Dependence 
Low Gray Level Emphasis, and Short Run Low Gray Level 
Emphasis. Sum Average measures the average intensity 
of paired voxels, shedding light on the region’s overall 

luminosity. Similarly, Joint Average indicates the region’s 
average intensity. Low Gray Level Emphasis accentuates 
the presence of low-intensity voxels. Large Dependence 
Low Gray Level Emphasis identifies areas characterized 
by significant groupings of low-intensity voxels, illumi-
nating their spatial interconnectedness. Short Run Low 
Gray Level Emphasis highlights brief chains of low-inten-
sity voxels, offering insights into the image’s fine struc-
ture and textural aspects.

The logistic regression model using all clinical variables 
showed an AUROC of 0.714 (95% CI, 0.650–0.778) on 
the training dataset and 0.544 (95% CI, 0.431–0.658) on 
the test dataset. The performance of the radiomics mod-
els developed in this study were significantly better than 
that of the clinical model on the test dataset (p < 0.001). 
The coefficients of the logistic regression model are pre-
sented in Supplementary Table 3.

Discussion
This study showed that machine learning models using 
radiomic features from NCCT of the brain can accurately 
predict hemorrhagic transformation after reperfusion 
therapy. The best-performing model using all radiomics 

Table 2 Performances of the selected models

AUROC area under the receiver operating characteristic curve, CV cross-validation
* Average AUCs for each fivefold cross-validation
† Presented as value (interquartile range)

Fivefold 
CV 
AUROC*

Test  AUROC† Accuracy (%) Sensitivity (%) Specificity (%) Positive 
predictive 
value (%)

Negative 
predictive 
value (%)

F1 score (%)

Model 
with all 
features 
(LightGBM)

0.992 0.986 (0.971–1.000) 92.7 93.9 90.9 93.9 90.9 93.9

Model with 
textural 
features 
(Extratrees)

0.944 0.845 (0.774–0.916) 73.4 81.8 60.5 76.1 68.4 78.8

Fig. 4 Receiver operating characteristic curves of the best‑performing model using (A) all features and (B) textural features
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features was the LightGBM model. When textural fea-
tures were only used, the ExtraTrees model performed 
the best. The SHAP analysis showed that first-order fea-
tures were the most important features in the all-feature 
model, and Sum Average was the most important feature 
in the textural feature model.

The SHAP analysis revealed that first-order features 
were the most predictive of the occurrence of hemor-
rhagic transformation. The AUROC of the model using 
first-order features was 0.986, suggesting a close rela-
tionship between the first-order features and hem-
orrhagic transformation. The minimum and the ten 
percentile values were particularly correlated with 
hemorrhagic transformation, suggesting that a low 
Hounsfield unit is a predictor of hemorrhagic trans-
formation. This is in line with previous studies, which 
have shown that hypodensity on NCCT is associated 
with hemorrhagic transformation [9, 11, 12]. Features 
such as the minimum and 10th percentile in NCCT 
reflect the extent of ischemic damage. These indica-
tors become more pronounced with increased severity 
of ischemic damage, emphasizing their significant role 
in predicting HT. Textural features were also predictive 

of hemorrhagic transformations. Considering the high 
predictive value of the first-order features of hemor-
rhagic transformation, an additional model excluding 
the first-order features was developed. The textural 
feature model also showed promising results, with an 
AUROC of 0.845 for the test dataset. This may imply 
that textural features other than the Hounsfield unit are 
associated with the histological characteristics of hem-
orrhagic transformation. Textural features are basically 
less intuitive and more difficult to understand than 
first-order features derived from histogram analyses. 
However, three of the five textural features selected in 
the textural model were Low Gray Level Emphasis and 
its derivatives, which quantified the spatial distribu-
tion of low gray-level values. This indicates that textural 
values reflecting the distribution of low Hounsfield 
units in the infarcted area are also valid components 
of this feature set. These features could potentially pro-
vide information on the correlations between voxels 
of low-attenuation values that are not represented by 
first-order features; thus, they may contain informa-
tion regarding the microstructural changes in the brain 
observed on NCCT. We posit that this microstructural 

Fig. 5 Feature importance using the Shapley additive explanations algorithm on the test dataset for the (A, B) all‑feature LightGBM model and the 
(C, D) textural feature ExtraTrees model
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change may be associated with blood–brain barrier 
permeability. Further investigation is warranted to 
explore this potential relationship.

An automated method using these highly accurate 
machine learning models that can be readily incorpo-
rated into clinical practice for the prediction of hemor-
rhagic transformation can guide physicians in making 
high-risk reperfusion decisions in urgent situations. For 
example, patients identified by the models as high risk 
for hemorrhage might receive more cautious reperfusion 
therapies. In addition, these predictions may alter post-
thrombolytic management protocols during admission. 
Those identified as high-risk would undergo intensified 
neurological assessments and more frequent imaging, 
while their medication regimens, particularly anticoagu-
lants and antiplatelet agents, might be adjusted to mini-
mize bleeding risks. Considering the absence of a definite 
guideline for dosage and timing of antithrombotic ther-
apy after reperfusion, patients at risk for hemorrhage 
may receive a lower dose of anticoagulation or delay 
antithrombotic therapy altogether [27]. This early predic-
tion would facilitate swift interventions in case of hemor-
rhage onset, from aggressive blood pressure management 
to potential surgical options. Additionally, transparent 
discussions with families about elevated risks would set 
clear expectations, and from a resource standpoint, high-
risk patients could be prioritized for intensive care units. 
Certainly, numerous challenges must be addressed before 
practical application, including issues of generalizability 
and accuracy. Effective coordination with physicians for 
the interpretation of predictions is also crucial in over-
coming these hurdles.

This study used NCCT, which is the most widely and 
easily performed imaging modality for acute ischemic 
stroke [27–29]. Radiomic feature extraction can be rap-
idly performed without considerable computational 
power. In addition, the machine learning model used 
in this study is lightweight and can be run on any con-
sumer-grade central processing unit without the need for 
a graphics processing unit. Previous studies using radi-
omics for prediction of hemorrhagic transformation have 
included clinical variables and/or infarction boundary 
was manually drawn by a professional [28, 29]. For the 
models developed in this study, all processes except for 
VOI drawing can be performed automatically. The VOI 
may also be easily automated using a machine learning 
model trained to detect low-density infarction core [30–
32]. If VOI drawing is performed manually along the edge 
of the infarction, it would be a time-consuming process 
that can vary from person to person. Therefore, to ensure 
that the shape of the VOI did not affect the prediction, 
we used a uniform VOI of a 1-cm sphere and excluded 
shape features from the model development. Therefore, 

we expect our method to be easier to apply clinically than 
manual region drawing.

This study had several limitations. Even with pro-
pensity score matching, the final patient groups were 
not matched, owing to the exclusion of patients with 
image processing errors that could not be assessed 
before patient selection. NCCT equipment and proto-
cols, parameters, and kernels may affect image texture, 
yet we did not control these aspects. Nonetheless, our 
model showed high performance and appears to better 
reflect real-world situations. SHAP analysis was per-
formed to determine the features most strongly associ-
ated with hemorrhagic transformations. However, there 
are limitations to understanding the clinical implica-
tions of radiomic features on SHAP analysis, which are 
deemed important for hemorrhagic transformation. For 
the model to show stable performance across different 
machines and settings, a fixed sized sphere was used, 
and preprocessing, such as resampling was performed. 
Textural features shown to be important in this study 
were proven to be stable across different imaging con-
ditions [33, 34]. To prevent overfitting, several steps 
were taken. Dataset was Z-score normalized, which 
ensures that the features have a mean of 0 and a stand-
ard deviation of 1. This standardization is crucial for 
models like LightGBM and ExtraTrees that are sensi-
tive to the scale of the data, as it prevents features with 
larger scales from dominating the learning algorithm. 
The least absolute shrinkage and selection operator fea-
ture selection was applied, which is particularly effec-
tive for datasets with a smaller number of observations 
as it enhances the model’s generalization by selecting 
only the most relevant features. This not only helps 
in reducing the dimensionality of the data but also in 
eliminating irrelevant or redundant predictors that 
could lead to overfitting. Finally, we incorporated five-
fold cross-validation during model training. This tech-
nique involves partitioning the dataset into five subsets, 
using four for training and one for validation in each 
iteration. This process not only provides a robust esti-
mate of the model’s performance but also ensures that 
the model is tested across all data points, thus prevent-
ing the model from learning noise specific to a single 
subset of the data. However, the clinical applicability 
of the models is limited owing to the lack of external 
validation. The slice thickness for NCCT can vary, and 
the windowing range might differ based on specific set-
tings, both of which can influence the reproducibility 
of our findings. Additionally, the manual positioning 
of the VOI by neuroradiologists could introduce repro-
ducibility concerns. We have used a fixed-size VOI on 
the lowest attenuation, applied normalization on the 
entire NCCT scan, used a specific windowing range, 
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and resampled to an isotropic voxel size to overcome 
these concerns. However, a future validation study 
including multiple centers in different regions world-
wide is needed to maximize the generalizability and 
reduce potential bias. This study used fivefold valida-
tion with 7:3 split ratio for training and validation and 
two machine learning algorithms. A more performant 
model could be developed with a different approach. 
For example, in a recent radiomics investigation 
employing brain MRI, the authors assessed diverse 
models and observed superior performance with 
XGBoost [35]. Different cutoffs can be used in clinical 
settings. This was a retrospective single-center study, 
and the generalizability of the findings should be fur-
ther validated.

In conclusion, the radiomics model created using ini-
tial NCCT was highly accurate in predicting the occur-
rence of hemorrhagic transformation after reperfusion 
therapy in patients with acute ischemic stroke. The two 
radiomics models confirmed that a low Hounsfield unit 
is a strong predictor of hemorrhagic transformation and 
that textural features alone can predict hemorrhagic 
transformation.
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