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Current status of optoacoustic breast 
imaging and future trends in clinical application: 
is it ready for prime time?
B. Bersu Ozcan1*  , Hashini Wanniarachchi1, Ralph P. Mason1 and Basak E. Dogan1 

Abstract Optoacoustic imaging (OAI) is an emerging field with increasing applications in patients and exploratory 
clinical trials for breast cancer. Optoacoustic imaging (or photoacoustic imaging) employs non-ionizing, laser light 
to create thermoelastic expansion in tissues and detect the resulting ultrasonic emission. By combining high optical 
contrast capabilities with the high spatial resolution and anatomic detail of grayscale ultrasound, OAI offers unique 
opportunities for visualizing biological function of tissues in vivo. Over the past decade, human breast applications 
of OAI, including benign/malignant mass differentiation, distinguishing cancer molecular subtype, and predicting 
metastatic potential, have significantly increased. We discuss the current state of optoacoustic breast imaging, as well 
as future opportunities and clinical application trends.

Clinical relevance statement Optoacoustic imaging is a novel breast imaging technique that enables the assess-
ment of breast cancer lesions and tumor biology without the risk of ionizing radiation exposure, intravenous contrast, 
or radionuclide injection.

Key Points 

• Optoacoustic imaging (OAI) is a safe, non-invasive imaging technique with thriving research and high potential clinical 
impact.

• OAI has been considered a complementary tool to current standard breast imaging techniques.

• OAI combines parametric maps of molecules that absorb light and scatter acoustic waves (like hemoglobin, melanin, lipids, 
and water) with anatomical images, facilitating scalable and real-time molecular evaluation of tissues.
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Introduction
The first significant attempt to generate sound from light 
was described by Alexander Graham Bell in 1880 [1] 
stimulating various significant events in the development 
of the technology, as presented in the timeline (Fig.  1). 
In vivo studies of optoacoustic imaging (OAI) were made 

possible by advances in methodology and hardware in the 
1970s. In OAI, near-infrared, non-ionizing nanosecond 
laser light pulses induce thermoelastic expansion in tis-
sues generating ultrasonic waves, which are captured by 
ultrasound transducer/s [2]. Multispectral excitation and 
unmixing can provide parametric maps of endogenous 
molecules such as oxyhemoglobin  (HbO2) and deoxy-
hemoglobin (dHb), melanin, and lipids that absorb light 
and generate acoustic waves, which can then be fused 
with anatomic images to allow scalable, relative real-time 
molecular assessment in tissues [3, 4].
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OAI technology leverages both the intrinsic contrast 
of optical imaging and the acoustic depth of penetration 
with the high spatial resolution of ultrasound imaging, 
as recently reviewed [5, 6]. OAI is increasingly used in 
imaging superficial tissues. In breast imaging, OAI helps 
distinguish benign and malignant breast lesions, increas-
ing diagnostic specificity in conjunction with grayscale 
ultrasound [3, 7, 8]. Furthermore, focused imaging of 
the tumor oxygenation pattern in  vivo has been shown 
to strongly correlate with histopathologic prognostic 
markers, which shows promise for predictive application 
of OAI [4]. Herein, we describe the current state of non-
contrast-enhanced applications of optoacoustic breast 
imaging. We review techniques, systems, workflow, and 
current clinical applications together with limitations 
and potential future directions.

Principles of optoacoustic imaging (OAI) 
and commercially available systems
Non-ionizing nanosecond laser pulses are absorbed dif-
ferentially by different components of the targeted bio-
logical tissue and converted to heat. The consequent 
thermoelastic expansion causes acoustic wave (referred 
to as optoacoustic waves) emission detected by the wide-
band US transducers around the tissue. The combination 
of structural and functional information facilitates the 
formation of functional and molecular imaging at high 
resolution, which may be calculated and displayed in 
real-time.

Different tissue components have unique optical 
scattering and absorption properties for each wave-
length and the use of several wavelengths in OAI helps 

distinguish them [9]. The main light-absorbing tissue 
components are oxy- and deoxyhemoglobin  (HbO2 and 
dHb), lipid, water, and melanin. Since light absorption 
is concentration-dependent, the detected ultrasound 
intensity effectively provides a measure of relative con-
centrations of illuminated molecules [10]. Oxy- and 
deoxyhemoglobin have distinct absorption spectra, 
and by selecting appropriate wavelengths for illumina-
tion, each can be assessed together with the derived 
parameters of hemoglobin oxygen saturation  (sO2) and 
total hemoglobin (HbT). It provides insights into vas-
cular oxygenation and perfusion, as well as hypoxia 
and angiogenesis which occur during breast cancer 
development.

Optoacoustic imaging systems can be broadly divided 
into two types: single-wavelength OAI and multispec-
tral OAI (or multispectral optoacoustic tomography 
(MSOT)) [11, 12]. Single-wavelength OAI scans can 
reveal a dominant tissue component such as hemo-
globin, though sensitivity and specificity are much 
improved by using two or more wavelengths [13]. 
Indeed, MSOT can examine multiple wavelengths, ena-
bling the separation of the complex signals into distinct 
subcomponents through spectral unmixing [2, 14]. This 
process facilitates the computation of total blood vol-
ume, lipid, and water contributions, alongside meas-
urements of oxy- and deoxyhemoglobin.

Rapidly dividing cancer cells often cause hypoxia and 
stimulate angiogenesis, making OAI effective at detect-
ing the presence and degree of hypoxia in cancers, rela-
tive to normal tissue, and helping distinguish benign 
from malignant masses [3, 8].

Fig. 1 A history of optoacoustic imaging [1, 3, 4, 7–9, 18, 38, 73–77]. OAI optoacoustic imaging, CE Conformité Européenne

6093



(2024) 34:6092-6107Ozcan et al. European Radiology

To date, no exogenous contrast agent use in clinical 
OAI has been reported for breast imaging other than 
sentinel lymph node detection [15], but several materi-
als approved by the US Food and Drug Administration 
(FDA) for human use (e.g., indocyanine green, Evans 
blue, methylene blue) can provide effective photoacoustic 
contrast.

Optoacoustic breast imaging systems fall into two 
broad categories: systems with linear arrays or tomo-
graphic arrays (Fig. 2). The characteristics of commercial 
optoacoustic systems for breast imaging are summarized 
in Table  1. Linear array systems detect photoacoustic 
waves at limited angles, but are hand-held and port-
able and have been integrated into existing clinical 
ultrasound systems. Patients are observed in the supine 
position. Tomographic systems apply multiple illumina-
tion sources around the breast and capture photoacous-
tic waves emanating from the entire circumference of the 
breast and generally offer greater depth of signal penetra-
tion. The breast is set up in a breast-holding cup when 
the patient lies on the bed in a prone position. Data are 
recorded as time-resolved ultrasound signals by multiple 
ultrasonic transducers distributed around the imaging 
volume. The association of these transducers with spe-
cific spatial locations enables the reconstruction of the 
imaging volume. 3D systems can provide better sensitiv-
ity at greater depth, and can image breast sizes ranging 
from B cup to DD cup [16].

Advantages of optoacoustic imaging
Optical imaging of the breast suffers from low spatial 
resolution due to photon scattering, making image 
interpretation difficult. OAI overcomes this problem 
by detecting the stimulated US waves, which are com-
bined in a tomographic scheme to generate optical 
absorption images. Image resolution is determined by 
the bandwidth of the ultrasound transducer and is lim-
ited only by acoustic diffraction. Optoacoustic technol-
ogy enables laser-based imaging of deeper tissue layers. 
With low US frequencies (2.25–8 MHz), OAI can pro-
duce resolutions of 0.5 to 5 mm at a depth of 3–7 cm 
[17–19]. Higher US frequency can increase the spatial 

resolution, but with lower depth penetration due to 
the increased attenuation of US waves with increasing 
frequency. This unique scalability contributes to form-
ing images ranging from the microscopic to the mac-
roscopic scale, which is very challenging using other 
imaging modalities. A strength of OAI is the ability to 
achieve rudimentary anatomical images and provide 
co-registered functional and molecular level tissue 
information without using ionizing radiation or exog-
enous contrast agents. Furthermore, OAI can be used 
safely to image patients with metal implants, claustro-
phobia, or high BMI that limit access to MRI, without 
the need to use contrast.

Two other modalities that can complement US are 
ultrasound elastography and microbubble contrast-
enhanced ultrasound. Fused ultrasound and optoa-
coustic imaging with decision support tool assistance 
showed a lower increase in specificity than has been pre-
viously reported for ultrasound elastography, including 
strain and sheer-wave elastography as shown in recent 
meta-analysis which ranged from 81 to 88% [20–23]. Of 
note, there are differences in study design and popula-
tion, given that studies of elastography included higher 
numbers of Breast-Imaging Reporting and Data System 
(BI-RADS) category 2 masses and cysts, whereas OAI 
studies only included BI-RADS 3, 4, and 5 lesions, where 
decision-making is more challenging for the radiologist. 
The previously shown sensitivity range between 80 and 
95% as a supplement to US limits its widespread use to 
down-classify masses [24–26]. Elastography is likely to 
be used clinically for up-classification or targeted appli-
cations, such as differentiating a complicated cyst from 
a solid mass. Additionally, elastography shows a marked 
reduction in sensitivity (possibly < 80%) in masses meas-
uring ≤ 1 cm [25, 26]. The observed sensitivity for small 
vs. larger masses is not significantly different for OAI 
(masses < 1 cm 96.8%, 98.9% for masses > 2 cm) [23]. This 
sensitivity for small masses could be particularly impor-
tant in institutions with supplemental MRI or automated 
breast ultrasound screening programs, leading to fre-
quent detection of small masses and subsequent need for 
adjunctive diagnosis and needle biopsies.

Fig. 2 Schematic illustrations of (a) a hand-held linear array optoacoustic system [78], and (b) an optoacoustic tomography system equipped 
with planar [79] and hemispherical [80] arrays. The breast is exposed to non-ionizing, near-infrared laser pulses using either a hand-held dual 
probe (a) or an individual laser source (b). The energy is absorbed and converted into heat, resulting in temporary thermoelastic expansion 
and the emission of ultrasound waves. The generated ultrasonic waves are detected by the hand-held dual probe (a), the planar, or hemispherical 
(b) ultrasound (US) transducers, and then analyzed to produce images. A hospital bed was modified to accommodate optoacoustic tomography 
systems, as depicted in the illustration. In the planar system, the breast is immobilized under mild compression in a craniocaudal direction 
between a glass window for laser illumination and the US detector array. In the hemispherical system, the breast is held in a hemispherically shaped 
breast-holding cup filled with body-temperature water. The hemispherical detector under the holding cup detects the ultrasonic emission waves 
continuously

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Similarly, contrast-enhanced US (CEUS) is a poten-
tial diagnostic tool for malignant breast tumors due to 
their generally high vascularization. This method pro-
vides real-time information on intralesional vasculari-
zation and blood flow by injecting a contrast medium 
consisting of microbubbles intravenously. CEUS has 
been shown to improve the diagnostic performance of 
B-mode US. However, its moderate ability to differen-
tiate benign lesions from malignant ones and the lack 
of consensus on acquisition and interpretation tech-
niques have prevented its routine use [27, 28]. A meta-
analysis by Hu et al revealed that the pooled weighted 
estimates of sensitivity and specificity for CEUS in the 
diagnosis of breast lesions were 0.86 and 0.79, respec-
tively, insufficient to obviate needle biopsy in the 
majority of breast masses [29].

Finally, the current absence of CPT code for OAI 
hinders predictions concerning the financial impact 
of this new technology on patients and the overall 
healthcare system. However, a recent study by Ozcan 
et  al assessed the cost-effectiveness of supplemen-
tal use of OAI compared to US alone in distinguish-
ing between benign and malignant breast masses [30]. 
This evaluation was conducted from the perspective 
of the US healthcare system in a diagnostic context, 
and utilized diagnostic test performance parameters 
from the PIONEER-01 (NCT01943916) clinical trial 
and cost parameters (USD) from the Truven Health 
MarketScan Databases [3, 30]. The findings indicated 
that OAI can cut costs and enhance patient quality of 
life, mainly by reducing false positives and subsequent 
benign biopsies [30].

Pitfalls of optoacoustic imaging
As a relatively new technique, OAI is still under develop-
ment to refine and optimize procedure, protocols, and 
interpretation. Interpretation of OAI can be challenging 
due to a lack of technical experience in image acquisition 
and interpretation, together with needed comprehensive 
guidelines. This lack of a standardized interpretation sys-
tem and lexicon makes reporting, and comparing, the 
results with other breast imaging techniques challenging. 
Since there is no consensus on the interpretation schema, 
it remains subjective and operator-dependent. Addition-
ally, converting the optoacoustic (OA) score to a prob-
ability of malignancy and BI-RADS category depends 
on the reader’s judgment, adding additional subjectivity 
to interpretation. Intra- and inter-observer agreement 
on OAI scores has demonstrated high reliability, and a 
recent study showed increased accuracy with a machine 
learning–based decision support tool to address the vari-
ability in score interpretation to estimate the probability 
of malignancy [3, 23].

Progress in source and detector development, such as 
faster image acquisition at more wavelengths, greater 
depth penetration, and image reconstruction algorithms, 
remains an area of active research. There are two major 
physical artifacts which affect photoacoustic images: flu-
ence and acoustic heterogeneity respectively. Light flu-
ence heterogeneity is caused by superficial layers of an 
imaging target absorbing photons, lowering the inten-
sity of light which reaches deeper layers. Therefore, the 
available signal decreases as a function of depth. This 
nonlinear function, being dependent on the absorption 
coefficients of different pixels, also varies as a function 

Table 1 Technical characteristics of commercially available clinical optoacoustic breast imaging devices

MSOT multispectral optoacoustic tomography, CE Conformité Européenne, FDA Food and Drug Administration

*Hand-held 3D detector available with limited clinical data (not CE-marked)

MSOT Acuity Echo [43] Imagio [78] Single-Breath-Hold Photoacoustic 
Computed Tomography (SBH-PACT) [16]

Manufacturer iThera Medical Seno Medical CalPACT 

FDA approval/CE marking No FDA approval
CE-marked system (since 2019)*

FDA premarket approval
CE-marked system (since 2014)

No FDA approval
No CE-mark

B-mode ultrasound capability Yes Yes No

Ultrasound detector *Hand-held 256-element arc-shaped 1D 
detector array, 2.5–10 MHz

Hand-held 128-element linear 
1D detector array, 0.1–12 MHz

Ring 512-element 1D detector array, 2.25 
MHz

Penetration depth Up to 50 mm Up to 40 mm Up to 40 mm

Patient position Supine Supine Prone

Laser characteristics Multispectral optoacoustic tomography 
(MSOT):
680–980 nm
Pulse repetition rate: ≤ 25 Hz

Dual wavelength OAI:
757 and 1064 nm
Pulse repetition rate: 5 or 10 Hz

Single-wavelength photoacoustic com-
puted tomography (PACT):
1064 nm
Pulse repetition rate: 20 Hz

Resolution As low as 0.4 mm Short wavelength, 0.47 mm
Long wavelength, 0.42 mm

0.25 
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of the wavelength and is often referred to as spectral 
coloring.

Acoustic heterogeneity induces problems related to 
resolution as well as to signal intensity; acoustic waves 
scatter as they pass through interfaces, and they attenu-
ate according to their frequency. Propagation of acous-
tic waves may be roughly determined by assuming that 
the wavefronts propagate along geometrical rays. There 
are effectively two components to acoustic heterogene-
ity which affect photoacoustic images: spatially varying 
speed of sound, and frequency-dependent attenuation.

Another limitation of OAI systems is the current lack 
of data format uniformity, which impedes data exchange 
and comparison. This inconsistency hinders overall tech-
nological progress in the field and creates obstacles to 
effective research collaboration among various institu-
tions and researchers. In 2018, the International Pho-
toacoustic Standardization Consortium (IPASC) was 
formed to standardize test methods and data handling 
[31]. IPASC’s goal is to ensure that data generated by 
various OAI systems can be easily shared, compared, 
and analyzed across different platforms, institutions, and 
research studies in order to improve the reliability and 
reproducibility of OAI results and foster advancements 
in the field.

Patient selection considerations
The primary safety concern in OAI is potential dam-
age to tissue due to light exposure [32]. Clinically 
available devices are within acceptable maximum permis-
sible exposure in accordance with the American National 
Standards Institute (ANSI) guidelines for the use of lasers 
in healthcare [3, 7, 33]. Nevertheless, all patients con-
sidered for optoacoustic imaging should be routinely 
screened for a history of any photosensitive disease like 
porphyria, pellagra, psoriasis, or systemic lupus erythe-
matosus. Patients experiencing photosensitivity associ-
ated with a disease or photosensitizing agents such as 
sulfa, ampicillin, and tetracycline should not be scanned 
using optoacoustic imaging. The patient should have no 
open sores, insect bites, or rash on or near the area of the 
scan.

While melanin is a strong absorber, it did not cause a 
signal absorption challenge and the use of OAI in Black 
patients is safe and effective, with outcomes non-infe-
rior to white patients [7]. Furthermore, this technique 
is deemed safe for patients with breast implants and the 
presence of implants may enhance the superficiality of 
breast tissue, potentially leading to improved outcomes.

The impact of lasers on a developing fetus remains 
unclear [34]. The energy introduced near the fetus dur-
ing its developmental phase could pose a safety concern, 
especially since real-time management of the light source 

and predicting the fetal position can be challenging. FDA 
premarket approval only applies to non-pregnant women, 
so non-pregnant status must be confirmed prior to breast 
OAI [35]. A primary safety concern for OAI is the poten-
tial harm to the eyes of patients and scanner staff due to 
lasers [36]. Class IIIB lasers, which are of intermediate 
power and emit visible light, can result in retinal damage. 
Consequently, wearing protective glasses to guard against 
potential laser exposure is essential.

Evidence for clinical applications in breast imaging
MRI provides important functional information; how-
ever, the need to inject contrast to visualize breast cancer 
and obtain functional data remains a drawback, stimulat-
ing search for more effective non-invasive techniques to 
image breast lesions [37]. OAI provides an alternative to 
current standard breast imaging techniques and clinical 
evaluation of optoacoustic breast imaging has accelerated 
over the past 10 years, including the first studies involv-
ing a small number of patients.

Butler et al imaged and scored 94 BI-RADS category 
3–5 masses with a linear array optoacoustic imaging 
system [8]. Each mass was scored by seven blinded 
independent readers. Internal feature scores were based 
on total hemoglobin and relative deoxygenation within 
the tumor. External optoacoustic scores were based on 
number and orientation of vessels within the boundary 
zone and number of radiating vessels within the tumor 
periphery, as well as total hemoglobin and relative 
deoxygenation within the tumor periphery (Appendix 
Table  1). This study revealed that both external and 
internal mean and median optoacoustic scores were 
higher for malignant masses than for benign masses (p 
< 0.0001) (Figs. 3 and 4) [8].

OAI can improve the specificity of breast mass 
assessment and decrease benign breast biopsies. In a 
multisite, prospective study, Menezes et  al [38] aimed 
to compare a linear array optoacoustic imaging sys-
tem to the device’s internal grayscale US alone based 
on assigned BI-RADS categories. Five blinded inde-
pendent readers scored five OA features of breast 
lesions to predict probability of malignancy and then 
re-assigned a BI-RADS category. Histopathologic 
diagnosis was considered as the reference standard, 
and 47.9% (57/119; 95% CI 0.39, 0.57) of BI-RADS 4A 
and 11.1% (3/27; 95% CI 0.03, 0.28) of BI-RADS 4B 
were correctly downgraded to BI-RADS 2/3 with OAI 
while three were incorrectly downgraded for a total 
of 4.5% false-negative findings. In another multisite, 
prospective study, seven blinded independent read-
ers assessed 1690 women with 1757 masses [3]. Again, 
a linear array optoacoustic imaging system was com-
pared to the device’s internal grayscale US alone and 
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Fig. 3 Images in a 55-year-old woman. a Grayscale US image demonstrates an oval hypoechoic mass (M) with lobulated margins assessed 
as BI-RADS 4B. b Fused optoacoustic (OA) and grayscale US image shows absence of internal and external OA features, consistent with benign 
breast lesion features. Biopsy revealed fibroadenoma. Note the light reflection artifacts parallel to tissue interface (blue arrowheads). Large 
superficial subcutaneous vessel with OA signal (white arrow). Courtesy: Seno Medical Instruments, Inc. Color map: oxygenation (spectrum of green 
[most oxygenated] to aqua) and deoxygenation (spectrum of red to pink [most deoxygenated]) of hemoglobin

Fig. 4 Images of a breast mass in a 54-year-old woman. a Grayscale US demonstrates an oval hypoechoic mass with indistinct margins assessed 
as BI-RADS 4B. Region of interest in green drawn to indicate tumor margins and central echogenic post biopsy clip is noted (white arrow). b Fused 
grayscale US and OA relative oxygenation parametric map shows large internal tumor vessels within borders demonstrating markedly high levels 
of deoxyhemoglobin (coded in pink, black arrow), and a few minor border vessels with higher relative oxyhemoglobin (coded in green, orange 
arrowhead). Biopsy revealed T1N0 invasive cancer (high grade, triple negative). Color map: oxygenation (spectrum of green [most oxygenated] 
to aqua) and deoxygenation (spectrum of red to pink [most deoxygenated]) of hemoglobin
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OAI downgraded 40.8% (3078/7535) benign mass reads 
and had an absolute specificity advantage of 14.9% over 
grayscale US (p < 0.001) (Fig. 5) [3]. Of note, the num-
ber of correct upgrades (1453/4745, 30.6%) was signifi-
cantly higher than the number of incorrect downgrades 
(783/4745, 16.5%) among malignant masses (p < 
0.0001) [3].

OAI can help to distinguish tumor subtypes and pre-
dict aggressiveness non-invasively. In a study conducted 
by Dogan et al, seven readers blinded to molecular char-
acteristics of a total of 532 breast cancers found that total 
external OA feature scores of luminal (A and B) breast 
cancers were higher (mean, 9.3 vs. mean, 8.8; p < 0.05) 
and total internal scores were lower (mean, 6.8 vs. mean, 
7.7; p < 0.001) than those of triple-negative and human 
epidermal growth factor receptor 2 (HER2)–positive can-
cers [4]. Also, correlations between higher Ki-67, a breast 
cancer proliferation marker, and higher internal and 
lower external optoacoustic feature scores were observed. 
Better non-invasive differentiation between molecular 
subtypes is important, since it can affect prognosis and 

management where triple-negative and HER2-positive 
cancers benefit more from neoadjuvant chemotherapy 
[39–41].

OAI can predict the metastatic potential of breast can-
cers. Breast cancers with metastatic axillary nodes had 
higher total optoacoustic feature scores compared to 
cancers without metastasis (mean, 17.3 vs. mean, 12.8; p 
< 0.001) [42]. Furthermore, breast cancers with three or 
more metastatic nodes had higher optoacoustic feature 
scores compared to those with no metastasis and low-
volume metastasis (mean, 18.5 vs. mean, 10.9; p < 0.001).

MSOT has primarily been used in pre-clinical research 
to date, but its application in translational and clinical 
research in breast imaging is growing. In a 2017 pilot 
study, Diot et al [43] used MSOT at 28 wavelengths (700–
970 nm) to gain a better understanding of the difference 
between malignant and nonmalignant breast tissue. 
They observed that the water and fat lipid layers were 
disrupted in cancer tissue compared to those in healthy 
tissue. However, they were less valuable than total blood 
volume and deoxy-/oxyhemoglobin ratio images showed 

Fig. 5 Images of a mass in a 70-year-old woman. a Grayscale US image demonstrates an oval hypoechoic mass with circumscribed margins 
assessed as BI-RADS-3 (blue arrow). b Fused grayscale US and OA image shows internal multiple vessels with hypoxia, and external radiating 
boundary and peripheral zone vessels with relatively high overall Hb and deoxy Hb content (arrowhead). ACR BI-RADS category was upgraded 
to BI-RADS 5 by the reader. The large subcutaneous and peritumoral vessels (orange arrowheads) result in light reverberation and reflection 
artifacts. c OA short-wave (757 nm) gray map, which shows relatively more deoxygenated hemoglobin. Vessels utilized in color mapping 
marked with arrowhead. d OA total hemoglobin (yellow) map, with threshold. e OA relative map. f OA long-wave (1064 nm) gray map, which 
shows relatively more oxygenated blood. Biopsy revealed invasive ductal carcinoma, triple negative, grade III Ki67 50%. Courtesy: Seno Medical 
Instruments, Inc. Color map: oxygenation (spectrum of green [most oxygenated] to aqua) and deoxygenation (spectrum of red to pink [most 
deoxygenated]) of hemoglobin
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marked differences between cancer and healthy breast 
tissue: (1) increased peripheral vascularization and total 
blood volume heterogeneity compared to normal tissue, 
(2) high tumor to background total blood volume ratio 
(up to a 30-fold increase). Table 2 provides a list of recent 
clinical studies that utilized optoacoustic imaging.

Potential future applications
Assessing tumor hypoxia
Hypoxia, a hallmark of cancer, is associated with tumor 
aggressiveness and plays a strong role in genetic stability, 
stimulating angiogenesis and metastasis. It is also perti-
nent to therapy resistance, notably radiation. While the 
importance of hypoxia has long been appreciated, there 
is still no routine clinical procedure for assessing levels 
of oxygenation in patients’ tumors for radiation therapy 
planning and monitoring the response [44]. Indeed, there 
remains the mantra “hypoxia: adored and ignored” which 
may be attributed to the historic lack of suitable meth-
ods for assessing tumor hypoxia [45]. Genetic or prot-
eomic signatures of hypoxia have been proposed for the 
breast and other disease sites based on biopsy specimens 
[44], but these are necessarily invasive and not practi-
cal for assessment of dynamic changes. At the turn of 
the millennium, polarographic oxygen electrode meas-
urements were promoted, and several studies demon-
strated hypoxia in breast tumors [45], which was shown 
to have some prognostic value for other disease sites 
such as the cervix [46]. Histography revealed extensive 
intratumoral heterogeneity and distinct hypoxia com-
pared with normal breast [45]. However, the procedure 
is highly invasive and time-consuming, required close 
attention to sampling, and has been largely discontin-
ued. Nuclear medicine approaches based on PET trac-
ers such as  [18F]misonidazole (F-MISO) have shown the 
presence of extensive hypoxia including clinical trials in 
human breast patients [47]. Quite apart from exposure 
of patients and staff to radioactivity and the associated 
costs, PET methods offer relatively low spatial resolu-
tion. Examinations may also be time-consuming since 
optimally they require early and late scans to differentiate 
perfusion deficit from hypoxia binding effects.

MRI is already included in the radiological workup for 
some patients and radiomic features have a profound 
utility for tumor staging [48]. DCE-MRI reveals tumor 
heterogeneity and relative perfusion and has some prog-
nostic value [48], although routine use of contrast is now 
discouraged in view of neurofibromatosis syndrome and 
brain retention. Oxygen-sensitive MRI offers exciting 
prospects in that the apparent transverse relaxation rate 
R2* is directly influenced by the concentration of deoxy-
hemoglobin (dHb), as exploited for the foundation of 
functional MRI (fMRI). Notably, an oxygen gas breathing 

challenge indicates the ability to enhance tumor oxy-
genation. In rat breast tumor studies, it was shown that 
a blood oxygen level dependent (BOLD) signal response 
was associated with elimination of tumor hypoxia, while 
tumors showing no signal response remained hypoxic 
[49]. It was further shown that patients undergoing neo-
adjuvant chemotherapy (NAC) for locally advanced 
breast cancer showed superior clinical response if the 
tumor exhibited a BOLD response to an oxygen gas 
breathing challenge administered prior to any therapeu-
tic treatment [48]. While BOLD is sensitive to vascular 
oxygenation, so-called tissue oxygen level dependent 
(TOLD) or OE-MRI based on spin lattice relaxation 
rate R1 is directly sensitive to  pO2. Extensive pre-clinical 
studies have shown correlations with hypoxia and most 
recently the ability to stratify rat tumors in terms of radi-
ation response [50]. Significantly such measurements 
could be performed during radiation treatment planning 
in an MR-LINAC [51].

OAI is a much newer technology and applications 
are open to exploration. OAI allows direct assessment 
of both oxyhemoglobin  (HbO2) and deoxyhemoglobin 
(dHb), thereby revealing vascular oxygen saturation  sO2 
 [HbO2 /  (HbO2 + dHb)] and total hemoglobin  (HbO2 + 
dHb). This is comparable to BOLD MRI, as rigorously 
tested by Rich and Seshadri [52], but has the advantage 
that changes in dHb resulting from vasodilation are read-
ily discriminated from the interconversion of  HbO2 and 
dHb. Changes in vascular oxygenation monitored by 
OAI have also been reported with respect to experimen-
tal treatments such as vascular-disrupting agents, which 
caused acute hypoxiation [53, 54], and heme-targeting 
agents which generated improved vascular oxygenation 
attributable to vascular paring [55]. Quiros-Gonzalez 
et al [56] hypothesized that OAI could be used to provide 
an early indication of response or resistance to antiangio-
genic therapy. Testing the MDA-MB-231 in mice, most 
tumors were found to be resistant to the treatment, but a 
subset demonstrated a clear survival benefit. At the end-
point, the PAT data from the responding subset showed 
significantly lower oxygenation and higher hemoglobin 
content compared with both resistant and control 
tumors. Moreover, longitudinal analysis revealed that 
tumor oxygenation diverged significantly in the respond-
ing subset, identifying early treatment response and the 
evolution of different vascular phenotypes between the 
subsets. The group also found distinct differences in 
MCF-7 and MDA-MB-231 tumor by OAI, which coin-
cided with histological phenotypes [56].

Examples of rapid acute responses to interventions 
in MDA-MB-231 breast cancer mouse tumors are pre-
sented in Fig.  6, specifically, response to hyperoxic and 
hypoxic gas breathing challenges. Such measurements 
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are feasible in breast tumor patients and could provide 
insights into tumor pathophysiology and early indication 
of treatment response.

Exploring exogenous OAI contrast agents for targeted 
functional and molecular imaging
Beyond endogenous contrast, specific OAI reporter 
agents have been demonstrated [6]. The strongest con-
trast may come from metal nanoparticles, such as gold, 
which can be targeted to specific receptors such as HER-
2. Melanin nanoparticles (MNPs) conjugated with cyclic 
Arg-Gly-Asp (cRGD) have been used to target integrin 
αvβ3 in pre-clinical breast tumor models (MDA-MB-231) 
and PyMT to reveal tumor and guide surgical removal of 
tissue identified via the melanin-induced photoacoustic 
contrast [57]. In other cases, melanin-doped paclitaxel-
loaded albumin nanoparticles have been used to visual-
ize uptake and accumulation in breast tumor xenografts 
in mice [58]. OAI has also been applied to visualize the 
location of brachytherapy seeds to verify location of 

effective radiation distribution in tumors [59]. In terms of 
radiation, high z-metals such as gold nanoparticles offer 
a unique opportunity to enhance local radiation dose 
based on Auger electrons stimulated by tumor irradia-
tion, thereby potentially reducing the required external 
beam radiation dose, and sparing nearby organs, such as 
the heart, during breast irradiation, as demonstrated in 
pre-clinical studies of human tumor xenografts in mice 
[60, 61]. Such gold nanoparticles are also highly amena-
ble to OAI observation providing a distinct opportunity 
for imaging providing potential theranostics [62].

Organic chromophores (e.g., 800-CW dye) may also be 
exploited for tracking agents. Indocyanine green (ICG) 
can provide strong contrast as a perfusion contrast agent, 
as explored extensively by Tomaszewski et  al [63]. A 
recent report presented a chromophore, which is directly 
sensitive to  pO2, whereby the optical lifetime of the so-
called nanosphere depends on  pO2 and therefore gener-
ates differential ultrasound contrast. Jo et  al reported a 
correlation between photoacoustic lifetime (PALTI) and 

Fig. 6 Detection of changes in vascular oxygenation in response to an intervention in pre-clinical mouse model using MSOT. a Transaxial 
cross-section images of orthotopically implanted MDA-MB-231 breast tumor in upper mammary fat pad with respect to 100% and 16% oxygen 
gas breathing challenges. Tumor  sO2 distribution is overlaid on anatomical 800 nm MSOT background image. b Tumor  sO2 saturation time course. 
c Change in tumor  sO2 during the transition from air to oxygen for 100% and 16% oxygen (p < 0.05, *). d (i) H&E-stained section of MDA-MB-tumor 
with (ii) the magnified region, and (iii) pimonidazole-stained section to reveal hypoxic regions of the tumor with (iv) the magnified region. Bars 
represent 2.5 mm and 100 µm, respectively
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radiation damage assessed by γH2AX in a PDX breast 
tumor model xenograft in mouse [64].

There is also opportunity for instrumentation devel-
opment. Typically, scans require several seconds for 
an image acquisition, particularly if specific molecules 
are to be discriminated (10 to 100 ms per wavelength, 
and two to five wavelengths). Multiple acquisitions may 
be acquired to enhance signal to noise ratio; however, 
motion between individual scans can lead to misregistra-
tion corrupting the ability to assess chromophores, such 
as oxy- or deoxyhemoglobin. Direct acquisition of 3D 
scans may partially overcome this issue, as well as acqui-
sition of single excitations, allowing co-registration prior 
to multispectral unmixing [65]. Another potential inno-
vation is incorporation of photoacoustic elastography, 
which was shown to provide additional ability to identify 
tumors in some patients [66].

Non-invasive assessment of response to neoadjuvant 
systemic therapy
Imaging is crucial to evaluating the response to neoad-
juvant therapy as a complement to conventional tumor 
measurements via physical examination. The degree of 
response can be used as a prognostic tool since patho-
logic complete response (pCR) is linked to improved 
disease-free survival [67, 68]. However, no clear clinical 
practice guidelines exist for assessing tumor response to 
neoadjuvant therapy. Generally, patients get mammogra-
phy, US, and a physical exam. In some cases, they also get 
a DCE-MRI.

An OAI study by Lin et  al aimed to evaluate the 
response to neoadjuvant therapy in three breast can-
cer patients, with a particular focus on imaging angio-
graphic structures [69]. They utilized single‐breath‐hold 
photoacoustic computed tomography to quantify 
various parameters including cancer size, blood ves-
sel density, entropy, and anisotropy. Notably, distinc-
tive angiographic characteristics were observed in the 
affected breast when compared to the healthy breast at 
all three predetermined time points: before, during, and 
after the treatment. These findings were consistent with 
the dimension information obtained through conven-
tional imaging techniques as well as the final pathology.

Considering that successful treatment causes cell 
death well before the tumor cells lyse and are phagocyt-
ized by macrophages, it is likely that functional changes 
within and around the tumor may precede size changes 
assessed by conventional imaging. Studies with diffuse 
optical spectroscopy, which uses near-infrared light to 
provide spectral information about tissue microstruc-
ture and functional parameters including oxygenated 
and deoxygenated hemoglobin, have demonstrated that 
changes in oxygenation occur as early as 24 h following 

the beginning of treatment in responders [70–72]. A clin-
ical trial (ClinicalTrials.gov Identifier: NCT05337280) is 
currently underway to investigate the feasibility of OAI 
to detect pathologic complete response. Dogan and her 
team aim to evaluate whether OAI can detect changes 
in the amount of hemoglobin and relative oxygenation/
deoxygenation of hemoglobin before changes in size are 
seen on grayscale (B-mode) ultrasound and whether 
these achieve better sensitivity and/or specificity in pre-
dicting pathologic complete response.

Conclusion
OAI is a new imaging technique using non-ionizing laser 
illumination to fuse functional and anatomic imaging in 
conjunction with US with promising applications to the 
human breast. Parametric maps allow scalable, relative 
real-time molecular assessment of tissue hypoxia and can 
be used to gain information about breast cancer aggres-
siveness and tumor biology without the risk of ionizing 
radiation exposure, intravenous contrast, or radionuclide 
injection. The main limitations of OAI are the depth limit 
(~3–7 cm), scatter artifacts, and the lack of an objective 
interpretation schema. Furthermore, the relatively higher 
cost of devices compared to US alone and lack of famili-
arity of the radiologist with OAI imaging features may 
limit its use in the clinic.

OAI is a safe, non-invasive imaging technique with 
thriving research and high demonstrated clinical impact. 
Larger multicenter cohort studies and clinical trials are 
needed to establish the observed trends and accelerate its 
clinical translation.
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