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Abstract 

Objectives To investigate intra‑patient variability of iodine concentration (IC) between three different dual‑energy 
CT (DECT) platforms and to test different normalization approaches.

Methods Forty‑four patients who underwent portal venous phase abdominal DECT on a dual‑source (dsDECT), 
a rapid kVp switching (rsDECT), and a dual‑layer detector platform (dlDECT) during cancer follow‑up were retrospec‑
tively included. IC in the liver, pancreas, and kidneys and different normalized ICs  (NICPV:portal vein;  NICAA:abdominal 
aorta;  NICALL:overall iodine load) were compared between the three DECT scanners for each patient. A longitudinal 
mixed effects analysis was conducted to elucidate the effect of the scanner type, scan order, inter‑scan time, and con‑
trast media amount on normalized iodine concentration.

Results Variability of IC was highest in the liver (dsDECT vs. dlDECT 28.96 (14.28–46.87) %, dsDECT vs. rsDECT 29.08 
(16.59–62.55) %, rsDECT vs. dlDECT 22.85 (7.52–33.49) %), and lowest in the kidneys (dsDECT vs. dlDECT 15.76 (7.03–
26.1) %, dsDECT vs. rsDECT 15.67 (8.86–25.56) %, rsDECT vs. dlDECT 10.92 (4.92–22.79) %).  NICALL yielded the best 
reduction of IC variability throughout all tissues and inter‑scanner comparisons, yet did not reduce the variability 
between dsDECT vs. dlDECT and rsDECT, respectively, in the liver. The scanner type remained a significant determi‑
nant for  NICALL in the pancreas and the liver (F‑values, 12.26 and 23.78; both, p < 0.0001).

Conclusions We found tissue‑specific intra‑patient variability of IC across different DECT scanner types. Normaliza‑
tion mitigated variability by reducing physiological fluctuations in iodine distribution. After normalization, the scanner 
type still had a significant effect on iodine variability in the pancreas and liver.

Clinical relevance statement Differences in iodine quantification between dual‑energy CT scanners can partly be 
mitigated by normalization, yet remain relevant for specific tissues and inter‑scanner comparisons, which should be 
taken into account at clinical routine imaging.

Key Points 

• Iodine concentration showed the least variability between scanner types in the kidneys (range 10.92–15.76%) and highest 
variability in the liver (range 22.85–29.08%).
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• Normalizing tissue-specific iodine concentrations against the overall iodine load yielded the greatest reduction of variabil-
ity between scanner types for 2/3 inter-scanner comparisons in the liver and for all (3/3) inter-scanner comparisons in the 
kidneys and pancreas, respectively.

• However, even after normalization, the dual-energy CT scanner type was found to be the factor significantly influencing 
variability of iodine concentration in the liver and pancreas.

Keywords Tomography (X‑ray computed), Reproducibility of results, Contrast media

Introduction
Dual-energy CT (DECT) enables reconstruction of 
iodine-specific images, which have emerged as an 
important qualitative and quantitative imaging bio-
marker. These images are provided by all different 
DECT manufacturers and are generated by means of 
material decomposition [1]. Iodine-specific images are 
considered to represent iodine uptake more accurately 
within tissues compared to attenuation measurements 
in Hounsfield units (HU) derived from conventional 
gray-scale CT images. They provide a “snapshot perfu-
sion” of a lesion or tissue of interest at the time of the 
image acquisition, cementing their role as a surrogate 
marker for tissue/tumor vascularity [2, 3]. This feature 
enables an array of applications, ranging from lesion 
detection and characterization [4–6] to assessing treat-
ment response in oncology [7–9]. Intra-scanner vari-
ability of iodine quantification in patients with repeated 
scans using the same DECT has been previously 
described [10, 11]. Data on inter-scanner variability of 
patients examined on different DECT scanner types is 
limited [12], albeit the latter being a common scenario 
in imaging practices with DECT platforms from differ-
ent manufacturers or in patients undergoing follow-up 
at different institutions throughout the course of their 
disease.

Iodine quantification can be expected to be influenced 
by scanner-independent and scanner-dependent fac-
tors. Scanner-independent factors may be physiologi-
cal changes in the cardiopulmonary status of the patient 
at the time of image acquisition, differences in contrast 
media phase due to variations in intravenous adminis-
tration or the error margin of bolus tracking, and path-
ological processes taking place between examinations, 
potentially affecting organ perfusion. Scanner-dependent 
factors may be related to hardware (i.e., different techni-
cal concepts of DECT) [1], and differences in material 
decomposition algorithms.

For scanner-independent factors, protocol optimiza-
tion and homogenization between different scanner 
types may help in reducing variability of quantitative CT. 
Moreover, normalization of iodine concentrations has 
previously been suggested as a means to mitigate patient-
dependent, physiological variability of parenchymal 

perfusion in the setting of repeated examinations on the 
same DECT scanner type [13, 14].

The scanner-dependent differences of iodine quanti-
fication between DECT scanner types have been exten-
sively investigated, yet are mostly limited to phantom 
experiments [15–18]. Those phantom experiments inves-
tigated the technical accuracy of iodine quantification. 
However, intra-patient, inter-scanner variability of quan-
titative DECT in clinical routine can be considered to 
be influenced by more factors such as above-mentioned 
scanner-independent ones and may be of higher mag-
nitude than in phantom-based tests. Therefore, assess-
ing intra-patient variability of iodine quantification in a 
multi-vendor clinical setting and determining the poten-
tial utility of normalization are of clinical relevance, 
particularly in the light of the incremental evidence sug-
gesting DECT-derived iodine quantification as a lon-
gitudinal oncologic response parameter [7, 9, 19]. The 
purpose of our study was therefore to investigate intra-
patient variability of iodine quantification at longitudinal 
follow-up on different DECT scanner types and to ana-
lyze different normalization approaches for increasing 
consistency of iodine measurements.

Materials and methods
Patients
Our institutional review board approved this retro-
spective study and waived the requirement for patient 
informed consent. The study is in compliance with the 
Health Insurance Portability and Accountability Act. 
To identify patients who had undergone portal venous 
phase abdominal DECT on a third-generation dsDECT 
(Somatom Force, Siemens), a second-generation rsDECT 
(Revolution CT, GE), and a dlDECT (IQon, Philips), 
a database search within our dose monitoring system 
(Radimetrics, Bayer) was conducted. The dates of CT 
scans of each vendor eligible for inclusion followed the 
dates of installation of each type of scanner at our insti-
tution: 01/2016–09/2020 for dsDECT, 08/2017–09/2020 
for rsDECT, and 07/2018–09/2020 for dlDECT.

In patients with multiple CTs from the same ven-
dor, we included those CTs with the least absolute time 
interval with the CTs from other vendors, such that the 
sum of absolute time intervals between three included 
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examinations was minimal for each patient. In our ini-
tial query, 55 consecutive patients matching these crite-
ria were identified, of which a total of 11 patients were 
excluded. Consequently, 44 patients formed the final 
study population.

DECT technique
All patients that were included underwent one abdomi-
nal DECT each on dsDECT, rsDECT, and dlDECT in 
the portal venous phase using iodinated contrast media 
(Isovue 370 mg/mL, Bracco Diagnostics). At our institu-
tion, image acquisition protocols are homogenized as far 
as possible between the three scanner types to reduce 
protocol-related variability: DECT examinations were 
executed with supine patient positioning and acquisitions 
in the portal venous phase were initiated with a scan 
delay of 50 s using bolus tracking (50 s after attenuation 
cut-off of 150 HU in the thoracic aorta at the level of the 
diaphragm). Average amounts of contrast media follow-
ing body weight–adapted application were similar for 
each scanner type (dsDECT 91.2 ± 14.1 mL; rsDECT 94.5 
± 15.0 mL; dlDECT 91.5 ± 17.7 mL). Table 1 comprises 
scanning and reconstruction parameters for all three 
DECT scanner types included in this study.

Iodine quantification
Region of interest (ROI)–based measurements of iodine 
concentration (IC) were obtained by a fellowship-trained 
radiologist with 12 years of experience in abdominal imag-
ing using vendor-specific proprietary software solutions 
(dsDECT: Syngo via, Siemens; rsDECT: AW server, GE 
Healthcare; dlDECT: IntelliSpace Portal, Philips). The liver, 
kidneys, and pancreas were included as target organs; erec-
tor spinae back muscle, retroperitoneal fat, and gallbladder 
as reference tissues; and aorta and portal vein as blood pool 

measurements for normalization.   Supplementary mate-
rial includes a detailed description of ROI placement.

Inter‑scanner analysis: iodine concentration
The mean IC for each of the above-mentioned tissues (liver, 
gallbladder, portal vein, aorta, pancreas, kidneys, retroperi-
toneal fat, muscle) was calculated as

where x is the sum of all iodine concentrations measured 
within one tissue and n is the number of tissue-specific 
ROIs.

Moreover, different normalized ICs were calculated by 
dividing ICs of parenchymal organs (liver, pancreas, kid-
neys) by the corresponding ICs of the abdominal aorta 
 (NICAA), portal vein  (NICPV), and the sum of the vascular 
and parenchymal IC of the abdominal aorta, portal vein, 
liver, and pancreas  (NICALL), with the latter being con-
ceived to serve as a surrogate for the overall iodine load at 
the time of image acquisition:

IC,  NICAA,  NICPV, and  NICALL were compared intra-
individually between the three examinations undergone 
by a patient on dsDECT, rsDECT, and dlDECT.

(1)IC =
n

i=1

xi

n
,

(2)NICAA =
IC(organ)

IC(aorta)
,

(3)NICPV =
IC(organ)

IC(portal vein)
,

(4)

NICALL =
IC(organ)

IC(aorta+portal vein+liver+kidneys+pancreas)

Table 1 Detailed parameters of image acquisition and reconstruction for each dual‑energy CT scanner type (dsDECT: dual‑source 
dual‑Energy CT; rsDECT: rapid kV switching dual‑energy CT; dlDECT: dual‑layer detector dual‑energy CT)

dsDECT rsDECT dlDECT

Image acquisition parameters

  Detector collimation (mm) 192 × 0.6 256 × 0.625 64 × 0.625

  Tube voltage (kVp) 100/Sn150 80/140 120

  Tube current modulation CARE Dose4D DE automatic exposure control DoseRight 3D‑DOM

  Gantry revolution time (s) 0.5 0.8 0.33

  Pitch 0.95 0.992 0.671

Image reconstruction parameters

  Section thickness (mm) 5.0 5.0 5.0

  Section increment (mm) 5.0 5.0 5.0

  Matrix size 512 × 512 512 × 512 512 × 512

  Reconstruction algorithm ADMIRE 3 ASiR‑V 40% iDose 3 Spectral

  Reconstruction kernel Qr32 Standard Standard B
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Inter‑scanner analysis: variability of iodine concentration
To assess inter-scanner variability of IC and NIC, vari-
ation between two scans executed at different scanners 
was calculated as suggested before [20]:

where x1 and x2 are the values obtained from the exami-
nations undergone by a patient on two different scanner 
types. Inter-scanner variations were calculated for each 
inter-scanner comparison of each tissue and patient, 
respectively, on an intra-individual level and the median 
tissue-specific inter-scanner variation was calculated 
from those individual values.

Statistical analyses
Statistical analysis was performed using software (JMP 
V14 and SAS V 9.4, both SAS Institute). The paired, 
non-parametric Wilcoxon signed rank test with Bon-
ferroni correction was used for pairwise comparisons 
of IC and  NICAA,  NICPV, and  NICALL among dsDECT, 
rsDECT, and dlDECT, with the null hypothesis being 
that the median of the population of differences 
between the scanner pairs for the respective measures 
is zero [21]. Two-tailed p values lower than 0.05 were 
considered statistically significant.

A longitudinal mixed effects analysis was conducted 
for the normalized iodine concentration that yielded 
the greatest reduction in variability (i.e.,  NICALL) using 
scanner type, contrast media amount, and the time 
between examinations, as well as the order with which 
patients underwent scans on different scanner types 
as fixed effects, and the number of patients with spe-
cific orders of scanning as a random effect (patients 
nested within orders). Quadratic effects of time and 
the interaction of scanner type × order were pretested 
and removed if not significant. The purpose of the 
mixed effects analysis was two-fold: first, to analyze 
the effect of the scanner type on the iodine concentra-
tion after internal normalization, at which we assumed 
a reduced perfusion-related component of iodine vari-
ability; second, to address the inherent limitation of 
the intra-patient, retrospective study design that intro-
duces other sources of variability than the scanner 
type, such as time-dependent changes in organ perfu-
sion, or contrast media amounts applied.

Continuous variables are reported as mean and 
standard deviations. Inter-scanner variability of IC 
is reported as median percentage and inter-quartile 
range.

(5)

Inter− scanner variation =

∣

∣

∣

∣

x1− x2

(x1+ x2) ∗ 0.5

∣

∣

∣

∣

∗ 100

Results
Patients
A total of 18 women and 26 men (age 59.5 ± 14.1 years) 
were included. The mean inter-scan intervals were − 
49.2 ± 270.3 days between dsDECT and dlDECT, 23.4 ± 
227.7 days between dlDECT-rsDECT, and − 25.9 ± 318.9 
days between dsDECT-rsDECT (negative sign implying 
that the scan at the first named scanner type was per-
formed earlier). Table  2 provides a summary of patient 
characteristics.

Inter‑scanner analysis: iodine concentration
In the intra-patient, inter-scanner comparison, IC was 
comparable between all three scanner types in the kid-
neys (dsDECT 5.73 ± 1.12 mg/mL, rsDECT 5.96 ± 1.12 
mg/mL, dlDECT 5.66 ± 1.27 mg/mL; p = 1.00), the aorta 
(dsDECT 5.84 ± 1.71 mg/mL, rsDECT 5.61 ± 1.15 mg/
mL, dlDECT 5.63 ± 1.67 mg/mL; p = 1.00), and the por-
tal vein (dsDECT 5.69 ± 0.93 mg/mL, rsDECT 6.03 ± 
1.02 mg/mL, dlDECT 6.04 ± 1.06 mg/mL; p-value range 
0.81–1.00).

Significant differences in IC in pairwise comparisons 
among the three scanner types were found in the liver 
(dsDECT 1.81 ± 0.62 mg/mL, rsDECT 2.59 ± 0.45 mg/
mL, dlDECT 2.17 ± 0.54 mg/mL, p < 0.05 for all pairwise 
comparisons). In the pancreas, mean IC of dsDECT and 
rsDECT was comparable (2.84 ± 0.66 mg/mL and 2.84 
± 0.58, p = 1.00), whereas the IC of dlDECT was signifi-
cantly lower (2.50 ± 0.76; p < 0.05).

In retroperitoneal fat, rsDECT showed the lowest 
iodine values with significant differences compared to 
each of the other scanners (dsDECT 0.08 ± 0.4 mg/mL, 
rsDECT − 1.03 ± 0.20 mg/mL, dlDECT 0.15 ± 0.70 mg/
mL, p < 0.05). In contrast, in the gallbladder and mus-
cle, rsDECT showed the highest IC of all three scanners 

Table 2 Information on patients and examinations

Patients (n = 44)

  Sex 28 men, 16 women

  Age 59.5 ± 14.1 years

  Body weight 75.3 ± 18.9 kg

Examinations (n = 132)

  CTDIvol

    dsDECT (n = 44) 10.7 ± 4.8 mGy

    rsDECT (n = 44) 14.5 ± 4.2 mGy

    dlDECT (n = 44) 12.1 ± 4.5 mGy

  Contrast media amount

    dsDECT 91.2 ± 14.1 mL

    rsDECT 94.5 ± 15.0 mL

    dlDECT 91.5 ± 17.7 mL
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(0.44 ± 0.37 mg/mL and 0.62 ± 0.21 mg/mL, respec-
tively). Table 3 depicts mean iodine concentrations in all 
included organs and tissues.

In the kidneys, normalized iodine concentrations did 
not show any significant differences between scanner 
types, similar to the non-normalized IC. For the liver and 
the pancreas, different normalization approaches partly 
altered significance levels of individual inter-scanner 
comparisons, yet for both organs and all normalization 
approaches, significant differences between certain inter-
scanner combinations persisted. Table  4 summarizes 
inter-scanner differences of IC and the normalized IC 
 NICPV,  NICAA, and  NICALL.

Inter‑scanner analysis: variability of iodine concentration
The median variability of non-normalized IC was high-
est between scans conducted on different DECT scanner 
types in the liver (dsDECT vs. dlDECT 28.96 (14.28–
46.87) %, dsDECT vs. rsDECT 29.08 (16.59–62.55) %, 
rsDECT vs. dlDECT 22.85 (7.52–33.49) %), lowest for 
the kidneys (dsDECT vs. dlDECT 15.76 (7.03–26.1) %, 
dsDECT vs. rsDECT 15.67 (8.86–25.56) %, rsDECT vs. 
dlDECT 10.92 (4.92–22.79) %), and intermediate for the 
pancreas (dsDECT vs. dlDECT 22.24 (7.06–37.93) %, 
dsDECT vs. rsDECT 19.86 (10.9–27.14) %, rsDECT vs. 
dlDECT 13.66 (7.67–30.72) %).

In the liver, none of the normalization approaches 
markedly  decreased inter-scanner variability between 
dsDECT vs. dlDECT and dsDECT vs. rsDECT, respec-
tively. In contrast, between rsDECT and dlDECT,  NICPV 
(17.61 (7.29–32.33) %),  NICAA (18.09 (7.9–36.73) %), and 
 NICALL (11.03 (4.88–26.75) %) decreased inter-scanner 
variability compared to IC (22.85 (7.52–33.49) %).

In the pancreas as well as the kidneys,  NICALL yielded 
the most pronounced decrease in inter-scanner vari-
ability in all inter-scanner comparisons, whereas  NICPV 
and  NICAA only resulted in small reductions of inter-
scanner variability and even led to higher variabilities 
in some inter-scanner comparisons. Table  5 depicts 
inter-scanner variability found in the liver, pancreas, and 
kidneys for all inter-scanner comparisons and normaliza-
tion approaches, respectively. Figure 1 depicts an exam-
ple case of a patient who underwent DECT on dlDECT, 
rsDECT, and dsDECT. Figure  2 summarizes the results 
regarding inter-scan variability of absolute and normal-
ized IC between different scanner pairs.

Longitudinal mixed effects analysis
The longitudinal mixed effects analysis revealed that the 
scanner type significantly influenced  NICALL in the liver 
(F-value = 23.78, df 2, 84, p < 0.0001) and pancreas (F-value 
=  12.26, df 2, 84, p < 0.0001), whereas it did not have an 
effect on  NICALL in the kidney (F-value = 0.56, df 2, 84, p 
= 0.57). In the liver, Tukey post hoc tests showed all pair-
wise differences were significant, whereas in the pan-
creas, significant differences were found between rsDECT 
and dsDECT vs. dlDECT, but not between rsDECT and 
dsDECT. The contrast media amount, the order in which 
patient underwent DECT on different scanner types, and 
the inter-scan interval were statistically adjusted for in 

Table 3 Mean iodine concentrations and standard deviations 
(mg/mL) in included organs, vessels, and reference tissues 
with low (muscle) and no contrast enhancement (gallbladder, 
retroperitoneal fat). One asterisk (*) indicates significant 
differences compared to one other DECT scanner, while two 
asterisks (**) indicate significant differences compared to two 
other DECT scanners as per the paired Wilcoxon signed rank test

dsDECT rsDECT dlDECT

Liver 1.81 ± 0.62** 2.59 ± 0.45** 2.17 ± 0.54**

Pancreas 2.84 ± 0.66* 2.84 ± 0.58* 2.50 ± 0.76**

Kidneys 5.73 ± 1.12 5.96 ± 1.12 5.66 ± 1.27

Aorta 5.84 ± 1.71 5.61 ± 1.15 5.63 ± 1.67

Portal vein 5.69 ± 0.93 6.03 ± 1.02 6.04 ± 1.06

Muscle 0.23 ± 0.40* 0.62 ± 0.21** 0.30 ± 0.70*

Gallbladder 0.35 ± 0.40 0.44 ± 0.37* 0.14 ± 0.12*

Retroperitoneal fat 0.08 ± 0.21* − 1.03 ± 0.20** 0.15 ± 0.70*

Table 4 Absolute and normalized iodine concentrations and 
standard deviations in the liver, pancreas, and kidneys. One 
asterisk (*) indicates significant differences compared to one 
other DECT scanner, while two asterisks (**) indicate significant 
differences compared to two other DECT scanners as per the 
paired Wilcoxon signed rank test

dsDECT rsDECT dlDECT

Liver

  IC 1.81 ± 0.62** 2.59 ± 0.45** 2.17 ± 0.54**

   NICPV 0.32 ± 0.11* 0.43 ± 0.08** 0.36 ± 0.08*

   NICAA 0.33 ± 0.12** 0.47 ± 0.09** 0.40 ± 0.09**

   NICALL 0.08 ± 0.03** 0.11 ± 0.02** 0.10 ± 0.02**

Pancreas

  IC 2.84 ± 0.66* 2.84 ± 0.58* 2.50 ± 0.76**

   NICPV 0.51 ± 0.15* 0.48 ± 0.10* 0.42 ± 0.11**

   NICAA 0.50 ± 0.12 0.51 ± 0.10* 0.45 ± 0.11*

   NICALL 0.13 ± 0.02* 0.12 ± 0.02* 0.11 ± 0.02**

Kidneys

  IC 5.73 ± 1.12 5.96 ± 1.12 5.66 ± 1.27

   NICPV 1.02 ± 0.2 1.00 ± 0.18 0.95 ± 0.2

   NICAA 1.03 ± 0.24 1.08 ± 0.21 1.04 ± 0.22

   NICALL 0.26 ± 0.03 0.26 ± 0.03 0.26 ± 0.03
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Table 5 Inter‑scanner variability of original IC and different normalized iodine concentrations. Measures are reported as median and 
inter‑quartile range

Inter‑scanner variability (%)

dsDECT vs. dlDECT dsDECT vs. rsDECT rsDECT vs. dlDECT

Liver

  IC 28.96 (14.28–46.87) % 29.08 (16.59–62.55) % 22.85 (7.52–33.49) %

   NICPV 25.64 (9.8–55.22) % 33.70 (15.69–60.94) % 17.61 (7.29–32.33) %

   NICAA 23.46 (8.79–55.32) % 32.73 (16.35–58.07) % 18.09 (7.9–36.73) %

   NICALL 29.78 (11.76–53.15) % 28.15 (14.8–55.34) % 11.03 (4.88–26.75) %

Pancreas

  IC 22.24 (7.06–37.93) % 19.86 (10.9–27.14) % 13.66 (7.67–30.72) %

   NICPV 19.53 (11.63–33.94) % 20.46 (6.38–30.1) % 14.35 (6.74–26.77) %

   NICAA 23.56 (7.93–44.04) % 20.25 (9.84–28.51) % 14.61 (7.87–30.73) %

   NICALL 18.63 (7.15–31.8) % 14.06 (5.15–21.66) % 10.57 (3.6–17.79) %

Kidneys

  IC 15.76 (7.03–26.1) % 15.67 (8.86–25.56) % 10.92 (4.92–22.79) %

   NICPV 15.65 (7.35–32.51) % 17.55 (7.81–33.17) % 13.30 (5.29–24.15) %

   NICAA 14.80 (5.2–26.18) % 15.03 (4.92–27.87) % 8.71 (4.86–19.19) %

   NICALL 9.3 (4.02–17.93) % 9.55 (4.35–16.68) % 8.04 (2.92–13.48) %

Fig. 1 Iodine‑specific images from repeated abdominal dual‑energy CT examinations on three different scanners (i.e., dual‑layer detector DECT 
(dlDECT), rapid kV switching DECT (rsDECT), dual‑source DECT (dsDECT)), undergone by a 68‑year‑old man with exemplary ROI measurements. 
On the right, average iodine concentrations for the liver, kidneys, and pancreas are shown for each scanner type. After normalization to the overall 
iodine load  (NICALL), the range with which iodine concentrations vary between the scanner types is diminished, yet the highest magnitude 
of variability remains in the liver
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all these analyses but did not have significant effects on 
 NICALL (p ≥ 0.05).

Discussion
This study assessed intra-patient iodine variability between 
three commercially available DECT platforms. We found 
different magnitudes of variability in iodine concentration 
within the same patient across different DECT scanner 
types, depending on the observed tissues and inter-scan-
ner comparisons with the highest variability found in the 
liver. In contrast, there was a high agreement between 
the different scanner types for the iodine measurements 
within the renal cortex. Normalization mitigated the vari-
ability for most tissues and inter-scanner comparisons, yet 
variability in the liver remained high, particularly between 
dsDECT and the other two scanner types. The longitudinal 
mixed effects model determined the scanner type as a sig-
nificant determinant of NIC in the liver and the pancreas. 
One inherent limitation of commonly used normalization 
approaches using reference measurements in the portal 
vein or aorta is that the iodine load within those vessels is 
highly variable and dependent on different factors such as 
cardiac output and contrast media application. To miti-
gate this, we explored a normalization taking into account 
multiple reference measurements both in organs and ves-
sels. We found that this normalization approach  (NICALL) 
yielded the best overall reduction of iodine variability, 
which indicates that normalizing the target iodine concen-
tration to multiple reference points as a surrogate for the 
overall iodine load in the body might be more robust and 
preferable in clinical practice compared to normalizing 
against one particular vessel.

The higher variability in liver parenchymal iodine 
concentration is expected due to the dual blood sup-
ply of the liver and potentially higher physiologic vari-
ability in perfusion between repeated examinations. We 
found that neither of the normalization approaches that 
led to a reduction in iodine variability in other organs 
markedly reduced variability between dsDECT and 
the other two scanner types while this was the case for 
rsDECT vs. dlDECT. In concordance with this result, 
the mixed effects analysis revealed that even after nor-
malization, scanner type still had a significant effect on 
the iodine concentration within the liver. One factor 
leading to lower variability of iodine concentration in 
the kidneys may be the highly autoregulated perfusion 

[22]. Moreover, the accuracy of iodine quantification is 
dependent on the absolute iodine concentration itself 
with a tendency towards lower observed errors in higher 
iodine concentrations [15], which might have reduced the 
observed variability in the kidneys in our analyses. This 
might also explain that the divergence between rsDECT 
and dlDECT vs. dsDECT that was found in the liver was 
not present in the kidneys. Another underlying reason 
for this result could be differences in material decompo-
sition between the corresponding scanner types that may 
become apparent in the liver as an organ that may more 
frequently deviate from the paradigms of two-material 
decomposition, which are used in rsDECT and dlDECT 
[23]: Contrast-enhanced renal cortex primarily consists 
of water/soft tissue and iodine, whereas in the liver, an 
additional fatty component due to organ degeneration 
could be causing the smaller agreement between rsDECT 
and dlDECT vs. dsDECT. One important factor that may 
contribute to the variability observed is the differences in 
radiation dose and image noise between the three scan-
ner types. The nature of our retrospective investigation 
on clinical data did not allow prospective alignment of 
acquisition parameters for attaining equivalent radiation 
dose exposures such as it has been performed in previous 
phantom studies [15]. Instead, the clinical protocols were 
set up to create a similar image impression and hereby 
warrant a comparable quality of the scans throughout 
clinical operations. A previous study reported that the 
effect of radiation dose on iodine quantification is par-
ticularly relevant at very low radiation dose levels, which 
were not attained in subjects included in our study [24]. 
However, we acknowledge that a certain contribution 
of radiation dose differences to the variability observed, 
particularly in the liver, can be assumed.

One important implication of the results we found 
is that the order of magnitude of iodine variability in 
the liver is within the range that has been previously 
described for determining response in liver tumors. For 
instance, Dai et  al described a mean decrease in iodine 
concentration of 19.1% in hepatocellular carcinoma 
patients with disease control (i.e., either partial response 
or stable disease) [25]. Therefore, based on our initial 
results, the expected hepatic inter-scanner variability 
could  hamper accurately assessing such marginal, yet 
potentially clinically impactful changes in lesional iodine 
content.

(See figure on next page.)
Fig. 2 Box‑Whisker plots of proportional inter‑scanner variations for different combinations of dual‑energy CT scanners. Normalization 
towards the overall iodine load  (NICALL), represented by the sum of vascular and organ iodine concentrations, reduced inter‑scanner variability 
between all three scanner types in the pancreas and kidneys, whereas median inter‑scanner variability remained on a similar level as that of original, 
non‑normalized iodine concentrations in the liver between dual‑source DECT (dsDECT) and the other two scanner types
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Fig. 2 (See legend on previous page.)
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One recent study investigated inter-scanner vari-
ability iodine quantification [26]. In concordance to our 
results, variability was not mitigated by normalization 
to the aorta, a method that has been applied in several 
oncologic use cases. In their study, Cai et al proposed a 
phantom-based model for correcting inter-scanner vari-
ability of iodine. The possibility of combining the pro-
posed perfusion-directed method (i.e.,  NICALL) that we 
found efficient in reducing variability in some instances, 
with a phantom-derived correction model should be fur-
ther investigated.

In our study, different factors contributing to variability 
had to be accounted for. Physiological changes in organ 
perfusion can be expected to be a relevant factor, albeit 
protocol homogenization. By using different approaches 
for normalizing iodine concentrations, we aimed to 
mitigate perfusion-related differences in iodine concen-
tration, which we consider an important factor contrib-
uting to the variability we found. We used normalization 
against the aorta as well as the portal vein, which have 
been used in previous studies examining iodine vari-
ability [10]. Moreover, we implemented a normalization 
approach based on both vessels as well as the liver and 
pancreas representing parenchymal organs, aiming to 
create a surrogate for the overall iodine load present in 
the body at the time of the scan. Interestingly, the last 
approach yielded the highest overall reduction in inter-
scanner variability for all scanner pairs when assessing 
the pancreas and kidneys. One reason for that result 
might be that it more accurately reflects the overall iodine 
load at the time of image acquisition, and that it accounts 
for potential variation in vessel perfusion that might skew 
the normalization approaches based on one vessel. Nota-
bly, due to the body weight adaption of contrast media, 
the contrast media amounts were similar between scans 
undergone on different scanners by one patient, which 
explains why contrast media were not deemed to influ-
ence IC in our longitudinal mixed effects analysis.

As our study included cancer patients, the increase 
in extent of organ tumor burden over time was another 
important potential determinant influencing iodine con-
centration measurements. The first measure we took to 
mitigate this was excluding patients with extensive organ 
disease. Secondly, we included the order with which the 
patients were scanned on the different scanners as well as 
the inter-scan intervals as surrogate parameters for time-
dependent (i.e., pathological) changes in organ perfusion 
in our mixed effects model, which did not reveal any sig-
nificant effect of these variables.

Our study has limitations that need to be discussed. 
First, the retrospective design of the study limits the 
study population to the small number of patients who 

by chance were imaged on all three scanner types. 
Moreover, in our limited study cohort, we were una-
ble to test the intra-patient, intra-scanner variability, 
and compare it to the inter-scanner variability due to 
insufficient availability of repeated examinations on the 
same scanner type. Second, we did not include iodine 
concentration of lesions to determine the impact of dif-
ferent DECT technologies on pathological entities. The 
reason for including normal tissue is that we aimed to 
focus on technical variability in a clinical setting, which 
can hardly be observed in tumor lesions undergoing 
substantial biological change in normal follow-up inter-
vals. Whereas we acknowledge that a scan-rescan test 
scenario with much shorter intervals between the scans 
measuring intra-patient iodine variability within lesions 
would be of interest, such a test would be impeded by 
radiation dose considerations. Based on our results, we 
assume that inter-scanner differences can be expected 
to be lower and better amendable by normalization in 
well-vascularized soft tissue lesions (comparable to 
physiological renal parenchyma) and higher in lesions 
of mixed composition (e.g., soft tissue lesions with fatty 
components and contrast enhancement, comparable to 
liver parenchyma with a certain amount of fatty degen-
eration). Third, our results should not be generalized to 
prior generation dsDECT or rsDECT scanners as well 
as other technical implementations such as split filter 
DECT, which has been described to show variability 
compared to dsDECT in a previous study [27].

In conclusion, we found substantial variability in 
iodine concentrations obtained within the same patient 
across different DECT scanner types. Our data show 
that normalization can mitigate variability, yet with a 
dependency on tissues and scanner pairs. The observed 
variability across different DECT scanner types cur-
rently may result in erroneous lesion characteriza-
tion or suboptimal treatment response evaluation in 
patients scanned on different systems, underscoring an 
unmet need for standardization across different DECT 
manufacturers.

Abbreviations
DECT  Dual‑energy CT
dlDECT  Dual‑layer detector dual‑energy CT
dsDECT  Dual‑source dual‑energy CT
HU  Hounsfield units
IC  Iodine concentration
keV  Kiloelectron volt
kV  Kilovolt
mGy  Milligray
NICAA  Iodine concentration normalized to the abdominal aorta
NICALL  Iodine concentration normalized to the overall iodine load
NICPV  Iodine concentration normalized to the portal vein
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rsDECT  Rapid kV switching dual‑energy CT
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