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Abstract 

Objectives  Currently, the BRAF status of pediatric low-grade glioma (pLGG) patients is determined through a biopsy. 
We established a nomogram to predict BRAF status non-invasively using clinical and radiomic factors. Additionally, we 
assessed an advanced thresholding method to provide only high-confidence predictions for the molecular subtype. 
Finally, we tested whether radiomic features provide additional predictive information for this classification task, 
beyond that which is embedded in the location of the tumor.

Methods  Random forest (RF) models were trained on radiomic and clinical features both separately and together, 
to evaluate the utility of each feature set. Instead of using the traditional single threshold technique to convert 
the model outputs to class predictions, we implemented a double threshold mechanism that accounted for uncer‑
tainty. Additionally, a linear model was trained and depicted graphically as a nomogram.

Results  The combined RF (AUC: 0.925) outperformed the RFs trained on radiomic (AUC: 0.863) or clinical (AUC: 0.889) 
features alone. The linear model had a comparable AUC (0.916), despite its lower complexity. Traditional threshold‑
ing produced an accuracy of 84.5%, while the double threshold approach yielded 92.2% accuracy on the 80.7% 
of patients with the highest confidence predictions.

Conclusion  Models that included radiomic features outperformed, underscoring their importance for the prediction 
of BRAF status. A linear model performed similarly to RF but with the added benefit that it can be visualized as a nom‑
ogram, improving the explainability of the model. The double threshold technique was able to identify uncertain 
predictions, enhancing the clinical utility of the model.

Clinical relevance statement  Radiomic features and tumor location are both predictive of BRAF status in pLGG 
patients. We show that they contain complementary information and depict the optimal model as a nomogram, 
which can be used as a non-invasive alternative to biopsy.

Key Points 

• Radiomic features provide additional predictive information for the determination of the molecular subtype of pediatric 
low-grade gliomas patients, beyond what is embedded in the location of the tumor, which has an established relationship 
with genetic status.
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• An advanced thresholding method can help to distinguish cases where machine learning models have a high chance of 
being (in)correct, improving the utility of these models.

• A simple linear model performs similarly to a more powerful random forest model at classifying the molecular subtype of 
pediatric low-grade gliomas but has the added benefit that it can be converted into a nomogram, which may facilitate 
clinical implementation by improving the explainability of the model.

Keywords  Glioma, Nomogram, Uncertainty

Introduction
Pediatric low-grade gliomas (pLGG) are the most com-
mon brain tumor in children [1].

pLGG are a diverse set of tumors that arise from glial 
or precursor cells and can occur anywhere in the cen-
tral nervous system [1, 2]. They include a variety of 
histopathological diagnoses, including pilocytic astro-
cytoma, ganglioglioma, dysembryoplastic neuroepi-
thelial tumor, and diffuse glioma, among others [3]. 
Where total resection is possible, surgical excision can 
be curative [3]. In partial resection, or if resection is 
not feasible, the chances of progression or relapse are 
substantial [3]. Unlike in adult gliomas, the malignant 
progression of pLGGs is rare [3] and 10-year overall 
survival (OS) is high, upwards of 90% [4]. However, 
with 10-year progression-free survival at around 50%, 
adjuvant therapy is often necessary and morbidity is 
high [4].

Molecular characterization has identified frequent 
alterations to the mitogen-activated protein kinase 
pathway in pLGG, the two most common gene altera-
tions being BRAF fusion and BRAF V600E point 
mutation (BRAF mutation), which also correspond 
to prognosis [5–7]. This led to the development of 
targeted therapies, such as BRAF V600E and MEK 
inhibitors which can supplement or replace the clas-
sic cytotoxic adjuvant therapies [4, 5]. The use of these 
targeted therapies depends on ascertaining the molecu-
lar status of pLGG, usually obtained through a biopsy 
which has its inherent risk, and on occasion yields 
insufficient material for adequate molecular diagnosis.

Radiomics is a method of extracting information 
from images in the form of quantitative features [8]. 
Previously, it was shown that distinguishing between 
BRAF fusion and mutation in pLGG patients is feasi-
ble using machine learning (ML) models trained on 
radiomics features extracted from T2-weighted fluid-
attenuated inversion recovery (FLAIR) MR images [5]. 
In this study, in order to facilitate translation into the 
clinical setting, we aimed to establish a nomogram to 
predict BRAF status (fusion or mutation) based on 
large internal and external datasets of pLGG, taking 
clinical factors into account. In addition, we assessed a 
thresholding method that allows the model to provide 

predictions for the molecular subtype only when it is 
confident and abstains otherwise. Finally, compared to 
the previous work [5], we use a larger dataset (253 vs 
115), and a more robust ML pipeline; together these 
produce more reliable results.

Materials and methods
Patients and data
This study was approved by the institutional review 
board or research ethics board of both participating 
academic institutions: The Hospital for Sick Children 
(Toronto, Ontario, Canada) and the Lucile Packard 
Children’s Hospital (Stanford University, Palo Alto, 
California). This study was retrospective, and informed 
consent was waived by the local research ethics boards. 
An interinstitutional data-transfer agreement was 
obtained for data-sharing. All patients were identified 
from the electronic health record database at Toronto 
and Stanford from 1999 to 2018. Patient inclusion cri-
teria (Fig. 1) were (1) less than 18 years of age, (2) avail-
ability of molecular information on BRAF status in 
histopathologically confirmed pLGG, (3) BRAF fusion 
or mutation identified, and (4) availability of preopera-
tive brain MR imaging with a non-motion-degraded 
FLAIR sequence. Spinal cord tumors were excluded 
from this study. A total of 253 patients were included. 
In total, 215 were from the Hospital for Sick Children 
(internal dataset), and 38 were from the Lucile Packard 
Children’s Hospital (external dataset). Patient informa-
tion consisted of age at diagnosis, sex, histologic diag-
nosis, molecular diagnosis regarding the BRAF status, 
and anatomic location of the tumor (Tables 1, 2, and 3). 
Figure 2 shows examples of the images in our dataset.

Molecular analysis
The molecular characterization of pediatric low-grade 
gliomas was done based on a tiered approach, with IHC 
used to detect BRAF mutations followed by FISH or a 
Nanostring panel to determine BRAF fusions. If suffi-
cient sample quantity and quality allowed, samples that 
were negative to the aforementioned tests were tested 
with additional sequencing strategies including panel 
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Fig. 1  Flowchart of participant selection criteria

Table 1  Demographics of the patient population

Cohort The Hospital for Sick Children (internal) Lucile Packard 
Children’s Hospital 
(external)

Total number of patients 215 38

Median age (interquartile range) 8.0 (4.2, 12.8) 5.7 (3.3, 11.6)

Female 105 (48.9%) 17 (44.7%)

Male 110 (51.2%) 21 (55.2%)

Supratentorial 106 (49.3%) 8 (21.1%)

Infratentorial 109 (50.7%) 30 (78.9%)

BRAF fusion 143 (66.5%) 30 (78.9%)

BRAF mutation 72 (33.5%) 8 (21.1%)

Table 2  Breakdown of pathologies

Cohort The Hospital for Sick Children (internal) Lucile Packard 
Children’s Hospital 
(external)

Pilocytic astrocytoma 117 (54.4%) 27 (71.1%)

Ganglioglioma 29 (13.5%) 8 (21.1%)

Low grade astrocytoma 32 (14.9%) -

Pilomyxoid astrocytoma 9 (4.2%) 3 (7.9%)

Pleomorphic xanthoastrocytoma 6 (2.8%) -

Dysembryoplastic neuroepithelial tumor 2 (1.0%) -

Diffuse astrocytoma 12 (5.6%) -

Gangliocytoma 1 (0.5%) -

Oligodendroglioma 2 (1.0%) -

Glioneuronal tumor 1 (0.5%) -

Neurocytoma 2 (1.0%) -

Mixed tumor components 2 (1.0%) -
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DNA or RNA sequencing, as described in [7]. For the 
vast majority of samples, the molecular analysis was 
done on paraffin-embedded tissue obtained at the time 
of diagnosis.

MR imaging acquisition, data retrieval, image 
segmentation, and radiomic feature extraction
All patients from the internal dataset underwent brain 
MR imaging at 1.5  T (Signa, GE Healthcare) or 3  T 
(Achieva, Philips Healthcare or MAGNETOM Skyra, 
Siemens Healthineers). Patients from the external data-
set underwent brain MR imaging at 1.5 T or 3 T from a 

single vendor (Signa or Discovery 750; GE Healthcare). 
Sequences acquired included a 2D axial and coronal T2 
FLAIR, 2D axial and coronal T2-weighted fast spin-
echo, 3D axial or sagittal precontrast, and 3D axial gad-
olinium-based contrast agent–enhanced T1-weighted 
turbo or fast-field echo.

T2-FLAIR acquisition parameters were TR/TE, 
9002/157.5–165  ms; 5-mm section thickness; 2.5-
mm gap for the 1.5-T Signa GE MRI scanner, TR/TE, 
7000–10,000/140–141  ms; 3- to 5-mm section thick-
ness; 0- to 1-mm gap for the 3-T Achieva MRI scanner, 
and TR/TE, 9080–9600/83–90  ms; 2.5- to 4-mm sec-
tion thickness; 1.2- to 2.5-mm gap for the 3-T MAG-
NETOM Skyra MRI scanner. All MR imaging data were 
extracted in DICOM format from the respective PACS 
and were de-identified for further analyses.

Tumor segmentation was performed by a pediat-
ric neuroradiologist (M.W.W.) using 3D Slicer (Ver-
sion 4.10.2; http://​www.​slicer.​org). Semiautomated 
tumor segmentation on axial FLAIR images was per-
formed with the level tracing-effect tool. The whole 
tumor region of interest (ROI) was segmented on axial 
FLAIR images. The entire tumor was segmented includ-
ing cystic components. Axial and coronal T2-weighted 
images were reviewed when tumor borders were diffi-
cult to identify. The final placement of the ROI was con-
firmed by a board-certified neuroradiologist (B.B.E.-W.).

3D Slicer was used to normalize, resample, and bias 
correct the images; then, the PyRadiomics library [9] 
was used to calculate the radiomics features through the 
SlicerRadiomics extension of 3D Slicer using the same 
pipeline as in [5]. This extension automatically resamples 
the images to the same voxel size when extracting radi-
omic features. The default bin width was used (25 voxels), 
and a symmetric gray-level co-occurrence matrix was 
enforced. In total, 851 radiomic features were extracted 
from the ROIs of the FLAIR image for each patient. 

Table 3  Breakdown of tumor locations

Location The Hospital for Sick 
Children (internal)

Lucile Packard 
Children’s Hospital 
(external)

Cerebellum 90 (41.9%) 19 (50%)

Brainstem 17 (7.9%) 6 (15.8%)

Temporal lobe 46 (21.4%) 4 (10.5%)

Parietal lobe 3 (1.4%) 2 (5.3%)

Occipital lobe 2 (1.0%) -

Thalamus 18 (8.4%) 1 (2.6%)

Hypothalamus 7 (3.3%) -

Optic pathway 11 (5.1%) -

Pineal gland 2 (1.0%) -

Frontal lobe 6 (2.8%) 1 (2.6%)

Suprasellar 5 (2.3%) -

Intraventricular 3 (1.4%) 1 (2.6%)

Tectal 1 (0.5%) -

Cerebellopontine angle 1 (0.5%) 2 (5.3%)

Middle cerebellar 
peduncle

1 (0.5%) 2 (5.3%)

Thalamus and Brainstem 1 (0.5%) -

Basal ganglia 1 (0.5%) -

Fig. 2  Representative examples of patients in our internal dataset. Segmented tumor regions are highlighted in green. On the left is an axial FLAIR 
MR image of a 6-year-old male with a BRAF-fused pilocytic astrocytoma in the cerebellum. On the right is an axial FLAIR MR image of a 16-year-old 
female with a BRAF-mutated ganglioglioma in the temporal lobe
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Radiomic features included histogram, shape, and texture 
features with and without wavelet-based filters.

Machine learning models
There are known associations between specific BRAF 
alterations and clinical data such as tumor location 
[4]. Moreover, random forest models [10] have become 
popular in radiomics research due to their high trans-
parency and performance, and have proven effective at 
classifying BRAF status in pLGG using radiomics fea-
tures [11]. In this study, we trained a random forest on 
two different sets of features: clinical only and radiomic 
only. Furthermore, we created an ensemble model, 
which uses as its prediction the average of the predic-
tions from the models trained on clinical features only, 
and radiomics features only. We compared the perfor-
mance of these models to determine whether radiomics 
features provide additional useful information for this 
classification task, beyond that which is contained in 
the clinical data alone. If radiomics features do indeed 
contain added helpful information, the models relying 
on radiomics and clinical features together should out-
perform those relying on either feature set alone.

The radiomics features used included all of the 851 
extracted features from the whole tumor ROIs of the 
FLAIR images from each patient as detailed above. The 
clinical features used were age, sex, and tumor loca-
tion. Location was defined using two variables, one 
less granular (infratentorial vs supratentorial), and 
one more precise, including categories like cerebellum 
and temporal lobe. See Table 3 for a full breakdown of 
tumor locations. The Scikit-learn Python library [12] 
was used to implement machine-learning models, run 
experiments and to compute area under the ROC curve 
(AUC), accuracy, sensitivity, specificity, and Youden’s J 
statistic.

Cross‑validation
We used a nested-cross-validation scheme to train and 
evaluate our models (Fig.  3). This is computationally 
expensive; however, it is a robust approach that is not 
susceptible to biased results based on (un)lucky train-
ing/testing splits. An 80/20 split was used for the outer 
loop which was run 100 times. The inner loop consisted 
of fivefold cross-validation. Each of the five folds took a 
turn being held out. The model was trained using a wide 
array of hyperparameters on the four folds which were 
not held out. Each of these configurations was evaluated 
on the held-out fold. After going through this proce-
dure five times, the hyperparameter configuration which 
performed the best, on average, across the five held-out 
folds, was determined to be optimal. A random forest 

model was then trained on the entire inner-loop dataset 
using these hyperparameters. Finally, we made predic-
tions on the data which was held out in the outer fold 
to evaluate the model. The model did not encounter this 
data while being trained in the inner loop.

Data configuration
While inspecting our data, we observed that there were 
significant distributional differences between the two 
datasets. The pathological statistics in Table  2 illustrate 
that the internal dataset is more heterogeneous than the 
external dataset. There are a total of 12 separate patholo-
gies in the internal dataset while the external dataset con-
sists of only three. The lack of diversity in the external 
dataset results in a much easier classification task based 
on location alone. Indeed, 89.5% of patients in the exter-
nal dataset have either a supratentorial BRAF-mutated 
tumor or a BRAF-fused tumor in the infratentorial 
region. In the internal dataset, just 76.8% of patients have 
a tumor that follows this typical relationship between 
molecular subtype and tumor location. The lack of diver-
sity in the external dataset makes it an unreliable test 
set to evaluate our model with. Rather than discarding 
the external dataset, which would waste valuable data 
points, we mixed it with the internal dataset to create a 
combined dataset. This combined dataset was used in the 
nested cross-validation procedure.

Thresholding
The output of a binary classifier is usually a value between 
0 and 1, where 0 represents one class (negative) and 1 
represents the other class (positive). It is up to the user 

Fig. 3  Visual depiction of nested cross-validation procedure. At 
the top, in the outer resampling section, orange represents the outer 
test set, and blue represents the outer training set. In the inner 
resampling section, light blue represents the inner test set, and dark 
blue represents the inner training set
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of the model to interpret the class prediction for model 
outputs between 0 and 1. We used two distinct thresh-
olding approaches for converting the output of our mod-
els to class predictions. The first was the classic approach, 
where a single threshold between 0 and 1 was chosen. 
Everything above/below the threshold was considered a 
prediction for the positive/negative class.

This single threshold approach does not account for 
the model’s confidence in its prediction; a model out-
put just slightly over the threshold and of 1 both result 
in a positive class prediction. To remedy this, we intro-
duced a thresholding approach that uses two thresholds 
(upper and lower) to divide the output space into three 
regions (Fig.  4). An upper region close to 1, above the 
upper threshold, where the model has high confidence 
that the true class is positive, a lower region close to 0, 
below the lower threshold, where the model has high 
confidence that the true class is negative, and a middle 
range, where the model does not have high confidence 
in its prediction. Using this approach, the model says 
“I don’t know” when the output is in the middle region 
(between the two thresholds). The model will no longer 
make a prediction for all patients, but on the subset of 
patients where it does make a prediction, the expected 
accuracy is higher than the accuracy across all patients 
using the single threshold. “High confidence” is a relative 
term, which depends on the task. Here, we set the dou-
ble thresholds aiming for 90% accuracy, but this can be 
adjusted according to performance requirements. If we 
had chosen a lower target accuracy, the middle region 
would be smaller and the model would abstain less fre-
quently. Thresholds were tuned on the training data. For 
the double threshold approach, thresholds that mini-
mized the size of the middle region while satisfying the 
accuracy condition were selected. Specifically, the lowest 
(highest) value between 0 and 1, for which 90% of cases 
above (below) that value was of the positive (negative) 
class, was selected as the upper (lower) threshold. For the 

single threshold approach, the threshold that produced 
maximum accuracy was chosen.

Nomogram
A nomogram is a visual representation of a mathemati-
cal model that generates a probability estimate for an 
outcome [13]. We present our model in the form of a 
nomogram, using the Python library Pynomo, to facili-
tate clinical translation [14]. Due to their high level of 
complexity, the random forest models we used are not 
amenable to pictorial representation. For binary clas-
sification problems, such as this one, a linear model 
typically underlies the nomogram. Thus, we trained 
an additional logistic regression model on both radi-
omics and clinical features together. L1 regularization, 
a penalization technique that encourages regression 
coefficients of 0, was implemented in order to create 
an interpretable linear regression model with limited 
non-zero coefficients. We applied z-score normaliza-
tion to all features prior to training the linear regres-
sion model, this was not done for the random forest as 
it does not impact that model.

Results
Random forest
Table  4 and Fig.  5 list the results for the random for-
est models trained on the combined internal and exter-
nal datasets using both radiomics and clinical features 
alone, along with the ensemble of these two models. 
The ensemble model performed best according to all 
but one of these metrics. The clinical and ensemble 
models had similar sensitivity. By the other four per-
formance metrics, the ensemble model was better than 
the others; notably, none of the confidence intervals 
overlapped. For example, the ensemble model had a 
mean AUC of 0.925 (95% CI: 0.916, 0.932), while the 

Fig. 4  Example depicting the difference between the two 
thresholding techniques. The placement of the points on the line 
represents the model output, between 0 and 1, for true negative class 
points (red) and true positive class points (blue). The single threshold 
(green) results in a prediction for 100% of patients, with an accuracy 
of 80%. The double threshold results in a prediction for 80% 
of patients, with an accuracy of 100%

Table 4  Mean and 95% confidence interval of the mean for 
various performance statistics for the models trained and tested 
on the combined internal and external datasets. The highest 
value in each row is in bold

Model Clinical Radiomics Ensemble

Sensitivity 0.863 (0.852, 
0.875)

0.810 (0.800, 
0.821)

0.855 (0.846, 0.863)

Specificity 0.776 (0.764, 0.788) 0.829 (0.820, 
0.838)

0.886 (0.878, 
0.894)

J statistic 0.639 (0.634, 0.645) 0.64 (0.633, 0.646) 0.74 (0.735, 0.745)
Accuracy 0.783 (0.772, 0.794) 0.796 (0.784, 

0.809)
0.844 (0.833, 
0.854)

AUC​ 0.889 (0.881, 0.898) 0.863 (0.852, 
0.874)

0.925 (0.916, 
0.932)
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radiomics model had a mean AUC of 0.863 (95% CI: 
0.852, 0.874), and the clinical model had a mean AUC 
of 0.889 (95% CI: 0.881, 0.898).

Linear model, thresholding, and nomogram
L1 regularization was used to train the linear model on 
the combined internal and external datasets, resulting in 
a compact model with five non-zero coefficients. There 
were two binary location variables, temporal lobe and 
cerebellum, and three radiomics features: flatness, sur-
face to volume ratio, and dependence non-uniformity 
normalized. Both thresholding methods are included 
in the nomogram (Fig. 6). Table 5 shows that the linear 
model had a mean AUC of 0.916 (95% CI: 0.908, 0.924). 
The single threshold resulted in a mean accuracy of 
84.5% (95% CI: 83.7%, 85.2%) across all patients while the 
double threshold approach produced a mean accuracy 
of 92.2% (95% CI: 91.4%, 93.0%) on the 80.7% (95% CI: 
79.3%, 82.2%) of patients for which it made a prediction.

Discussion
This study expanded on [5], which showed that an 
ML model trained on radiomics features could pre-
dict the BRAF status of pLGG patients. To confirm the 
prior results, we repeated the experiments from [5] on 
a larger dataset (253 vs 115), using a more robust ML 
pipeline. BRAF mutations tend to be associated with 

supratentorial lesions, and BRAF fusions tend to be 
associated with infratentorial lesions [4]. Our results 
showed that an ensemble RF trained on both radiom-
ics and clinical features (0.925 AUC) performed better 
than a model trained on either radiomics (0.863 AUC) or 
clinical features (0.889 AUC) alone. Thus, we concluded 
that radiomics adds additional predictive power beyond 
the established relationship between the genetic altera-
tion and the location of the tumor. Additionally, we cre-
ated a nomogram to facilitate the translation into the 
clinical setting using a linear model (AUC 0.916), which 
despite its lower representational capacity performed 
similarly to the RF. Finally, we introduced a thresholding 
method that enables the model to provide predictions 
only when confidence is high. Traditional thresholding 
produced an accuracy of 84.5% across all patients, while 
the more sophisticated thresholding method resulted in 
an accuracy of 92.2% on the 80.7% of patients where a 
prediction was made. To the best of our knowledge, this 
work is the first to show that thresholding of the model 
output can be used to exclude unreliable predictions in 
medical imaging. Oftentimes, ML models get stuck at 
the research stage because accuracy across all patients is 
inadequate for clinical use. The double threshold method 
can be used to identify a subset of patients for which the 
model is confident, and accuracy is sufficient, enhanc-
ing the utility of these models. Notably, this thresholding 
method is flexible and can accommodate the end user’s 

Fig. 5  Distribution over 100 trials of AUC, accuracy, sensitivity, and specificity for the model trained and tested on the combined internal 
and external datasets. The solid line depicts the median, while the dotted line represents the mean values, which are also illustrated in Table 4
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desired level of accuracy. For example, in cases where an 
incorrect prediction is unacceptable, thresholds can be 
set such that the model says “I don’t know” often but is 
rarely incorrect when it makes a class prediction.

Supratentorial pLGGs are most often BRAF-mutated, 
while infratentorial pLGGs are usually BRAF-fused. In 
our combined dataset, 74.7% of patients followed this 
typical relationship between genetic status and tumor 
location. It should be noted that all of our predictive 

models produced a higher accuracy than one would 
expect to achieve from predicting genetic status based 
on whether the pLGG is located in the supratentorial or 
infratentorial region. Our models achieved high accuracy 
despite the substantial variation within the images in our 
dataset, including different scanners, scan parameters, 
and resolutions. Strong performance across diverse data 
means our model is robust; it has great flexibility in terms 
of the diversity of input images it can process.

Fig. 6  Nomogram representation of the linear model which uses cerebellum, temporal lobe, flatness, surface to volume ratio, and dependence 
non-uniformity normalized. The corresponding coefficients in the regression formula are − 0.264, 0.679, − 0.083, 0.233, and − 0.073. Both thresholding 
methods are depicted. Using the single threshold method, the example would result in a prediction of mutation. Under the double threshold 
method, the model would abstain from making a prediction

Table 5  Results for the linear model trained and tested on the combined internal and external datasets. Only one AUC is listed, since 
the AUC does not depend on the thresholding approach. By definition, the model with a single threshold makes a prediction for 100% 
of points, as it has no mechanism which allows it to abstain

Linear model with single threshold Linear Model with 
Double Threshold

Mean AUC (95% CI for mean) 0.916 (0.908, 0.924)

Mean accuracy (95% CI for mean) 84.5% (83.7%, 85.2%) 92.2% (91.4%, 93.0%)

Percentage of points for which a prediction is made (95% CI for mean) 100% 80.7% (79.3%, 82.2%)
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There are limitations to this work. First, we observed 
that the diversity of our external dataset was limited. We 
confirmed this observation by running a preliminary set of 
experiments where the model was trained on the internal 
dataset and tested on the external dataset. We found that the 
model relying on only clinical features classified the external 
data nearly perfectly, highlighting the lack of diversity in the 
external dataset. Thus, for this study, we combined the inter-
nal and external datasets. Second, the model differentiates 
between BRAF fusion and mutation; other potential molec-
ular alterations are not accounted for. However, this molecu-
lar differentiation is currently the most important one for 
prognostication and therapeutic decision-making. Finally, 
although the double threshold method was successful in 
identifying uncertain predictions, it is not a replacement for 
building better ML models. Where model performance is 
inadequate overall, this approach can help to specify a sub-
set of inputs where the model could still be useful. A more 
comprehensive approach would be to collect additional 
data and design superior learning algorithms which would 
improve performance across all inputs.

Conclusion
In this study, we designed a pipeline to differentiate 
BRAF status in pediatric low-grade glioma based on a 
combination of imaging and clinical features and evalu-
ated the performance of this pipeline using a bi-institu-
tional dataset. We developed a nomogram to support 
the translation of our predictive model into the clinical 
setting. Additionally, we evaluated an advanced thresh-
olding method that successfully identified uncertain 
predictions, enhancing the clinical utility of our model. 
Further studies with larger and more complex external 
datasets are needed to augment diagnostic accuracy 
and incorporate additional molecular markers.
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