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Abstract
Objectives The differential between high-grade glioma (HGG) and metastasis remains challenging in common radiological 
practice. We compare different natural language processing (NLP)–based deep learning models to assist radiologists based 
on data contained in radiology reports.
Methods This retrospective study included 185 MRI reports between 2010 and 2022 from two different institutions. A total 
of 117 reports were used for the training and 21 were reserved for the validation set, while the rest were used as a test set. 
A comparison of the performance of different deep learning models for HGG and metastasis classification has been carried 
out. Specifically, Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory (BiLSTM), a hybrid ver-
sion of BiLSTM and CNN, and a radiology-specific Bidirectional Encoder Representations from Transformers (RadBERT) 
model were used.
Results For the classification of MRI reports, the CNN network provided the best results among all tested, showing a 
macro-avg precision of 87.32%, a sensitivity of 87.45%, and an F1 score of 87.23%. In addition, our NLP algorithm detected 
keywords such as tumor, temporal, and lobe to positively classify a radiological report as HGG or metastasis group.
Conclusions A deep learning model based on CNN enables radiologists to discriminate between HGG and metastasis based 
on MRI reports with high-precision values. This approach should be considered an additional tool in diagnosing these central 
nervous system lesions.
Clinical relevance statement The use of our NLP model enables radiologists to differentiate between patients with high-grade 
glioma and metastasis based on their MRI reports and can be used as an additional tool to the conventional image-based 
approach for this challenging task.
Key Points 
• Differential between high-grade glioma and metastasis is still challenging in common radiological practice.
• Natural language processing (NLP)–based deep learning models can assist radiologists based on data contained in 

radiology reports.
• We have developed and tested a natural language processing model for discriminating between high-grade glioma and 

metastasis based on MRI reports that show high precision for this task.
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MRI  Magnetic resonance imaging
NLP  Natural language processing
RIS  Radiology information system

Introduction

The differential diagnosis between central nervous system 
(CNS) solitary-enhancing lesions, including high-grade 
gliomas (HGG) and brain metastasis, is still a challenge in 
common radiological practice [1]. Since both lesions may 
show similar morphological features on conventional MRI 
related to enhancement, necrosis, or vasogenic edema, the 
differential between HGG and solitary metastasis usually 
needs advanced MRI approaches [2]. In the last two dec-
ades, hundreds of papers have addressed the capability of 
advanced MRI sequences such as diffusion-weighted imag-
ing (DWI), perfusion-weighted imaging (PWI), including 
dynamic susceptibility contrast (DSC) and dynamic con-
trast-enhanced (DCE), MR spectroscopy, arterial spin labe-
ling (ASL), or amide proton transfer (APT) among others 
for this task [3–5]. These advanced modalities have provided 
new radiological features, including quantifiable param-
eters, for improving the differential diagnosis between both 
lesions. Moreover, in the last decade, artificial intelligence 
(AI) solutions based on images derived from conventional 
or advanced MRI sequences are providing new insights and 
relevant information for increasing the accuracy, sensitivity, 
and specificity of MRI in this specific scenario [6–8].

At this point, other potential sources of information for 
feeding AI algorithms are electronic health records (EHR) 
and, in our case, radiology reports [9]. Radiology reports 
contain all the information related to the patient’s demo-
graphics, clinical history, and, most importantly, the descrip-
tion of radiological findings (including conclusion or report 
summary), in other words, all the signs and features that 
radiologists identify during their reporting process [10]. In 
this scenario, natural language processing (NLP), a divi-
sion of AI dedicated to giving computers the ability to inter-
pret and understand human language, primarily based on 
machine learning (ML), has emerged as a promising tool 
to extract information from radiology reports and establish 
relationships between them from a general to a word-based 
level, usually hidden from the human eye [11, 12]. Moreo-
ver, NLP tools can manage large datasets in ways humans 
cannot. In our experience, this scenario is the breeding 
ground for applying this NLP technology to help radiolo-
gists face specific radiological questions[13, 14].

In this paper, we analyzed different NLP-based deep 
learning systems to distinguish between HGG and metasta-
sis based solely on the information in radiological reports to 
develop the best automatic decision support system.

Methods

Data collection dataset

Ethical approval was waived by our local ethics committee 
because of the retrospective nature of the study, based on 
radiology reports, and all the procedures being performed 
were part of the routine radiology practice. A retrospective 
review of brain MRI reports performed at two different radi-
ology departments between June 2010 and June 2022 was 
completed. These reports were exported as anonymized text 
files from each radiology department’s radiology informa-
tion system (RIS). Inclusion criteria contained MRI reports 
with diagnosis of HGG or metastasis (proved after biopsy 
or surgery). Exclusion criteria comprised MRI reports with 
formal defects (i.e., absence of clinical information or con-
clusion section). The dataset was reviewed and annotated by 
consensus by two radiologists with more than 10 years of 
experience in a binary way: HGG or metastasis.

The corpus comprised 185 reports (99 from institution A 
and 86 from institution B), including the findings descrip-
tion and conclusions sections (Fig. 1). A total of 11 anno-
tated reports were excluded due to formal defects. Reports 
were created in Spanish language; however, for better and 
potential reproducibility of our NLP algorithm, they were 
translated into English language and revised by an expert in 
medical English language for ensuring the accuracy of the 
translation. Maximum and median report lengths (measured 
in number of words) were 499 and 252 for institution A, and 
416 and 186 for institution B, respectively (Fig. 2).

Model training and validation

For training and testing the ML models, 117 reports were 
used as the training set and 21 reports constituted the 

Fig. 1  Data distribution over the different categories (HGG (high-
grade glioma) and metastasis) by institution
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validation set, while the rest of the data (47) were considered 
an independent test dataset.

Reports were pre-processed using tokenization based on 
whitespace (punctuation and other special characters, such 
as parentheses, were considered separate tokens that contain 
helpful semantic content within reports). For this purpose, 
we use the NLTK library and the Python v3.8 programming 
language [15]. Moreover, to avoid biases in the algorithm, 
keywords considered highly representative of both HGG and 
metastasis were eliminated from the texts (Table 1).

Deep learning models

Diverse deep learning models were trained and tested to 
differentiate between HGG and metastasis using the manu-
ally annotated radiology reports as the ground truth. Four 
different deep learning architectures were evaluated: a sim-
ple Convolutional Neural Network (CNN), a Bidirectional 
Long Short-Term Memory (BiLSTM) network, and a hybrid 
model comprising a bidirectional LSTM followed by a CNN 
and a fine-tuned pre-trained model of BERT adapted to radi-
ology as a classifier (RadBERT).

Our proposed CNN used a convolutional layer and a 
global max-pooling layer to identify the text’s most salient 

location for each learned feature (Fig. 1 supplementary 
material). The bidirectional LSTM (BiLSTM) approach 
processes the input text storing the semantics in two direc-
tions, one for positive time direction and another for negative 
time direction. This type of recurrent network can capture 
contextual information and long-term dependencies (Fig. 2 
supplementary material). A hybrid of bidirectional LSTM 
and CNN architecture shown in Fig. 3 of the supplemen-
tary material (BiLSTM-CNN) was also used to differentiate 
between HGG and metastasis. The recurrent BiLSTM layer 
can serve as a language feature encoder from sequences of 
semantic word embeddings. Then, the convolution layers 
can encode the category-related features provided by the 
BiLSTM, while the latter dense layers tune the model for 
the classification task. For all of these deep learning models 
used and described so far (CNN, BiLSTM, and BiLSTM-
CNN), the first input layer consists of FastText (https:// fastt 
ext. cc/ docs/ en/ engli sh- vecto rs. html) word embeddings with 
2-million-word vectors trained with sub-word information 
in Common Crawl (600B tokens). Because of the number 
of tokens in these word embeddings, they can accurately 
represent the textual information of radiological reports. The 
report tokens were embedded in a vector space using pre-
trained FastText.

Finally, we also explore the capability of BERT as a lan-
guage model to detect the presence of HGG and metastasis. 
In our case, we fine-tuned the BERT model adapted to radi-
ology named RadBERT (Fig. 4 supplementary material). 
RadBERT was pre-trained with millions of radiological 
reports from the US Department of Veterans Affairs health-
care system across the country on various linguistic models 
[16]. The pre-processed texts belonging to our dataset were 
tokenized with WordPiece as sub-word tokens and entered 
into the model.

Different model parameters, including network depth, 
units per layer, optimizers, or activation functions, were 
evaluated and compared using a grid search to identify 
optimal architecture parameters. Table 2 summarizes the 
hyperparameters selected for each model. Occurrence rates 

Fig. 2  Distribution of report lengths per class. Maximum and median 
report lengths (measured in number of words) were 499 and 252 for 
institution A, and 416 and 186 for institution B, respectively

Table 1  Keywords related to the class to be predicted removed from 
the original text

HGG high-grade glioma, GBM glioblastoma, M1 metastasis

Class Keywords

HGG High-grade glioma, high-grade 
glial, glioblastoma, grade IV, 
GBM

Metastasis Metastasis, metastases, M1

Table 2  Hyperparameters selected for each model

CNN Convolutional Neural Network, BiLSTM bidirectional Long 
Short-Term Memory, RadBERT radiology Bidirectional Encoder 
Representations from Transformers

CNN BiLSTM-CNN RadBERT BiLSTM

Batch size 8 8 8 16
Size 50 50 (convolu-

tion)/300 
(BiLSTM)

12 layers with a 
hidden size of 
768

300

Activation Tanh ReLu ReLu Tanh
Optimizer Adam Adam AdamW Adam
Learning rate 1e − 3 2e − 3 1e − 3 1e − 3

https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
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of the most common words for HGG and metastasis catego-
ries are shown in Fig. 3. The output of all the deep learning 
models employed was projected through dense connections 
to a layer of size 2, one unit for each finding (HGG and 
metastasis). A SoftMax activation function with the multi-
class target was applied to the output.

For the development of the deep learning methods, the 
Python v3.8 programming language was used along with 
packages such as keras, tensorflow, torch, and transformers.

Statistical analysis

The primary evaluation metrics used consisted of standard 
measures from the NLP community, namely precision, sen-
sitivity, F1 score, and area under the ROC curve (AUC).

Results

Patients’ demographics and dataset features

Patient’s age included in the study ranged between 32 and 
86 years old, (mean 62 years old). Regarding sex, 59% of 
patients are male and 41% female.

Algorithms trained with NLP were used with our test 
dataset consistent on 47 MRI brain reports. Twenty-five 
of the 47 reports were classified as HGG, while the rest 

(22 reports) were annotated as metastasis. In addition, in 
order to have consistent variability in the test set, this set 
also contained a diversity of reports from each institu-
tion: 27 reports from institution A and 20 reports from 
institution B.

Performance evaluation

Table 3 shows the models’ relative performance evaluated 
in the HGG and metastasis classification task on the test set. 
Regarding the HGG category, we obtained values above 76% 
in the F1 score. BiLSTM offers the lowest F1 and precision 
(76.36% and 70%, respectively), and RadBERT provides a 
sensibility of 76%. The best results for HGG detection, and 
taking into account the F1 score, were achieved using the 
CNN, specifically, over 91% precision, 84 sensitivity, and 
87.5% F1 score.

For the detection of metastasis, results similar to the pre-
vious ones occur. In this case, the F1 score is in the range 
of 66% and 87%. The BiLSTM network offers a lower value 
(66.67% of F1) and a 59.09% sensitivity. In terms of preci-
sion, the result obtained by the hybrid BiLSTM-CNN net-
work stands out with a 92.86%. Overall, the CNN network 
achieved the best results for metastasis classification, with 
83.33%, 90.91%, and 86.96% precision, sensitivity, and F1, 
respectively.

Fig. 3  The 20 most common words in the (a) high-grade glioma (HGG) category and (b) metastasis category including their occurrence rates

Table 3  Relative performance 
of the final evaluated models on 
test data

CNN Convolutional Neural Network, BiLSTM bidirectional Long Short-Term Memory, RadBERT radiol-
ogy Bidirectional Encoder Representations from Transformers

Model High-grade glioma Metastasis AUC 

Precision Sensitivity F1 score Precision Sensitivity F1 score

CNN 91.30 84.00 87.50 83.33 90.91 86.96 87.45
BiLSTM-CNN 72.73 96.00 82.76 92.86 59.09 72.22 77.55
RadBERT 79.17 76.00 77.55 73.91 77.27 75.56 76.64
BiLSTM 70.00 84.00 76.36 76.47 59.09 66.67 71.54
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Finally, the AUC metric has been reported to evaluate the 
true and false positive rates. In this scenario, CNN achieves 
87.45%, while the BiLSTM network obtains 71.54%.

CNN model results analysis

The CNN neural network provided the best performance, 
and Table  4 shows the results in detail, including the 
macro-average and weighted average metrics. Concerning 
the macro-avg metric, the overall precision achieved by the 
system is 87.32%, while the sensitivity is 87.45%, and for 
the F1 metric, it obtains 87.23%. The weighted average also 
obtained similar results, 87.57%, 87.23%, and 87.25% of 
precision, sensitivity, and F1, respectively.

Our CNN model was used to classify all the corpus. Fig-
ure 4 shows the matrix confusion analysis with the number 
of true positives (TP), true negatives (TN), false positives 
(FP), and false negatives (FN). Among 47 radiological 
reports, the CNN network does not classify 12% correctly 
(6 documents). Instead, the system correctly labels 41 

documents. For detecting HGG, CNN correctly predicts 21 
cases (TP), obtaining 4 FN, 2 FP, and 20 TN. On the other 
hand, for the automatic detection of metastasis, CNN offers 
20 TP, 2 FN, 4 FP, and 21 TN.

Our NLP algorithm detected keywords for positively 
classifying a radiology report as HGG or metastasis group. 
Terms such as tumor, temporal, lobe, foci, corpus, callosum, 
necrotic, or temporal showed the highest positive signifi-
cance for determining radiology reports as HGG. Terms like 
CT (computed tomography), DTI (diffusion tensor imaging), 
or LV (lateral ventricles) showed the highest positive signifi-
cance value for determining radiology reports as metastasis. 
In this line, the exact words are negative terms for classify-
ing radiology reports into the opposite group (Fig. 5).

Explainability CNN model

For a better explanation of why our NLP solution misclas-
sified these six cases, we applied the LIME explainability 
system [17, 18]. In four of these six cases, the algorithm 
incorrectly classified as metastases four HGG (in two of 
these cases, a plausible explicability could be related to 
“multifocal HGG” described in the report). In the other 
cases, the system misclassified as HGG two metastases (in 
one of these cases, probably because of the displacement 
of “corpus callosum” by the mass effect while in the other 
case, the use of words like “tumor necrosis” conditioned 
the misclassification as HGG instead of metastasis) (Fig. 5 
supplementary material).

Discussion

After analyzing different models, our CNN has achieved 
an AUC of 87.45% based on how HGG and metastasis are 
described in radiology reports. Models that involve convolu-
tion layers such as CNN and BiLSTM-CNN have achieved 
the best results, probably because the convolutional archi-
tecture using the pre-trained word embeddings can represent 
the corpus more accurately. For example, the word embed-
dings selected for the evaluated neural networks were trained 
on 600 billion tokens, while RadBERT was trained on 466 
million tokens [19]. Moreover, the CNN operates locally 
and does not rely on positional encodings as an order signal 
to the model network identifying the words that are most 
meaningful to the task by detecting and establishing that 
words such as “corpus” or “callosum” which are related to 
HGG since HGG usually involves the corpus callosum [20]. 
In the same line, terms such as “tumor,” “necrotic,” or “cyst” 
appear linked to the HGG category, probably since HGG 
usually show hypoenhancing necrotic and cystic areas on 
post-contrast sequences and are lesions usually straightly 
named as tumor rather than unspecific lesions by radiologists 

Table 4  CNN results obtained for the evaluation of patients with 
HGG and metastasis

Precision Sensitivity F1 score

High-grade glioma 91.30% 84.00% 87.50%
Metastasis 83.33% 90.91% 86.96%
Macro average 87.32% 87.45% 87.23%
Weighted average 87.57% 87.23% 87.25%

Fig. 4  Confusion matrix of the results obtained using a Convolutional 
Neural Network
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in their reports. Terms such as “CT” have been identified 
by our NLP algorithm to classify a radiology report into 
the metastasis category since it is not uncommon to recom-
mend by radiologist’s further exams (like whole body CT) 
to rule out primary malignancies when there is high suspi-
cion of metastatic brain disease. In the same line, the term 
“DTI” appears frequently linked to the “metastasis” group, 
probably due to the recommendations made by radiologist 
regarding the further performance of this advanced MRI 
sequence to surgical resection of single metastatic lesion 
planification. Other words such as “edema” or “vasogenic” 
have more weight linked to metastasis rather than HGG, 
probably because of a higher vasogenic edema/lesion ratio 
linked to metastasis compared with HGG, which usually 
shows non-enhancing infiltrative areas [5, 21].

The differential between HGG and metastasis is a com-
mon challenge in radiological practice. Despite several 
efforts based on conventional and advanced MRI sequences 
for improving this differential, nowadays, in some cases, 
there are still doubts about the nature of solitary-enhancing 
lesions in MRI studies [22, 23]. In this scenario, AI solutions 
may help radiologists as a clinical support decision tool for 
this task. To the best of our knowledge, this is the first paper 

to attempt to address differences between both lesions based 
on how they are described in radiology reports using NLP.

One of the critical points in the design of the algorithm 
was to remove all the keywords that may solely identify a 
lesion as HGG or metastasis to improve our tool’s clinical, 
radiological, and statistical value. In this manner, we ensured 
that the system does not get influenced in its final decision 
by the detection of terms such as “high grade,” “glioblas-
toma,” or “metastatic,” among others.

Several authors have recently developed NLP-based tools 
for extracting relevant information from radiology reports 
[12, 24]. Sensitive information such as unexpected or rel-
evant findings can be extracted automatically from radiol-
ogy reports to notify in a preferent manner these relevant 
findings to referring clinicians. López-Úbeda et al explored 
this topic, obtaining an F1 score for identifying unexpected 
findings at free-text radiology reports of 90% using CNN 
[25]. Regarding glioma evaluation, Di Noto et al developed a 
weakly supervised learning algorithm with automated labels 
and transfer learning techniques to detect glioma changes 
related to progression or response [26, 27]. Senders et al 
evaluated the role of NLP for automated quantification of 
brain metastasis reported in unstructured radiology reports 

Fig. 5  Word significance for the detection of HGG (high-grade glioma) and metastases in patients
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finding that the bag-or-words approach combined with a 
least absolute shrinkage and selection operator (LASSO) 
provided the better overall accuracy with an AUC of 0.92 
for binary classification of patients with single or multiple 
metastases in MRI brain studies [28]. NLP has also been 
applied in the CNS for other clinical scenarios, such as 
predicting stroke outcomes based on brain MRI radiology 
reports performed during admission. Heo et al obtained spe-
cific tokens (MCA, “territori,” “complet,” etc.) that could 
be used as digital markers of a patient’s prognosis in brain 
MRI reports linked to poor outcomes of patients with acute 
ischemic stroke using deep learning and CNN [29].

Our NLP tool can compile all the information in the 
free-text report and offer the radiologist the likelihood of 
suggesting HGG or metastasis based on the NLP analysis 
of finding details. We believe this tool has some potential 
applications in the standard radiological workflow. First, to 
serve, especially in the case of less experienced radiologists, 
as a clinical assistant tool before finalizing their reports, 
this kind of NLP solution may help them reach a correct 
final diagnosis on the basis of the findings described. In this 
line, a deep analysis of terms applied by an expert neuro-
radiologist can be done to use them as an example of how 
these reports must be performed or, on the opposite side, to 
detect poor-quality reports with a non-specific description of 
HGG or metastasis features and encourage and teach these 
radiologists to use more precise lexicon. Another potential 
application could be related to extracting information from 
radiology reports performed outside our radiology depart-
ment. It is not uncommon to admit patients with MRI studies 
performed at other institutions, having only access to their 
radiology reports. In this manner, avoiding duplication of 
new MRI studies or improving the interpretation of external 
MRI reports may be achieved using these NLP solutions. 
Of course, the most logical and practical approach should 
be to integrate the NLP outcome with features derived from 
images (regardless of whether conventional, advanced, or 
based on AI or radiomics) to provide a final diagnosis using 
an AI multimodal approach that merges information from 
image and text. Other approaches may include automatic 
retrospective searching and labeling radiology reports from 
past years present at any RIS to ensure reporting quality and 
recruit patients for research and clinical trials [24].

Our study has some limitations. The insufficient num-
ber of radiology reports selected for the training and test-
ing of the NLP tools may impact the absolute accuracy of 
the differential diagnosis between HGG and metastasis. In 
our opinion, an increase in the number of labeled reports 
with more cases of HGG and metastasis will undoubtedly 
improve our NLP tool’s capability for suggesting radiolo-
gist HGG or metastasis. Regarding the language used, prob-
ably the translation from Spanish to English language of our 
reports would have some kind of impact on the outcome 

of our NLP tool as linguistic nuances are probably being 
missed during the translation process. Regarding the type 
of CNS lesions included as part of the differential diagno-
sis, other solitary-enhancing lesions such as primary central 
nervous system lymphoma (PCNSL), brain abscesses, or 
tuberculomas may be potentially included in further stud-
ies to encompass a broader range of differential based on 
the description of radiological features of these additional 
lesions on the radiology reports.

Conclusions

Differentiation between HGG and brain metastasis remains 
nowadays a challenge for radiologists. We developed an NLP-
based algorithm to extract information from radiology reports 
and accurately classify them as HGG or metastasis. This NLP-
based algorithm could be used as an assistant tool together with 
imaging features to help radiologists in this challenging task.
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