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Abstract
Objectives Evaluate the performance of a deep learning (DL)–based model for multiple sclerosis (MS) lesion segmentation 
and compare it to other DL and non-DL algorithms.
Methods This ambispective, multicenter study assessed the performance of a DL-based model for MS lesion segmentation 
and compared it to alternative DL- and non-DL-based methods. Models were tested on internal (n = 20) and external (n = 18) 
datasets from Latin America, and on an external dataset from Europe (n = 49). We also examined robustness by rescanning 
six patients (n = 6) from our MS clinical cohort. Moreover, we studied inter-human annotator agreement and discussed our 
findings in light of these results. Performance and robustness were assessed using intraclass correlation coefficient (ICC), 
Dice coefficient (DC), and coefficient of variation (CV).
Results Inter-human ICC ranged from 0.89 to 0.95, while spatial agreement among annotators showed a median DC of 0.63. 
Using expert manual segmentations as ground truth, our DL model achieved a median DC of 0.73 on the internal, 0.66 on the 
external, and 0.70 on the challenge datasets. The performance of our DL model exceeded that of the alternative algorithms 
on all datasets. In the robustness experiment, our DL model also achieved higher DC (ranging from 0.82 to 0.90) and lower 
CV (ranging from 0.7 to 7.9%) when compared to the alternative methods.
Conclusion Our DL-based model outperformed alternative methods for brain MS lesion segmentation. The model also 
proved to generalize well on unseen data and has a robust performance and low processing times both on real-world and 
challenge-based data.
Clinical relevance statement Our DL-based model demonstrated superior performance in accurately segmenting brain MS 
lesions compared to alternative methods, indicating its potential for clinical application with improved accuracy, robustness, 
and efficiency.
Key Points 
• Automated lesion load quantification in MS patients is valuable; however, more accurate methods are still necessary.
• A novel deep learning model outperformed alternative MS lesion segmentation methods on multisite datasets.
• Deep learning models are particularly suitable for MS lesion segmentation in clinical scenarios.
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Introduction

Multiple sclerosis (MS) is a chronic immunomediated 
inflammatory disease of the central nervous system that 
affects both gray and white matter (WM) [1]. Although 
the exact cause is unknown, a putative combination of 
genetic and environmental factors leads to an autoimmune 
reaction against myelinated axons, resulting in demyelina-
tion, gliosis, and neuronal loss. Brain lesions characteristi-
cally affect periventricular, juxtacortical, and infratentorial 
WM, cortical gray matter as well as deep gray structures 
(i.e., thalamus). Consequently, as a result, persons with 
MS present variable degrees of cortical and gray nuclei 
atrophy that exceed the values observed in healthy indi-
viduals of the same age [2].

Since its introduction in clinical practice, magnetic 
resonance imaging (MRI) has proven to be a key study 
in the evaluation of patients with MS [3]. MRI criteria 
were first integrated into the diagnostic guidelines for 
MS in 2001 and evolved in the latest criteria as the 
leading complementary study to reach diagnosis [4, 5]. 
MAGNIMS Study Group also emphasizes the impor-
tance of MRI to detect the dissemination in space and 
time of WM lesions and help to rule out alternative 
diagnoses [6, 7].

Radiological follow-up is mandatory for patients with 
MS, as asymptomatic radiological lesions are present in 
an 8–10/1 ratio and are paramount for establishing disease 
progression and/or treatment failure [8]. Serial brain MRI 
studies should accurately assess lesion burden, indicating 
whether disease is stable or progressing. However, lesion 
load measurement by radiologists is time-consuming and 
prone to intra- and inter-observer variability and is sel-
domly obtained in clinical practice. Most radiological 
reports mention, at best, the number and location of demy-
elinating plaques, and whether these lesions are new. But 
a global estimate of the lesion burden is rarely reported.

To overcome this limitation, computer algorithms have 
been developed for automated WM lesion segmentation 
and quantification; however, they are not routinely used in 
radiological clinical practice [9–11]. This underutilization 
may be related to several factors including lack of knowl-
edge of these techniques and how to implement them, lack 
of resources, or a lack of acceptance.

In the last few years, deep learning (DL)–based methods 
for automatically segmenting MS lesions have emerged 
[12]. They tend to be faster and more precise than non-DL-
based algorithms and could solve some of the technical 
problems and challenges found by the latter. We aim to 
determine if a novel DL-based automated MS lesion load 
quantification tool (Entelai Neuro) outperforms other DL-
based models and non-DL-based methods.

Materials and methods

We performed three sequential experiments for this ambi-
spective, multicenter study with MRI coming both from 
real-life and challenge-based datasets. In experiment 1, 
we evaluated correlation and spatial agreement between 
manual operators, which can be seen as an upper bound 
on expected performance in this task. In experiment 2, 
we trained, validated, and tested (both with local, exter-
nal, and challenge-based databases) a DL-based model for 
automated MS lesion segmentation, comparing its perfor-
mance to a state-of-the-art and widely adopted DL- and 
non-DL-based software, nicMSlesions and Lesion Seg-
mentation Tool (LST) respectively [13, 14]. In experi-
ment 3, we assessed the robustness of our DL model by 
performing repeated MRI scans in 6 patients from our MS 
clinical cohort, again comparing its performance to nic-
MSlesions and LST.

This study was approved by our institutional review 
board (IRB). A waiver was obtained from the IRB for the 
retrospective arm of this research. Patients involved in the 
prospective arm (experiment 3) provided written informed 
consent.

Subjects

Brain MRI data of 20 subjects with MS were selected from 
our center for experiment 1. For experiment 2, we retrospec-
tively included 295 subjects from our center for model devel-
opment. Approximately 93% of that dataset (275 subjects) 
was used for training and validation. The remainder 7% (20 
subjects) was retained for internal model testing. For exter-
nal validation, we included a total of 67 subjects with MS; 
18 subjects from an external clinical center in Latin America 
and 49 subjects corresponding to a European multicentric 
cohort from the MSSEG challenge dataset [15].

Convenience sampling was used for internal and exter-
nal dataset building, with an approximately equal distri-
bution of subjects with low, medium, and high MS lesion 
load, as evaluated by referent neuroradiologists from 
each center. Low, intermediate, and high lesion load were 
defined as < 5, 5–15, and > 15 mL respectively. All sub-
jects (n = 53) included in both training and testing datasets 
from the MSSEG challenge were analyzed with the seg-
mentation algorithms to further evaluate the generalization 
of the models on unseen data. Four subjects from this data-
set were excluded as either their lesion load was equal to 
0 mL in the ground truth consensus mask (n = 1) or there 
were errors on the processing pipeline of LST (n = 3).

For experiment 3, we prospectively included 6 subjects 
who were scanned 4 times each, during two different visits 
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on two MRI scanners located in our clinical center. Group 
A included 3 subjects who were scanned twice on the same 
scanner on the first visit and twice on the other scanner on 
the second visit. Group B included 3 subjects who were 
scanned twice on different scanners on each visit. Same-
visit scans were separated by 30–60 min, and different-
visit scans were separated by 1–3 weeks. On same-visit 
scans, subjects were allowed to drink water and/or use 
the restrooms, but they were asked not to leave the MRI 
facilities.

When available, demographic and clinical data (MS sub-
type, expanded disability status scale, disease duration, and 
treatment) were collected from the electronic health records. 
As several subjects were scanned as outpatients or included 
from public datasets as previously stated, missing clinical 
data was tabulated as NA (not available).

MRI

MR images for experiment 1 were acquired on a GE Signa 
HDxt 3 Tesla (T). In experiment 2, we used MR images 
from a GE Discovery 750 3 T scanner for training, valida-
tion, and internal testing, while real-life external testing was 
done with MRI acquired on a Siemens Magnetom Prisma 
3 T scanner. The challenge-based external testing was done 
with data proceeding from 4 different MRI scanners: Sie-
mens Verio 3 T, GE Discovery 750 3 T, Siemens Aera 1.5 T, 
and Philips Ingenia 3 T. Experiment 3 included images 
acquired on a Philips Achieva 1.5 T and a GE Discovery 750 
3 T scanner. The distribution of subjects and MRI scanners 
used for model testing stratified by lesion load (< 5, 5–15, 
and > 15 mL) is detailed in Supplementary Table 1.

All protocols included 3D FLAIR and 3D T1-weighted 
images (sequences parameters are detailed in Supplementary 
Tables 2 and 3).

Clinical images were downloaded from the Picture 
Archiving and Communication System (PACS) and con-
verted to Neuroimaging Informatics Technology Initiative 
(NIfTI) format for post-processing and anonymization. Chal-
lenge data was downloaded from the Shanoir-NG (sharing 
neuroimaging resources next generation) platform (https:// 
shano ir. irisa. fr/) as NIfTI files.

Manual segmentations

Manually performed segmentations were used as ground 
truth in experiments 1 and 2. Three neuroradiologists 
(M.M.S., N.I.S., and E.O.S.) with 6, 7, and 6 years in the 
field, respectively, manually segmented MS lesions from the 
3D FLAIR sequences of—all but challenge-derived—MS 
subjects using ITK-SNAP (http:// www. itksn ap. org) [16]. 
Brain T2 hyperintense lesions with radiological character-
istics of demyelinating plaques were manually delineated 

on each slice and binary lesion masks were generated after-
wards. Total segmentation time was recorded in minutes.

MSSEG challenge data included seven manual segmenta-
tion masks (performed by different trained experts split over 
the three acquisition sites) and a consensus ground truth 
segmentation, built with the LOP STAPLE algorithm [17]. 
We analyzed whether the performance of these external 
annotators was similar to ours by comparing spatial agree-
ment between them.

Non‑DL‑based automated MS lesion quantification

Non-DL-based automated MS lesion load quantification was 
performed using lesion growth algorithm (LGA) and lesion 
prediction algorithm (LPA) as implemented in LST version 
3.0.0 (http:// www. stati stical- model ling. de/ lst. html) [14, 18]. 
A more detailed description of the software is provided in 
the supplementary material.

DL‑based automated MS lesion quantification

NicMSlesions

NicMSlesions toolbox [13, 19] is based on a cascade of 
two 3D patchwise convolutional neural networks (https:// 
github. com/ sergi valve rde/ nicMS lesio ns). A more detailed 
description of the software is provided in the supplementary 
material.

Entelai Neuro

In this study, we used Entelai Neuro, a commercial seg-
mentation software based on an adaptation of a fully 
convolutional densely connected network (Tiramisu 
architecture) following Oguz et al strategy for MS lesion 
quantification [20, 21]. Entelai Neuro uses 2.5D stacked 
slices independently for each orthogonal MR view 
(axial, sagittal, and coronal), which provide global con-
text along the in-plane direction as well as local context 
in the out-of-plane direction by considering stacks of 3 
contiguous slices. Differently from standard 2D convolu-
tional models, the 2.5D stacked inputs provide local 3D 
context by concatenating multimodal neighboring slices 
along the channel dimension. At the same time, it sub-
stantially reduces the number of parameters when com-
pared with 3D convolutional models which employ 3D 
kernels and has access to more samples for training by 
taking stacked data from three orientations. The model 
architecture is composed of an initial 2D convolutional 
layer, followed by 5 densely connected plus transitional 
steps blocks, and the symmetrical upsampling path, as 
depicted in Fig. 1. For more details about the Transition 
Down/Up modules and Dense Blocks, see [20]. Each 

https://shanoir.irisa.fr/
https://shanoir.irisa.fr/
http://www.itksnap.org
http://www.statistical-modelling.de/lst.html
https://github.com/sergivalverde/nicMSlesions
https://github.com/sergivalverde/nicMSlesions
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densely connected block is an iterative concatenation 
of previous feature maps. This idea is founded on the 
observation that a feed-forward network composed of 
layers that are directly connected to all other layers can 
improve both accuracy and ease of training [22]. We also 
employed skip connections between the downsampling 
and upsampling paths to recover fine-grained informa-
tion and avoid the smoothing effect caused by encoder-
decoder architectures with bottleneck. We used focal 
loss function for training [23]. 

The model was implemented in Pytorch. We trained 
the model with 275 subjects, in an 80–10–10% (train-val-
idation-test) scheme. All subjects contained 3D T1 and 
3D FLAIR sequences as well as manually segmented MS 
lesion masks. Images were scaled to 1 mm spacing and 
FLAIR sequences were co-registered to T1 using rigid 
transformation (only rotation and translation operations 
permitted). We used the pre-trained model as the initializa-
tion of network parameters. Only one model was trained 
without an ensemble. We used the standard grid-search 
algorithm for hyper-parameter tunning and reported the 

results for the best-performing version, which is in fact 
the one used by the commercial version of Entelai Neuro.

Statistical analysis

To obtain a concurrent estimate of consistency and agree-
ment between volumes derived from the different observ-
ers or methods, we computed intraclass correlation coeffi-
cients (ICC) [24]. The ICC assesses reproducibility between 
repeated measures within one subject by comparing the vari-
ability between the repeated measures with the total variabil-
ity of the data (Supplementary Fig. 1A). A strong correlation 
would confirm a good consistency between techniques. ICCs 
were computed automatically specifying a two-way mixed-
effect model.

To assess spatial agreement, we used DC between 
segmentations generated by the different human opera-
tors (or the consensus among them) and the output 
binary segmentations generated by the different soft-
ware, using manual segmentations as ground truth [25]. 
DC is defined as two times the area of the intersection 

Fig. 1  Detailed architecture for the DL segmentation model. The 
2.5D input image is first processed by a standard 2D convolution, fol-
lowed by a downsampling path which interleaves dense blocks (blue), 
concatenation modules (yellow), and transition down (orange) mod-

ules. The upsampling module recovers the original image resolution 
by combining transition up (green) modules, dense blocks, and con-
catenation modules. A more detailed description is included in “DL-
based automated MS lesion quantification”
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of A and B, divided by the sum of the areas of A and B 
(Supplementary Fig. 1B).

The robustness (repeatability and reproducibility) of 
repeated measures was assessed using the within-subject 
DC and coefficient of variation (CV) for each method. CV 
may be defined as the ratio of the standard deviation of a 
number of measurements to the arithmetic mean (Supple-
mentary Fig. 1C) [26]. A software is robust if its output 
is consistently accurate even if one or more of the input 
variables are changed. For robustness estimation, four 
variables were defined: same-scanner same-visit (SSSV), 
same-scanner different-visit (SSDV), different-scanner 
same-visit (DSSV), and different-scanner different-visit 
(DSDV).

All statistical analyses were performed using R ver-
sion 4.2.0. Group comparisons between methods were 
tested using the Kruskal–Wallis rank test, and in case of 
significant differences, post hoc paired analysis was per-
formed using the Wilcoxon rank-sum test. A p < 0.05 was 

considered statistically significant. The Checklist for Arti-
ficial Intelligence in Medical Imaging (CLAIM) was used 
for reporting in this study [27].

Results

Subjects

Demographic and main clinical data from all subjects 
included in this study are summarized in Table 1.

Correlation and agreement between manual 
segmentations

Test–retest reliability between manual segmentations 
achieved an ICC of 0.89 (95% CI 0.73–0.95, p < 0.001) 
between observer 1 and 2, 0.89 (95% CI 0.73–0.95, 
p < 0.001) between observer 2 and 3, and 0.99 (95% CI 

Table 1  Summarized 
demographic and clinical data 
from all subjects included in 
this study

EDSS Expanded Disability Status Scale, RR relapsing–remitting, SP secondary progressive, PP primary 
progressive, PR progressive relapsing, CIS clinically isolated syndrome, RIS radiologically isolated syn-
drome, NOT no treatment, IFN interferon, GAC  glatiramer acetate, FIN fingolimod, NAT natalizumab, 
NA not available. aNumber (and percentage) of subjects with lesion load (< 5, 5–15, and > 15 mL) in each 
experiment. Experiments: 1 (manual segmentation agreement), 2a (training and validation), 2b (internal 
testing), 2c (clinical external testing), 2d (challenge external testing), and 3 (robustness)

Experiment 1 2a 2b 2c 2d 3
No. of subjects 20 275 20 18 49 6
Female sex (percentage) 60% 66% 65% 67% 73% 67%
Mean age in years (range) 41 (28–62) 41 (20–81) 35 (24–58) 39 (23–79) 45 (24–66) 34 (23–60)
Mean lesion load in mL 11.5 mL 11.1 mL 10.2 mL 11.9 mL 15.1 mL 5.1 mL
Lesion load < 5  mLa 8 (40%) 47.7% 7 (35%) 44.4% 19 (39%) 66.7%
Lesion load 5–15  mLa 7 (35%) 26.2% 8 (40%) 27.8% 12 (24%) 16.7%
Lesion load > 15  mLa 5 (25%) 26.2% 5 (25%) 27.8% 18 (37%) 16.7%
MS subtype
  RR 18 (90%) 93 (33.8%) 15 (75%) 0 (0%) 0 (0%) 6 (100%)
  SP 1 (5%) 3 (1.1%) 1 (5%) 0 (0%) 0 (0%) 0 (0%)
  PP 0 (0%) 3 (1.1%) 2 (10%) 0 (0%) 0 (0%) 0 (0%)
  PR 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
  CIS 0 (0%) 4 (1.5%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
  RIS 0 (0%) 2 (0.7%) 1 (5%) 0 (0%) 0 (0%) 0 (0%)
  NA 1 (5%) 170 (61.8%) 1 (5%) 18 (100%) 49 (100%) 0 (0%)

EDSS median (range) 0 (0–4.5) 0 (0–8.5) 0 (0–5.5) NA NA 1 (0–6)
Mean disease duration in 

years (range)
7 (1–16) 5.4 (0.4–16.7) 2 (0–10) NA NA 2 (0–11)

Treatment
  NOT 1 (5%) 21 (7.6%) 11 (55%) 0 (0%) 0 (0%) 0 (0%)
  IFN 10 (50%) 33 (12%) 1 (5%) 0 (0%) 0 (0%) 2 (33.3%)
  GAC 5 (25%) 14 (5.1%) 2 (10%) 0 (0%) 0 (0%) 0 (0%)
  FIN 2 (10%) 25 (9.1%) 3 (15%) 0 (0%) 0 (0%) 1 (16.7%)
  NAT 1 (5%) 7 (2.5%) 1 (5%) 0 (0%) 0 (0%) 0 (0%)
  Other 1 (5%) 13 (4.7%) 2 (10%) 0 (0%) 0 (0%) 3 (50%)
  NA 0 (0%) 162 (58.9%) 0 (0%) 18 (100%) 49 (100%) 0 (0%)
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0.97–0.99, p < 0.001) between observer 1 and 3 (Supple-
mentary Fig. 2). We found a median DC for all lesion sizes 
and all observers of 0.63. Spatial agreement was lower 
between observers on subjects with low lesion load (less 
than 5 mL) with a median DC of 0.55 compared to the 
agreement between observers on subjects with medium 
lesion load (between 5 and 15 mL) with a median DC 
of 0.63 and high lesion load (more than 15 mL) with a 
median DC of 0.67. The median DC between observers 
categorized by lesion load size is summarized in Supple-
mentary Table 4. DC differences between observer cou-
ples were nonsignificant. It took observers a mean time of 
44 ± 33 min to segment each subject (17 ± 12 min on low, 
44 ± 24 min on medium, and 69 ± 28 min on high lesion 
load subjects).

The seven annotators that performed the segmentations 
for the MSSEG challenge dataset had a similar performance 
with a median DC (range) of 0.68 (0.52–0.84), confirming 
the expertise of the raters and quality of the ground truth 
masks (Supplementary Fig. 3).

Correlation and agreement between DL‑ 
and non‑DL‑based automated segmentations

The correlation was higher between ground truth and 
Entelai Neuro both in the internal and external datasets 
(both ICC 0.96, 95% CI 0.89–0.98) when compared to 
nicMSlesions (internal ICC 0.84, 95% CI 0.63–0.94 and 

external ICC 0.64, 95% CI 0.26–0.85), LGA (internal ICC 
0.01, 95% CI − 0.42–0.44 and external ICC 0.78, 95% CI 
0.50–0.91), and LPA algorithms (internal ICC 0.93, 95% 
CI 0.83–0.97 and external ICC 0.78, 95% CI 0.51–0.91). 
The correlation was also higher between the consensus 
ground truth and Entelai Neuro on the challenge dataset 
(ICC 0.86, 95% CI 0.76–0.92) when compared to nic-
MSlesions (ICC 0.55, 95% CI 0.33–0.72), LGA (ICC 
0.45, 95% CI 0.20–0.65), and LPA algorithms (ICC 0.83, 
95% CI 0.72–0.90). Correlation results are graphed in 
Supplementary Figs. 4, 5, and 6.

On the internal dataset, spatial agreement between Entelai 
Neuro segmentation masks and ground truth was higher than 
LGA, LPA, and nicMSlesions (median DC 0.73 vs 0.41, 
0.57, and 0.53 respectively, p < 0.05). On the external data-
set, Entelai Neuro maintained a higher spatial agreement 
with ground truth compared to LGA, LPA, and nicMSle-
sions (median DC 0.66 vs 0.48, 0.30, and 0.43 respectively, 
p < 0.05). Moreover, Entelai Neuro performance on the 
external dataset showed no statistically significant differ-
ence when compared to the performance on the internal 
dataset (median DC 0.73 vs 0.66, p = 0.093). Finally, on 
the challenge dataset, Entelai Neuro also had a higher spa-
tial agreement with ground truth compared to LGA, LPA, 
and nicMSlesions (median DC 0.70 vs 0.53, 0.48, and 0.58 
respectively, p < 0.05). Spatial agreement results are sum-
marized in Tables 2, 3, and 4, Figs. 2, 3, 4, and 5, and Sup-
plementary Fig. 7.

Table 2  Comparison of the 
method performance (spatial 
agreement) on the internal 
dataset

Average symmetric surface distance (ASSD), Dice coefficient (DC), and Hausdorff distance (HD) of 
the methods using manual segmentations as ground truth. IQR interquartile range. p values (*p < 0.05, 
**p < 0.001) denote the Wilcoxon rank-sum test between this quantitative score and corresponding score of 
Entelai Neuro (first row)

Median DC (IQR) Median HD (IQR) Median ASSD (IQR)

Entelai Neuro 0.73 (0.65–0.76) 28.41 (23.13–52.18) 0.94 (0.77–2.36)
nicMSlesions 0.53 (0.42–0.59)** 36.52 (32.51–43.71)* 2.15 (1.69–4.44)*
LPA 0.57 (0.43–0.67)* 35.89 (30.25–47.02)* 2.72 (1.58–5.38)*
LGA 0.41 (0.31–0.57)** 38.54 (32.41–54.48) 4.11 (2.27–10.19)**

Table 3  Comparison of the 
method performance (spatial 
agreement) on the external real-
life dataset

Average symmetric surface distance (ASSD), Dice coefficient (DC), and Hausdorff distance (HD) of 
the methods using manual segmentations as ground truth. IQR: interquartile range. p values (*p < 0.05, 
**p < 0.001) denote the Wilcoxon rank-sum test between this quantitative score and corresponding score of 
Entelai Neuro (first row)

Median DC (IQR) Median HD (IQR) Median ASSD (IQR)

Entelai Neuro 0.66 (0.39–0.73) 36.67 (29.68–48.63) 2.13 (1.09–5.66)
nicMSlesions 0.43 (0.04–0.61)* 47.27 (33.34–83.68) 6.88 (1.85–16.21)*
LPA 0.30 (0.23–0.51)** 40.26 (35.08–52.48)* 2.85 (1.99–6.94)*
LGA 0.48 (0.32–0.60)* 39.96 (34.73–45.79) 30.7 (2.21–5.46)*
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Robustness of brain lesion segmentation

Entelai Neuro maintained a higher DC in all four 
variables (SSSV, SSDV, DSSV, and DSDV) ranging 

from 0.82 to 0.90. Differences were statistically 
significant in all four variables when compared to 
LGA and nicMSlesions and in all-but-one variable 
(SSSV) when compared to LPA. The intra-method 

Table 4  Comparison of the 
method performance (spatial 
agreement) on the external 
challenge-based dataset

Average symmetric surface distance (ASSD), Dice coefficient (DC), and Hausdorff distance (HD) of 
the methods using manual segmentations as ground truth. IQR interquartile range. p values (*p < 0.05, 
**p < 0.001) denote the Wilcoxon rank-sum test between this quantitative score and corresponding score of 
Entelai Neuro (first row)

Median DC (IQR) Median HD (IQR) Median ASSD (IQR)

Entelai Neuro 0.70 (0.57–0.78) 28.79 (22.71–42.39) 1.64 (0.96–3.97)
nicMSlesions 0.58 (0.31–0.67)** 40.37 (33.23–57.32)** 3.75 (1.78–8.82)**
LPA 0.48 (0.30–0.65)** 35.27 (29.78–44.87)* 3.22 (2.19–8.41)*
LGA 0.53 (0.24–0.67)* 36.55 (31.02–47.48)* 4.29 (2.13–11.99)**

Fig. 2  Internal testing results. Whole Dice (A) and Dice grouped by lesion volume (< 5 mL, 5–15 mL, and > 15 mL) (B) comparing Entelai 
Neuro vs LGA, LPA, and nicMSlesions

Fig. 3  External real-life testing results. Whole Dice (A) and Dice grouped by lesion volume (< 5 mL, 5–15 mL, and > 15 mL) (B) comparing 
Entelai Neuro vs LGA, LPA, and nicMSlesions
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spatial agreement was worst in the DSDV group fol-
lowed by DSSV in every method. Also, we found that 
Entelai Neuro had the lowest CV among all methods, 
ranging from 0.7 to 7.9%. Robustness experiment 
results are summarized in Table 5, Fig. 6, and Sup-
plementary Table 5.

Processing time

The mean processing time for each segmentation was 
48 ± 40 min for the manual operator, 21 ± 4 min for LPA, 
54 ± 9 min for LGA, 126 ± 221 min for nicMSlesions, and 
2.3 ± 0.08 min for Entelai Neuro.

Fig. 4  External challenge-based testing results. Whole Dice (A) and Dice grouped by lesion volume (< 5 mL, 5–15 mL, and > 15 mL) (B) com-
paring Entelai Neuro vs LGA, LPA, and nicMSlesions

Fig. 5  Example subject from 
the internal dataset (35-year-old 
male) with original 3D FLAIR 
sequence (first column) and 
manual (second column), LGA 
(third column), LPA (fourth col-
umn), nicMSlesions (fifth col-
umn), and Entelai Neuro (sixth 
column) segmentations masks 
over axial (first row), sagittal 
(second row), and coronal (third 
row) multiplanar reformatted 
3D FLAIR sequence

Table 5  Robustness experiment 
results: median Dice coefficient 
(IQR)

DSDV different-scanner different-visit, DSSV different-scanner same-visit, IQR interquartile range, SSDV 
same-scanner different-visit, SSSV same-scanner same-visit. p values (*p < 0.05, **p < 0.001) denote the 
Wilcoxon rank-sum test between this quantitative score and corresponding score of Entelai Neuro (first 
row)

SSSV SSDV DSSV DSDV

Entelai Neuro 0.88 (0.87–0.90) 0.90 (0.90–0.92) 0.83 (0.82–0.85) 0.82 (0.80–0.83)
nicMSlesions 0.80 (0.78–0.83)* 0.83 (0.75–0.85)* 0.63 (0.51–0.66)* 0.54 (0.43–0.56)**
LPA 0.85 (0.81–0.89) 0.87 (0.86–0.89)* 0.77 (0.75–0.78)* 0.73 (0.69–0.76)**
LGA 0.82 (0.76–0.83)* 0.83 (0.78–8.86)* 0.63 (0.55–0.66)* 0.56 (0.50–0.64)**
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Discussion

Here, we showed that MS lesion manual segmentation is 
prone to inter-observer variability. We then validated a gen-
eralizable and robust DL-based software for MS lesion seg-
mentation that uses 3D T1 and FLAIR sequences as an input. 
The model was fully trained with real-world clinical data. 
We tested the model on both internal and external datasets 
from Latin American and European centers, including images 
acquired in different models of all three major MRI scan-
ner vendors (GE, Philips, and Siemens). The model, which 
is fully automated, not only outperformed other MS lesion 
segmentation software, but also maintains its performance 
on unseen data.

Manual segmentation of MS lesions is a task in which 
even trained neuroradiologists do not achieve very high 
agreement. We obtained median DC of 0.63 and 0.68 on 
clinical- and challenge-based datasets, respectively, similar to 
what was found by other authors [28]. Thus, as manual seg-
mentations are commonly used as ground truth for the evalu-
ation of automated methods, their performances are far from 
perfect. We believe the accuracy in terms of DC achieved by 
Entelai Neuro in this setting is highly competitive.

It is worth noting that there is only a moderate degree of 
correlation (ICC = 0.45) between LPA and ground truth on 
the external challenge-based dataset and a very low degree 
of correlation (ICC = 0.01) between LGA and ground truth 
on the internal dataset. This is due to the presence of outliers 
which have extreme lesion load volumes in LPA and LGA 
masks respectively. After visually inspecting these segmen-
tation masks, we identified errors which segmented normal-
appearing gray and WM. As it is known, outliers can have 

a very large effect on the line of best fit and the correlation 
coefficient, as happens in this case. That is why, spatial cor-
relation metrics (like DC) are preferred when evaluating the 
performance of segmentation models.

Several AI-based solutions have been proposed, devel-
oped, and tested for the MS lesion segmentation task and 
have been extensively reviewed [9, 10, 29–31]. However, 
most of them were not tested on real clinical scenarios. Based 
on the recommendations for MS protocol harmonization 
[32], we chose to use standard practice 3D unenhanced MRI 
sequences (T1 and FLAIR) as input, instead of a 2D or multi-
channel approach [33]. We also opted to test the performance 
of this novel model both with real-world and challenge-based 
data, as data from challenges tends to be highly curated and 
controlled [15]. Differently from previous studies which only 
use images obtained in Europe and the USA, here we also 
included clinical datasets captured in Latin America.

Due to its recent success in computer vision, medical 
image analysis, and brain lesion segmentation, we chose to 
use supervised DL algorithms for this task [34–36]. As DL 
architectures become more mature, they gradually outper-
form previous state-of-the-art classical ML algorithms.

Our model had a median DC (interquartile range) of 0.70 
(0.57–0.77) on 87 subjects (derived from internal and external 
datasets), similar to other published DL algorithms for MS 
lesion segmentation like DeepLesionBrain, nicMSlesions, 
DeepMedic, and Tiramisu with 2.5D stacked slices [19, 20, 
37]. DeepLesionBrain, which is based on a large group of 
compact 3D CNNs, includes data augmentation and hierarchi-
cal specialization learning to reduce dependency with respect 
to training data specificity, reporting a DC of 0.66 on a series 
of cross-dataset experiments [37]. NicMSlesions latest version, 

Fig. 6  Robustness experiment 
results. Dice coefficient by 
different experiment settings: 
same-scanner same-visit 
(SSSV), same-scanner different-
visit (SSDV), different-scanner 
same-visit (DSSV), and 
different-scanner different-visit 
(DSDV)
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which is based on a cascade of two 3D patchwise CNNs, 
achieved a DC of 0.58 on a challenge dataset [13]. NicMSle-
sions performance was also validated on 14 subjects with MS 
[38] achieving a mean DC between 0.49 and 0.66, depending 
on whether the model was used as default, was optimized, and/
or trained. By directly comparing model performance, we are 
able to ascertain that our model outperformed nicMSlesions 
both in the internal and external datasets. Tiramisu with 2.5D 
stacked slices is based on a fully convolutional densely con-
nected network. This approach is the one that is more similar to 
ours, and the best-performing variant of their model obtained 
a DC of 0.69 on a challenge dataset [20].

Differently from most studies proposing DL-based mod-
els for MS lesion segmentation which evaluate their models 
in laboratory conditions, our paper focuses on measuring 
model robustness in real clinical datasets, with repeat-
ability and reproducibility exceeding traditional artificial 
intelligence-based software. We also tested the model using 
a wide range of lesion load volumes, as MS patients have 
different disease duration and burden, and segmentation 
models should perform similarly in all of them. This issue 
is particularly important in patients with low lesion load, 
where most algorithms tend to show degraded performance.

This work has limitations that need to be taken into 
consideration. First, although several scanner vendors 
and models, field strengths, and sequence variations were 
tested, we are far from evaluating the algorithm in all pos-
sible clinical scenarios. Second, although we included a 
total of 87 subjects—adding both internal and external 
datasets—the sample size of the testing group is modest. 
However, as previously stated, we included subjects with 
a wide range of lesion load (to contemplate the different 
forms of MS and spectrum of patients with this disease), 
coming from Latin America and Europe. Finally, we did 
not evaluate the clinical validation or workflow integration 
of the model; we plan to address this issue in future works.

Conclusion

Automated lesion segmentation in MS is reliable and shows 
good agreement with manual segmentation. Entelai Neuro, 
a DL-based method, outperformed non-DL-based and DL-
based methods in the task of MS lesion segmentation on real-
world and challenged-derived data. The model also proved to 
generalize well on unseen data and has a robust performance.
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