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Abstract
Objective  To compare the image quality and diagnostic performance between standard turbo spin-echo MRI and accelerated 
MRI with deep learning (DL)–based image reconstruction for degenerative lumbar spine diseases.
Materials and methods  Fifty patients who underwent both the standard and accelerated lumbar MRIs at a 1.5-T scanner for 
degenerative lumbar spine diseases were prospectively enrolled. DL reconstruction algorithm generated coarse (DL_coarse) 
and fine (DL_fine) images from the accelerated protocol. Image quality was quantitatively assessed in terms of signal-to-
noise ratio (SNR) and contrast-to-noise ratio (CNR) and qualitatively assessed using five-point visual scoring systems. The 
sensitivity and specificity of four radiologists for the diagnosis of degenerative diseases in both protocols were compared.
Results  The accelerated protocol reduced the average MRI acquisition time by 32.3% as compared to the standard protocol. 
As compared with standard images, DL_coarse and DL_fine showed significantly higher SNRs on T1-weighted images 
(T1WI; both p < .001) and T2-weighted images (T2WI; p = .002 and p < 0.001), higher CNRs on T1WI (both p < 0.001), 
and similar CNRs on T2WI (p = .49 and p = .27). The average radiologist assessment of overall image quality for DL_coarse 
and DL_fine was higher on sagittal T1WI (p = .04 and p < .001) and axial T2WI (p = .006 and p = .01) and similar on sagittal 
T2WI (p = .90 and p = .91). Both DL_coarse and DL_fine had better image quality of cauda equina and paraspinal muscles 
on axial T2WI (both p = .04 for cauda equina; p = .008 and p = .002 for paraspinal muscles). Differences in sensitivity and 
specificity for the detection of central canal stenosis and neural foraminal stenosis between standard and DL-reconstructed 
images were all statistically nonsignificant (p ≥ 0.05).
Conclusion  DL-based protocol reduced MRI acquisition time without degrading image quality and diagnostic performance 
of readers for degenerative lumbar spine diseases.
Clinical relevance statement  The deep learning (DL)–based reconstruction algorithm may be used to further accelerate spine 
MRI imaging to reduce patient discomfort and increase the cost efficiency of spine MRI imaging.
Key Points 
• By using deep learning (DL)–based reconstruction algorithm in combination with the accelerated MRI protocol, the aver-

age acquisition time was reduced by 32.3% as compared with the standard protocol.
• DL-reconstructed images had similar or better quantitative/qualitative overall image quality and similar or better image 

quality for the delineation of most individual anatomical structures.
• The average radiologist’s sensitivity and specificity for the detection of major degenerative lumbar spine diseases, including 

central canal stenosis, neural foraminal stenosis, and disc herniation, on standard and DL-reconstructed images, were similar.
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SSIM	� Structural similarity index
T1WI	� T1-weighted images
T2WI	� T2-weighted images
TSE	� Turbo spin-echo

Introduction

Degenerative lumbar spine disease, the most common cause 
of chronic lower back pain and sciatica, encompasses a variety 
of conditions such as disc degeneration, lumbar central canal 
stenosis, annular fissure, and spondylolisthesis [1–3]. Patients 
with suspected degenerative lumbar spine diseases are ini-
tially managed with conservative treatment but may require 
further tests including a lumbar spine MRI if symptoms per-
sist despite treatment [4, 5]. In these patients, a spine MRI is 
used to rule out other possible underlying conditions, assess 
the severity of degenerative spine diseases, and plan further 
management [1, 4, 6].

A typical noncontrast lumbar spine MRI protocol usu-
ally consists of spin-echo-based sagittal T1-weighted 
images (T1WI), sagittal T2-weighted images (T2WI), and 
axial T2-WIs and takes approximately 20 min on a high 
field strength machine [6, 7]. Due to its long scan time, a 
limited number of patients can undergo MRIs per given 
time, leading to decreased productivity per MRI scanner 
and increased cost of lumbar spine MRI [8]. Consequently, 
reducing lumbar spine MRI acquisition time while main-
taining noninferior diagnostic performance can benefit 
patients by reducing discomfort associated with long MRI 
acquisition time and increasing cost efficiency by increasing 
productivity per MRI scanner [6, 8].

Compressed sensing in combination with parallel imag-
ing is currently being utilized to increase MRI scan speed by 
reducing the amount of acquired data [9, 10]. Parallel imag-
ing uses preestimated coil sensitivities to reconstruct images 
from multiple k-space data sampled from multichannel 
coils, while compressed sensing exploits data redundancy 
to reduce the sampling rate during image reconstruction [10, 
11]. The major drawbacks of these methods are long com-
putation time for iterative reconstruction, image blurring, 
and undersampling artifacts resulting from balancing data 
consistency with data sparsity [12, 13].

Recently, deep learning (DL)–based models such as U-net 
and variational networks have been proposed that can be used 
in conjunction with or as an alternative to preexisting methods 
for MRI scan acceleration [9, 14–16]. These models learn 
prior image representations from large amounts of data dur-
ing training and infer missing information in undersampled 
k-space during inference [17]. DL-based image reconstruction 
methods may achieve higher quality for reconstructing images 
than traditional methods and can be used in real time due to 
reduced computational complexity during inference [9, 17].

In this study, we propose an accelerated lumbar spine 
MRI protocol utilizing a DL-based reconstruction algo-
rithm for highly accelerated spin-echo data acquisition. 
We aimed to compare the image quality and diagnostic 
performance of readers for degenerative lumbar spine dis-
eases between standard turbo spin-echo (TSE) MRI and 
accelerated MRI with DL-based image reconstruction.

Methods

This study was approved by the institutional review board 
of Seoul National University Hospital (IRB No.2103-174-
1207). Written informed consent was obtained from all study 
participants.

Study population

Patients with chronic lower back pain or radiculopathy who 
visited Seoul National University Hospital (SNUH) from 
February 2022 to May 2022 were consecutively enrolled. 
The inclusion criteria were as follows: the patients (a) were 
aged  ≥ 18, (b) had chronic lower back pain or radiculopathy, 
and (c) required lumbar spine MRI for further evaluation 
due to failed response to conservative treatment. Exclusion 
criteria were as follows: patients who had (a) any contrain-
dication to MRI, including cardiac pacemaker implanted 
state or claustrophobia, (b) incomplete MR images, (c) MR 
images of suboptimal image quality, and (d) did not consent 
to participate.

Lumbar spine MRI examinations

The study participants underwent MRI examinations at 1.5-T 
scanners (Philips Ingenia and Siemens Avanto). All partici-
pants underwent both standard and accelerated lumbar spine 
MRI acquisition protocols, including sagittal TSE T1WI, sag-
ittal TSE T2WI, and axial TSE T2WI. Imaging parameters 
of the sequences used in this study are detailed in Supple-
mental Table S1. Vendor-specific routine reconstruction and 
DL-based reconstruction algorithms were applied to raw data 
acquired with standard and accelerated protocols, respectively.

DL‑based reconstruction algorithm

This study utilized commercially available DL-based MR 
image reconstruction software (SwiftMR v2.0.1.0, AIRS 
Medical). The algorithm is a variant of U-net, comprising 
18 convolutional blocks, 4 max-pooling layers, 4 upsam-
pling layers, 4 feature concatenations, and 3 convolutional 
layers incorporated in a cascading manner, with each layer 
enforcing data consistency (Fig. 1) [15]. Unlike its previ-
ous version, the algorithm used in this study operates only 
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in the image domain, where undersampled DICOM images 
are used as input for the reconstruction of output DICOM 
images [9].

The model was trained and internally validated with 
31865 series and 3540 series of MRIs, respectively. MRIs 
used for algorithm development were serially collected 
from multiple hospitals in South Korea for predefined time 
period and were mutually exclusive from the MRIs col-
lected for this study. Images with specific findings were not 
intentionally included nor excluded from the training and 
internal validation sets. IRB approval and research agree-
ment were obtained at each individual hospital prior to MRI 
data collection, and the data were anonymized before being 
used for reconstruction algorithm development.

Loss function was defined as the structural simi-
larity index (SSIM) between the input and the label 
image, and the model was optimized with Adam over 20 
epochs using a batch size of 4 at a learning rate of 10–3, 
decaying to 10–4 [18]. The network was trained using 
four NVIDIA Tesla V100 GPUs with 32 GB memory 
(NVIDIA Corporation). The DL algorithm generated 
coarse (DL_coarse) and fine (DL_fine) images based on 
the amount of denoising applied during training (1/1.42 
and 1/1.52).

Quantitative image assessment

The image quality of DL-reconstructed images was quan-
titatively assessed using the signal-to-noise ratio (SNR) 
and contrast-to-noise ratio (CNR). SNR and CNR were 
computed according to the following formulas [19]: 
SNR = SIL1/2 disc/N, CNR =|(SIL1/2 disc − SIL1 bone marrow)|/N, 
where N is the noise defined as the standard deviation of 
the background signal intensity outside the patient.

Qualitative image assessment

Four radiologists (with 4, 4, 10, and 10 years of experience 
in radiology) participated as independent and blinded test 
readers. Prior to the actual test session, readers engaged 
in a training session where they evaluated three sample 
MRIs containing the same sequences as the test MRIs to 
increase their understanding of the test objective. The read-
ers reviewed each patient’s MRI three times for a total of 
150 spine MRIs in three separate sessions, with at least 
four weeks of time interval between each review [20, 21]. 
During each session, the MRIs of 50 patients, containing a 
mixture of standard, DL_coarse, and DL_fine images, were 
presented in a randomized crossover manner.

The readers were first instructed to qualitatively assess 
the image quality of the MRIs. For eight anatomical struc-
tures of the lumbar spine MRI (bone marrow, endplates, 
discs, cerebrospinal fluid, cauda equina, facet joints, neural 
foramina, and paraspinal muscles), each reader recorded 
the image quality of the anatomical structures on selected 
sequences using a 5-point scale (1: not visible or not distin-
guishable, 2: barely visible, 3: adequately visible, 4: good 
visibility, and 5: excellent visibility) [8, 22]. Bone marrow, 
endplates, and lumbar discs were assessed on sagittal T1WI 
and sagittal T2WI, CSF, facet, and cauda equina on sagit-
tal and axial T2WI, neural foramina on sagittal T1WI, and 
paraspinal muscles on axial T2WI. The readers then evalu-
ated the overall image impression on a 5-point scale (1: not 
acceptable or no diagnostic value, 2: very limited diagnos-
tic value, 3: acceptable for most diagnoses, 4: good for the 
majority of diagnoses, 5: optimal) and the presence of arti-
facts on a 4-point scale (1: massive artifacts, 2: significant 
artifacts, 3: minimal artifacts, 4: no artifacts) [8].

In the second part of the test, the reader’s performance 
for the diagnosis of degenerative lumbar spine diseases was 

Fig. 1   The architecture of the DL algorithm used in this study. The algorithm comprised 18 convolutional blocks, 4 max-pooling layers, 4 
upsampling layers, 4 feature concatenations, and 3 convolutional layers incorporated in a cascading manner
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assessed [23]. The readers were instructed to evaluate the 
presence of disc abnormality (herniation or bulging), annu-
lar fissure, central canal stenosis, neural foraminal stenosis, 
Schmorl’s nodes, and spinal instability (spondylolisthesis 
or retrolisthesis) for each intervertebral or vertebral level 
and additionally assess the severity of central canal stenosis 
and neural foraminal stenosis (mild, moderate, and severe) 
[24–28].

Reference standard

Two senior neuroradiologists (S.H.C. and R.E.Y., with 
20 and 12 years of experience in radiology, respectively) 
independently annotated all 50 lumbar spine MRIs for the 
presence of select degenerative spine diseases using the 
same grading scheme used in the reader test. To improve 
the accuracy of the labeling, the senior radiologists referred 
to all available clinical information during the radiologic 
evaluation. After resolving disagreements in annotations 
with a consensual review of the MRIs, the final labels were 
used as the reference standard.

Statistical analysis

SNR and CNR of DL-reconstructed images and standard 
images were compared using paired t-test with Bonferroni 
correction [29]. Overall image quality, individual structure 
image quality, and the presence of artifacts were compared 
using the Wilcoxon signed-rank test with Bonferroni cor-
rection [29]. The reader sensitivity and specificity for the 
diagnosis of select degenerative lumbar spine diseases in 
DL-reconstructed images and standard images were com-
pared with generalized estimated equations. p < 0.05 was 
considered to be indicative of a significant difference for 
each statistical analysis. All statistical analyses were per-
formed with R statistical software version 3.6.2 (R Project 
for Statistical Computing).

Results

Patient and image characteristics

A total of 51 consecutive patients with chronic lower back 
pain or radiculopathy who required lumbar spine MRI for 
further evaluation were initially included. One patient was 
excluded due to consent withdrawal, and the final study 
population consisted of 50 patients (mean age ± standard 
deviation, 69.3 years ± 11.1; range, 30–91 years) (Fig. 2). 
Fourteen (28%) and 36 (72%) patients underwent MRI 
examination at Avanto 1.5-T MRI scanner and Ingenia 1.5-T 
MRI scanner, respectively. Patient characteristics are sum-
marized in Table 1.

Of 250 intervertebral levels evaluated for 50 patients, 
L2/3, L3/4, and L4/5 of one patient and L4/5 of two patients 
were excluded from the analysis of disc abnormality and 
annular fissure due to a history of posterior lumbar inter-
body fusion (PLIF) surgery or interbody cage with poste-
rior instrumentation. Ninety-three percent [227/245], 33% 
[80/245], 30% [75/250], and 17% [42/250] of intervertebral 
levels were positive for disc abnormality, annular fissure, 
central canal stenosis, and spinal instability, respectively. 
Seventeen percent [85/500] of neural foramina and 38% 
[114/300] of vertebral levels were positive for neural forami-
nal stenosis and Schmorl’s nodes, respectively. The distribu-
tion of radiologic diagnoses is summarized in Table 1.

Lumbar spine MRI acquisition time

In the standard protocol, sagittal TSE T1WI, sagittal TSE 
T2WI, and axial TSE T2WI lasted 153.9 s and 166.6 s, 
100.6 s and 211.9 s, and 157.2 s and 194.9 s, resulting in 
overall scan times of 411.74 s and 573.4 s on Philips Ingenia 
1.5 T and Siemens Avanto 1.5 T, respectively. In the acceler-
ated protocol, the sequences lasted 102.6 s and 93.2 s, 65.1 s 
and 165.8 s, and 104.8 s and 137.1 s, resulting in overall 
scan times of 272.5 s and 396.1 s, respectively. With the 
accelerated protocol, the total acquisition time was reduced 
by 33.8% and 30.9%, respectively, for an average reduction 
of 32.3% compared to the standard protocol.

Quantitative image assessment

SNR of both DL_coarse and DL_fine images were signifi-
cantly higher on T1WI (p < 0.001 and p < 0.001) and T2WI 
(p = 0.002 and p < 0.001), as compared with the standard 
images. CNR of both DL_coarse and DL_fine images were 
significantly higher on T1WI (p < 0.001 and p < 0.001) but 
not on T2WI (p = 0.49 and p = 0.27), as compared with the 
standard images. The SNR and CNR values for standard 

Fig. 2   Flow chart of the study population selection
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and DL-reconstructed images are presented in Table 2. 
Subgroup analysis showed that for Siemens Avanto, SNR 
and CNR of DL_coarse and DL_fine were significantly 
higher for both T1WI and T2WI (all p < 0.05), while for 
Philips Ingenia, CNR of DL_fine was significantly higher 
on T1WI as compared with standard images (p = 0.021) 
(Supplemental Table S2).

Qualitative image assessment

The average radiologist assessment of overall image impres-
sion for both DL_coarse and DL_fine was higher on sag-
ittal T1WI (4.1 ± 0.7 and 4.2 ± 0.7 vs. 4.0 ± 0.7; p = 0.04 
and p < 0.001) and axial T2WI (4.1 ± 0.7 and 4.1 ± 0.8 
vs. 4.0 ± 0.7; p = 0.006 and p = 0.01), and similar on sag-
ittal T2WI (4.1 ± 0.7 and 4.1 ± 0.7 vs. 4.1 ± 0.7; p = 0.90 
and p = 0.91), as compared with that for standard images 
(Table 3). The presence of artifacts was similar for both 
DL_coarse and DL_fine on sagittal T1WI (3.4 ± 0.7 and 
3.4 ± 0.7 vs. 3.3 ± 0.7; p = 0.27 and p = 0.41), sagittal T2WI 
(3.5 ± 0.7 and 3.6 ± 0.7 vs. 3.6 ± 0.7; p = 0.71 and p = 1.00), 
and axial T2WI (3.5 ± 0.7 and 3.5 ± 0.7 vs. 3.5 ± 0.7; 
p = 0.97 and p = 0.44), as compared with that for standard 
images (Table 3).

The average radiologist assessment of the image qual-
ity of the endplate on sagittal T1WI, cauda equina on axial 
T2WI, and paraspinal muscles on axial T2WI were higher 
for both DL_coarse and DL_fine as compared with that 
for standard images (p = 0.003 and p = 0.01 for endplate, 
p = 0.04 and p = 0.04 for cauda equina, and p = 0.008 and 
p = 0.002 for paraspinal muscles). On the other hand, the 
image quality of bone marrow on sagittal T2WI was lower 
for both DL_coarse and DL_fine (p = 0.03 and p = 0.007). 
The image quality of the neural foramina on sagittal T1 was 
similar for DL_coarse and higher for DL_fine (p = 0.07 and 
p = 0.001). The image quality of all other anatomical struc-
tures on DL-reconstructed images was graded similarly to 
that of standard images (p > 0.05). A more detailed compari-
son of the image quality of individual anatomical structures 
can be found in Supplemental Table S3.

Reader test for diagnosis of degenerative lumbar 
spine diseases

The average sensitivity and specificity for the diagnosis of 
central canal stenosis were 0.81 and 0.88 for DL_coarse, 
0.82 and 0.90 for DL_fine, and 0.83 and 0.88 for standard 
images, and the differences in sensitivity and specificity of 
DL_coarse and DL_fine vs. standard images were statisti-
cally nonsignificant (p = 0.29 and p = 0.85 for sensitivity; 
p = 0.46 and p = 0.07 for specificity) (Fig. 3, Table 4). Like-
wise, the average sensitivity and specificity for the diag-
nosis of neural foraminal stenosis were 0.75 and 0.97 for 
DL_coarse, 0.70 and 0.97 for DL_fine, and 0.74 and 0.96 
for standard images, and the differences in sensitivity and 
specificity of DL_coarse and DL_fine vs. standard images 
were statistically nonsignificant (p = 0.51 and p = 0.06 for 
sensitivity; p = 0.70 and p = 0.68 for specificity) (Fig. 4).

The average sensitivities were both higher on DL_coarse 
and DL_fine (p < 0.001 and p = 0.004), but specificities were 
both lower (both p < 0.001) for the detection of the annular 

Table 1   Patient characteristics

Unless otherwise specified, data are numbers of patients, with per-
centages in parentheses
*  Age is presented as mean ± standard deviation
†  Based on consensus reading by two expert neuroradiologists

Characteristic Value

Age* 69.3 ± 11.1
Male 16 (32)
MRI indication
 Back pain only 7 (14)
 Radiculopathy only 17 (34)
 Both back pain and radiculopathy 26 (52)

MRI scanner
 Avanto 1.5 T, Siemens Healthineers 14 (28)
 Ingenia 1.5 T, Philips Healthcare 36 (72)

Radiologic diagnosis†

 Disc abnormality (n = 245)
  Absent 18 (7)
  Mild bulging 195 (80)
  Protrusion 10 (4)
  Extrusion 22 (9)
 Annular fissure (n = 245)
  Absent 165 (67)
  Present 80 (33)
 Central canal stenosis (n = 250)
  Absent 175 (70)
  Mild 22 (9)
  Moderate 29 (12)
  Severe 24 (10)
 Neural foraminal stenosis (n = 500)
  Absent 415 (83)
  Mild 45 (9)
  Moderate 21 (4)
  Severe 19 (4)
 Schmorl’s node (n = 300)
  Absent 186 (62)
  Present 114 (38)
 Spinal instability (n = 250)
  Absent 208 (83)
  Spondylolisthesis 20 (8)
  Retrolisthesis 22 (9)
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fissure. The average specificities were both higher (p < 0.001 
and p = 0.001) for the detection of Schmorl’s nodes. The 
average sensitivity was higher on DL_coarse (p = 0.02), 
and specificity was lower on DL_coarse (p = 0.04) for the 
detection of spinal instability. The diagnostic performances 
of DL-reconstructed images and standard images for other 
degenerative diseases, including the detection of disc abnor-
malities, were similar (p ≥ 0.05).

Discussion

We investigated the feasibility of using an accelerated 
MRI protocol with deep learning (DL)-based image 
reconstruction for imaging degenerative lumbar spine 
diseases. Our study demonstrated that using a DL-based 
reconstruction algorithm in combination with an accel-
erated MRI protocol represents a promising means to 
reduce scanning time without affecting image quality and 
reader performance for the diagnosis of major degenera-
tive lumbar spine diseases.

A previous study by Sun S. et al showed that images pro-
cessed with a DL-based reconstruction algorithm demon-
strated significantly higher image quality and lower motion 
artifact while maintaining similar reader agreement for 
assessing degenerative lumbar spine diseases compared to 
those processed with standard reconstruction [30]. Our study 
further explored the value of the DL-based reconstruction 
algorithm by showing that MRI images obtained with accel-
erated protocol and processed with DL-based reconstruction 
have similar or better image quality, and a similar number 
of artifacts, despite the reduction in scan time for image 
acquisition.

Such results suggest that by leveraging pre-learned 
information about the underlying data distribution in 
the input image domain, the DL algorithm successfully 
reconstructs information that may have been lost during 
sparse data acquisition [31]. In that regard, the proposed 
DL algorithm for MRI reconstruction is analogous to 
the DL-based denoising algorithms for lower-dose scan-
ning in CT, which learn to map high-noise images to the 

corresponding low-noise images while preserving key 
structural information; these DL-based CT denoising algo-
rithms have already been proven to be effective methods 
for reducing noise while preserving the natural texture of 
the images [32–34].

During model training, high-resolution images were 
used to enable the DL algorithm’s image resolution 
enhancement effect. Such training enables the estimation 
of truncated high-frequency data in the image domain. 
This was reflected as both DL-reconstructed images hav-
ing a superior performance for the characterization of 
cauda equina and paraspinal muscles on axial T2WI as 
compared with standard images, possibly due to better 
delineation of the boundary of nerve roots and increased 
sharpness of muscle fascicle and fascia resulting from 
increased resolution.

As the training dataset included MRIs collected from 
multiple vendors with different scan parameters, we 
expected the DL reconstruction algorithm to be vendor-
neutral. Subgroup analysis comparing SNR and CNR of 
DL-reconstructed images and standard images for the two 
MRI scanners used showed that while there is a slight dif-
ference in the performance of the DL-based reconstruction 
algorithm for the two MRI instruments tested, similar SNR 
and CNR trend is observed. Such results suggest that the 
DL-based reconstruction algorithm learns representations 
of diverse noise patterns of the training dataset to produce 
high-quality images across different MRI scanners and 
acquisition parameters.

In the reader test for the diagnosis of degenerative lum-
bar spine diseases, the statistical differences in sensitivity 
and specificity for the diagnosis of disc abnormality, central 
canal stenosis, and neural foraminal stenosis between the 
DL-reconstructed images and standard image were nonsig-
nificant. For other lesions, the sensitivity or specificity was 
significantly higher or lower in DL_coarse or DL_fine, but 
the absolute difference did not exceed 0.1. These results sug-
gest that by using the proposed DL-based accelerated MRI 
protocol, MRI scan time can be reduced without a signifi-
cant decrease in diagnostic performance for major degenera-
tive lumbar spine diseases and that radiologists can select 

Table 2   Comparison of SNRs 
and CNRs of DL-reconstructed 
and standard Images

Standard DL_coarse DL_fine p value (standard vs. 
DL_coarse)

p value 
(standard vs. 
DL_fine)

SNR
  Sagittal T1WI 114.7 189.7 284  < 0.001  < 0.001
  Sagittal T2WI 56.7 106.0 123.8 0.002  < 0.001
CNR
  Sagittal T1WI 72.1 118.0 175.2  < 0.001  < 0.001
  Sagittal T2WI 130.2 147.1 170.3 0.49 0.27



8662	 European Radiology (2023) 33:8656–8668

1 3

the degree of denoising for output images based on their 
preference.

Of note, sensitivity was significantly higher in both DL-
reconstructed images, whereas specificity was significantly 
lower than that of the standard image for the detection of the 
annular fissure, which is a relatively subtle finding in spine 
MRI. This suggests that increased lesion visibility is associ-
ated with both better detection performance and may also 
be subject to overinterpretation. To minimize false positive 

readings, careful evaluation and customization of denoising 
levels should be conducted prior to the actual deployment 
of the DL-based protocol. In addition, routine monitoring of 
the quality of the DL-reconstructed images may minimize 
erroneous diagnosis.

The strengths of our study can be summarized as fol-
lows. First, although a few previous retrospective studies 
have tested the feasibility of DL-based MRI reconstruc-
tion methods for various MRI reconstruction tasks [29–31, 

Table 3   Comparison of overall 
Image quality and the presence 
of artifacts for DL-reconstructed 
and standard images on sagittal 
T1WIs, sagittal T2WIs, and 
Axial T2WIs

Data are ± standard deviation. Higher value means better overall image quality
Data are ± standard deviation. Higher value means smaller number of artifacts on the image

Radiologist assessment Standard DL_coarse DL_fine p value (standard 
vs. DL_coarse)

p value 
(standard vs. 
DL_fine)

Overall image quality (sagittal T1)
  Reader 1 3.8 (0.5) 4.2 (0.6) 4.5 (0.5)  < 0.001  < 0.001
  Reader 2 3.4 (0.6) 3.4 (0.5) 3.7 (0.6) 0.62 0.002
  Reader 3 4.4 (0.7) 4.2 (0.7) 4.1 (0.7) 0.03 0.002
  Reader 4 4.3 (0.6) 4.5 (0.6) 4.5 (0.6) 0.13 0.08
  Radiologist average 4.0 (0.7) 4.1 (0.7) 4.2 (0.7) 0.04  < 0.001
Overall image quality (sagittal T2)
  Reader 1 4.3 (0.5) 4.4 (0.6) 4.4 (0.6) 0.14 0.12
  Reader 2 3.5 (0.5) 3.5 (0.5) 3.6 (0.6) 0.81 0.31
  Reader 3 4.3 (0.6) 4.2 (0.7) 4.1 (0.7) 0.18 0.02
  Reader 4 4.3 (0.7) 4.3 (0.6) 4.3 (0.7) 0.83 0.84
  Radiologist average 4.1 (0.7) 4.1 (0.7) 4.1 (0.7) 0.90 0.91
Overall image quality (axial T2)
  Reader 1 4.0 (0.5) 4.2 (0.6) 4.3 (0.7) 0.06 0.002
  Reader 2 3.3 (0.5) 3.4 (0.6) 3.5 (0.6) 0.24 0.19
  Reader 3 4.3 (0.7) 4.2 (0.7) 4.1 (0.7) 0.46 0.06
  Reader 4 4.2 (0.7) 4.5 (0.6) 4.4 (0.7) 0.007 0.02
  Radiologist average 4.0 (0.7) 4.1 (0.7) 4.1 (0.8) 0.006 0.01
Presence of artifacts (sagittal T1)
  Reader 1 3.1 (0.3) 3.1 (0.4) 3.2 (0.4) 0.35 0.07
  Reader 2 3.0 (0.7) 3.0 (0.5) 3.1 (0.5) 0.68 0.93
  Reader 3 3.2 (0.5) 3.2 (0.4) 3.2 (0.5) 0.82 0.67
  Reader 4 4.0 (0.8) 4.3 (0.6) 4.1 (0.8) 0.07 0.46
  Radiologist average 3.3 (0.7) 3.4 (0.7) 3.4 (0.7) 0.27 0.41
Presence of artifacts (sag T2)
  Reader 1 3.1 (0.2) 3.1 (0.4) 3.1 (0.4) 1.00 0.23
  Reader 2 3.9 (0.3) 3.7 (0.5) 3.8 (0.4) 0.01 0.02
  Reader 3 3.4 (0.6) 3.4 (0.6) 3.4 (0.6) 0.63 0.85
  Reader 4 3.9 (1.0) 4.0 (0.8) 3.9 (0.9) 0.18 0.43
  Radiologist average 3.6 (0.7) 3.5 (0.7) 3.6 (0.7) 0.71 1.00
Presence of artifacts (axial T2)
  Reader 1 3.0 (0.3) 3.0 (0.4) 3.1 (0.4) 0.78 0.23
  Reader 2 3.9 (0.3) 3.8 (0.5) 3.6 (0.6) 0.006  < 0.001
  Reader 3 3.4 (0.7) 3.3 (0.6) 3.3 (0.7) 0.46 0.44
  Reader 4 3.7 (0.9) 4.0 (0.8) 3.9 (0.9) 0.08 0.08
  Radiologist average 3.5 (0.7) 3.5 (0.7) 3.5 (0.7) 0.97 0.44
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35], we are the first to prospectively evaluate the feasi-
bility of the approach for the detection of degenerative 
lumbar spine diseases. We comprehensively compared 
the DL-reconstructed images with standard images using 
both quantitative and qualitative evaluation methods on 
all sequences included in the lumbar spine MRI protocol, 
including sagittal TSE T1WI, sagittal TSE T2WI, and axial 
TSE T2WI. Next, unlike other DL-based methods for MRI 
acceleration that require k-space data [9], whose informa-
tion may be difficult to access for some vendors, the DL 
algorithm proposed in this study operates only in the image 
domain, so this approach can be generalized across mul-
tiple MRI instruments. In addition, pairs of blurred and 
high-resolution images were used to optimize the param-
eters of the CNN-based reconstruction algorithm, so we do 
not expect to introduce unseen structures into the images, 
as compared with generative adversarial networks that are 
used for image reconstruction. Yet, because DL-recon-
structed images have higher SNRs and higher or similar 
CNRs, the original artifacts that are present in the images 

may be more emphasized, particularly for DL_fine images 
[36]. Finally, we demonstrated that the DL algorithm can 
reliably produce two types of output, suggesting that DL 
algorithms can readily be fine-tuned to produce output that 
fits user preference.

There are several limitations to this study. First, due to 
the limited number of enrolled patients, we could not test 
for the noninferiority of sensitivity and specificity for the 
detection of degenerative lumbar spine diseases. Second, 
because this is a single-center study, the patient population 
and the type of MRI scanners and scan parameters were 
limited, and future studies validating the algorithm in a 
multicenter setting are warranted. Third, due to the high 
prevalence of facet arthrosis in the study population, we 
could not reliably calculate reader specificity, and facet 
arthrosis was thus excluded from the reader performance 
test. Finally, in the actual clinical deployment of the pro-
tocol, patients may have incidental findings unrelated to 
degenerative lumbar spine diseases, such as spinal arterio-
venous malformation (AVM) or spinal tumor, and the effect 

Fig. 3   Sagittal T2WI and axial T2WI of a 64-year-old male who underwent an MRI due to radiculopathy. Mild central canal stenosis at the L3/4 
level and moderate central canal stenosis at the L4/5 level are well visualized on DL-reconstructed images as well as on standard images
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of the DL-based protocol on these incidental findings has 
not been demonstrated.

In conclusion, we have shown that by using a DL-based 
reconstruction method in combination with an acceler-
ated MRI protocol, MRI acquisition time can be greatly 
reduced while achieving similar or higher SNR and CNR, 
similar or higher overall image quality, a similar number 
of artifacts, and similar reader sensitivity and specificity 
for the detection of major degenerative lumbar spine dis-
eases. Our results demonstrate the potential of employing 
the DL reconstruction algorithm for further acceleration 
of spine MR imaging.
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