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Abstract
Objective This study aimed to evaluate the diagnostic performance of machine learning (ML)–based ultrasound (US) radi-
omics models for risk stratification of gallbladder (GB) masses.
Methods We prospectively examined 640 pathologically confirmed GB masses obtained from 640 patients between August 
2019 and October 2022 at four institutions. Radiomics features were extracted from grayscale US images and germane fea-
tures were selected. Subsequently, 11 ML algorithms were separately used with the selected features to construct optimum 
US radiomics models for risk stratification of the GB masses. Furthermore, we compared the diagnostic performance of 
these models with the conventional US and contrast-enhanced US (CEUS) models.
Results The optimal XGBoost-based US radiomics model for discriminating neoplastic from non-neoplastic GB lesions 
showed higher diagnostic performance in terms of areas under the curves (AUCs) than the conventional US model (0.822–
0.853 vs. 0.642–0.706, p < 0.05) and potentially decreased unnecessary cholecystectomy rate in a speculative comparison 
with performing cholecystectomy for lesions sized over 10 mm (2.7–13.8% vs. 53.6–64.9%, p < 0.05) in the validation and 
test sets. The AUCs of the XGBoost-based US radiomics model for discriminating carcinomas from benign GB lesions 
were higher than the conventional US model (0.904–0.979 vs. 0.706–0.766, p < 0.05). The XGBoost-US radiomics model 
performed better than the CEUS model in discriminating GB carcinomas (AUC: 0.995 vs. 0.902, p = 0.011).
Conclusions The proposed ML-based US radiomics models possess the potential capacity for risk stratification of GB masses 
and may reduce the unnecessary cholecystectomy rate and use of CEUS.
Clinical relevance statement The machine learning-based ultrasound radiomics models have potential for risk stratification 
of gallbladder masses and may potentially reduce unnecessary cholecystectomies.
Key Points 
• The XGBoost-based US radiomics models are useful for the risk stratification of GB masses.
• The XGBoost-based US radiomics model is superior to the conventional US model for discriminating neoplastic from  
   non-neoplastic GB lesions and may potentially decrease unnecessary cholecystectomy rate for lesions sized over 10 mm  
   in comparison with the current consensus guideline.
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• The XGBoost-based US radiomics model could overmatch CEUS model in discriminating GB carcinomas from benign  
   GB lesions.

Keywords Ultrasound · Gallbladder masses · Machine learning · Radiomics · Risk stratification

GB lesions using only the visual interpretation of US images 
is challenging [17]. Contrast-enhanced ultrasound (CEUS) 
is an additional imaging technology for differentiating GB 
diseases by providing vascularity and perfusion information 
[18–20]. Some studies have reported that perfusion features 
and GB wall integrity in CEUS are useful in discriminating 
malignant from benign GB lesions [21–23]. However, high 
empirical dependence, increased cost, low availability, and 
potential contraindications to US contrast agents limit the 
clinical application of CEUS [24].

Recently, radiomics has drawn widespread attention for 
medical image recognition tasks [25]. Radiomics provides 
quantitative and comprehensible features extracted through 
computerised algorithms, which can serve as imaging bio-
markers beyond the visual interpretation of human beings 
[26–28]. A few studies have applied radiomics approaches to 
identify true and pseudo-GB polyps or neoplastic GB polyps 
[29, 30]. By taking advantage of its ability to process quan-
titative image information, machine learning (ML)–based 
computational methods have been introduced to improve the 
diagnostic accuracy for disease classification [31].

Combining the extracted quantitative features and ML-
based computational methods may yield a promising effect 
in the risk stratification of GB masses. Thus, the aim of our 
study was to investigate the diagnostic performance of ML-
based US radiomics models in the risk discrimination of GB 
masses from two clinical perspectives: (1) discrimination 
of neoplastic from non-neoplastic lesions, and (2) discrimi-
nation of malignant from benign lesions (both neoplastic 
and non-neoplastic lesions). Furthermore, we investigated 
whether ML-based US radiomics models could overmatch 
CEUS in diagnostic performance.

Materials and methods

This multi-institutional study was approved by the ethics 
committee of the institution (No: SHSYIEC–4.1/21–263/01; 
2022-187R), and informed consent was obtained. The 
prospective protocol is registered at www. chictr. org. cn 
(ChiCTR2200056165).

Patients

Between August 2019 and October 2022, 609 consecutive 
patients were enrolled from Institution 1 (Shanghai Tenth 
People’s Hospital) and Institution 2 (Zhongshan Hospital, 

Abbreviations
AUC   Area under the curve
CEA  Carcinoembryonic antigen
CEUS  Contrast-enhanced ultrasound
GB  Gallbladder
ICC  Intraclass correlation coefficient
ML  Machine learning
ROI  Region of interest
US  Ultrasound
XGBoost  Extreme gradient boosting

Introduction

With the improvement and wide use of imaging exami-
nations, gallbladder (GB) masses have been detected in 
approximately 5% of the global population, presenting as 
polypoidal intraluminal masses or space-occupying masses 
in GB imaging [1, 2]. Non-neoplastic and neoplastic lesions 
(GB carcinomas and adenomas) constitute the disease spec-
trum and differ in risk and prognosis [1, 3]. GB carcinomas 
are associated with high mortality rates with high aggres-
sion, early metastasis, and poor prognosis without specific 
symptoms at an early stage [4, 5]. Early identification and 
adequate surgical intervention for neoplastic lesions are vital 
for preventing the occurrence or progression of GB carci-
nomas [6, 7].

Currently, common guidelines recommend cholecystec-
tomy for GB lesions sized over 10 mm [8, 9]. However, 
numerous non-neoplastic lesions are sized over 10 mm, 
and follow-up may be an alternative to unnecessary sur-
gical intervention [10]. The size of some GB neoplastic 
lesions is also below this threshold [9]. Moreover, in terms 
of management, laparoscopic or simple cholecystectomy 
is appropriate for benign GB lesions. For GB carcinomas, 
comprehensive assessment is required to determine a spe-
cific treatment strategy, such as radical cholecystectomy or 
extensive resection [2, 11]. Therefore, accurate preoperative 
risk discrimination of GB neoplastic from non-neoplastic 
lesions or GB malignant from benign lesions is a prerequi-
site for decision-making.

Conventional ultrasound (US) is the first-line imaging 
modality used for the diagnosis of GB diseases [12, 13]. 
Several previous studies have revealed some US features 
were associated with GB neoplastic or malignant lesions; 
however, the universally accepted risk factor was the size 
of the lesion [14–16]. Nevertheless, the risk stratification of 

http://www.chictr.org.cn
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Fudan University) as a model development dataset, follow-
ing the inclusion criteria: (a) patients with non-mobile GB 
masses as observed during conventional US examination 
within 1 month before surgery and (b) those who underwent 
surgical resection and had pathologically confirmed GB 
masses. The exclusion criteria for patients were as follows: 
(a) surgically diagnosed with GB stones (n = 11); (b) incom-
plete clinical data (n = 25); (c) poor quality of US images 
(n = 30); (d) complete loss of GB structure and inability to 
distinguish the lesion from adjacent liver tissue, which could 
not delineate the lesion outline manually as a region of inter-
est (ROI) (n = 4); and (e) other carcinomas of the digestive 
system simultaneously, to avoid the influence on carbohy-
drate antigen 19-9 (CA19-9) and carcinoembryonic antigen 
(CEA) levels (n = 3). The largest lesion was selected as the 
target in cases with multiple lesions. Eventually, 536 patients 
with 536 GB masses were prospectively enrolled and ran-
domly divided into training and validation sets in a 7:3 ratio.

Following the same criteria used for the model develop-
ment dataset, 56 consecutive patients with 56 GB masses 
from Institution 3 (First Affiliated Hospital of Wenzhou 
Medical University) and 48 consecutive patients with 48 GB 
masses from Institution 4 (First Hospital of Ningbo Univer-
sity) were prospectively enrolled as two independent exter-
nal test sets (A and B, respectively) between June 2020 and 
October 2022.

Among the enrolled 640 patients, 95 underwent addi-
tional CEUS examination. Excluding five patients with 
poor image quality of CEUS, 90 patients with 90 GB masses 
were enrolled as a “comparison” set to compare the diag-
nostic performance between the ML-based US radiomics 
model and the CEUS model. A detailed flowchart of the 
patient selection process is presented in Fig. 1. The basic 
demographic and clinicopathological characteristics of the 
patients were collected from the medical record systems 
(Table 1).

Conventional US and CEUS data acquisition

The details of conventional US and CEUS examinations are 
provided in Supplementary Material S1. All US and CEUS 
data in the Digital Imaging and Communications in Medi-
cine format were stored in the respective imaging system 
platform.

US imaging segmentation and radiomics features 
extraction

The greyscale US imaging segmentation was processed 
using the ITK-SNAP 3.6.0 programme (http:// www. itksn 
ap. org) [32]. The ROI was manually segmented by two 

Fig. 1  Flowchart of patient selection in this study. US, ultrasound; CEUS, contrast-enhanced ultrasound

http://www.itksnap.org
http://www.itksnap.org
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radiologists (with 7 and 8 years of experience in abdominal 
US, respectively), detailed in Supplementary Material S2.

For each ROI, 1070 radiomics features (Supplementary 
Material S3) were extracted using the IFoundry software 
(Intelligence Foundry 1.2, GE Healthcare).

Key US radiomics features selection 
and construction of the ML‑based US radiomics 
models

The intraclass correlation coefficient (ICC > 0.8), t-test, 
Spearman’s correlation (r < 0.8), and least absolute shrink-
age and selection operator were used to select the key US 
radiomics features. Eleven ML classifiers (Supplementary 
Material S4) were used with the selected radiomics features 
to construct 11 ML-based US radiomics models. The fivefold 

cross-validation was used to adjust the structural parameters 
[33]. The best-performing ML classifier with the highest area 
under the curve (AUC) in the validation set was regarded as 
the optimal ML-based US radiomics model (Fig. 2).

Construction of the ML‑based US radiomics 
incorporated clinical characteristics models

Logistic regression analysis was used to identify independ-
ent predictors of clinical characteristics, including sex and 
age of the patients, presence of gallstone, and levels of 
CA19-9 and CEA. The independent clinical predictors were 
then combined with the optimal US radiomics models to 
construct the ML-based US radiomics-incorporated clinical 
characteristics models (Fig. 2).

Table 1  The demographic 
data of 640 patients from four 
institutions

Data in parentheses are percentages except for special indications
GB gallbladder, CEA carcinoembryonic antigen
* Data are presented as the mean ± standard deviation, with ranges in parentheses

Characteristics Training set Validation set Test set A Test set B Comparison set

No. of patients 375 161 56 48 90
Sex
  Female 219 (58.4) 95 (59.0) 35 (62.5) 23 (47.9) 47 (52.2)
  Male 156 (41.6) 66 (41.0) 21 (37.5) 25 (52.1) 43 (47.8)
Mean age, years
(range)*

54.9 ± 13.4 53.4 ± 13.5 51.4 ± 16.5 57.2 ± 13.0 57.1 ± 13.2
(22–84) (18–77) (23–81) (28–78) (27–84)

Presence of gallstone 71 (18.9) 33 (20.5) 6 (10.7) 2 (4.2) 15 (16.7)
CA199
   < 27 µ/mL 336 (89.6) 139 (86.3) 51 (91.1) 45 (93.8) 76 (84.4)
   ≥ 27 µ/mL 39 (10.4) 22 (13.7) 5 (8.9) 3 (6.2) 14 (15.6)
CEA
   < 5 ng/mL 355 (94.7) 154 (95.7) 55 (98.2) 46 (95.8) 86 (95.6)
   ≥ 5 ng/mL 20 (5.3) 7 (4.3) 1 (1.8) 2 (4.2) 4 (4.4)
No. of tumors 375 161 56 48 90
Mean tumor size, mm
(range)*

18.9 ± 12.2 14.7 ± 7.9 16.2 ± 8.6 18.2 ± 11.7 21.8 ± 15.0
(6.0–88.0) (6.0–50.0) (9.4–44.7) (8.0–57.0) (7.0–83.9)

GB carcinomas 56 (14.9) 27 (16.8) 11 (19.6) 11 (22.9) 17 (18.9)
  Tis 4 (7.1) 1 (3.7) 0 (0.0) 1 (9.1) 1 (5.9)
  T1a 3 (5.4) 2 (7.4) 1 (9.1) 1 (9.1) 2 (11.8)
  T1b 9 (16.1) 2 (7.4) 1 (9.1) 2 (18.2) 4 (23.5)
  T2 32 (57.1) 18 (66.7) 8 (72.7) 2 (18.2) 8 (47.1)
  T3 8 (14.3) 4 (14.8) 1 (9.1) 5 (45.5) 2 (11.8)
Benign GB lesions 319 (85.1) 134 (83.2) 45 (80.4) 37 (77.1) 73 (81.1)
  Cholesterol polyp 144 (38.4) 88 (54.7) 26 (46.4) 20 (41.7) 28 (38.4)
  Adenoma 78 (20.8) 37 (23.0) 8 (14.3) 8 (16.7) 14 (19.2)
  Adenomyomatosis 71 (18.9) 7 (4.3) 6 (10.7) 6 (12.5) 26 (35.6)
  Inflammatory polyp 26 (6.9) 2 (1.2) 5 (8.9) 3 (6.3) 5 (6.8)
Neoplastic GB lesions 134 (35.7) 64 (39.8) 19 (33.9) 19 (39.6) 31 (34.4)
Non-neoplastic GB lesions 241 (64.3) 97 (60.2) 37 (66.1) 29 (60.4) 59 (65.6)
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Conventional US and CEUS data analysis 
and construction of the conventional US and CEUS 
models

A radiologist with more than 10 years of experience in 
abdominal US and CEUS analysed the conventional US 
images of 640 patients. After a buffer period of 1 week, 
the CEUS cines of 90 patients were analysed by the same 
radiologist. The details of data analyses are provided in 
Supplementary Material S5.

Conventional US and CEUS models for GB mass pre-
diction were constructed using logistic regression analysis 
with a fivefold cross-validation.

Statistical analysis

Data analyses were performed using Python (version 3.8.8) 
and SPSS software (version 22.0; IBM Corporation). Nor-
mality was tested using the Kolmogorov–Smirnov test. 
Continuous variables were compared using the t-test and 

described as mean and standard deviation. Categorical vari-
ables were compared using the chi-square or McNemar’s 
test. The diagnostic performance was evaluated using AUC. 
DeLong’s test was used to assess differences between AUCs. 
Statistical significance was set at a p value of less than 0.05.

Results

Demographic and clinicopathological characteristics 
of patients

Eventually, there were 375, 161, 56, and 48 patients in the 
training set, validation set, and test sets A and B, respec-
tively (Table 1). In the training set, elevated CA19-9 levels, 
elevated CEA levels, mean age, sex, and presence of gall-
stone were significantly different between patients with GB 
carcinomas and those with benign lesions. Elevated CA19-9 
levels, elevated CEA levels, mean age, and presence of 
gallstone were statistically different between patients with 

Fig. 2  Study workflow of the US, CEUS, US R, and US R + C mod-
els for risk stratification of gallbladder masses.  US, ultrasound; 
CEUS, contrast-enhanced ultrasound;  US R, ultrasound radiomics 

model; US R + C, ultrasound radiomics incorporated clinical charac-
teristics model; GB, gallbladder; ROI, region of interest
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Table 2  The diagnostic performance of models in discrimination of the GB neoplastic lesions from non-neoplastic ones

Data in parentheses are 95% confidence interval, and data in brackets are used to calculate percentages
GB gallbladder, US ultrasound, AUC  area under the curve, PPV positive predictive value, NPV negative predictive value
# p value of AUCs differ between the conventional US and US radiomics models
* p value of AUCs differ between the US radiomics model and US radiomics + clinical predictors model

Diagnostic models AUC Sensitivity (%) Specificity
(%)

PPV
(%)

NPV
(%)

Accuracy
(%)

p value

Validation set
  Conventional US model 0.706

(0.620–0.793)
51.6 [33/64]
(38.8–64.1)

89.7 [87/97]
(81.4–94.7)

76.7 [33/43]
(61.0–87.7)

73.7 [87/118]
(64.7–81.2)

74.5 [120/161]
(67.1–81.1)

  US radiomics model 0.837
(0.775–0.900)

62.5 [40/64]
(49.5–74.0)

96.9 [94/97]
(90.6–99.2)

93.0 [40/43]
(79.9–98.2)

79.7 [94/118]
(71.1–86.3)

83.2 [134/161]
(76.6–88.7)

0.006#

  US radiomics
 + clinical predictors model

0.832
(0.767–0.897)

73.4 [47/64]
(60.7–83.3)

84.5 [82/97]
(75.5–90.8)

75.8 [47/62]
(63.0–85.4)

82.8 [82/99]
(73.6–89.4)

80.1 [129/161]
(73.1–86.0)

0.818*

Test set A
  Conventional US model 0.642

(0.484–0.799)
52.6 [10/19]
(29.5–74.8)

81.1 [30/37]
(64.3–91.4)

58.8 [10/17]
(33.5–80.6)

76.9 [30/39]
(60.3–88.3)

71.4 [40/56]
(57.8–82.7)

  US radiomics model 0.822
(0.696–0.948)

63.2 [12/19]
(38.6–82.8)

97.3 [36/37]
(84.2–99.9)

92.3 [12/13]
(62.1–99.6)

83.7 [36/43]
(68.7–92.7)

85.7 [48/56]
(73.8–93.6)

0.045#

  US radiomics
 + clinical predictors model

0.855
(0.742–0.968)

73.7 [14/19]
(48.6–89.9)

94.6 [35/37]
(80.5–99.1)

87.5 [14/16]
(60.4–97.8)

87.5 [35/40]
(72.4–95.3)

87.5 [49/56]
(75.9–94.8)

0.425*

Test set B
  Conventional US model 0.660

(0.497–0.823)
52.6 [10/19]
(29.5–74.8)

79.3 [23/29]
(59.7–91.3)

62.5 [10/16]
(35.9–83.7)

71.9 [23/32]
(53.0–85.6)

68.8 [33/48]
(53.8–81.3)

  US radiomics model 0.853
(0.724–0.982)

84.2 [16/19]
(59.5–95.8)

86.2 [25/29]
(67.4–95.5)

80.0 [16/20]
(55.7–93.4)

89.3 [25/28]
(70.6–97.2)

85.4 [41/48]
(72.2–93.9)

0.008#

  US radiomics
 + clinical predictors model

0.877
(0.761–0.993)

68.4 [13/19]
(43.5–86.4)

96.6 [28/29]
(80.4–99.8)

92.9 [13/14]
(64.2–99.6)

82.4 [28/34]
(64.8–92.6)

85.4 [41/48]
(72.2–93.9)

0.288*

Fig. 3  Examples correctly diagnosed by ultrasound radiomics mod-
els. a A case of a 48-year-old woman with a cholesterol polyp. b A 
case of a 76-year-old man with an adenomyomatosis. c A case of a 
61-year-old woman with an adenoma. d A case of a 72-year-old 

woman with a tubular adenoma. e A case of a 63-year-old woman 
with a gallbladder carcinoma. f A case of a 59-year-old woman with a 
gallbladder carcinoma. The lesions are indicated by red arrows
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neoplastic lesions and those with non-neoplastic GB lesions 
(all p < 0.05) (Supplementary Material S6).

Construction and validation of the ML‑based US 
radiomics models

To discriminate between neoplastic and non-neoplastic GB 
lesions, 61 radiomics features in the training set were selected 
as key features after dimension reduction (Supplementary 
Material S7). The extreme gradient boosting (XGBoost)–based 
US radiomics model showed the highest AUC of 0.837 com-
pared with the other 10 ML algorithms in the validation set 
(Supplementary Material S8). In the two external test sets, the 
model showed AUCs of 0.822 and 0.853 (Table 2). Examples 
of cases correctly diagnosed by the XGBoost-based US radi-
omics model are shown in Fig. 3a–c. There were 67, 32, and 
24 patients with non-neoplastic GB lesions sized over 10 mm 
in the validation set and test sets A and B, respectively. Among 
them, the XGBoost-based US radiomics model distinguished 
65, 31, and 21 non-neoplastic GB lesions and potentially 
reduced unnecessary cholecystectomy rate significantly in 
a speculative comparison with the current guidelines (3.1%, 
3/97 vs. 53.6%, 52/97 for validation set, p < 0.001; 2.7%, 1/37 

vs. 64.9%, 24/37 for test set A, p < 0.001; and 13.8%, 4/29 vs. 
62.1%, 18/29 for test set B, p = 0.001).

To discriminate GB carcinomas from benign lesions, 
33 critical US radiomics features were reserved using the 
same feature reduction and selection methods (Supplemen-
tary Material S7). The XGBoost-based US radiomics model 
showed the highest AUC of 0.904 in comparison to the other 
10 ML algorithms in the validation set (Supplementary 
Material S8). In the two external test sets, the model showed 
AUCs of 0.909 and 0.979 in test sets A and B, respectively 
(Table 3). Example cases diagnosed correctly using the 
XGBoost-based US radiomics model are shown in Fig. 3d–f.

Comparison between the conventional US models 
and the ML‑based US radiomics models

The largest diameter (≥ 16.1 mm) was identified as an inde-
pendent predictor of neoplastic GB lesions in the training set 
(Supplementary Material S9). The diagnostic performance 
of the XGBoost-based US radiomics model was superior 
to that of the conventional US model based on the largest 
diameter in terms of AUCs (0.822–0.853 vs. 0.642–0.706, 
all p < 0.05) (Table 2 and Fig. 4a–c).

Table 3  The diagnostic performance of models in discrimination of GB carcinomas from benign lesions

Data in parentheses are 95% confidence interval, and data in brackets are used to calculate percentages
GB gallbladder, US ultrasound, AUC  area under the curve, PPV positive predictive value, NPV negative predictive value
# p value of AUCs differ between the conventional US and US radiomics models
* p value of AUCs differ between the US radiomics model and US radiomics + clinical predictors model

Diagnostic models AUC Sensitivity (%) Specificity
(%)

PPV
(%)

NPV
(%)

Accuracy
(%)

p value

Validation set
  Conventional US model 0.766

(0.649–0.884)
59.3 [16/27]
(39.0–77.0)

94.0 [126/134]
(88.2–97.2)

66.7 [16/24]
(44.7–83.6)

92.0 [126/137]
(85.8–95.7)

88.2 [142/161]
(82.2–92.7)

  US radiomics model 0.904
(0.839–0.969)

70.4 [19/27]
(49.7–85.5)

98.5 [132/134]
(94.2–99.7)

90.5 [19/21]
(68.2–98.3)

94.3 [132/140]
(88.7–97.3)

93.8 [151/161]
(88.9–97.0)

0.021#

  US radiomics
 + clinical predictors model

0.908
(0.857–0.960)

70.4 [19/27]
(49.7–85.5)

99.3 [133/134]
(95.3–99.9)

95.0 [19/20]
(73.1–99.7)

94.3 [133/141]
(88.8–97.3)

94.4 [152/161]
(89.7–97.4)

0.864*

Test set A
  Conventional US model 0.706

(0.515–0.897)
54.5 [6/11]
(24.6–81.9)

88.9 [40/45]
(75.2–95.8)

54.5 [6/11]
(24.6–81.9)

88.9 [40/45]
(75.2–95.8)

82.1 [46/56]
(69.6–91.1)

  US radiomics model 0.909
(0.794–1.000)

63.6 [7/11]
(31.6–87.6)

97.8 [44/45]
(86.8–99.9)

87.5 [7/8]
(46.7–99.3)

91.7 [44/48]
(79.1–97.3)

91.1 [51/56]
(80.4–97.0)

0.046#

  US radiomics
 + clinical predictors model

0.930
(0.822–1.000)

72.7 [8/11]
(39.3–92.7)

100.0 [45/45]
(90.2–100.0)

100.0 [8/8]
(59.8–100.0)

93.8 [45/48]
(81.8–98.4)

94.6 [53/56]
(85.1–98.9)

0.196*

Test set B
  Conventional US model 0.764

(0.582–0.947)
63.6 [7/11]
(31.6–87.6)

89.2 [33/37]
(73.6–96.5)

63.6 [7/11]
(31.6–87.6)

89.2 [33/37]
(73.6–96.5)

83.3 [40/48]
(69.8–92.5)

  US radiomics model 0.979
(0.942–1.000)

100.0 [11/11]
(67.9–100.0)

94.6 [35/37]
(80.5–99.1)

84.6 [11/13]
(53.7–97.3)

100.0 [35/35]
(87.7–100.0)

95.8 [46/48]
(85.8–99.5)

0.011#

  US radiomics
 + clinical predictors model

0.967
(0.918–1.000)

81.8 [9/11]
(47.8–96.8)

97.3 [36/37]
(84.2–99.9)

90.0 [9/10]
(54.1–99.5)

94.7 [36/38]
(80.9–99.1)

93.8 [45/48]
(82.8–98.7)

0.577*
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The largest diameter (≥ 21.0 mm) and discontinuity of 
the GB wall were independent predictors of GB carcinomas 
(Supplementary Material S9). The diagnostic performance 
of the XGBoost-based US radiomics model was superior 
to that of the conventional US model based on the largest 
diameter and discontinuity of the GB wall in terms of AUCs 
(0.904–0.979 vs. 0.706–0.766, all p < 0.05) (Table 3 and 
Fig. 4a–c).

Comparison between ML‑based US 
radiomics‑incorporated clinical characteristics 
models and ML‑based US radiomics models

Elevated CA19-9 levels (≥ 27 U/mL) and age (> 59 years) 
were independent clinical predictors of neoplastic GB 
lesions in the training set. Likewise, elevated CA19-9 
levels (≥ 27 U/mL), presence of gallstone, female, and 
age (> 59  years) were predictors of GB carcinomas 

(Supplementary Material S10). For the discrimination of 
neoplastic GB lesions and GB carcinomas, after adding 
independent clinical predictors, no significant difference in 
AUCs (all p > 0.05 in the validation set, and test sets A and 
B) was observed between the US radiomics-incorporated 
clinical characteristics models and US radiomics models 
(Tables 2 and 3; Fig. 4a–c).

Comparison between the CEUS models 
and ML‑based US radiomics models

Compared with benign lesions, GB carcinomas often dis-
played hyper-enhancement at the early phase (94.1% vs. 
49.3%), washed out earlier (33.1 ± 7.6 s vs. 47.2 ± 14.0 s), 
and discontinuity of the GB wall (64.7% vs. 4.1%) on CEUS 
(all p < 0.05) (Supplementary Material S11). The optimal 
cutoff value for washout time was 38 s. These three fea-
tures were identified as independent characteristics of GB 

Fig. 4  The receiver operating characteristic curves of different meth-
ods in the validation (a), test A (b), test B (c), and comparison (d) 
sets. CUS, conventional ultrasound; CEUS, contrast-enhanced ultra-

sound; US R, ultrasound radiomics model; US R + C, ultrasound radi-
omics incorporated clinical characteristics model; GBC, gallbladder 
carcinoma; GB neo-, neoplastic gallbladder lesion
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carcinomas (Supplementary Material S12). When disconti-
nuity of the GB wall or washout time within 38 s was con-
sidered (Diagnostic criterion 1), AUC was 0.847. When any 
of the two characteristics appeared (Diagnostic criterion 2), 
AUC increased to 0.902 (Table 4).

In comparison with the Diagnostic criterion 2 on CEUS, 
the AUC of the XGBoost-based US radiomics model was 
higher for GB carcinomas prediction (0.995 vs. 0.902, 
p = 0.011) in the “comparison” set. No significant differ-
ence in AUCs was observed between the XGBoost-based 
US radiomics-incorporated clinical characteristics model 
and XGBoost-based US radiomics model (AUC: 0.998 vs. 
0.995, p = 0.384) (Table 5 and Fig. 4d). Example cases that 
had atypical manifestations on CEUS but were diagnosed 

correctly by the XGBoost-based US radiomics model are 
shown in Fig. 5.

Discussion

Our multi-institutional and prospective study indicated 
that the diagnostic performance of the XGBoost-based 
US radiomics models was significantly superior to that of 
conventional US models in terms of AUC for the diagnosis 
of neoplastic GB lesions and GB carcinomas. Meanwhile, 
the XGBoost-based US radiomics model could potentially 
reduce the unnecessary cholecystectomy rate in a specu-
lative comparison with the current consensus guidelines 

Table 4  The diagnostic performance of CEUS models in discrimination of GB carcinomas from benign lesions in the "comparison" set

Data in parentheses are 95% confidence interval, and data in brackets are used to calculate percentages
Diagnostic criterion 1: Discontinuity of GB wall or washout time within 38 s
Diagnostic criterion 2: Any two of the following three independent characteristics appearing on CEUS: discontinuity of the GB wall, washout 
time within 38 s, and hyperenhancement extent in the early phase
CEUS contrast-enhanced ultrasound, GB gallbladder, AUC  area under the curve, PPV positive predictive value, NPV negative predictive value

CEUS models AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

CEUS character-
istics

Hyper-enhancement 
extent at early 
phase

0.724 (0.609–0.839) 94.1 [16/17]  
(69.2–99.7)

50.7 [37/73] 
(38.8–62.5)

30.8 [16/52] 
(19.1–45.3)

97.4 [37/38] 
(84.6–99.9)

58.9 [53/90] 
(48.6–68.5)

Washout time 
within 38 s

0.802 (0.683–0.921) 82.4 [14/17] 
(55.8–95.3)

78.1 [57/73] 
(66.6–86.6)

46.7 [14/30] 
(28.8–65.4)

95.0 [57/60] 
(85.2–98.7)

78.9 [71/90] 
(69.3–86.1)

Discontinuity of 
GB wall

0.803 (0.660–0.946) 64.7 [11/17] 
(38.6–84.7)

95.9 [70/73] 
(87.7–98.9)

78.6 [11/14] 
(48.8–94.3)

92.1 [70/76] 
(83.0–96.7)

90.0 [81/90] 
(81.9–94.9)

Diagnostic criterion 
1

0.847 (0.756–0.939) 94.1 [16/17] 
(69.2–99.7)

75.3 [55/73] 
(63.6–84.4)

47.1 [16/34] 
(30.2–64.6)

98.2 [55/56] 
(89.2–99.9)

78.9 [71/90] 
(69.3–86.1)

Diagnostic criterion 
2

0.902 (0.822–0.983) 94.1 [16/17] 
(69.2–99.7)

86.3 [63/73] 
(75.8–92.9)

61.5 [16/26] 
(40.7–79.1)

98.4 [63/64] 
(90.5–99.9)

87.8 [79/90] 
(79.3–93.2)

Table 5  The diagnostic performance of models in discrimination of GB carcinomas from benign lesions in the "comparison" set

Data in parentheses are 95% confidence interval, and data in brackets are used to calculate percentages.
US ultrasound, CEUS contrast-enhanced ultrasound, AUC  area under the curve, PPV positive predictive value, NPV negative predictive value
† CEUS model adopted Diagnostic criterion 2
*p value of AUCs differ between the US radiomics model and CEUS model
# p value of AUCs differ between the US radiomics model and US radiomics + clinical predictors model

Diagnostic models AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) p value

CEUS  model† 0.902 (0.822–0.983) 94.1 [16/17] 
(69.2–99.7)

86.3 [63/73] 
(75.8–92.9)

61.5 [16/26] 
(40.7–79.1)

98.4 [63/64] 
(90.5–99.9)

87.8 [79/90] 
(79.3–93.2)

US radiomics model 0.995 (0.986–1.000) 94.1 [16/17] 
(69.2–99.7)

98.6 [72/73] 
(91.6–99.9)

94.1 [16/17] 
(69.2–99.7)

98.6 [72/73] 
(91.6–99.9)

97.8 [88/90] 
(92.2–99.7)

0.011*

US radiomics + clinical 
predictors model

0.998 (0.992–1.000) 100.0 [17/17] 
(77.1–100.0)

98.6 [72/73] 
(91.6–99.9)

94.4 [17/18] 
(70.6–99.7)

100.0 [72/72] 
(93.7–100.0)

98.9 [89/90] 
(94.0–100.0)

0.384#



8908 European Radiology (2023) 33:8899–8911

1 3

(cholecystectomy for lesions sized over 10 mm) for non-
neoplastic GB lesions sized over 10 mm. Furthermore, the 
diagnostic performance of the XGBoost-based US radiomics 
model could overmatch that of the CEUS model in discrimi-
nating GB carcinomas from benign lesions.

GB masses are common clinically, and their diagnosis can 
be challenging because of conflicting and unclear imaging 
manifestations [34]. The 2017 European Joint Guidelines 
recommend cholecystectomy for GB polypoid lesions sized 
over 10 mm [35]. The threshold setting of the guideline is 
based on the limitation of risk stratification among these GB 
lesions using routine imaging modalities to minimise the 
omission of neoplastic lesions. Nevertheless, this strategy 
also leads to unnecessary cholecystectomy, which results 
in potential post-cholecystectomy syndrome and increases 
the financial burden on patients [10, 36–38]. On the other 
hand, precise and timely diagnosis of malignant and benign 
GB lesions is a topic of great interest for evaluating the best 
treatment options and prognosis assessment [11, 39, 40]. 
Therefore, devising methods to minimise the unnecessary 
cholecystectomy rate and reduce the missed diagnosis of 
GB carcinoma as much as possible promises to be of great 
interest in clinical practice. To the best of our knowledge, 
our multi-institutional study is the first to develop ML-based 
US radiomics models for the risk stratification of GB masses 
from two clinical perspectives: diagnosis of neoplastic 
lesions and GB carcinomas.

Constantly evolving and improving radiomics approaches 
are a series of processes that utilise quantitative image analy-
sis to extract features in conjunction with computerised algo-
rithms for feature selection, and finally used for diagnosis or 
prediction [41–43]. We selected interpretable ML classifiers 
that can effectively exploit the obtainable data. In compari-
son with the other 10 ML classifiers, our study showed that 
the XGBoost classifier had the highest diagnostic perfor-
mance for discriminating both neoplastic GB lesions and 
GB carcinomas. XGBoost is an ML algorithm that improves 
the gradient boosting machine framework with system opti-
misations and algorithm enhancements and is outstanding 
in parallel computing, missing value processing, overfitting 
control, and prediction generalisation [44].

Previous studies have reported that size of the lesion 
(14–16 mm) is a main risk factor for neoplastic GB lesions 
[15, 17, 45]. The suggested risk factors of GB carcinomas 
include size of the lesion (20–22 mm), sessile shape, and 
discontinuity of the GB wall [9, 17, 46]. Similarly, our study 
found that the largest diameter (> 16.1 mm) was a signifi-
cant independent predictor of neoplastic GB lesions, and 
the largest diameter (> 21.0 mm) and discontinuity of the 
GB wall were independent predictors of GB carcinomas. 
However, with respect to GB carcinoma discrimination, the 
accuracy of US is moderate (approximately 70%) [20]. In 
our study, the accuracy was increased to 91.1–95.8% when 
the XGBoost-based US radiomics model was used. Choi 

Fig. 5  Examples of cases with atypical manifestation on CEUS 
diagnosed correctly by the ultrasound radiomics method. a–c A 
case of a 72-year-old woman with a tubular adenoma. a US exhib-
its a hyperechoic lesion of 31.0  mm (red arrow). b CEUS exhibits 
hyper-enhancement (red arrow) at 19 s after contrast agent injection 
and local discontinuity of the gallbladder wall (white arrow). C The 
lesion turns into hypo-enhancement (red arrow) at 36 s after contrast 

agent injection. d–f A case of a 70-year-old woman with a gallblad-
der carcinoma. d US exhibits a hyperechoic lesion of 15.0 mm (red 
arrow). e CEUS exhibits hyper-enhancement (red arrow) at 17 s after 
contrast agent injection. f The lesion turns into hypo-enhancement 
(red arrow) at 68 s after contrast agent injection and is misdiagnosed 
as adenoma by CEUS



8909European Radiology (2023) 33:8899–8911 

1 3

et al reported that the accuracy for predicting a neoplas-
tic polyp was 66.9–72.1% in high-resolution US [17]. Our 
XGBoost-based US radiomics model was able to improve 
the accuracy to 83.2–85.7%.

As a complement to conventional US, CEUS can signifi-
cantly improve the AUC (approximately 0.90) in discrimi-
nating GB carcinomas [20, 47]. Generally, destruction of 
the GB wall, irregular vascularity, heterogeneous enhance-
ment, and earlier contrast agent wash-out time (28–40 s) are 
characteristics of GB carcinoma on CEUS [21, 22, 48, 49]. 
However, certain problems can affect the clinical application 
of CEUS. It requires the setup of an effective venous chan-
nel and some patients may be contraindicated or allergic to 
contrast agents. Moreover, high empirical dependence and 
the requirement for high-end US machines usually cause 
CEUS to be performed in hospitals with appropriate exper-
tise and resources [24]. For ML-based radiomics, digital 
US images fed to the proposed models have already been 
routinely acquired without extra effort. This cost-effective 
approach would help radiologists differentiate benign GB 
lesions from malignant ones, leading to better utilisation of 
healthcare resources.

Yuan et al analysed spatial and morphological features 
and constructed an SVM-based US radiomics model to 
distinguish true and pseudo-GB polyps with an AUC 
of 0.898 [30]. Our study extracted more varieties of US 
radiomics features and utilised different ML algorithms 
to establish optimal ML-based US radiomics models for 
more effective risk stratification of GB masses. Several 
studies have suggested that female, older age, presence 
of gallstone, and elevated CA19-9 and CEA levels are 
potential risk factors for GB carcinomas [40, 50–52]. In 
this study, after adding independent clinical predictors, 
the incorporated US radiomics models did not show sig-
nificantly superior diagnostic performance compared with 
US radiomics model alone. A possible reason for this 
is that these clinical characteristics might be of limited 
value in the risk prediction of GB masses, in contrast to 
US radiomics features.

This study had several limitations. First, the sample size 
was relatively limited. However, the study was produced 
from a multi-centre dataset and was tested prospectively 
in two external test sets involving different US scanners, 
which indicated the reliability of the results. Second, since 
surgery-confirmed pathology was used as the gold standard, 
GB lesions sized less than 6 mm were not included, which 
are commonly not recommended for cholecystectomy [34]. 
Third, GB lesions which could not be demarcated from the 
adjacent liver tissue were excluded. These cases lost the GB 
structure, and the ROI could not be delineated manually. 
Meanwhile, the study focused on GB masses; other GB dis-
eases presenting only as thickening of the GB wall were not 
included. Lastly, our proposed models were not compared 

with current treatment guidelines in the real clinical practice, 
which need to be conducted further in a randomised clinical 
trial to validate our results.

In conclusion, our proposed ML-based US radiomics 
models are capable of preoperatively predicting the risk of 
GB masses and have the potential to decrease unnecessary 
cholecystectomy rate, and substitute for the use of CEUS.

Supplementary information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00330- 023- 09891-8.

Funding This work was supported in part by the National Natural Sci-
ence Foundation of China (Grant 82202174), the Science and Tech-
nology Commission of Shanghai Municipality (Grants 18441905500, 
and 19DZ2251100), Shanghai Municipal Health Commission (Grants 
2019LJ21 and SHSLCZDZK03502), Shanghai Science and Tech-
nology Innovation Action Plan (21Y11911200), and Fundamental 
Research Funds for the Central Universities (ZD-11-202151), Scien-
tific Research and Development Fund of Zhongshan Hospital of Fudan 
University (Grant 2022ZSQD07).

Declarations 

Guarantor The scientific guarantor of this publication is Hui-Xiong 
Xu.

Conflict of interest These authors declare that they have no conflict 
of interest.

Statistics and biometry No complex statistical methods were neces-
sary for this paper.

Informed consent Written informed consent was obtained from 
patients in this study.

Ethical approval Institutional Review Board approval was obtained.

Methodology  
• prospective
• diagnostic or prognostic study
• performed at four institutions

References

 1. McCain RS, Diamond A, Jones C, Coleman HG (2018) Current 
practices and future prospects for the management of gallbladder 
polyps: a topical review. World J Gastroenterol 24:2844–2852

 2. Ganeshan D, Kambadakone A, Nikolaidis P et al (2021) Cur-
rent update on gallbladder carcinoma. Abdom Radiol (NY) 
46:2474–2489

 3. Mellnick VM, Menias CO, Sandrasegaran K et al (2015) Polypoid 
lesions of the gallbladder: disease spectrum with pathologic cor-
relation. Radiographics 35:387–399

 4. Ramachandran A, Srivastava DN, Madhusudhan KS (2021) Gall-
bladder cancer revisited: the evolving role of a radiologist. Br J 
Radiol 94:20200726

 5. Randi G, Franceschi S, La Vecchia C (2006) Gallbladder cancer 
worldwide: geographical distribution and risk factors. Int J Cancer 
118:1591–1602

 6. Jang JY, Kim SW, Lee SE et al (2009) Differential diagnostic and 
staging accuracies of high resolution ultrasonography, endoscopic 

https://doi.org/10.1007/s00330-023-09891-8


8910 European Radiology (2023) 33:8899–8911

1 3

ultrasonography, and multidetector computed tomography for 
gallbladder polypoid lesions and gallbladder cancer. Ann Surg 
250:943–949

 7. Kai K, Aishima S, Miyazaki K (2014) Gallbladder cancer: clinical 
and pathological approach. World J Clin Cases 2:515–521

 8. Babu BI, Dennison AR, Garcea G (2015) Management and diag-
nosis of gallbladder polyps: a systematic review. Langenbecks 
Arch Surg 400:455–462

 9. Bhatt NR, Gillis A, Smoothey CO, Awan FN, Ridgway PF 
(2016) Evidence based management of polyps of the gall blad-
der: a systematic review of the risk factors of malignancy. Sur-
geon 14:278–286

 10. Park HY, Oh SH, Lee KH, Lee JK, Lee KT (2015) Is cholecys-
tectomy a reasonable treatment option for simple gallbladder 
polyps larger than 10 mm? World J Gastroenterol 21:4248–4254

 11. Coburn NG, Cleary SP, Tan JC, Law CH (2008) Surgery for 
gallbladder cancer: a population-based analysis. J Am Coll Surg 
207:371–382

 12. Yu MH, Kim YJ, Park HS, Jung SI (2020) Benign gallblad-
der diseases: imaging techniques and tips for differentiating 
with malignant gallbladder diseases. World J Gastroenterol 
26:2967–2986

 13. Elmasry M, Lindop D, Dunne DF et al (2016) The risk of malig-
nancy in ultrasound detected gallbladder polyps: a systematic 
review. Int J Surg 33:28–35

 14. Kim JH, Lee JY, Baek JH et al (2015) High-resolution sonogra-
phy for distinguishing neoplastic gallbladder polyps and staging 
gallbladder cancer. AJR Am J Roentgenol 204:W150-159

 15. Kim JS, Lee JK, Kim Y, Lee SM (2016) US characteristics for the 
prediction of neoplasm in gallbladder polyps 10 mm or larger. Eur 
Radiol 26:1134–1140

 16. Lee JS, Kim JH, Kim YJ et al (2017) Diagnostic accuracy of 
transabdominal high-resolution US for staging gallbladder can-
cer and differential diagnosis of neoplastic polyps compared with 
EUS. Eur Radiol 27:3097–3103

 17. Choi TW, Kim JH, Park SJ et al (2018) Risk stratification of gall-
bladder polyps larger than 10 mm using high-resolution ultra-
sonography and texture analysis. Eur Radiol 28:196–205

 18. Cheng Y, Wang M, Ma B, Ma X (2018) Potential role of con-
trast-enhanced ultrasound for the differentiation of malignant and 
benign gallbladder lesions in east Asia: a meta-analysis and sys-
tematic review. Medicine (Baltimore) 97:e11808

 19. Negrão de Figueiredo G, Mueller-Peltzer K, Armbruster M, 
Rübenthaler J, Clevert DA (2019) Contrast-enhanced ultrasound 
(CEUS) for the evaluation of gallbladder diseases in compari-
son to cross-sectional imaging modalities and histopathological 
results. Clin Hemorheol Microcirc 71:141–149

 20. Liang X, Jing X (2020) Meta-analysis of contrast-enhanced ultra-
sound and contrast-enhanced harmonic endoscopic ultrasound for 
the diagnosis of gallbladder malignancy. BMC Med Inform Decis 
Mak 20:235

 21. Xie XH, Xu HX, Xie XY et al (2010) Differential diagnosis 
between benign and malignant gallbladder diseases with real-time 
contrast-enhanced ultrasound. Eur Radiol 20:239–248

 22. Liu LN, Xu HX, Lu MD et al (2012) Contrast-enhanced ultra-
sound in the diagnosis of gallbladder diseases: a multi-center 
experience. PLoS One 7:e48371

 23. Yuan Z, Liu X, Li Q et al (2021) Is contrast-enhanced ultra-
sound superior to computed tomography for differential diagno-
sis of gallbladder polyps? a cross-sectional study. Front Oncol 
11:657223

 24. Liu Z, Zhang XY, Shi YJ et al (2017) Radiomics analysis for 
evaluation of pathological complete response to neoadjuvant 
chemoradiotherapy in locally advanced rectal cancer. Clin Cancer 
Res 23:7253–7262

 25. Huang YQ, Liang CH, He L (2016) Development and validation 
of a radiomics nomogram for preoperative prediction of lymph 
node metastasis in colorectal cancer. J Clin Oncol 34:2157–2164

 26. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the 
bridge between medical imaging and personalized medicine. Nat 
Rev Clin Oncol 14:749–762

 27. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiom-
ics: extracting more information from medical images using 
advanced feature analysis. Eur J Cancer 48:441–446

 28. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are 
more than pictures, they are data. Radiology 278:563–577

 29. Jeong Y, Kim JH, Chae HD et al (2020) Deep learning-based 
decision support system for the diagnosis of neoplastic gallbladder 
polyps on ultrasonography: preliminary results. Sci Rep 10:7700

 30. Yuan HX, Yu QH, Zhang YQ et al (2020) Ultrasound radiom-
ics effective for preoperative identification of true and pseudo 
gallbladder polyps based on spatial and morphological features. 
Front Oncol 10:1719

 31. Zhao CK, Ren TT, Yin YF et al (2021) A comparative analysis 
of two machine learning-based diagnostic patterns with thy-
roid imaging reporting and data system for thyroid nodules: 
diagnostic performance and unnecessary biopsy rate. Thyroid 
31:470–481

 32. Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D 
active contour segmentation of anatomical structures: significantly 
improved efficiency and reliability. Neuroimage 31:1116–1128

 33. Varma S, Simon R (2006) Bias in error estimation when using 
cross-validation for model selection. BMC Bioinformatics 7:91

 34. Foley KG, Lahaye MJ, Thoeni RF (2022) Management and fol-
low-up of gallbladder polyps: updated joint guidelines between the 
ESGAR, EAES, EFISDS and ESGE. Eur Radiol 32:3358–3368

 35. Wiles R, Thoeni R, Barbu S et al (2017) Management and follow-
up of gallbladder polyps: joint guidelines between the European 
Society of Gastrointestinal and Abdominal Radiology (ESGAR), 
European Association for Endoscopic Surgery and other Inter-
ventional Techniques (EAES), International Society of Digestive 
Surgery - European Federation (EFISDS) and European Society 
of Gastrointestinal Endoscopy (ESGE). Eur Radiol 27:3856–3866

 36. Isherwood J, Oakland K, Khanna A (2019) A systematic review 
of the ae- tiology and management of post cholecystectomy syn-
drome. Surgeon 17:33–42

 37. Womack NA, Crider RL (1947) The persistence of symptoms 
following cholecystectomy. Ann Surg 126:31–55

 38. Tarnasky PR (2016) Post-cholecystectomy syndrome and sphinc-
ter of Oddi dysfunction: past, present and future. Expert Rev Gas-
troenterol Hepatol 10:1359–1372

 39. Misra S, Chaturvedi A, Misra NC, Sharma ID (2003) Carcinoma 
of the gallbladder. Lancet Oncol 4:167–176

 40. Tian YH, Ji X, Liu B et al (2015) Surgical treatment of incidental 
gallbladder cancer discovered during or following laparoscopic 
cholecystectomy. World J Surg 39:746–752

 41. Zhou W, Yang Y, Yu C et al (2021) Ensembled deep learning 
model outperforms human experts in diagnosing biliary atresia 
from sonographic gallbladder images. Nat Commun 12:1259

 42. Ji GW, Zhang YD, Zhang H et al (2019) Biliary tract cancer at 
CT: a radiomics-based model to predict lymph node metastasis 
and survival outcomes. Radiology 290:90–98

 43. Xiang F, Liang X, Yang L, Liu X, Yan S (2022) Contrast-
enhanced CT radiomics for prediction of recurrence-free sur-
vival in gallbladder carcinoma after surgical resection. Eur Radiol 
32:7087–7097

 44. Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting 
system. In: Proceedings of the 22nd ACM SIGKDD international 
conference on knowledge discovery and data mining-KDD 2016, 
San Francisco, CA, USA, pp 785–794



8911European Radiology (2023) 33:8899–8911 

1 3

 45. Cha BH, Hwang JH, Lee SH et al (2011) Pre-operative factors that 
can predict neoplastic polypoid lesions of the gallbladder. World 
J Gastroenterol 17:2216–2222

 46. French DG, Allen PD, Ellsmere JC (2013) The diagnostic 
accuracy of transabdominal ultrasonography needs to be 
considered when managing gallbladder polyps. Surg Endosc 
27:4021–4025

 47. Zhang HP, Bai M, Gu JY, He YQ, Qiao XH, Du LF (2018) Value 
of contrast-enhanced ultrasound in the differential diagnosis of 
gallbladder lesion. World J Gastroenterol 24:744–751

 48. Chen LD, Huang Y, Xie XH et al (2017) Diagnostic nomogram 
for gallbladder wall thickening mimicking malignancy: using 
contrast-enhanced ultrasonography or multi-detector computed 
tomography? Abdom Radiol (NY) 42:2436–2446

 49. Sun LP, Guo LH, Xu HX et al (2015) Value of contrast-enhanced 
ultrasound in the differential diagnosis between gallbladder ade-
noma and gallbladder adenoma canceration. Int J Clin Exp Med 
8:1115–1121

 50. Ganeshan D, Kambadakone A, Nikolaidis P, Subbiah V, Subbiah 
IM, Devine C (2021) Current update on gallbladder carcinoma. 
Abdom Radiol (NY) 46:2474–2489

 51. Wang YF, Feng FL, Zhao XH et al (2014) Combined detection 
tumor markers for diagnosis and prognosis of gallbladder cancer. 
World J Gastroenterol 20:4085–4092

 52. Shukla VK, Gurubachan, Sharma D, Dixit VK, Usha (2006) Diagnos-
tic value of serum CA242, CA 19-9, CA 15-3 and CA 125 in patients 
with carcinoma of the gallbladder. Trop Gastroenterol 27:160-165

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Risk stratification of gallbladder masses by machine learning-based ultrasound radiomics models: a prospective and multi-institutional study
	Abstract
	Objective 
	Methods 
	Results 
	Conclusions 
	Clinical relevance statement 
	Key Points 

	Introduction
	Materials and methods
	Patients
	Conventional US and CEUS data acquisition
	US imaging segmentation and radiomics features extraction
	Key US radiomics features selection and construction of the ML-based US radiomics models
	Construction of the ML-based US radiomics incorporated clinical characteristics models
	Conventional US and CEUS data analysis and construction of the conventional US and CEUS models
	Statistical analysis

	Results
	Demographic and clinicopathological characteristics of patients
	Construction and validation of the ML-based US radiomics models
	Comparison between the conventional US models and the ML-based US radiomics models
	Comparison between ML-based US radiomics-incorporated clinical characteristics models and ML-based US radiomics models
	Comparison between the CEUS models and ML-based US radiomics models

	Discussion
	Anchor 25
	References


