
Vol.:(0123456789)1 3

European Radiology (2023) 33:8957–8964 
https://doi.org/10.1007/s00330-023-09865-w

GASTROINTESTINAL

Abdominal fat quantification using convolutional networks

Daniel Schneider1,2 · Tobias Eggebrecht1,3 · Anna Linder1 · Nicolas Linder1,3 · Alexander Schaudinn1 · 
Matthias Blüher3,4 · Timm Denecke1 · Harald Busse1 

Received: 20 December 2022 / Revised: 21 April 2023 / Accepted: 3 May 2023 / Published online: 12 July 2023 
© The Author(s) 2023

Abstract
Objectives  To present software for automated adipose tissue quantification of abdominal magnetic resonance imaging (MRI) 
data using fully convolutional networks (FCN) and to evaluate its overall performance—accuracy, reliability, processing 
effort, and time—in comparison with an interactive reference method.
Materials and methods  Single-center data of patients with obesity were analyzed retrospectively with institutional review 
board approval. Ground truth for subcutaneous (SAT) and visceral adipose tissue (VAT) segmentation was provided by 
semiautomated region-of-interest (ROI) histogram thresholding of 331 full abdominal image series. Automated analyses 
were implemented using UNet-based FCN architectures and data augmentation techniques. Cross-validation was performed 
on hold-out data using standard similarity and error measures.
Results  The FCN models reached Dice coefficients of up to 0.954 for SAT and 0.889 for VAT segmentation during cross-
validation. Volumetric SAT (VAT) assessment resulted in a Pearson correlation coefficient of 0.999 (0.997), relative bias of 
0.7% (0.8%), and standard deviation of 1.2% (3.1%). Intraclass correlation (coefficient of variation) within the same cohort 
was 0.999 (1.4%) for SAT and 0.996 (3.1%) for VAT.
Conclusion  The presented methods for automated adipose-tissue quantification showed substantial improvements over com-
mon semiautomated approaches (no reader dependence, less effort) and thus provide a promising option for adipose tissue 
quantification.
Clinical relevance statement  Deep learning techniques will likely enable image-based body composition analyses on a 
routine basis. The presented fully convolutional network models are well suited for full abdominopelvic adipose tissue 
quantification in patients with obesity.
Key Points 
• This work compared the performance of different deep-learning approaches for adipose tissue quantification in patients 

with obesity.
• Supervised deep learning–based methods using fully convolutional networks  were suited best.
• Measures of accuracy were equal to or better than the operator-driven approach.
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Abbreviations
CDFNet 	� Competitive dense fully convolutional network
FCN	� Fully convolutional network
ROI	� Region of interest
SAT	� Subcutaneous adipose tissue
VAT	� Visceral adipose tissue

Introduction

Body composition analysis aims to non-invasively categorize 
and quantify metabolically relevant tissues like fat, muscle, 
or bones. Over the years, radiological imaging data have 
become one of the obvious sources for such an analysis. More 
recently, convolutional neural networks have received wide-
spread attention for automated image segmentation and tissue 
quantification due to the prospect of a substantially higher 
efficiency over  manual and semiautomated methods [1].

Obesity is defined as the abundance of ectopic abdominal 
or subcutaneous adipose tissue. It is strongly associated with a 
variety of other diseases like diabetes, coronary heart disease, 
metabolic syndrome, and many types of cancer [2–4]. Body 
composition and especially obesity are commonly character-
ized by measuring body mass index or bioelectrical imped-
ance. These measures, however, may not resolve individual 
fat depots, which is crucial for proper phenotyping [2, 5]. 
Likewise, dual-energy X-ray absorptiometry (DEXA) is only 
approximate, operator-dependent, and requires good patient 
compliance. With their high anatomical resolution in three 
dimensions, tomographic imaging techniques have become a 
de facto standard for the quantification of body fat. Computed 
tomography (CT) and magnetic resonance imaging (MRI) can 
therefore help to identify specific phenotypes of obesity.

In contrast to subcutaneous adipose tissue (SAT), vis-
ceral fat (VAT) has a distinct metabolic role [6, 7] and is 
strongly associated with a metabolic syndrome [8]. In com-
parison with CT, MRI provides the best soft tissue contrast 
but is less available and more demanding (time and effort). 
For prospective studies, MRI is preferred due to the lack 
of ionizing radiation and the overall lower risk profile. Fat 
amounts on MRI are usually identified by their high signal 
intensity in T1-weighted images and quantified by a num-
ber of approaches. Contrast agent is usually not required 
for body composition studies. Manual contouring [9] is 
often considered the reference standard but suffers from 
long processing times [10]. Semiautomated or supervised 
methods will save some time by automated computation of 
an approximate segmentation that is visually inspected and 
interactively adjusted in case of errors [10–12].

Fully automated methods are faster and eliminate any 
interreader variability [11–13] but may not necessarily pro-
vide the most accurate result [14]. They are typically based 
on geometrical modelling and image processing techniques 

like thresholding (e.g., fixed signal intensities for tissue dis-
crimination), morphological operators, and clustering (e.g., 
the definition of background and foreground). An artificial 
neural network is trained with proper reference annotations 
from expert readers and might therefore meet the require-
ments of both speed and accuracy.

Over the past years, deep learning techniques have shown 
promising results promoting automation and personalization 
in a wide array of medical applications [15–19]. For com-
plex medical image processing and analysis tasks includ-
ing body composition assessment, convolutional neural 
networks have become a major method of choice [20, 21]. 
Tissue composition and distribution are analyzed via image 
segmentation techniques such as fully convolutional net-
works (FCNs) [22, 23]. Their hierarchical encoder-decoder 
structure identifies spatial associations in the input images 
and generates high-resolution segmentation masks. Accord-
ingly, FCNs are also promising candidates for the quantifica-
tion of abdominal fat tissue [24–26]. Variations of the UNet 
architecture have already proven to be highly suitable for 
medical image segmentation in general [15].

This work aimed to assess the performance of supervised 
deep learning-based methods for adipose tissue quantifica-
tion from MR images—using three different FCNs based 
on the UNet architecture—and compare the results with a 
ground-truth semiautomated approach. It is characterized by 
the combination of a relatively large number of MRI data-
sets, full abdominopelvic coverage, and a deliberate selec-
tion of patients with obesity.

Material and methods

Patients and MRI

Whole abdominal MRI data were available from an IRB-
approved single-center study at an academic research 
institution (Integrated Research and Treatment Center 
AdiposityDiseases, Leipzig University Medicine, Leipzig, 
Germany) investigating the long-term effects of strength 
versus endurance training on the cardiometabolic risk fac-
tors for patients with obesity (BMI ≥ 35 kg/m2) (trial regis-
tration number: NCT01435057). The dataset involved 331 
MRI examinations and 12,422 abdominal MRI slices.

All patients had been examined in a 1.5-T MRI system 
(Achieva XR, Philips Healthcare) in a supine position using 
the integrated whole-body coil for signal reception. The 
main pulse sequence for fat quantification was a dual-echo 
gradient echo with these parameters: 50 transverse slices 
(two stacks covering the abdominopelvic region between 
the diaphragm and pubic symphysis), slice thickness 10 mm, 
interslice gap 0.5 mm, echo times 2.3 ms (opposed phase) 
and 4.6 ms (in phase), repetition time 76 ms, flip angle 
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70°,  field of view 530 mm × 530 mm, acquisition matrix 
216 × 177 and reconstruction matrix 480 × 480.

Semiautomated segmentation

Reference segmentation was provided by two experi-
enced readers who annotated all abdominal MRI slices 
with SAT and VAT amounts. A purely manual segmenta-
tion of all MRI slices (12,422) was not considered for this 
task because of the immense amount of time and effort. 
Instead, an in-house software framework, DicomFlex [16], 
was used for semiautomated segmentation of SAT and 
VAT amounts (area and volume) from these T1-weighted 
gradient-echo MR images using information from both 
in-phase and out-of-phase images. This method involved 
the computation and manual supervision of SAT and VAT 
regions of interest (ROI) as well as the supervised defini-
tion of a threshold for the histogram of MRI signal inten-
sities separating fat and nonfat amounts within the VAT 
ROI [12]. Overall, this typically involved 30–40 individual 
slices and required 15 to 20 min for the whole dataset—
roughly 30 s per slice.

This approach generated some regional misclassifica-
tions, for example, visceral fat inside the kidneys or intes-
tines, because tissues showed a slight overlap for MRI 
signal intensities near the threshold. False visceral fat 
amounts are conspicuous in the images but their contri-
bution to the overall VAT amount is typically very small. 
An experienced reader carefully inspected these regions 
and dynamically adjusted the threshold to visually bal-
ance between extra and omitted visceral fat amounts. In 
the following, the term fat quantification refers to methods 
involving image segmentation.

FCN architectures and training

Three FCN architectures for fully automated SAT and VAT 
segmentation were implemented: UNet [17], DenseUNet 
[18, 19], and CDFNet [20, 21]. They all process input images 
with a chosen resolution of 256 × 256 pixels and generate 
segmentation maps of the same dimension. The dataset was 
composed of T1-weighted (in-phase) MR images as model 
input and corresponding ground truth segmentation maps as 
a target. All three models were evaluated using a five-fold 
cross-validation scheme with training, validation, and test 
subsets, respectively. Each FCN was trained in a supervised 
manner using the training subsets. The evaluation was car-
ried out on the test subsets, while the validation sets were 
used to prevent overfitting. Using the described cross-vali-
dation scheme, FCN performance could be assessed on the 
entire dataset. Further technical details and flow charts of the 
architectures are provided in the supplementary information.

Evaluation metrics

The pixelwise agreement between the adipose tissue seg-
mentations of the FCN models and the ground truth was 
evaluated with the accuracy metric and the Dice similarity 
coefficient. The quantification of adipose tissue volumes 
was validated with a selection of aggregation metrics, 
each highlighting different aspects of the prediction per-
formance. The Pearson correlation coefficient is a widely 
used measure of linear correlation and was used here to 
verify a strong correlation between true and predicted fat 
volumes. The mean percentage error is used to estimate 
the systematic error (bias) of the predictor. In addition, the 
standard deviation of the relative differences between true 
and predicted volumes provides the variational error of the 
predictions. Both error contributions may be combined 
to the root mean square percentage error. The similarity 
of the distributions between ground truth and predicted 
adipose tissue volumes may be estimated with the second 
Wasserstein distance. For better comparison with the error 
metrics, relative differences were also used here. Finally, 
the excess kurtosis was computed to assess the contribu-
tion of outliers (here, severely false predictions) to the 
aggregated metrics. The functional forms of the metrics 
used in this work may be found in the supplementary 
information.

Results

Table 1 summarizes the agreement between predicted 
( �

�
 ) and ground-truth ( � ) adipose tissue segmentation 

maps using the described cross-validation scheme. Each 
FCN architecture was trained with and without data 

Table 1   Average pixel-wise segmentation performance of the FCN 
models in cross-validation

Comparison of segmentation maps (first column) between adi-
pose tissue annotations P

i
 from different FCN architectures (sec-

ond column) and ground truth T – without or with data augmenta-
tion (third column) during training. Average accuracy (ACC) and 
Dice scores (DSC) for SAT and VAT. Boldface values highlight the 
overall best scores

Label Model Accuracy Dice score

Architecture Augmen-
tation

SAT VAT

P1/T UNet N 0.975 0.949 0.870
P2/T UNet Y 0.977 0.953 0.883
P3/T DenseUNet N 0.975 0.949 0.876
P4/T DenseUNet Y 0.978 0.954 0.889
P5/T CDFNet N 0.976 0.949 0.879
P6/T CDFNet Y 0.978 0.954 0.889
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augmentation. SAT classifications were generally more 
accurate than VAT predictions. The agreement with the 
ground truth was marginally higher when augmented data 
was added during training. This effect was more pro-
nounced for VAT. Pixelwise similarity measures for Den-
seUNet and CDFNet are slightly higher than their coun-
terparts corresponding to the vanilla UNet architecture. 
Figure 1 shows two sample MR images after CDFNet ( �

6
) 

segmentation in comparison with the ground truth.
Table 2 provides an overview of the performance of 

the FCN models in adipose tissue quantification. Strong 
agreement was found between the predicted and ground 
truth SAT volumes, as revealed by a Pearson correlation 

of 0.999 and a 1–2% RMSPE largely comprised of vari-
ation error. In comparison, FCN model predictions of 
VAT volumes showed correlation coefficients of up to 
0.997 and the lowest RMSPE of 3.2%. Figure 2 shows the 
Bland–Altman plots of �

6
 adipose tissue volume predic-

tions. Bland–Altman plots for total adipose tissue volume 
(TAT) and VAT/SAT volume ratio can be found in the 
supplementary material.

Table 3 summarizes the variability for the best FCN 
predictions ( �

6
 ) and ground truth for both SAT and VAT 

(cross-validation with 331 patients) as well as that between 
two readers (SAT, selection of 29 patients). For reference 
purposes only, corresponding values from an independent 

Fig. 1   SAT and VAT segmen-
tation for two sample MRI 
slices. The left column shows 
the ground truth � , the center 
column the �

6
 prediction 

(obtained with the CDFNet and 
augmented training data), and 
the right column displays VAT 
agreement between the two 
annotations. TP: true positive; 
TN: true negative; FP: false 
positive; FN: false negative

Table 2   Patient-wise fat 
quantification performance 
metrics of the FCN models P

i
 in 

cross-validation

See Table  1 for model details. Pearson correlation coefficient R ; mean percentage error MPE, standard 
deviation of the relative sample errors SD ; root-mean-squared percentage error RMSPE; second Wasser-
stein distance of relative sample errors PW

2
 and excess kurtosis of relative differences kex. Boldface values 

highlight the overall best scores

Compartment Label R MPE SD RMSPE PW2 kex

SAT P1/T 0.999 0.017 0.020 0.026 0.020 13.7
P2/T 0.999 0.010 0.014 0.017 0.012 4.1
P3/T 0.999 0.007 0.019 0.020 0.013 15.4
P4/T 0.999 0.006 0.012 0.014 0.009 3.9
P5/T 0.999 0.009 0.015 0.018 0.012 3.6
P6/T 0.999 0.007 0.012 0.014 0.009 4.4

VAT P1/T 0.996 0.012 0.049 0.051 0.028 7.0
P2/T 0.996 0.017 0.032 0.037 0.021 2.3
P3/T 0.996 0.017 0.053 0.055 0.031 28.9
P4/T 0.996 0.014 0.033 0.035 0.020 2.1
P5/T 0.995 0.020 0.036 0.041 0.027 5.5
P6/T 0.997 0.008 0.031 0.032 0.016 3.4
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previous assessment are also given. The average fat segmen-
tation times for one MRI slice are reported in Table 4. With 
the FCN models, whole-abdominal adipose tissue quantifica-
tion, assuming a few tens of MRI slices per patient, are on the 
order of a few seconds on a PC with a powerful graphic card. 
On a standard “office” PC, processing may take 1–2 min. 
For comparison, semiautomatic segmentation required 15 to 
20 min for the whole dataset–roughly 30 s per slice.

Discussion

Adipose tissue volume is a common biomarker for various 
clinical outcomes. This work evaluated to what extent fully 
convolutional networks may serve to automatically segment and 
quantify abdominal adipose tissue from MR images. Whole-
abdominal image data of 331 study patients were annotated for 
SAT and VAT amounts using a semiautomated segmentation 
method. Three deep learning architectures, UNet and its deriv-
atives DenseUNet and CDFNet, were trained on the original 
patient data with additional samples generated by randomized 
image transformations. All models were evaluated for segmen-
tation and fat quantification performance in cross-validation.

Although variation error remains the biggest source of 
deviation, all models tend to slightly underestimate VAT vol-
ume likely due to class imbalance (i.e., commonly smaller 
VAT volumes as compared to SAT and remaining tissue). 
For both types of adipose tissue, the low Wasserstein distance 
indicates the preservation of the ground-truth volume distri-
bution. The moderate excess kurtosis suggests a relatively 
consistent quantification performance among the samples.

Overall, data augmentation with tuned hyperparameters 
improved model performance. DenseUNet and CDFNet turned 
out to be more efficient than the original UNet implementation 
with similar or better results (despite using fewer parameters) 
at the cost of increased processing time. The highest evaluation 
measures for adipose tissue volume analysis were achieved by 
the CDFNet trained on the original and augmented data ( �

6
).

The FCN-based methods showed excellent SAT segmen-
tation and quantification accuracy, and the corresponding 
agreement for VAT was very good. A comparison with 
the inter-rater agreement from user-guided quantification 

Fig. 2   Bland–Altman plots for SAT (top), VAT (middle), and TAT 
(bottom) volumes between P6 and T. The fat volumes Vpred in L (lit-
ers) were obtained from the predicted SAT and VAT segmentations 
P6, while the volumes Vtrue were derived from the ground truth anno-
tations T. Bland–Altman plots were annotated with mean relative dif-
ference μ (black line) and 95% confidence range (light gray area)

Table 3   Variability of various methods for fat quantification

Agreement between adipose tissue volumes predicted by the best 
FCN model (P6) and ground truth T during cross-validation (331 
patients) is shown in the first row. The second row presents the con-
sensus between two different operators (SAT only, selection of 29 
patients). The bottom rows report variability between two readers for 
SAT and VAT quantification from an independent, previous assess-
ment using a similar MRI protocol and semiautomated Matlab tool 
[8]. ICC, intra-class correlation; CV, coefficient of variation
Boldface values highlight the overall best scores (* indicates similar 
best values)

Segmentation method SAT VAT

ICC CV ICC CV

P6/T [present study] 0.999 0.014 0.996* 0.031*

T2/T1 [present study] 0.996 0.024 – –
manual [8] 0.995 0.018 0.972 0.069
supervised automated [8] 0.997 0.021 0.997* 0.029*
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showed the superiority of the FCN models for SAT, and 
similar to higher performance for VAT as opposed to man-
ual annotation alone or supervised image processing.

Agreement between methods was generally higher for SAT 
than for VAT, which is attributed to the high variability of VAT 
with respect to distribution, size, and shape. VAT amounts need 
to be carefully distinguished from surrounding structures and 
organs, such as the bowel, pancreas, or urinary bladder [22–24]. 
VAT quantification is already challenging for human segmenta-
tion as indicated by the lower inter-rater reliability [12].

The intraclass correlation and coefficient of variation of 
the FCN approach are also in line with the variability reported 
between two expert readers using an earlier Matlab tool (simi-
lar semiautomated approach) as well as a widely used com-
mercial software (manual segmentation) [12]. A more detailed 
assessment is not possible here, because the above parameters 
were obtained by different readers on different subjects.

With FCN processing times between a few seconds and 
about a minute (depending on the hardware), whole-abdom-
inal fat amounts (tens of slices) may be segmented practi-
cally on the fly [25]. As of now, our FCN-based approach 
is at least one order of magnitude faster than the semiauto-
mated method used for ground truth T segmentation here 
(15–20 min per patient for 30–40 slices). These results dem-
onstrate the promising reliability of FCN approaches in the 
quantification of adipose tissue compartments.

One of the first reports on the automated segmentation 
of visceral and subcutaneous adipose tissue featured a very 
small sample size (around 40) and showed good agreement 
with Dice coefficients between 0.82 and 0.92 [26]. In a later 
work, a higher level of agreement (> 0.95) was reached with 
an improved neural network [27]. That study was limited by a 
small amount of training data and lacked external validation. 
Proper external validation was performed in a more recent work 
but the sample size remained low with only 20 cases [28].

In general, the lack of sufficiently large datasets is still 
regarded as a major limitation of current approaches [29]. 
An open-source design might assist with the distribution and 
acceptance of the methods [30]. Modern implementations 
have reached a new level of processing speed with times on 

the order of 1 min [21]. Whole-body adipose tissue analyses 
are also offered as commercial services, but the associated 
fees might limit their use to smaller batches [31].

This work has a number of limitations. As already men-
tioned in the methods section, the ground truth for adipose 
tissue volumes was not established by manual segmentation 
due to time constraints. We accepted the disadvantage of 
local misclassifications (see Fig. 1, bottom row), which were 
“learned” by the FCN, and decided to take advantage of a 
much higher number of patients with reference data.

On a technical level, our supervised learning methods 
focus on point estimation of adipose tissue volumes only. 
The presented FCN has no means of reporting its reliability 
on out-of-distribution data and should always be profession-
ally supervised by an expert reader.

Various methods have been proposed for uncertainty esti-
mation for deep learning in general and body composition 
analysis in particular [28, 32], which should be considered 
for future research. Additionally, ground truth annotations 
should ideally be made by several independent observers to 
estimate the uncertainty of label generation as well.

The trained model should be able to extrapolate to simi-
lar cohorts and imaging systems without any retraining. 
Even within a given cohort, data outliers may arise from 
different acquisition parameters, imaging artifacts, or rare 
phenotypes. One of the key challenges of deep-learning 
approaches is the availability of proper training data. Here, 
methods using generative adversarial learning schemata 
[33, 34] or spatially aware optimization strategies may be 
employed to improve generalization to unseen data. Future 
work needs to analyze the performance of the trained fat 
quantification models on external cohorts.

In conclusion, this work demonstrates that deep-learning 
approaches for adipose tissue quantification from MRI data are 
also feasible for patients with obesity. The resulting accuracy 
was equal to or better than that of operator-driven approaches 
with processing requiring substantially less time and effort.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00330-​023-​09865-w.
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