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Abstract
Objectives  To determine whether 3D-CT multi-level anatomical features can provide a more accurate prediction of surgical 
decision-making for partial or radical nephrectomy in renal cell carcinoma.
Methods  This is a retrospective study based on multi-center cohorts. A total of 473 participants with pathologically proved 
renal cell carcinoma were split into the internal training and the external testing set. The training set contains 412 cases from 
five open-source cohorts and two local hospitals. The external testing set includes 61 participants from another local hospital. 
The proposed automatic analytic framework contains the following modules: a 3D kidney and tumor segmentation model 
constructed by 3D-UNet, a multi-level feature extractor based on the region of interest, and a partial or radical nephrectomy 
prediction classifier by XGBoost. The fivefold cross-validation strategy was used to get a robust model. A quantitative model 
interpretation method called the Shapley Additive Explanations was conducted to explore the contribution of each feature.
Results  In the prediction of partial versus radical nephrectomy, the combination of multi-level features achieved better per-
formance than any single-level feature. For the internal validation, the AUROC was 0.93 ± 0.1, 0.94 ± 0.1, 0.93 ± 0.1, 0.93 
± 0.1, and 0.93 ± 0.1, respectively, as determined by the fivefold cross-validation. The AUROC from the optimal model was 
0.82 ± 0.1 in the external testing set. The tumor shape Maximum 3D Diameter plays the most vital role in the model decision.
Conclusions  The automated surgical decision framework for partial or radical nephrectomy based on 3D-CT multi-level 
anatomical features exhibits robust performance in renal cell carcinoma. The framework points the way towards guiding 
surgery through medical images and machine learning.
Clinical relevance statement  We proposed an automated analytic framework that can assist surgeons in partial or radical nephrec-
tomy decision-making. The framework points the way towards guiding surgery through medical images and machine learning.
Key Points 
• The 3D-CT multi-level anatomical features provide a more accurate prediction of surgical decision-making for partial or  
   radical nephrectomy in renal cell carcinoma.
• The data from multicenter study and a strict fivefold cross-validation strategy, both internal validation set and external  
   testing set, can be easily transferred to different tasks of new datasets.
• The quantitative decomposition of the prediction model was conducted to explore the contribution of each extracted feature.
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Abbreviations
AUROC	� Area under the receiver operating characteristic 

curve
PN	� Partial nephrectomy
RCC​	� Renal cell carcinoma
RN	� Radical nephrectomy
ROC	� Receiver operating characteristic
ROI	� Regions of interest
SHAP	� The Shapley Additive Explanations
vs. 	� Versus

Introduction

Renal cell carcinoma (RCC), which is the most common 
type and represents 90% of all kidney cancer, accounts for 
3% of all cancers and is by far the highest incidence occur-
ring in Western countries [1, 2]. Typically, radical nephrec-
tomy (RN) and partial nephrectomy (PN) are the two main 
surgical treatment options for RCC. In the past four dec-
ades, RN was the standard treatment for RCC. With the 
improvement of modern surgical techniques, PN is consid-
ered the most appropriate surgical treatment for localized 
RCC [3–5]. PN offers a faster recovery and protection of 
renal function compared to RN, thereby reducing the risk 
of cardiovascular or metabolic disease after surgery [6–8].

Computed tomography (CT) plays an important role 
throughout the RCC patient pathway, from screening, diag-
nosis, and staging to treatment and assessment [9]. CT/CTA is 
the current indispensable standard in the evaluation of surgical 
approaches for kidney cancer, which can evaluate the vascular, 
renal, and tumor anatomy and provide a basis for preoperative 
planning. According to the National Comprehensive Cancer 
Network Guidelines published in 2021, patients with high 
p–T and high p-G often undergo RN [10]. For the optimal 
outcomes of RCC surgery, three variables (margin-ischemia-
complications (MIC)) are taken into account: (1) surgical mar-
gins are negative, (2) warm ischemia time is < 20 min, and 
(3) there are no major complications [11, 12]. The higher the 
pathological T-stage (p–T), the more difficult the surgery will 
be and more difficult it is to meet MIC criteria [13]. When 
the pathological grade (p-G) is high, the boundary between 
the tumor and the kidney is unobvious, and the tumor is more 
difficult to cut cleanly [14]. Conventional imaging can only 
predict clinical T-stage (c-T), which is related to physician 
experience and cannot accurately diagnose p–T and p-G.

Recently, machine learning algorithm has confirmed 
their ability to predict p–T and p-G by CT features for RCC 
[15–17]. Although these studies present outstanding perfor-
mance in methodological metrics, there are still two restric-
tions. For one thing, the model relies on manually annotated 
regions of interest (ROIs) by specialists, which is unusable 
under most circumstances [18, 19]. For another, subject to 

the “black box” traits which lacks explanatory research and 
acts as “black box” of deep learning algorithm [20, 21], it is 
difficult to correctly interpret the decision-making process 
within the model, so the clinicians are afraid to use it.

To the best of our knowledge, there was no literature report-
ing the value of machine learning–based CT features for RCC 
surgical approach. Considering that surgical decisions for 
RCC are complex, we need a more comprehensive collection 
of anatomical features for surgical approach prediction. In this 
study, we integrate the traditional radiomic features, p–T and 
p-G staging features, and the whole ROI anatomical features to 
construct an automated surgical decision-making framework 
for partial or radical nephrectomy in RCC. Besides, we also 
quantitatively analyzed the impact of extracted features on 
model decisions through the SHapley Additive exPlanations 
(SHAP) value to elucidate how the decisions are made.

Materials and methods

Participant cohorts

This is a retrospective study based on multi-center cohorts 
with kidney cancer. The internal data set contains the par-
ticipants who underwent nephrectomy from five open-source 
data sets (CPTCA-CCRCC, TCGA-KIRC, TCGA-KIRP, 
TCGA-KICH, and C4KC-KiT from The Cancer Imaging 
Archive) and two local hospitals from 2020 to 2022 (The 
Eighth Affiliated Hospital of Sun Yat-sen University and 
Sun Yat-sen University Cancer Center). The external testing 
set contains the participants who underwent nephrectomy in 
another local hospital (The Third Affiliated Hospital of Shen-
zhen University) between 2020 and 2022. This study was 
approved by the local institutional review board (KY2022-
036–01). Informed consent documents are waived for this ret-
rospective analysis used anonymous clinical data and images.

Data preparation and image segmentation

Additional quality selection was conducted to exclude cases 
with low resolution or incomplete clinical information, and 
only keep the corticomedullary phase images. In this study, 
we strictly abide by the following inclusion and exclusion 
criteria (see the supplementary file for details and Fig. 1a). 
Inclusion criteria: (1) consecutive adults; (2) underwent partial 
or radical nephrectomy and were pathologically confirmed to 
have renal cell carcinoma; (3) without chemotherapy or radio-
therapy before surgery. Exclusion criteria: (1) incomplete 
semantic segmentation of kidney and tumor region; (2) without 
reach MIC criteria for PN [11, 12]; (3) incomplete clinico-
pathological diagnostic report; (4) patients with low-quality 
images (low resolution, disordered, blurred images); (5) not-
corticomedullary phase images. After data preparation, the 
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Fig. 1   Analytical framework. a 
Flow diagram. Showing initial 
numbers of participants in 
open-source data sets (CPTCA-
CCRCC, TCGA-KIRC, TCGA-
KIRP, TCGA-KICH, and 
C4KC-KiT from The Cancer 
Imaging Archive) and there 
local hospitals’ data and the 
reasons for patient exclusion. b 
The surgical decision-making 
framework for partial or radical 
nephrectomy based on 3D-CT 
multi-level anatomical features 
in renal cell carcinoma (some 
material from Figdraw). A 
3D-UNet model (top) is used 
to identify and segment lesions 
and extracted features from 
multi-level are utilized for 
prediction and classification 
(bottom)

a

b
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corticomedullary phase images were manually annotated and 
segmented with kidneys and kidney cancer by two radiologists 
(with more than 10 years of experience) and two well-trained 
medical students. They were blinded to the pathological and 
surgical data. Using 3D images and segmentation results, an 
automatically kidneys and kidney cancer segmentation model 
was constructed by a 3D-UNet based network [22]. Hyper-
parameters, such as some pooling operations, batch size, and 
patch size, were selected based on the properties of the dataset. 

And then, the prediction results of segmentation model were 
checked and amended by a specialist (with more than 20 years 
of experience) to ensure the accuracy of kidney and cancer 
boundaries.

Multi‑level feature extraction

To fully extract the 3D anatomical features, a multi-level 
feature extraction solution was used in this study (Fig. 2c). 

Fig. 2   CT images after 
automatic segmentation by 
3D-UNET and the multi-level 
features extraction solution. 
a–d A case in external dataset: 
male, 58, T1bN0M0, grade = 2, 
ground truth surgery underwent 
partial nephrectomy, the surgi-
cal decision-making frame-
work also recommend partial 
nephrectomy (a axial image; b 
sagittal image; c coronal image; 
d 3D image). e 200 Radiomics 
features were integrated with 
128 deep learning features 
and 320 dimension reduction 
features as the 648 combined 
features to the classifier

2.0 1.5 1.5mm

Mean & SD

12.8 9.6 9.6cm3

3D ResNet-18 feature extractors

Spacing Adjust

Dimensional reduction

Normalize

Interest Region Crop

Dimensional Reduction Features
256 PCA + 64 SVD

Deep Learning Features
64 Stage features + 64 Grade features200 Radiomics Features

648 Combined Features

PyRadiomics

c

ba

d

e
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Our multi-level features include (1) 200 radiomics features, 
which contains the texture, morphological, and statistical fea-
tures about kidneys and kidney cancer, were calculated by 
PyRadiomics (v3.0.1); (2) 128 features, which are the task-
oriented and reflects the high-tumor and low-tumor stage 
and grade characteristic in the pathology, were extracted 
by a trained 3D ResNet-18 neural network; (3) 320 features 
by dimensionality reduction of ROI, which represents the 
original voxel information, were performed by principal 
component analysis (PCA) and singular value decomposi-
tion (SVD). Moreover, we were able to predict clinical stage 
and pathological grade for two feature extractors. The area 
under the receiver operating characteristic curve (AUROC) 
was 0.74 ± 0.1 for T1/T2 vs. T3/T4 prediction (Fig. S2c) and 
0.73 ± 0.1 for G1/G2 vs. G3/G4 prediction (Fig. S2d) on the 
testing set. After experiments, the multi-level features enable 
the classifier to achieve the optimum performance. The tech-
nical details for multi-level feature extraction can be found in 
the supplementary materials.

Partial versus radical nephrectomy prediction

Gradient boosting decision tree (XGBoost, v1.3.3) was used 
to predict the surgical decision-making (partial versus radical 
nephrectomy) [23]. The fused multi-level features are used as 
the input for the model. For effectiveness testing and model 
selection, fivefold cross-validation was applied in the internal 
training set. And the above five models were further tested 
on the external data set. To explore the process of model 
decision-making, SHAP values were used to decompose the 
model decision into individual feature influences [24]. A high 
SHAP value shows that the feature affects the essence of the 
model decision. All these statistical analyses and experiments 
were conducted in python (v3.8) and R (v3.6.3). The statisti-
cal analysis is of significance when the p value was < 0.05. 
The uncertainty of the estimate such as accuracy, AUROC 
was quantified at a 95% confidence interval.

Results

Participant characteristics

CT images with clinical, pathological, and surgical informa-
tion were collected and selected from open-source cohorts and 
local hospitals’ cohorts. In the initial stage, a total of 875 cases 
with 5510 CT scan images were included (see the supple-
mentary file for details). After image screening (Fig. S1), 473 
corticomedullary phase images from 473 participants (190 
females and 283 males) were involved in the following analy-
sis. The basic and clinical information of these participants are 
shown in Table 1. The mean age (standard deviation) is 56.3 
(13.3) years. For efficient model evaluation and selection, we 

adopt fivefold cross-validation method on the internal data 
set (412 cases). In each fold, there are 335 cases (80%) in 
the training set and 77 cases (20%) in the validation set. The 
external testing set with 61 cases was used for the final testing 
of our proposed model. The diagram of the automated surgical 
decision-making framework is shown in Fig. 1.

Multi‑level features provide the best performance

The ROI for outlining the entire 3D kidney and tumor were 
automatically segmented by a 3D-UNet-based convolutional 
neural network (Fig. 2a, b). The multi-level features were 
extracted by using the ROI and original images. A pre-
experiment was conducted to select the best combinations of 
multi-level features. In the task of partial vs. radical nephrec-
tomy prediction, the AUROC was 0.79 ± 0.1, 0.87 ± 0.1, 
and 0.94 ± 0.1 when using radiomics features only, the two-
level merged features, and the multilevel features as feature 
inputs, while the accuracy was 52 ± 9.8%,74 ± 8.6%, and 
88 ± 6.4% at 95% confidence level, respectively (Fig. 3a, 

Table 1   Basic, clinical, and pathologic characteristics of patients

Characteristic Value

Participants 473
Age(year) 56.3 ± 13.3
Female 190
Male 283
Histologic subtype
 Clear cell renal cell carcinoma 356
 Chromophobe renal cell carcinoma 39
 Papillary renal cell carcinoma 38
 Oncocytoma 17
 Collecting duct carcinoma 9
 Renal medullary carcinoma 7
 Renal carcinoma associated with Xp11.2 translocation 7

Pathologic tumor stage
 T1 201
 T2 146
 T3 82
 T4 32
 Other 12

Pathologic tumor grace
 G1 61
 G2 187
 G3 120
 G4 26
 N/A 79

Nephrectomy
 Partial nephrectomy 240
 Radical nephrectomy 202
 N/A 31



7537European Radiology (2023) 33:7532–7541	

1 3

b). The combination of multi-level features achieved the 
best performance in the classification task. The multi-level 
features extraction solution will provide the more compre-
hensive knowledge.

The automatic framework presents robust analytical 
capability

For the internal validation, the AUROC of the partial vs. 
radical nephrectomy prediction was 0.93 ± 0.1, 0.94 ± 0.1, 
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Fig. 3   The analysis and results of multi-angle feature extraction and per-
formance of proposed feature prediction model. a, b The accuracy and 
AUROC of different feature extraction solution. c The AUROC of surgi-
cal approach prediction model in internal validation set by the fivefold 

cross-validation. d The AUROC of surgical approach prediction model in 
external testing set by the fivefold cross-validation. eThe AUROC of sur-
gical approach prediction model in internal validation set. f The AUROC 
of the surgical approach prediction model in external testing set
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0.93 ± 0.1, 0.93 ± 0.1, and 0.93 ± 0.1 by the fivefold cross-
validation, respectively (Fig. 3c). For the external testing, 
the AUROC was 0.81 ± 0.1, 0.82 ± 0.1, 0.81 ± 0.1, 0.8 ± 0.1, 
and 0.81 ± 0.1 by the fivefold cross-validation, respec-
tively (Fig. 3d). The AUROC from the optimal model was 
0.94 ± 0.1 and 0.82 ± 0.1 for partial vs radical nephrectomy 
prediction at the internal validation set (Fig. 3e) and exter-
nal testing set (Fig. 3f), respectively.

Feature contribution evaluation by SHAP values

To explore the contribution of features to model prediction, the 
SHAP values of each feature for each sample was calculated. 
Based on the SHAP values, the top 20 contributors for partial 
vs radical nephrectomy were shown on the on beeswarm plots 
(Fig. 4a) and bar plots (Fig. 4b). The positive SHAP values 
indicate a higher likelihood for the corresponding prediction. 
For the bar plots, the shape-related features such as t_shape_
Max3DD (tumor shape Maximum 3D Diameter) played the 
most vital role in the model decision, which conforms to the 
criteria of tumor size in clinical practice guidelines [25, 26] of 
kidney cancer referring to predict partial vs radical nephrec-
tomy (see the supplementary file for details). Moreover, the 
extracted features by deep learning (such as stage_feat_32 and 
grade_feat_0) and dimensionality reduction (such as pca_141) 
also participate in the model prediction.

Discussion

More than 10 years ago, PN surgical scoring system such 
as RENAL [25] and PADUA [26] has been widely used in 
clinical practice; there are certain limitations. More than 
20 different scoring systems, mostly based on 2D CT or 
MRI, have been applied to open and laparoscopic surgery 

[27]. There is a contradiction between complexity and per-
formance in the current scoring systems. Multi-parameter 
assessment system works well but complex and cumbersome 
to operate, while few-parameter assessment system is con-
venient to use but with poor stability [28]. Therefore, there 
is an urgent need for a practical, automated preoperative 
assessment system to enable more accurate, efficient, and 
reproducible assessments.

To move beyond this limitation, we constructed an auto-
mated analytical system for both image preprocessing, RCC 
localization, multi-level feature extraction, and partial vs. 
radical nephrectomy prediction. Although many studies 
attempted to predict clinical properties by radiomics, they 
required too much manpower for ROI segmentation and 
were not comparable to our work [16]. Unlike other stud-
ies that extracted only 2D features at the tumor center [18, 
19], this work performed more comprehensive multi-level 
feature extraction based on 3D ROI. Radiomics provides 
an extremely efficient tool for quantitative feature extrac-
tion that converts medical images into shape base and mor-
phological and statistical data about ROI. By the powerful 
ability, radiomics features were used to develop prognos-
tic and diagnostic models and promotes the exponential 
growth of medical image analysis [29–33]. But the degree 
of automation and standardization of radiomics is low, and 
there is still much room for improvement in the accuracy 
and robustness of prediction results [34]. All steps of deep 
learning (segmentation, feature extraction, modeling) per-
formed separately and sequentially are performed by neu-
ral network [35, 36]. These methods are data-hungry and 
therefore datasets much larger than those usually available 
in radiomics studies are needed for efficient training [35, 
36]. Therefore, we combined two techniques making use of 
their complementary value in order to build more efficient 
and automated predictive models.
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Fig. 4   Ranking of SHAP values for the explanation of machine learning classification. a, b Barplot and beeswarm plot display the SHapley 
Additive exPlanations (SHAP) values for the training set of surgical approach prediction model
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As we know, feature selection plays a vital role in 
model prediction. For surgical options in RCC, patients 
with high p–T and high p-G often have difficulty meeting 
MIC criteria, so RN is often selected [13]. Therefore, to 
incorporate tumor infiltration and malignancy into predict-
ing the surgical approach, two feature extractors based on 
3D ResNet-18 were established with stage and grade as 
labels respectively. At the same time, to dig the anatomical 
features, dimensionality reductions called PCA and SVD 
were used for the target region. We found that the multi-
level features, processed by the above three methods, are 
more effective than the single one (Fig. 3a–b).

In most studies, the proposed machine learning models 
lacked explanatory research and act as “black box” [20, 
21]. In application scenarios, a reliable model should not 
only adapt itself to any given dataset but also output an 
interpretable result. To this end, we quantitatively analyzed 
the relationship between the multi-level features and the 
model decision by SHAP values. Compared with other 
explanatory methods, such as class activation map [37], 
SHAP value can enumerate the influence of each feature 
for both individual case and the all dataset, which is more 
convincing for understanding model decision-making and 
even the causes for misclassifications. In Fig. 4, we can 
see that the radiomics features, such as tumor shape Maxi-
mum 3D Diameter contributed most to the partial vs. radi-
cal nephrectomy prediction, which is consistent with the 
knowledge that tumor size is the main factor in the most PN 
surgical scoring systems [27]. And the extracted features by 
deep learning (such as stage_feat_32 and grade_feat_0) and 
dimensionality reduction (such as pca_141) also partici-
pate in the model prediction. These results suggest that the 
multi-level features play a complementary role and improve 
model performance in partial vs. radical nephrectomy pre-
diction (Fig. 3e–f).

The strategy of multi-level anatomical feature extraction can 
be easily transferred to different tasks of new datasets. Both 
the internal training and external testing set are heterogeneous 
which contain six open-source cohorts and three local  hospitals’ 
cohorts, respectively. Even if overfitting exists, the AUROC still 
reached 0.82 ± 0.1 for partial vs radical nephrectomy prediction 
at the external testing set (Fig. 3f). Besides, we performed a five-
fold cross-validation to test the generalization ability and internal 
and external robustness of the model. Therefore, we consider the 
model overfitting to be acceptable and the model performance 
is outstanding and quite stable in such a heterogeneous dataset.

This work still has several limitations that require further 
improvement. Firstly, this was a retrospective and multicenter 
study, resulting in greater data heterogeneity, harder model 
training, and higher overfitting. Our framework will perform 
better in a larger and unified surgical standards data set. Sec-
ondly, the proposed model was limited to the analysis of renal 
cell carcinoma. The cases with benign renal lesions such as 

angiomyolipoma and renal adenoma were scarce in this study 
and the model predictions for benign disease were not tested. 
Thirdly, this work focused on partial vs. radical nephrectomy 
prediction and was based on the retrospective medical records. 
We do not know if it will improve patient outcomes. To achieve 
it, long-term follow-up results and further prospective studies 
are needed.

In conclusion, our study demonstrates the potential for 
partial vs. radical nephrectomy recommendation through CT 
images by machine learning. We proposed an automated ana-
lytic framework for accurate kidney cancer localization and 
multi-level anatomical feature extraction for 3D corticome-
dullary phase CT. In addition, we confirmed that the use of 
multi-level features can greatly improve model performance. 
We believe this research points the way towards guiding sur-
gery through medical images and machine learning.
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https://github.com/tiaAI/kidney_cancer_surgery_model_project-main.git
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automated surgical decision framework for partial or radical nephrectomy 
based on 3D CT multi-level anatomical features in renal cell carcinoma.

Methodology   
• retrospective
• surgical decision-making study/observational
• multicentre study
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provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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