
Vol.:(0123456789)1 3

European Radiology (2023) 33:8477–8487 
https://doi.org/10.1007/s00330-023-09807-6

CARDIAC

A deep learning method for the automated assessment of paradoxical 
pulsation after myocardial infarction using multicenter cardiac MRI 
data

Bing‑Hua Chen1   · Chong‑Wen Wu1 · Dong‑Aolei An1 · Ji‑Lei Zhang2 · Yi‑Hong Zhang2 · Ling‑Zhan Yu1 · 
Kennedy Watson3 · Luke Wesemann3 · Jiani Hu3 · Wei‑Bo Chen2 · Jian‑Rong Xu1 · Lei Zhao4 · ChaoLu Feng5 · 
Meng Jiang6 · Jun Pu6 · Lian‑Ming Wu1 

Received: 30 August 2022 / Revised: 12 March 2023 / Accepted: 26 March 2023 / Published online: 30 June 2023 
© The Author(s), under exclusive licence to European Society of Radiology 2023

Abstract
Objective  The current study aimed to explore a deep convolutional neural network (DCNN) model that integrates multidi-
mensional CMR data to accurately identify LV paradoxical pulsation after reperfusion by primary percutaneous coronary 
intervention with isolated anterior infarction.
Methods  A total of 401 participants (311 patients and 90 age-matched volunteers) were recruited for this prospective study. 
The two-dimensional UNet segmentation model of the LV and classification model for identifying paradoxical pulsation were 
established using the DCNN model. Features of 2- and 3-chamber images were extracted with 2-dimensional (2D) and 3D 
ResNets with masks generated by a segmentation model. Next, the accuracy of the segmentation model was evaluated using 
the Dice score and classification model by receiver operating characteristic (ROC) curve and confusion matrix. The areas 
under the ROC curve (AUCs) of the physicians in training and DCNN models were compared using the DeLong method.
Results  The DCNN model showed that the AUCs for the detection of paradoxical pulsation were 0.97, 0.91, and 0.83 in 
the training, internal, and external testing cohorts, respectively (p < 0.001). The 2.5-dimensional model established using 
the end-systolic and end-diastolic images combined with 2-chamber and 3-chamber images was more efficient than the 3D 
model. The discrimination performance of the DCNN model was better than that of physicians in training (p < 0.05).
Conclusions  Compared to the model trained by 2-chamber or 3-chamber images alone or 3D multiview, our 2.5D multiview 
model can combine the information of 2-chamber and 3-chamber more efficiently and obtain the highest diagnostic sensitivity.
Clinical relevance statement  A deep convolutional neural network model that integrates 2-chamber and 3-chamber CMR 
images can identify LV paradoxical pulsation which correlates with LV thrombosis, heart failure, ventricular tachycardia 
after reperfusion by primary percutaneous coronary intervention with isolated anterior infarction.
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Key Points 
• The epicardial segmentation model was established using the 2D UNet based on end-diastole 2- and 3-chamber cine images.
• The DCNN model proposed in this study had better performance for discriminating LV paradoxical pulsation accurately 

and objectively using CMR cine images after anterior AMI compared to the diagnosis of physicians in training.
• The 2.5-dimensional multiview model combined the information of 2- and 3-chamber efficiently and obtained the highest 

diagnostic sensitivity.
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Abbreviations
2D UNet	� Two-dimensional UNet
AMI	� Acute myocardial infarction
BNPmax	� Peak brain natriuretic peptide
CK-MBmax	� Peak creatinine kinase-MB
CMR	� Cardiac magnetic resonance
CRPmax	� Peak C-creative protein
cTnImax	� Peak troponin I
DCNN	� Deep convolutional neural network
HF	� Heart failure
IMH	� Intramyocardial hemorrhage
LAD	� Left anterior descending
LGE	� Late Gadolinium enhancement
LVEF	� Left ventricular ejection fraction
LVT	�  Left ventricular thrombosis
MVO	� Microvascular obstruction
NT-proBNP	� N-terminal pro-brain natriuretic peptide
SSFP	� Steady-state free-precession
T2WI-STIR	� T2-weighted short-tau triple inversion recovery

Introduction

Following acute myocardial infarction, patients experience 
left ventricular dysfunction related to abnormal left ventricu-
lar wall motion. Due to the ongoing left ventricular remod-
eling, myocytes are lost while fibrosis increases within the 
infarct zone, which leads to further infarct expansion along 
with the volume expansion of the left ventricle [1, 2]. The 
paradoxical pulsation occurring during diastole and systole 
or only in systole patients after acute myocardial infarction 
(AMI) has been evaluated subjectively [3, 4]. Paradoxical 
pulsation is often complicated by left ventricular thrombosis 
(LVT), heart failure (HF), ventricular tachycardia, or angina 
after AMI. In a previous study, the incidence of left ventricu-
lar paradoxical pulsation was reported at 35% before throm-
bolysis [5], while morbidity was higher (39%) in patients 
with left anterior descending (LAD) culprit vessels based 
on angiocardiography [6]. Patients with complete occlusion 
of the proximal LAD coronary artery without collateral ves-
sels might form left ventricle paradoxical pulsation [6]. The 
incidence of LVT in patients with paradoxical pulsation was 
reported at 26% [7]. Another critical intervention for para-
doxical pulsation is the control of progressing HF due to 

deteriorating systolic dysfunction. Although left ventricular 
paradoxical pulsation has been reported since 1964 [8], the 
conventional assessment is based alone on visual interpre-
tation of angiocardiography [5], echocardiography [9], or 
recently, cardiac magnetic resonance (CMR) imaging [4, 7]. 
However, visual interpretation is subjective and may signifi-
cantly depend on personal experience. Thus, an accurate, 
effective, and objective method of analysis for the reduction 
of negligence and misinterpretation of left ventricular para-
doxical pulsation is warranted.

CMR provides unique identification and prognostication 
of cardiovascular disease and has the advantages of non-
ionizing radiation, a multiparametric approach, high-spa-
tial/temporal resolution, and a non-invasive imaging modal-
ity. Deep learning methods based on CMR have become a 
robust intervention for analyzing and classifying cardiac 
diseases [10-16]. The deep learning algorithms can analyze 
multiparametric images of various CMR techniques [17, 
18], which can delineate the location and morphology of LV 
paradoxical pulsation. Also, the results can be calculated 
directly without the step of predefined measurements as 
compared to the traditional machine learning algorithms 
[19]. The detailed information could then be extracted 
from CMR images with the deep layer of the convolutional 
neural network (DCNN) [10, 16], which in turn could 
accurately and effectively detect the abnormal movement 
and morphology of left ventricular paradoxical pulsation. 
Hypothetically, the DCNN trained with CMR images may 
provide automated and accurate detection of left ventricular 
paradoxical pulsation. The current study sought to explore a 
DCNN model which could automatically provide epicardial 
segmentation and discrimination of paradoxical pulsation 
among patients with isolated LAD culprit vessels using 2- 
and 3-chamber long-axis CMR cine images.

Materials and methods

Study population

A total of 401 participants were recruited to undergo 
CMR prospectively between September 2015 and October 
2021 at the Shanghai Renji Hospital and Beijing Anzhen 
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Hospital, including 311 patients with anterior AMI and 90 
age-matched normal volunteers. To overcome the issue of 
model generalizability, 311 patients from two centers were 
divided into three groups: training (n = 208), internal test 
(n = 53), and external test groups (n = 50) (Fig. 1). AMI 
was diagnosed based on the standard definitions [20]. AMI 
patients with LAD culprit vessels who underwent primary 
percutaneous coronary intervention within 12 h of symptom 
onset were recruited in the current study. The inclusion and 
exclusion criteria are described in detail in the online Appen-
dix (Patient population). The current CMR study protocol 
was approved by the institutional ethics committee and was 
conducted according to the Declaration of Helsinki. Written 
informed consent was obtained from all participants.

CMR imaging

All participants underwent CMR examinations within 
1 week (median 3 days) after recruitment with a 3.0-T 
scanner (Ingenia, Philips Healthcare). The CMR sequence 
parameters (T2WI-STIR, T2-weighted short-tau triple inver-
sion recovery; SSFP, steady-state free-precession; T2* map-
ping; LGE, late gadolinium enhancement) are presented in 
Supplementary Table 1.

Analysis of CMR images

The diagnosis of LV paradoxical pulsation was based on 
the established definition of abnormal left ventricular wall 
motion [3, 21, 22]. The diagnosis of visual left ventricular 
paradoxical pulsation was made by a physician in training (A, 
with 3 years of experience, had diagnostic training before the 
project started) to compare with the accuracy of the DCNN 
model. The final diagnosis of left ventricular paradoxical pul-
sation was interpreted by the consensus of radiologists with 
at least 10 years of experience (experts B and C). The para-
doxical pulsation mainly located in the anterior and anter-
oseptal wall could be well displayed in 2- and 3-chamber 
cine images and is manifested as the infarct zone outward 
protrusion in systole or both the systole and diastole [3, 21].

Deep learning models for epicardial segmentation 
and the prediction of paradoxical pulsation

Deep learning workflow

Cine MRI data standardization for deep learning models 
is presented in the Supplementary file. The deep learning 
framework consists of two stages (Fig. 2): (I) The epicardial 
segmentation model with 90 healthy volunteers was trained 

Fig. 1   Study flowchart. A total of 311 patients from multiple centers were divided into three groups: training group (n = 208), internal test group 
(n = 53), and external test group (n = 50). Positive = with paradoxical pulsation, Negative = without paradoxical pulsation
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using 2D UNet based on end-diastole 2- and 3- chamber cine 
images. The detailed image processing and model structure 
were described in the Image Annotation and Segmentation 
Model of the Supplementary file. (II) The cine MRI data of 
261 internal and 50 external patients with AMI were used to 
construct and evaluate a classification model for predicting the 
presence of left ventricular paradoxical pulsation. The contour 
of the epicardium as predicted by the segmentation model 
from step 1 was used as the mask and then multiplied by the 
normalized image as the input of the classification model.

Data preprocess

The data, including resampling, cropping, and normaliza-
tion, are described in the Cine MRI data standardization for 
deep learning models section in the Supplementary material.

Segmentation model network

We delineated the epicardial contours of the 2- and 3-cham-
bers for images of 90 volunteers without disease, and the data 
were used to establish a 2D segmentation model of the epicar-
dial. The detailed process is described in the Image Annota-
tion and Segmentation Model of the Supplementary material.

Classification model network

In order to eliminate the influence of background noise on the 
prediction model, the trained segmentation model was used 
to predict the epicardial mask of all heart phases of CMR 
cine data of AMI patients. The predicted epicardial mask was 
only allowed to retain the maximum connected area. Then, 
the median filter was used to filter the noise in the reserved 
area. The predicted masks were dilated by 11 pixels (11 mm) 
to ensure that the myocardium and blood pool were included. 

Finally, the predicted masks were used to multiply the normal-
ized image. After eliminating the irrelevant tissues and back-
ground noise, the image was cropped to 200 × 200 pixels with 
the center point of the predicted epicardium. Subsequently, 
five images were selected at the end-systolic and end-diastolic 
phases as the input to train the classification model efficiently.

Inspired by breast cancer prediction in a previous study 
[23], we constructed a 2.5D multiview classification model, 
termed Modelmulti-view, based on Resnet50 [24] for the pre-
diction of paradoxical pulsation after AMI. The architecture 
of Modelmulti-view is implemented, as shown in Fig. 2. Next, 
we retrained the ResNet50 to extract features from 2- and 
3-chamber cine images. Since the input channel of our 2.5D 
model is 5, we applied the retrained model. Then, the features 
of the 2- and 3-chamber images were concatenated to obtain 
the prediction results through two fully connected layers.

CMR data of 261AMI patients were randomly split into 208 
cases for training and validation and 53 cases in an independent 
test cohort, and 50 cases from another center comprised the 
external test cohort. The five-fold cross-validation of 208 cases 
included four-fold for training and one-fold for validation each 
time; finally, five models were established. Based on ensemble 
learning, the final result of each data was selected to average the 
results of five models. Adam (optimization algorithm) was used 
as the optimizer, cross-entropy was selected as the loss function, 
and the initial learning rate for network training was set to 0.001. 
If the validation loss did not decrease for 20 consecutive epochs, 
the learning rate decreased to half of the original, and if it did 
not decrease for 50 consecutive epochs, the training stopped.

Statistical analysis

Data analysis and evaluation metrics for deep learning 
models are presented in the Supplementary file (Evalu-
ation Metrics for deep learning models). The diagnostic 

Fig. 2   Neural networks for the presence and region of paradoxical pulsa-
tion. The segmentation model was established using 90 healthy volunteers 
with both 2- and 3-chamber CMR cine images. The segmentation results 
of 208 AMI data predicted using the segmentation model were multiplied 

with the original image to train the classification model of paradoxical 
pulsation. The remaining 53 AMI data from our center and 50 data from 
another center were used as internal and external test cohorts, respectively, 
to evaluate the performance of the classification model
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performance of a physician in training and our DCNN 
model was assessed using the receiver operating character-
istic (ROC) curve analysis. The areas under the ROC curves 
(AUCs) of a physician in training and DCNN models were 
compared using the DeLong method. Statistical analysis 
was performed with Python (v3.7) with SciPy (v1.6.3), 
SPSS version 23.0 (IBM SPSS Inc.), and MedCalc version 
11.4.2.0 (MedCalc Software). A two-tailed p value  < 0.05 
was considered statistically significant.

Results

Study population

The cohort consisted of 401 participants with 4010 images, 
including 90 healthy controls for establishing the segmenta-
tion model and 311 patients for constructing the classifica-
tion model. Patients with paradoxical pulsation displayed 
higher cardiac biomarkers (cTnImax, CK-MBmax, BNPmax, 

Table 1   Patient baseline 
characteristics

Numbers are given as median (inter-quartile ranges) or mean ± standard deviation or as the absolute fre-
quency with percentages in parentheses. p value represents a comparison of patients with paradoxical pul-
sation and without paradoxical pulsation. cTnImax, peak troponin I; CK-MBmax, peak creatinine kinase-MB; 
BNPmax, peak brain natriuretic peptide; NT-proBNP, N-terminal pro brain natriuretic peptide; CRPmax, peak 
c-creative protein; MVO, microvascular obstruction; IMH, intramyocardial hemorrhage; LVEDV, left ven-
tricular end-diastolic volume; LVESV, left ventricular end-systolic volume; SV, stroke volume; LVEF, left 
ventricular ejection fraction; LVEDVi, indexed left ventricular end-diastolic volume; LGE, late gadolinium 
enhancement; LVT, left ventricular thrombosis; HF, heart failure

Total (n = 311) Paradoxical pulsation 
( +) (n = 201)

Paradoxical pulsa-
tion (-) (n = 110)

p value

Age, yrs 54 (45, 63) 50 (40, 61) 57 (47, 64) 0.482
Female 17 (5.50%) 14 (7%) 3 (2.70%) 0.190
Body surface area, m2 1.90 ± 0.17 1.86 ± 0.19 1.81 ± 0.14 0.020
Body mass index, kg/m2 24.73 (23.29, 27.76) 27.55 (24.08, 29.58) 24.49 (22.99, 25.73) 0.268
Risk factors
Hypertension 145 (46.62%) 91 (45.30%) 54 (49.10%) 0.519
Diabetes mellitus (II) 114 (36.66%) 80 (39.80%) 34 (30.90%) 0.120
CK-MBmax, U/L 169.50 (59, 284.35) 184.70 (88, 297.50) 125 (41.30, 207.80)  < 0.001
cTnImax, ng/mL 26.50 (12.86, 31.70) 27.86 (16.77, 43.58) 17.52 (10.56, 30)  < 0.001
BNPmax, pg/mL 269.50 (133.75, 558) 345 (170.50, 615) 223 (108, 427)  < 0.001
NT-proBNPmax, pg/mL 1410 (844, 2679) 2032 (1400.50, 3050) 1016 (669, 1913.70)  < 0.001
CRPmax, mg/L 14.92 (7.55, 24) 19.73 (9.42, 54) 11.73 (3, 17.14)  < 0.001
Total cholesterol, mg/dL 4.40 (3.47, 5.27) 4.40 (3.47, 5.27) 4.40 (3.59, 5.23) 0.560
HDL 0.90 (0.80, 1.10) 0.88 (0.78, 1.07) 0.92 (0.82, 1.15) 0.489
Triglycerides, mg/dL 1.54 (1.07, 2.09) 1.64 (1.14, 2.09) 1.40 (1.01, 2.04) 0.263
CMR
LVEDV, mL 160.52 ± 39.17 156.45 ± 40.31 133.54 ± 30.89  < 0.001
LVESV, mL 80.50 (61, 106) 106 (79.50, 127) 70 (49, 87.63)  < 0.001
SV, mL 77 (64, 86.53) 77 (66, 90.39) 76 (61.20, 86) 0.176
LV mass, g 125 (107, 147) 133 (113.56, 147) 116 (103, 134.30)  < 0.001
LVEDVi, mL/m2 83.62 ± 17.31 83.81 ± 19.67 73.62 ± 15.58  < 0.001
LVESVi, mL/m2 42.42 (31.99, 55.51) 51.44 (39.59, 61.41) 36.71 (27.47, 44.28)  < 0.001
SVi, mL/m2 39.85 (34.84, 46.26) 38.65 (34.38, 44.33) 39.85 (35.07, 47.16) 0.001
LV massi, g/m2 66.78 (58.04, 77.24) 67.76 (56.96, 71.81) 62.53 (56.29, 75.89) 0.001
LVEF, % 47.50 (40, 57) 43.90 (36, 51.30) 53.49 (45.39, 60)  < 0.001
LGE, % 28.39 (20.07, 37.32) 37 (28.80, 48.10) 21 (13, 26)  < 0.001
IMH 216 (69.45%) 168 (83.60%) 48 (43.60%)  < 0.001
MVO 214 (68.81%) 163 (81.10%) 51 (46.40%)  < 0.001
Transmural infarction 230 (73.95%) 184 (80%) 46 (20%)  < 0.001
Pericardial effusion 220 (70.74%) 159 (72.30%) 61 (27.70%)  < 0.001
LVT 101 (32.50%) 85 (42.30%) 16 (14.50%)  < 0.001
HF 93 (29.90%) 88 (43.80%) 5 (4.50%)  < 0.001
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and NT-ProBNPmax) and inflammation (CRPmax) (p < 0.001) 
(Table 1). Patients with paradoxical pulsation might be 
accompanied by IMH, MVO, and pericardial effusion and 
manifested as transmural infarction (p < 0.001), had low 
LVEF and high LGE (p < 0.001), and were more likely to 
form mural thrombi in the LV than those without paradoxi-
cal pulsation (42.30% and 14.50%, p < 0.001). In the cur-
rent study, 93/311 (29.90%) patients presented HF during 
follow-up. Patients with left ventricular paradoxical pulsa-
tion were more likely to progress to HF than those without 
the phenotype (43.80% vs. 4.50%, p < 0.001). Moreover, 
paradoxical pulsation was significantly correlated with HF 
(r = 0.34, p < 0.001).

Epicardial segmentation

In the epicardial segmentation model, the mean Dice scores 
of the training, validation, and test cohorts were 0.97, 0.96, 
and 0.96, respectively (Supplementary Fig. 1). In the test 
cohort, the lowest (0.94), middle (0.97), and highest Dice 
(0.98) scores were acquired. The segmentation with the 
lowest Dice could accurately identify the contour of the 
epicardium.

Classification model and validation of the DCNN 
model

Loss descent curve

Herein, we present a loss descent curve of validation and 
training data sets for training for onefold of the models 
in Fig. 3. Initially, the loss of both training and validation 
cohorts decreased. However, after 19 epochs, the loss of 
the training cohort reduced slowly, and the loss of the 
cohort did not decrease. According to our strategy, the 
model stopped training at the 69th epoch. The validation 
loss did not decrease again after 19 epochs. Hence, we 
selected the model at the 19th epoch with the minimum 
loss function of the validation as the final model to avoid 
overfitting.

Overall performance and discrimination of the models

The AUCs of the Modelmulti-view of the training cohort, inter-
nal test set, and external test set were 0.97 (0.94–0.99), 0.91 
(0.80–0.97), and 0.83 (0.69–0.92), respectively (p < 0.001) 
(Table 2).

In addition to our model with multiple views, 2- and 
3-chamber of data were trained independently with 
ResNet50, termed Model2ch and Model3ch, respectively. The 
detailed results are shown in Table 2. The AUCs obtained by 
Model2ch alone were 0.97 (0.95–0.99), 0.89 (0.80–0.98), and 
0.67 (0.52–0.82) on the training, internal, and external test 
cohorts, respectively, the AUCs obtained using the 3-cham-
ber data were 0.99 (0.98–1.00), 0.89 (0.81–0.98), and 0.65 
(0.48–0.83), respectively. Although the Model2ch or Model3ch 
could also achieve good results in the training cohort, the mul-
tiview model displayed better performance in the test cohort. 
Especially, on the external test set, the multiview model 
reached an AUC of 0.83 when that of the single-view model 
was  ≤ 0.70. Modelmulti-view achieved the highest sensitivity 
in the test cohort, 0.88 and 0.89 in the internal and exter-
nal test cohorts, respectively, which was much higher than 
the Model2ch and Model3ch. This illustrated that the model 
combining 2-chamber and 3-chamber data was sensitive in 
discriminating the paradoxical pulsation and had a low rate 
of missed diagnosis, which was crucial for clinical diagnosis.

The current data are 3D, which recorded the cardiac structure 
and function over a period. Herein, we attempted to establish a 3D 
classification model called Modelmulti-view-3D to explore whether the 
model learning from the whole heart structure and function would 
have enhanced performance in paradoxical pulsation classification. 
The results are shown in Table 2. The AUCs for Modelmulti-view-3D 
were 0.99 (0.97–1.00), 0.87 (0.77–0.96), and 0.84 (0.74–0.95) 
in the training, internal, and external tests, which were not sig-
nificantly different from the 2.5D model. Although the 3D model 
achieved the highest AUC on the external test set, its sensitivity 
to paradoxical pulsation was only 0.69, indicating that the model 
might have missed several patients with paradoxical pulsation.

While establishing Modelmulti-view, the fixed heart phase 
was selected from the end-diastolic and end-systolic images. 

Fig. 3   The DCNN model 
converges in the process of the 
training. The value of the loss 
function decreased smoothly 
without large fluctuations in 
our validation and training data 
sets for training the best DCNN 
model



8483European Radiology (2023) 33:8477–8487	

1 3

Since we had a segmentation model of the epicardium, the 
area of each heart phase could be calculated based on the 
segmentation results, and accurate end-diastolic and end-
systolic images could be collected. Therefore, we re-selected 
2.5D images for modeling based on the segmentation results, 
and the results of the Modelmulti-view-seg are shown in Table 2. 
After correcting the images, the model improved on all met-
rics in the training and internal test cohorts with respect 
to the accuracy, specificity, and PPV on the internal test, 
to  > 0.9. This phenomenon confirmed an effective way to 
establish the model with end-diastolic and end-systolic 
images. However, the general performance of the model 
in an external test might be attributed to the segmentation 
model trained only with the internal data. Moreover, some 
differences were noted in the sequence parameters between 
the external and internal data, which might affect the seg-
mentation results in the external test cohort.

In summary, the 2.5D model established using end-sys-
tolic and end-diastolic images combined with 2-chamber and 
3-chamber images was efficient in paradoxical pulsation rec-
ognition. The diagnostic performance of different models for 
paradoxical pulsation classification in the training, internal, 
and external cohorts was evaluated from the test set (Fig. 4).

The comparison of the discrimination performance between 
the DCNN model and physicians in training revealed that the 
AUC of the DCNN for detection of paradoxical pulsation (0.91 
(0.80–0.97)) in the internal test was significantly higher than 
that of physicians in training during the internal test (0.79 
(0.66–0.89)) (p = 0.001), and was higher in the external test 
the AUC of DCNN (0.83 (0.69–0.92)) than that of physicians 
in training (0.72 (0.58–0.84)) (p = 0.039) (Fig. 5).

Discussion

This multicenter cohort of consecutive patients with iso-
lated LAD culprit lesions that underwent CMR provided 
the following findings: (1) The objective DCNN model 
established in the current study was much more accurate 
in discriminating paradoxical movement with CMR cine 
images after anterior AMI compared to the physicians in 
training; (2) Compared to the model trained by 2-chamber 
or 3-chamber images alone or 3D multiview, our 2.5D 
multiview model combined the information of 2- and 
3-chamber efficiently and obtain the highest diagnostic 
sensitivity.

Table 2   Diagnostic performance for three datasets in five models

PPV, positive predictive value; NPV, negative predictive value; AUC​, area under the curve. Optimal cutoffs were selected using the Youden 
J-index
Modelmulti-view, Model trained by the 2- and 3- chamber images multiplied by the corresponding epicardium mask predicted by the segmentation 
model
Model2CH, Model trained by 2-chamber images multiplied by the corresponding epicardium mask
Model3CH, Model trained by 3-chamber images multiplied by the corresponding epicardium mask
Modelmulti-view-3D, Model trained by all the heart phases of the 2- and 3- chamber CMR images multiplied by the corresponding epicardium mask
Modelmulti-view_seg, Model trained by the 2- and 3- chamber images selected by mask multiplied by the corresponding epicardium mask

Model Datasets Cut-off Accuracy Sensitivity Specificity PPV NPV AUC​ p

Modelmulti-view Train 0.46 0.92 0.93 0.90 0.94 0.89 0.97 (0.94 –0.99)  < 0.001
Internal 0.43 0.85 0.88 0.79 0.88 0.79 0.91 (0.80 –0.97)  < 0.001
External 0.29 0.84 0.89 0.71 0.89 0.71 0.83 (0.69 –0.92)  < 0.001

Model2CH Train 0.44 0.93 0.97 0.87 0.93 0.94 0.97 (0.95–0.99)  < 0.001
Internal 0.49 0.83 0.77 0.95 0.96 0.69 0.89 (0.80–0.98)  < 0.001
External 0.31 0.62 0.50 0.93 0.95 0.42 0.67 (0.52–0.82) 0.031

Model3CH Train 0.54 0.94 0.92 0.99 0.99 0.87 0.99 (0.98–1.00)  < 0.001
Internal 0.62 0.77 0.65 1.00 1.00 0.61 0.89 (0.81–0.98)  < 0.001
External 0.38 0.62 0.58 0.71 0.84 0.40 0.65 (0.48–0.83) 0.097
Train 0.56 0.94 0.93 0.96 0.98 0.89 0.99 (0.97–1.00)  < 0.001

Modelmulti-view-3D Internal 0.37 0.83 0.94 0.63 0.82 0.86 0.87 (0.77–0.96)  < 0.001
External 0.42 0.76 0.69 0.93 0.96 0.54 0.84 (0.74–0.95)  < 0.001
Train 0.46 0.97 0.96 0.97 0.98 0.94 0.99 (0.99–1.00)  < 0.001

Modelmulti-view-seg Internal 0.46 0.91 0.88 0.95 0.97 0.82 0.94 (0.88–1.00)  < 0.001
External 0.52 0.64 0.58 0.79 0.88 0.42 0.67 (0.49–0.85) 0.064

Physician Internal - - 0.74 0.84 - - 0.79 (0.66–0.89)  < 0.001
External - - 0.58 0.86 - - 0.72 (0.58–0.84)  < 0.001
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Left ventricular paradoxical pulsation is defined as the 
left ventricular wall segments displaying paradoxical (dys-
kinetic) expansion at the systole and diastole or only at 
the systole [3, 21]. Mortality in the acute stage after AMI 
decreased over the past three decades; the main adverse 
impact was shifting from mortality to progressive left ven-
tricular dysfunction and HF [25, 26]; the left ventricular 
paradoxical pulsation was significantly correlated with HF. 
Also, it is a manifestation of ventricular remodeling [27]. 
The left ventricle may undergo alterations in the structure, 
hemodynamics, and mechanics correlated to HF develop-
ment and poor outcomes [28]. The increased wall stress 
in the remote myocardium may aggravate progressive 
LV dilation, eccentric hypertrophy, adverse remodeling, 
and HF [29, 30]. Both regional and global remodeling is 

correlated with the progression of paradoxical pulsation. 
Although global remodeling can be measured accurately, 
it is challenging to evaluate regional paradoxical pulsation.

The current study described an objective diagnostic 
model for LV paradoxical pulsation based on a deep learn-
ing algorithm. The DCNN model proposed in this study had 
better performance in discriminating paradoxical pulsation 
accurately and objectively with CMR cine images after AMI 
compared to physicians in training. Further improvements 
in the deep learning method may be achieved by the fusion 
of other imaging and clinical data. Thus, clinicians could 
further revise the diagnosis to improve the efficiency and 
accuracy based on the results of the DCNN model.

A previous study achieved accurate and fully automated 
CMR cine analysis on multivendor and multicenter data 

Fig. 4   A  In the training set, the AUC of Modelmulti-view was lower 
than that of Modelmulti-view_seg (p = 0.024), the AUC of Modelmulti-view 
was lower than that of model3ch (p = 0.039), and the AUC of 
Modelmulti-view_seg was higher than that of Model2ch (p = 0.014). 
B  The differences among the models in the internal test were not 

significant. C  In the external validation, the AUC of Modelmulti-view 
was higher than that of Modelmulti-view_seg (p = 0.029), the AUC of 
Modelmulti-view was higher than that of model3ch (p = 0.025), and the 
AUC of Modelmultiplied3D was higher than that of Model3ch (p = 0.020) 
and Model2ch (p = 0.004)

Fig. 5   AUCs for DCNN and physician in training. A The AUC of 
DCNN for the internal test set was higher than that of a physician 
in training (0.91 (0.80–0.97)) and (0.79 (0.66–0.89), p = 0.001). 

B The AUC of DCNN for the external test set was higher than that 
of a physician in training (0.83 (0.68–0.92) and 0.72 (0.58–0.84), 
p = 0.039)
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based on the DCNN algorithm [31]. Some studies proposed 
a deep learning method on non-contrast CMR cine images 
that enabled rapid qualification and quantification of chronic 
myocardial infarction [32]. DCNN can be trained with an 
echocardiogram to characterize LV wall motion abnormali-
ties [33] and can identify the extent of LV diastolic dysfunc-
tion to discriminate against patients with HF [34]. Left ven-
tricular paradoxical pulsation in patients with acute anterior 
MI was located in the anterior and septal walls. The hybrid 
model was highly sensitive when combining the morpho-
logical information of long-axis 2- and 3-chamber CMR cine 
images. However, it may lead to misdiagnosis if based on the 
isolated 2- or 3-chamber. Nonetheless, models trained by 2- 
and 3-chamber images multiplied by the corresponding epi-
cardial mask predicted by the segmentation model displayed 
the best performance compared to the isolated 2-chamber or 
3-chamber images. The differences in AUC among the dif-
ferent models in the internal test cohort were not significant, 
while the mixed models were better than that model using 
isolated 2- or 3-chamber views in the external test cohort.

DCNN is the most common type of deep neural network 
for image postprocessing [16]. The epicardial segmentation 
model based on deep learning was constructed from the 
2- and 3-chamber cine images of the healthy controls. The 
epicardial segmentation model is useful in extracting the 
morphological information of the whole heart. Herein, we 
applied the segmentation model of the epicardium to calcu-
late the minimum and maximum epicardial area from the 
images as the input of the 2.5D model to correct our model 
(Modelmulti-view_seg). The differences between the AUC of 
the 2.5D and the 3D models were not significant, while the 
3D model demonstrated lower sensitivity and required more 
storage space and longer processing time; the 2.5D model 
may be more efficient. Next, the segmentation contours were 
corrected manually to avoid the inaccurate segmentation of 
the external test cohort due to the different parameters of the 
CMR images between the two centers. The AUC of the train-
ing and internal test cohorts increased, while in the external 
test cohort, the result of Modelmulti-view_seg decreased.

The classification performance was improved in the five 
models after being modified by the segmentation results of 
the external test cohort, although the differences were not 
significant. The training data of the segmentation model was 
small, with the possibility of overfitting. The model learned 
the noise of the internal data, leading to errors in the predic-
tion of external data. Nonetheless, we could unify the distri-
bution of the two data sets by histogram matching or add the 
training data of the segmentation model to overcome this defi-
ciency. The results of the classification model suggested that 
the automated deep learning model can be used as a system 
to diagnose paradoxical pulsation and has a potential clini-
cal value for the early detection of left ventricular paradoxi-
cal pulsation in AMI patients. This study also demonstrated 

the development of an automated and objective classification 
model for paradoxical pulsation based on a deep learning 
algorithm. The interpretation of paradoxical pulsation with 
CMR alone is observer-dependent and requires the experience 
of readers, while the deep learning algorithm is objective.

The outcomes of AMI patients with paradoxical pulsa-
tion remain controversial [5, 6, 35]. Paradoxical pulsation 
is associated with an adverse prognosis [5]. The paradoxical 
movement and progressive remodeling deteriorated the LV 
contractile function, thereby decreasing LVEF. Approxi-
mately 50% of patients with large or moderate paradoxi-
cal pulsation may have symptoms of HF [21]. Paradoxical 
pulsation can be complicated with HF, LVT, or ventricular 
tachycardia [36]. Systemic embolic events in patients with 
LVT and paradoxical pulsation tend to occur early after 
AMI. The early detection of paradoxical pulsation is criti-
cal for patients after AMI to achieve timely intervention.

Study limitations

Nevertheless, the current model has some limitations. Firstly, 
although we used data augmentation and early stopping to 
reduce overfitting in the modeling process, the small sample 
size for training and testing makes it challenging to highlight 
the performance improvements. However, in the current pub-
lished studies, 311 patients with LAD culprit vessels under-
went CMR imaging in acute and chronic stages. Secondly, the 
segmentation model is generated by a single-center training 
cohort, and there may be segmentation errors when applied to 
an external test cohort. The differences in the imaging param-
eters between the two hospitals are inevitable. Therefore, a 
larger and coincident data sample from multiple centers is 
essential to improve the DCNN model in future studies.

Conclusion

The DCNN model proposed in this study had better per-
formance in discriminating left ventricular paradoxical pul-
sation accurately and objectively with CMR cine images 
after anterior AMI compared to the diagnosis of physicians 
in training. In addition, compared to the model trained by 
2-chamber or 3-chamber images alone or 3D multiview, 
our 2.5D multiview model combined the information of 2- 
chamber and 3-chamber more efficiently and obtained the 
highest diagnostic sensitivity.
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