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Abstract
Objectives  To evaluate the feasibility and diagnostic accuracy of a deep learning network for detection of structural lesions 
of sacroiliitis on multicentre pelvic CT scans.
Methods  Pelvic CT scans of 145 patients (81 female, 121 Ghent University/24 Alberta University, 18–87 years old, mean 
40 ± 13 years, 2005–2021) with a clinical suspicion of sacroiliitis were retrospectively included. After manual sacroiliac joint 
(SIJ) segmentation and structural lesion annotation, a U-Net for SIJ segmentation and two separate convolutional neural networks 
(CNN) for erosion and ankylosis detection were trained. In-training validation and tenfold validation testing (U-Net—n = 10 × 58; 
CNN—n = 10 × 29) on a test dataset were performed to assess performance on a slice-by-slice and patient level (dice coefficient/
accuracy/sensitivity/specificity/positive and negative predictive value/ROC AUC). Patient-level skeletonisation was applied to 
increase the performance regarding predefined statistical metrics. Gradient-weighted class activation mapping (Grad-CAM++) 
heatmap explainability analysis highlighted image parts with statistically important regions for algorithmic decisions.
Results  Regarding SIJ segmentation, a dice coefficient of 0.75 was obtained in the test dataset. For slice-by-slice structural 
lesion detection, a sensitivity/specificity/ROC AUC of 95%/89%/0.92 and 93%/91%/0.91 were obtained in the test dataset 
for erosion and ankylosis detection, respectively. For patient-level lesion detection after pipeline optimisation for predefined 
statistical metrics, a sensitivity/specificity of 95%/85% and 82%/97% were obtained for erosion and ankylosis detection, 
respectively. Grad-CAM++  explainability analysis highlighted cortical edges as focus for pipeline decisions.
Conclusions  An optimised deep learning pipeline, including an explainability analysis, detects structural lesions of sacroili-
itis on pelvic CT scans with excellent statistical performance on a slice-by-slice and patient level.
Clinical relevance statement  An optimised deep learning pipeline, including a robust explainability analysis, detects structural 
lesions of sacroiliitis on pelvic CT scans with excellent statistical metrics on a slice-by-slice and patient level.
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Key Points 
• Structural lesions of sacroiliitis can be detected automatically in pelvic CT scans.
• Both automatic segmentation and disease detection yield excellent statistical outcome metrics.
• The algorithm takes decisions based on cortical edges, rendering an explainable solution.

Keywords  Artificial intelligence · Deep learning · Sacroiliitis · Spondyloarthropathies · Sacroiliac joint

18, 23]. Ankylosis is very sensitive and specific (97%) as a 
hallmark for end-stage spondyloarthritis with bony bridges, 
limiting joint mobility [17]. Ankylosis, in varying degrees, 
also occurs in diffuse idiopathic skeletal hyperostosis and 
following severe joint destruction, as seen in septic sacroili-
itis or trauma [24, 25]. Sclerosis is commonly detected in 
spondyloarthritis but it lacks specificity (76%), as it is con-
sidered a hallmark of degenerative disease [17]. For this rea-
son, only erosions and ankylosis were analysed in this study 
[26]. Structural bone lesions of the SIJs could be picked up 
in pelvic, abdominal or whole-body CT studies performed 
for other diagnostic purposes, thereby detecting undiagnosed 
spondyloarthritis patients in an opportunistic screening set-
ting [25, 26]. As the time of disease onset is 20–40 years 
old and age-related SIJ degenerative erosions and ankylosis 
occur in older patients, the target population for opportunis-
tic screening should be strictly defined to avoid overdiagno-
sis and excessive treatment initiation. Moreover, the oppor-
tunistic screening approach is restricted to patients within 
the predefined age range, encompassing approximately 25% 
of all patients undergoing a CT examination.

The aim of this study is to evaluate the feasibility and 
diagnostic performance of deep learning networks in auto-
mated detection of SIJ erosions and ankylosis on pelvic CT 
scans as signs of spondyloarthritis. This can be a first step 
towards a spondyloarthritis society screening in all CT scans 
depicting the SIJs [26].

Materials and methods

This study was approved by the local ethics committee and 
informed consent need was waived.

Study group

All patients (81 females, 18–87 years, 40 ± 13 years) who 
underwent a dual-energy or routine pelvic CT, with a clinical 
suspicion of sacroiliitis by a university rheumatologist, were 
retrospectively and consecutively identified and anonymised 
in two university hospitals (121 Ghent University and 24 
Alberta University, 2005–2021). All of them experienced 
symptoms suspicious for axial spondyloarthritis (low back 
and/or buttock pain, morning stiffness) and/or had a positive 
family history and/or were human leukocyte antigen B27 

Abbreviations
ADAM	� Adaptive moment estimation
AUC​	� Area under curve
CNN	� Convolutional neural network
Grad-CAM++	� Gradient-weighted class activation 

mapping
NPV	� Negative predictive value
PPV	� Positive predictive value
ROC AUC​	� Receiver operating characteristic area 

under curve
SGD	� Stochastic gradient descent
SIJ	� Sacroiliac joint
TCL	� Threshold for confidence level
TNW	� Threshold for number of windows

Introduction

Axial spondyloarthritis is an inflammatory disease affecting 
the spine and sacroiliac joints (SIJ), with erosions, ankylosis 
and sclerosis as hallmark structural lesions detected by CT 
[1, 2]. Mostly beginning under the age of 40 years, spondy-
loarthritis is characterised by inflammatory low back pain 
[3]. As sacroiliitis mimics mechanical back pain, the aver-
age diagnostic delay is 7 years with about 50% of patients 
even remaining undiagnosed [3–8]. Early detection of dis-
ease opens opportunities for diagnostic workup and treat-
ment, improving the patient’s quality-of-life and avoiding a 
progression to irreversible structural damage, limited joint 
mobility and chronic low back pain [3, 9–15]. Structural 
joint lesions are present as incidental findings on many rou-
tine CT studies and gain importance in axial spondyloarthri-
tis [16]. However, these subtle lesions are often overlooked 
in clinical practice.

Although SIJ bone marrow oedema on MRI remains the 
key finding for early detection, structural lesions have gained 
importance in spondyloarthritis diagnosis because of their 
high specificity [16–19]. As radiography has a low sensitiv-
ity for detecting early disease, CT remains the standard refer-
ence for structural bone lesion detection [18, 20]. Moreover, 
CT has a role in the diagnostic workflow of spondyloarthritis 
when MRI cannot be obtained and is not available or incon-
clusive [1, 2, 16, 21, 22].

Erosions of the SIJs are very specific for spondyloarthritis 
(90%) and are easy to depict on CT as cortical breaches [17, 
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Table 1   Patient and imaging 
characteristics Patient characteristic Ghent University Alberta University Total

Patients identified 138 24 162
Patients excluded 17 0 17
  - Incomplete SIJ 9 0 9
  - Blurred SIJ 2 0 2
  - Metal artefacts 4 0 4
  - Sacral tumours 2 0 2
Patients included 121 24 145
Sex
  - Female 73 8 81
  - Male 48 16 64
Age range 18–87 19–78 18–87
Mean age (SD)
  - Female 40.0 ± 13.7 39.5 ± 9.8 40.0 ± 13.3
  - Male 40.0 ± 11.7 35.4 ± 14.9 38.9 ± 12.8
  - Total 40.3 ± 12.9 36.9 ± 13.6 39.7 ± 13.1
Final clinical diagnosis
  - Axial SpA 60 24 84
  - No final diagnosisa 46 0 46
  - Mechanical back pain 15 0 15
Scanner
  - DECT pelvis 79 0 79
  - CT pelvis 42 24 66
Imaging characteristic Ghent University Alberta University Total
Scanner type
  - Siemensb 119 12 131
  - GE Medical Systemsc 0 7 7
  - Philipsd 0 2 2
  - Canone 2 3 5
Scanner subtype Siemens
  - Somatom Definition Flash 84 0 84
  - Somatom Definition AS 10 0 10
  - Somatom Plus 4 25 0 25
  - Sensation 16 0 8 8
  - Sensation 64 0 2 2
  - Sensation 4 0 1 1
  - Definition 0 1 1
Scanner subtype GE Medical Systems
  - LightSpeed Plus 0 2 2
  - HiSpeed CT/i 0 4 4
  - LightSpeed QX/i 0 1 1
Scanner subtype Philips (Brilliance 16) 0 2 2
Scanner subtype Canon
  - Aquilion 2 1 3
  - Asteion 0 1 1
  - Aquilion ONE 0 1 1
Image dimensions 512 × 512
Pixel spacing (mm) 0.250–0.977/0.250–0.977 (mean: 0.680)
Field-of-view (mm) x-dimension mean: 350; y-dimension mean: 350
Number of slices 24–262
Slice thickness (mm) 1–5
Contrast No
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positive and/or experienced recurrent anterior uveitis and/
or had Crohn’s disease but without final diagnosis. Forty 
patients were previously included in a dual-energy CT ver-
sus MRI study [27]. Patients were excluded when images 
were incomplete and blurred and if metal artefacts or SIJ 
tumours were present. In this way, a heterogeneous dataset 
with a wide variety of patient and scanner characteristics 
was identified to increase generalizability of the algorithm.

Imaging protocol

Seventy-nine pelvic dual-energy CT scans and 66 con-
ventional CT scans were included with a broad range of 
scanning parameters (pixel spacing, field-of-view, number 
of slices and slice thickness). Moreover, four different CT 
vendor types were included (131 patients: Siemens Health-
ineers — seven scanner subtypes; seven patients: GE Medi-
cal Systems — three subtypes; two patients: Philips Medi-
cal Systems — one subtype; five patients: Canon Medical 
Systems — three subtypes).

For dual-energy CT scans (Table 1), the weighted aver-
age 120 kV-like axial images from the 100–140 kV images 
were used. For routine CT scans, the unenhanced 120 kV 
axial images were used (Table 1). Automatic tube current 
modulation was performed.

Image reading and ground truth

On axial pelvic CT images in bone window, ground 
truth slice-by-slice manual segmentation and annotation 
steps were performed (ITK-SNAP 3.6.0, open-source) 
by three independent pretrained radiologists separately, 
with a consensus read in case of disagreement ((T.V.D.B., 
intraining/ M.C./L.B.O.J. with three/seven/17 years of 
experience), blinded for rheumatological and clinical 
information (Fig. 1) [28, 29].

The iliac and sacral SIJ surface was segmented as a sin-
gle-pixel continuous line, creating SIJ segmentation masks. 
Annotation of erosions (single-pixel continuous line) and 
ankylosis (multi-pixel continuous region) was performed, 
creating structural lesion annotation masks. Masks were 

exported as NIfTI files [10, 30]. Erosions were defined as a 
cortical bone full thickness loss  ≥ 1.0 mm. Ankylosis was 
defined as SIJ bridging  ≥ 2.0 mm. A patient was defined 
positive for erosion/ankylosis if  ≥ 1 structural lesion(s) 
was(were) present.

The reference standard was reader-assessed presence/
absence of structural SIJ lesions, which were automatically 
detected with the algorithm pipeline.

Algorithm development pipeline

All steps were performed using Python 3.8.8 (Python Soft-
ware Foundation), TensorFlow 2.10.1 /Keras 2.11.0/NumPy 
1.11.3 (open-source, NumFOCUS).

Preprocessing

Preprocessing steps were performed to homogenise the het-
erogeneous original images from different CT scanners with 
different technical parameters (slice thickness, pixel spac-
ing, etc.) to conform to identical and stable image quality to 
improve the statistical outcome performance of the segmen-
tation and disease detection steps (Fig. 2).

Data preparation for detection prediction

The preprocessed 512 × 512 images were downsampled to 
64 × 64 pixels for efficient training and values were normal-
ised to [−1,1] (Fig. 3).

Next, a U-Net was designed for SIJ segmentation, which is 
needed to restrict structural lesion detection in the next steps 
to the SIJs and to discard other anatomical areas. In this way, 
statistical performance of the disease detection is improved 
and false positives in areas outside the SIJs are avoided. Due 
to the small diseased areas, accurate segmentation methods to 
limit the search area and data balancing to facilitate learning 
were required. The training input dataset was images with SIJ 
masks to enhance the learning process. In-training valida-
tion (80/20 training/validation split; n = 70: training/n = 17: 
in-training validation) and testing (60/40 training/test split; 
n = 87: training/n = 58: testing) were performed. Regarding 

DECT, dual-energy CT; kV, kilovolt; mm, millimetre; N/A, not available; SD, standard deviation; SIJ, sac-
roiliac joint; SpA, spondyloarthritis
a Symptoms suspicious for axial spondyloarthritis (low back and/or buttock pain, morning stiffness) and/or 
positive family history and/or HLAB27 positivity and/or recurrent anterior uveitis and/or Crohn’s disease 
but without final clinical diagnosis
b Siemens Healthineers; cGE Healthcare Systems; dPhilips Medical Systems; eCanon Medical Systems

Table 1   (continued)
kV standard CT imaging 120
kV DECT imaging 80–140 N/A 80–140
Tube—detector angle 95° N/A 95°
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technical parameters, batches of sizes 10, 15 and 20 tiles, 
different numbers of epochs and stochastic gradient descent 
(SGD) and adaptive moment estimation (ADAM) optimisers 
were evaluated (selection: batch size 256, 20 epochs, SGD, 
learning rate 0.7, binary cross-entropy loss function with dice 
similarity coefficient) (Fig. 3) (Eq. 1).

Equation 1:   Dice similarity coefficient comparing the 
pixelwise similarity agreement of the manual and automatic 
predicted model sacroiliac joint segmentation. It ranges 
[0,1], with 1 signifying the greatest similarity between the 
predicted and the manual ground truth segmentation [30].

(1)
Dice similarity coefficient =

2 × |A ∩ B|

|A| ∪ |B|
,

A and B are the manual and model segmentation

Subsequently, data preparation steps were performed to 
upsample the images to the original 512 × 512 images, to detect 
the centreline of the SIJs, sample the centreline and finally 
extract 16 × 16 and 32 × 32 images as training and test datasets 
to provide the lesion detection algorithms with stable input 
data (Fig. 3). In this way, the entire CT study is downscaled 
to smaller images which all contain parts of the SIJs, which 
can be used to train and test the disease detection algorithms.

Structural lesion detection and testing

The prepared 16 × 16 and 32 × 32 images were presented 
to two separate disease detection convolutional neu-
ral networks (CNN) for erosion and ankylosis detection 
(Fig. 3). The training data were balanced to a 50–50 ratio 

Fig. 1   Axial CT images of the sacroiliac joints. a–c Scoring principle 
on original DICOM data CT images. a Normal sacroiliac joint in a 
44-year-old male with chronic mechanical low back pain due to disc 
degeneration. No erosion larger than 1.0 mm or ankylosis larger than 
2.0  mm can be observed. Both the sacral and iliac cortex and adja-
cent trabecular bone are normal. b Erosions (arrow heads) larger than 
1.0 mm are seen in an 18-year-old female with axial spondyloarthritis 
affecting the left and right sacral and left iliac bone with subchondral 
bone plate and adjacent trabecular bone destruction and surround-

ing sclerosis (arrows). c Ankylosis (asterisks) larger than 2.0  mm is 
observed in a 46-year-old male with a clinical diagnosis of axial spon-
dyloarthritis. d–f Manual segmentation and annotation principle on 
raw data CT images. d Segmentation of the sacral and iliac surfaces 
of the sacroiliac joints (single-pixel continuous line). e Annotation of 
erosions larger than 1.0 mm (single-pixel continuous line). f Annota-
tion of ankylosis larger than 2.0 mm (multi-pixel continuous zone)
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(diseased-healthy) to enforce detection. In-training valida-
tion (75/25 training/validation split; n = 87: training/n = 29: 
in-training validation) and tenfold validation on a test 
dataset (80/20 training/test split; n = 116: training/n = 29: 
testing) were performed. Regarding statistical parameters, 
the average value E (Eq. 2) for the statistical parameter of 
interest of the ten-group test results is calculated as an esti-
mate of the model accuracy and is used as a performance 
indicator of the tenfold validation model.

Equation 2: Average of the ten-group validation test 
result.

(2)
E =

1

10

∑10

i=1

Ei,Ei = cross-validation of the ith group in tenfold validation

Data sampling in nearby locations produced near-to-
exact image copies causing overfitting. To avoid this, these 
were excluded in the test dataset to prevent overly optimistic 
statistical results [31, 32]. Regarding technical parameters, 
batches of sizes 16, 32 and 64 tiles, different numbers of 
epochs and SGD/ADAM optimisers were evaluated (selec-
tion: batch size 512, 30 epochs, ADAM, binary cross-
entropy loss function).

Gradient-weighted class activation mapping (Grad-
CAM++) heatmaps highlighted image parts with statistically 
important regions for algorithmic decisions as explainability 
analysis [33]. In this way, it is possible to assess whether the 
disease detection algorithms decide on the presence of struc-
tural lesions based on the correct pixels in the images or not.

Fig. 2   Preprocessing pipeline for axial unenhanced pelvic CT 
images. a–c Axial CT images with different field-of-view, present 
in the dataset. In order to achieve optimal disease prediction results, 
the input images need to have equal spacing (pixel size) and field-
of-view (dimensions) and need to be centred equally, so that the 
position of the sacroiliac joints is approximately equal over vari-
ous slices. d–f Preprocessing pipeline. d Original axial CT image. 
e Axial CT threshold image used for centre of mass calculation to 
position the sacroiliac joints in the image centre for improved seg-
mentation and annotation performance. The geometric median posi-
tion of pixels per slice (white cross as centre of the crop window) 
whose Hounsfield unit values are within the range [0.4–0.6] of the 

maximum pixel value, is calculated to segment the bony structures 
and distribute them symmetrically in the image window. The range 
is empirically chosen to discard background (dark pixels), but also 
the highest intensity pixels, which proves to be valuable in case of 
metallic implants. The geometric median position is calculated per 
slice and the final coordinate of the centre of mass point is calcu-
lated by averaging the geometric median positions over all slices. 
Afterwards, each slice is centred around this reference point. f 
Rescaled (spacing 0.25 mm, lowest value in the dataset) and resized 
or cropped (dimensions 512 × 512, most frequent image dimension 
in the input dataset) image with the centre of mass as central point 
in the image window
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The algorithm’s performance was evaluated in the training 
and test datasets based on accuracy, sensitivity, specificity, 
positive predictive value (PPV), negative predictive value 
(NPV), receiver operating characteristic (ROC) curve and 
95% confidence interval on a lesion and patient level.

On a patient level, two optimisation parameters were 
used to generate a disease detection to interpret the 

unbalanced data for one patient where most of the extracted 
images did not contain disease: threshold for confidence 
level (TCL) (window classification prediction, range [0,1], 
confidence of the algorithm to classify a single CT slice 
as positive/negative for the presence of structural lesions) 
and threshold for number of windows (TNW) for which 
the confidence is above the TCL (percentage of the total 

Fig. 3   Data preparation for disease detection prediction on axial CT 
images with sacroiliac joint segmentation and disease detection convo-
lutional neural networks. Preprocessed images are downsampled to low 
resolution 64 × 64 pixel images. Next, a U-Net is used for slice-by-slice 
sacroiliac joint segmentation in low resolution images (64 × 64). After 
U-Net segmentation, morphological closing in three dimensions is 
applied to encompass as much of the joint region as possible and joints 
are extracted by using the two largest connected components. Map-
ping/upsampling of the segmentation to the high resolution images 
(512 × 512) is performed to enhance anatomical detail. Next, sacroiliac 
joint centreline detection (per slice by two-dimensional thinning-based 

skeletonisation) and centreline equidistant three-dimensional sampling 
point extraction is performed (sampling distance equals the size of the 
windows to be extracted). Finally, at sampling points, training sample 
images are extracted (16 × 16 and 32 × 32), which are further processed 
in the disease detection steps by use of erosion and ankylosis detection 
convolutional neural network architectures. Compared to the convolu-
tional neural network model for erosion detection, the ankylosis detection 
network has fewer dense layers (while achieving better detection results) 
because ankylosis is less unbalanced due to the larger area of sacroiliac 
joints that is affected. 2D, two-dimensional; CNN, convolutional neural 
network; Conv, convolution; Max, maximum; SIJ, sacroiliac joint
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number of windows/slices, range [1,100]). Metrics to opti-
mise for were accuracy, weighted accuracy towards less 
false positives or false negatives and weighted accuracy 
towards exclusion of false positives. Statistical analysis was 
performed using IBM SPSS 26.

Results

Study group

In total, 162 patients were retrospectively identified. Sev-
enteen CT scans were excluded, resulting in 145 included 
patients. Patient demographics, inclusion, exclusion, train-
ing versus in-training validation versus test dataset split on 
a patient level and imaging characteristics are illustrated in 
Fig. 4 and Table 1. Eighty-four patients had a final diagnosis 
of spondyloarthritis, made by a university rheumatologist. In 
15 patients, a mechanical origin of low back and/or buttock 
pain was identified. In 46 patients, no clear origin of the pain 
was identified.

Image reading and ground truth

Sixty-four (44%) of patients had SIJ erosions and 28 (19%) had 
ankylosis. Fourteen (10%) had both erosion(s) and ankylosis 
and 67 (46%) had no structural lesions. SIJ masks were mostly 
uniformly distributed over the three-dimensional images, with 
24% of slices containing the SIJs. Considering only slices 
where the SIJ mask existed, 354 pixels were segmented for 
the SIJ per 512 × 512 slice window, on average (0.14%). Ero-
sion mask volumes were, on average, nine times smaller than 
ankylosis mask volumes. The relative occurrence per SIJ mask 
(number of pixels of annotated structural lesions divided by 
number of SIJ segmentation pixels) was 4.2% for erosion and 
34.3% for ankylosis (ratio eight/nine).

Algorithm pipeline performance

Data preparation for detection prediction

For the U-Net SIJ segmentation and assuming an average 
region-of-interest class/non-region-of-interest class ratio 

Fig. 4   Patient inclusion, exclusion and split in training and test data-
sets. For sacroiliac joint segmentation (U-Net), a 60/40 patient-level 
split was performed between the training and test dataset. For disease 
detection (convolutional neural networks), an 80/20 patient-level split 

was performed between the training and test dataset. CNN, convolu-
tional neural network; Ei, validation result i (error of the cross-vali-
dation iteration step Ii); Ii, cross-validation iteration step i; n, number; 
SIJ, sacroiliac joint



8318	 European Radiology (2023) 33:8310–8323

1 3

of 1/3, a training and test dataset dice similarity coefficient 
(Eq. 1) of 0.89 and 0.75 ± 0.03 were obtained after 20 epochs 
on tenfold validation testing (Fig. 5). In this way, CT scans 
were approximately reduced to one-third of the total number 
of slices that were present in the original CT scan before 
region-of-interest selection and the SIJs were segmented 
properly.

Slice‑by‑slice structural lesion detection and testing

Results of the two-dimensional slice-by-slice structural 
lesion detection on 16 × 16 and 32 × 32 images in the test 
dataset are presented in Table 2 and Fig. 6a, b.

In summary, the maximal accuracy to detect erosions 
was equal in both the 16 × 16 and 32 × 32 test images, 

Fig. 5   U-Net sacroiliac joint 
segmentation dice similarity 
coefficient as a function of the 
number of epochs in the training 
dataset (dotted line) and in the 
test dataset (full line)

Table 2   Two-dimensional 
slice-by-slice structural lesion 
detection in the test dataset for 
16 × 16 and 32 × 32 images

FN, false negative; FP, false positive; n, number; NPV, negative predictive value; PPV, positive predictive 
value; TN, true negative; TP, true positive
An equal number of 1224 and 2756 slices did and did not contain erosions and ankylosis, respectively. In 
between brackets: the numerators and denominators for each specified metric
a Baseline = 0.50. Accuracy interval for confidence 95%: 1.2%; bBaseline = 0.50. Accuracy interval for con-
fidence 95%: 0.8%

Parameter 16 × 16 images 32 × 32 images

Erosion Ankylosis Erosion Ankylosis

Lesion present (n) 1224 2756 1224 2756
Accuracy (%) 89 (2168/2448)a 87 (4822/5512)b 89 (2193/2458)a 92 (5061/5512)b

FN (%) 5 (60/1224) 15 (412/2756) 10 (127/1224) 7 (191/2756)
TP (%) 95 (1164/1224) 85 (2344/2756) 90 (1097/1224) 93 (2565/2756)
FP (%) 18 (220/1224) 10 (278/2756) 11 (138/1224) 9 (260/2756)
TN (%) 82 (1004/1224) 90 (2478/2756) 90 (1096/1224) 91 (2496/2756)
Sensitivity (%) 95 (1164/1224) 85 (2344/2756) 90 (1097/1224) 93 (2565/2756)
Specificity (%) 82 (1004/1224) 90 (2478/2756) 89 (1096/1234) 91 (2496/2756)
NPV (%) 94 (1004/1064) 86 (2478/2890) 90 (1096/1223) 93 (2496/2687)
PPV (%) 84 (1164/1384) 89 (2344/2622) 89 (1097/1235) 91 (2565/2825)
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while in the 32 × 32 test images, higher values for anky-
losis were obtained. For erosions, the sensitivity and the 
NPV were higher in the 16 × 16 test images, while in the 
32 × 32 test images, higher values for ankylosis were 
obtained. For erosions and ankylosis, the specificity and 
PPV were higher in the 32 × 32 test images.

The ROC curves, depicting the relationship between 
the true positive and true negative rate, rendered an area 
under curve (AUC) of 0.92 for erosion detection and 0.91 
for ankylosis detection in the test dataset (Fig. 6c, d).

Grad-CAM++ analysis with heatmaps showed that the 
focus of the CNN in the decision-making to detect struc-
tural lesions is on the cortical edges of the SIJs, as intended 
(Fig. 6e and f) [33].

Patient‑level structural lesion detection, optimisation 
and testing

For a three-dimensional patient-level lesion detection, the 
trained balanced CNN to predict per extracted 32 × 32 win-
dow was used as a basis and optimised with the TCL and 

TNW parameters. The results in the test dataset can be found 
in Table 3.

Maximal accuracy optimisation rendered an accuracy 
of 74% for erosion detection with a sensitivity of 87% and 
a NPV of 86%. For ankylosis, an accuracy of 88% with a 
specificity of 90% and a NPV of 95% were obtained.

Optimisation to reduce false negatives rendered a sensi-
tivity of 95% and a NPV of 94% for erosion detection and a 
sensitivity of 82%, a specificity of 90% and a NPV of 95% 
for ankylosis detection.

Optimisation to reduce false positives rendered a speci-
ficity of 85% and a PPV of 73% for erosion detection and 
a specificity of 97%, a PPV of 75% and a NPV of 88% for 
ankylosis detection.

Discussion

Spondyloarthritis, with a long diagnostic delay and a 40–50% 
underdiagnosis, has a significant burden if detected lately [4–9]. 
Therefore, this study aimed to develop an algorithm to auto-
matically detect SIJ erosions and ankylosis and to evaluate its 

Fig. 6   Disease detection module statistical performance and 
explainability by gradient-weighted class activation mapping (Grad-
CAM++). a, b Two-dimensional slice-by-slice algorithm accuracy 
in detecting (a) erosion and (b) ankylosis of the sacroiliac joints as 
a function of the number of epochs in the training dataset (dotted 
line) and in the test dataset (full line). c, d Two-dimensional slice-
by-slice receiver operating characteristic curve (dotted line; full line 
as random guess no-discrimination reference) for the detection of 
(c) erosion and (d) ankylosis of the sacroiliac joints in the test data-
set showing the balance between the true positive rate and the true 

negative rate of findings. e, f Gradient-weighted class activation 
mapping (Grad-CAM++) analysis with heat maps clearly shows 
that the focus of the convolutional neural network in the decision-
making for both (e) erosion (white arrows) and (f) ankylosis detec-
tion is on the cortical edges of the sacroiliac joints, as intended. For 
ankylosis detection, compared to the heat maps of erosion detec-
tion, it is observed that in some cases wider areas of the window are 
considered, which is in accordance with the fact that ankylosis is 
present in wider areas of the sacroiliac joint cortex as compared to 
erosions. AUC​, area under curve
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performance on CT pelvis as a first step towards expansion of 
the algorithm pipeline to all CT types depicting the SIJ. This 
feasibility study confirmed similar outcomes in region-of-inter-
est extraction/SIJ segmentation and lesion detection on a slice-
by-slice and patient level as compared to manual pixel-by-pixel 
expert-based ground truth segmentation and annotation.

Regarding segmentation performance, a dice coefficient 
of 0.75 was obtained. Substantial variability and uncertainty 
about which exact pixels to segment existed in manual seg-
mentation on low-quality 64 × 64 images. The only possi-
ble alternative was rough bounding box segmentation. If an 
adjacent pixel was segmented automatically as compared to 
manually, the dice coefficient would drop significantly in 
pixelwise comparison. Moreover, only rough segmentation 
was required to feed the disease detection algorithms with 
anatomical data. As a comparison, rough SIJ bounding box 
localisation (instead of pixelwise segmentation in this study) 
reached a validation dice coefficient of 0.82 (Shenkman 
et al) but this was a different approach and easier to achieve 
because the region-of-interest that needed to be recognised 
was larger [3]. Detailed 512 × 512 image segmentation would 
render more details but this would require more computer 
memory usage and was not necessary for further analysis.

Regarding disease detection, variation in performance 
between statistical outcome metrics existed. Firstly, the 

performance for ankylosis detection exceeded that for ero-
sion for every statistical outcome parameter except for sen-
sitivity, regardless of the optimisation metric. The higher 
abundance of slices with ankylosis and the larger ankylosed 
region per slice rendered more training data, thus reducing 
data imbalance and thus artificially increasing the detection 
probability. Secondly, the two-dimensional slice-by-slice 
performance was more accurate as compared to patient-
level analysis because a larger data imbalance existed in 
patient-level analysis as the majority of slices and pixels did 
not contain disease. optimisation steps increased statistical 
performance of the three-dimensional patient-level analysis.

To our knowledge, this study was the first to success-
fully develop a pipeline to detect structural lesions based on 
ground truth pixelwise segmentations/annotations with three-
dimensional patient-level optimisation instead of qualitative 
scoring. Shenkman et al developed a qualitative algorithm 
to grade sacroiliitis on CT scans and a joint classification 
system with an accuracy of 92%/86%, sensitivity of 95%/82% 
and AUC of 0.97/0.57. Due to the different approach, com-
parison of statistical metrics is impossible as structural lesion 
detection was not an outcome measure. Moreover, Geijer et al 
confirmed that qualitative scores were obsolete in CT scans 
and that only erosions were a valid diagnostic feature of 
spondyloarthritis [34]. Nevertheless, our statistical outcome 

Table 3   Three-dimensional 
patient-level structural lesion 
detection, optimisation and 
testing for 32 × 32 images in the 
test dataset

Acc., accuracy; FN, false negative; FP, false positive; Max., maximal; NPV, negative predictive value; 
PPV, positive predictive value; Sens., sensitivity; Spec., specificity; TCL, threshold for confidence level; 
TNW, threshold for number of windows
In between brackets: the numerators and denominators for each specified metric
Accuracy interval for confidence 95%: *7.2%; *15.3%; *27.4%; *35.3%; *48.1%; *56.3%; *67.5%; *75.7%

Optimisation 
parameter

TCL TNW (%) Acc. (%) Sens. (%) Spec. (%) NPV (%) PPV (%)

Max. accuracy
  Erosion 0.98 15 74*

(105/142)
87
(54/62)

64
(51/80)

86
(51/59)

65
(54/83)

  Ankylosis 0.70 27 88*1

(125/142)
78
(21/27)

90
(104/115)

95
(104/110)

66
(21/32)

Reduce FN
  Erosion 0.97 11 72*2

(102/142)
95
(59/62)

54
(43/80)

94
(43/46)

61
(59/96)

  Ankylosis 0.97 12 88*3

(125/142)
82
(22/27)

90
(103/115)

95
(103/108)

65
(22/34)

Without FP
  Erosion 0.43 97 58*4

(83/142)
5
(3/62)

100
(80/80)

58
(80/139)

100
(3/3)

  Ankylosis 0.98 38 82*5

(117/142)
7
(2/27)

100
(115/115)

82
(115/140)

100
(2/2)

Reduce FP
  Erosion 0.99 40 70*6

(100/142)
52
(32/62)

85
(68/80)

69
(68/98)

73
(32/44)

  Ankylosis 0.39 44 87*7

(123/142)
44
(12/27)

97
(111/115)

88
(111/126)

75
(12/16)
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measures mirrored those in this study, but in a quantitative 
way on a slice and patient level. A deep learning algorithm 
by Bressem et al detected sacroiliitis on conventional radi-
ography with a ROC AUC of 0.94 for the test dataset [35]. A 
study by Castro-Zunti et al achieved excellent statistical met-
rics but did not use entire CT studies but cropped images to 
reduce the disbalance between diseased versus normal pixels, 
thus artificially improving the performance [36].

Early structural lesion detection may lead to preventive/
timely treatment. In this way, irreversible joint damage 
could be avoided, significantly improving patients’ quality-
of-life and reducing societal costs [10–15]. However, early 
structural lesions are often missed in clinical practice, as 
early disease changes may be subtle and the SIJs are often 
overlooked. An automated analysis of CT scans could be 
used as a screening tool [3, 25]. Chan et al and Hermann 
et al stated that presence of  ≥ 3 erosions or ankylosis of the 
middle or dorsal part of the SIJ is sufficient for identifying 
patients at risk of sacroiliitis, thus supporting the hypoth-
esis that opportunistic detection of structural SIJ lesions 
can be correlated with final clinical diagnosis [5, 26, 37]. 
A potential drawback of a screening strategy is the risk of 
overdiagnosis and excessive treatment initiation, especially 
in elderly patients where age-related degenerative erosions 
and ankylosis can be present without suffering from axial 
spondyloarthritis. Therefore, a strict age range for oppor-
tunistic screening should be defined before clinical applica-
tion starts. As a guide, the age of disease onset of 20–40 
years and mean diagnostic delay of 7.5 years in men and 9.5 
years in women can be used [5]. Moreover, the opportunistic 
automatic screening algorithms should only flag the pres-
ence of structural lesions and cannot be used to make the 
final clinical diagnosis of axial spondyloarthritis, which is 
the responsibility of the radiologist and rheumatologist after 
extensive clinical, MRI, genetic and laboratory testing to 
assess inflammatory low back or buttock pain, the presence 
of bone marrow oedema and the inflammatory status. In 
future developments, automatic patient-level structural SIJ 
lesion detection should be adapted to clinical needs in order 
to avoid overdiagnosis, which can be performed by adapting 
the TCL and TNW parameters.

Our feasibility study had several limitations. Firstly, it 
included a limited number of pelvic CTs. Secondly, only 
pelvic CTs were included; thus, future work is required to 
expand to other CT types for deployment of the pipeline as 
a screening tool [25, 34]. Thirdly, both centres were tertiary 
university hospitals and no patients from private hospitals 
were included. Moreover, no external testing was performed 
with data from other institutions. Lastly, a consensus joint 
segmentation and lesion annotation was used without intra- 
or interobserver variability analysis. To address the limita-
tions, the robustness of the algorithm’s performance was 

evaluated by including heterogeneous international datasets 
to avoid selection bias. Moreover, preprocessing steps and 
tenfold validation testing on a separate dataset were per-
formed to assess performance, reduce overfitting and improve 
generalizability [31, 32].

In conclusion, we developed a deep learning-based 
algorithm with promising outcome metrics for automatic 
detection of structural lesions in sacroiliitis on pelvic CT 
scans on a slice-by-slice and patient level.
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