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Abstract
Objectives To determine whether a CT-based machine learning (ML) can differentiate benign renal tumors from renal cell
carcinomas (RCCs) and improve radiologists’ diagnostic performance, and evaluate the impact of variable CT imaging phases,
slices, tumor sizes, and region of interest (ROI) segmentation strategies.
Methods Patients with pathologically proven RCCs and benign renal tumors from our institution between 2008 and 2020 were
included as the training dataset for ML model development and internal validation (including 418 RCCs and 78 benign tumors),
and patients from two independent institutions and a public database (TCIA) were included as the external dataset for individual
testing (including 262 RCCs and 47 benign tumors). Features were extracted from three-phase CT images. CatBoost was used for
feature selection and ML model establishment. The area under the receiver operating characteristic curve (AUC) was used to
assess the performance of the ML model.
Results The ML model based on 3D images performed better than that based on 2D images, with the highest AUC of 0.81 and
accuracy (ACC) of 0.86. All three radiologists achieved better performance by referring to the classifier’s decision, with
accuracies increasing from 0.82 to 0.87, 0.82 to 0.88, and 0.76 to 0.87. The ML model achieved higher negative predictive
values (NPV, 0.82–0.99), and the radiologists achieved higher positive predictive values (PPV, 0.91–0.95).
Conclusions AML classifier based on whole-tumor three-phase CT images can be a useful and promising tool for differentiating
RCCs from benign renal tumors. The ML model also perfectly complements radiologist interpretations.
Key Points
• A machine learning classifier based on CT images could be a reliable way to differentiate RCCs from benign renal tumors.
• The machine learning model perfectly complemented the radiologists’ interpretations.
• Subtle variances in ROI delineation had little effect on the performance of the ML classifier.
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Abbreviations
ACC Accuracy
AML Angiomyolipoma
ASL Arterial spin labeling
CECT Contrast-enhanced computed tomography
CMP Corticomedullary phase
DWI Diffusion-weighted imaging
GLCM Gray-level cooccurrence matrix
GLDM Gray-level dependence matrix
GLRLM Gray-level run-length matrix
GLSZM Gray-level size-zone matrix
ML Machine learning
NGTDM Neighborhood gray-tone difference matrix
NP Nephrographic phase
PCP Precontrast phase
RCC Renal cell carcinoma
ROI Region of interest

Introduction

In recent years, the number of identified solid renal masses
has significantly increased due to the rapid development of
advanced imaging techniques [1], especially in the detec-
tion of small renal masses (measuring 4 cm or less) [2, 3].
However, among surgically resected renal masses, approx-
imately 20% are reported to be benign [4], leading to an
overall increase in health costs and risks to the patients
resulting from overtreatment.

In clinical practice, percutaneous biopsy is the gold stan-
dard for differentiating renal masses. However, as it is an
invasive method, concern about the high risk of hemor-
rhage or infection remains [3, 5]. Conventional computed
tomography (CT), magnetic resonance imaging (MRI), and
ultrasound are used as noninvasive preoperative imaging
methods due to their safety and availability. Recently, the
functional assessments provided by diffusion-weighted im-
aging (DWI), arterial spin labeling (ASL), and dynamic
contrast enhancement (DCE) imaging have also been con-
sidered in the analysis of renal masses [6]. However, these
techniques have limited accuracy in the characterization of
some benign tumors, such as oncocytomas and fat-poor
angiomyolipomas (AMLs), due to their similarity with ma-
lignant renal masses in the resulting imaging, limiting their
ability to reliably differentiate benign from malignant tu-
mors [7]. In addition, the diagnostic performance is signif-
icantly influenced by the experience of the radiologist,
which is a major challenge for nonspecialized medical
centers.

Machine learning (ML) algorithms have been shown to be
valuable in the evaluation of the histopathological character-
istics of the disease [8, 9]. Recently, a growing number of
studies have shown that ML models have promising

performance in predicting the grade of renal tumors and the
outcome after renal tumor resection and in diagnosing inci-
dental renal lesions [10–13], However, these studies are con-
fined either by a small population or a lack of external testing
data and contrast-enhanced CT (CECT) examinations. In ad-
dition, previous studies have focused little on the influence of
the ML model itself on the diagnostic decision-making of the
radiologist.

This study aimed to evaluate the performance of a CT-
based ML model in discriminating benign renal tumors (in-
cluding AMLs without visible fat (AMLwvf) and
oncocytomas) from common renal cell carcinomas (including
clear cell RCCs (ccRCCs), chromophobe RCCs (chrRCCs),
and papillary RCCs (pRCCs)) in a large population along with
various factor analysis, and to discuss the role that the model
plays in radiologists’ diagnostic decision-making in routine
clinical practice.

Materials and methods

This retrospective study was approved by the ethics commit-
tee of our institution, and the requirement for informed con-
sent was waived because the data were obtained from preex-
isting institutional and public databases without additional
burdens to the patients.

Patients

The institutional pathology database was queried to identify
pathologically confirmed renal masses obtained via biopsy or
surgical resection in our hospital between 2008 and 2020. The
pathological diagnosis was reconfirmed by a pathologist with
10 years of genitourinary experience. The inclusion criteria
were as follows: (1) preoperative CT scans with three-phase
imaging and (2) a primary lesion that was pathologically con-
firmed. The exclusion criteria were as follows: (1) significant
lesion rupture with abundant hemorrhage leading to obscured
tumor features; (2) incorrect delay times after contrast injec-
tion on CT study; (3) lesions completely composed of cystic
components; and (4) lesions with visible fat on precontrast-
phase (PCP) CT. The patient inclusion and exclusion flow-
chart is shown in Fig. 1.

Finally, 798 patients with 680 RCCs (533 ccRCCs, 69
chrRCCs, and 78 pRCCs) and 125 benign renal lesions (83
AMLwvf and 42 oncocytomas) were included in this study.
Among these lesions, 418 RCCs and 78 benign lesions from
our institution were included as the training dataset for ML
model development and internal validation, and 262 RCCs
and 47 benign lesions from two independent institutions and
a public database (The Cancer Imaging Archive, TCIA) were
included as the external dataset for individual testing.
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CT examination

CT examinations were performed in our institution using a 16-
detector CT (SOMATOM Sensation 16, Siemens
Healthineers), a 64-detector CT (Aquilion 64, Canon
Medical Systems), or a dual-source CT (SOMATOM Force,
Siemens Healthineers) with the same examination protocol
before the patient underwent surgical treatment. The CT pa-
rameters and scanning protocol were as follows: tube voltage,
120 kVp; effective tube current-exposure time product, 200–
350 mAs; matrix, 512 × 512; and slice thickness, 1.0 or 3.0
mm. Three phases were scanned: the PCP, corticomedullary
phase (CMP: 30-s delay after contrast injection), and
nephrographic phase (NP: 90-s delay after contrast injection).
A total volume of 70–100 mL of contrast medium (Iopamidol,
BRACCO) was intravenously injected at a rate of 3.0 mL/s,
followed by flushing with 20 mL saline.

Image preprocessing

The image preprocessing steps, which included normaliza-
tion, pixel resampling, and discretization, were performed
during feature extraction for all data. Normalization aims to
manage data weight inconsistency. Image normalization
was conducted using the z score. The voxel size was

defined as 0.8 × 0.8 × 0.8 mm in resampling. Pixel resam-
pling can improve the accuracy and population parameter
estimation of the mode, including upsampling and
downsampling. Discretization is the classification of con-
tinuous features into discrete feature values; a typical ap-
plication of discretization is the binarization of gray im-
ages. A bin width of 25 was used for discretization in our
study.

Tumor segmentation

After retrieving and acquiring the images of all patients from
our institutional picture archiving and communication system
(PACS), we loaded the images into ITK-SNAP [14] (Version
3.6.0) and then anonymized and stored the images in NIfTI
format. Spatial matching and segmentation were then per-
formed on the tumor images. Through subtle spatial adjust-
ment on the three-phase images, a preliminarily defined region
of interest (ROI) was carefully delineated on each selected
slice to cover the whole tumor, by three radiologists with 5,
7, and 10 years of experience in abdominal radiology. The
effective margins of the ROIs were reconfirmed by another
two senior radiologists with 13 and 15 years of abdominal
radiologic experience.

Fig. 1 Flow chart of the study
population (*7 patients with more
than one lesion)
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Feature extraction

We chose the PCP, CMP, and NP images for feature analysis,
and the corresponding ROIs were determined automatically
using the Python (version 3.6.5) package “PyRadiomics”
[15]. The extracted texture features included the following:
(i) first-order features; (ii) shape features; (iii) gray-level
cooccurrence matrix (GLCM) features; (iv) gray-level size-
zone matrix (GLSZM) features; (v) gray-level run-length ma-
trix (GLRLM) features; (vi) neighborhood gray-tone differ-
ence matrix (NGTDM) features; and (vii) gray-level depen-
dence matrix (GLDM) features [16–19]. The definition and
mathematical formulas for these features have been described
previously [20]. By using different filters (e.g., wavelet,
Laplacian of Gaussian, square, square root, logarithm, and
exponential filters), the final images were obtained. All fea-
tures apart from the shape features, which are independent
descriptors extracted from the label mask, were calculated
on both the original and derived images [15]. For the three-
dimensional tumor segmentations, we also extracted the tex-
ture features mentioned above.

Feature extraction was performed based on the two groups
of ROIs by two independent senior radiologists. The selected
features that had good to excellent reliability (ICC ≥ 0.75)
were included for model development.

ML model

A gradient boosting decision library based on decision trees,
CatBoost [21, 22], was used for feature selection and predic-
tive model establishment based on the single and all-phase
images. Fivefold cross-validation was performed to evaluate
the average value and standard deviation of each performance
indicator. Texture analysis and ML were performed using
Python (version 3.6.5, www.python.org). For 2D model
development, only the largest tumor slice was used. In
contrast, every renal tumor slice was included for 3D model
development. The tuning parameters were as follows: the

learning rate was set to 0.05, and the loss function was
logloss. Given the imbalance of the data, the weights of the
class were 5:1.

To explore the influence of the segmentation strategy on
the ability of the ML model to discriminate malignant from
benign tumors, the ROI was expanded or shrunk 1 mm or
3 mm based on the delineated tumor contour. In addition,
we tested the performance of the ML model with tumors
smaller than 3 cm from the external database as an indepen-
dent validation group to confirm the practical value of the ML
model in identifying small tumors. Figure 2 shows the process
of ML model development and validation in our study.

Subjective radiologist assessment

The radiological analysis was performed by three radiologists
in our institution who have interpreted images frommore than
2000 urologic cases, all of whom were blinded to the histopa-
thologic data and clinical information.

By using a 10-point scale scoring system, the readers
assessed the likelihood for each renal lesion using the follow-
ing scoring points as described previously: shape (regular = 0,
irregular = 1), lesion heterogeneity (homogeneous = 0, hetero-
geneous = 1), internal septa (absent = 0, present = 1),
extrarenal extension (absent = 0, ≤ 50% extension of renal
contour = 1, ≥ 50% extension of renal contour = 2), internal
calcification (absent = 0, present = 1), internal hemorrhage
(absent = 0, present = 1), internal necrosis (absent = 0, present
= 1), internal arteries (absent = 0, present = 1), and pseudo-
capsule (absent = 0, present = 1), which appeared as a
hypointense ring around the lesion contour consisting of a
fibrous structure that was formed by compression of the
distended growth of the renal mass to the surrounding renal
parenchyma. Higher scores (≥ 6) indicated a greater possibil-
ity of malignancy, and all images were interpreted and scored
individually [23–25].

Three months later, the readers reviewed all the images
alongside the decision of the ML model for each renal lesion.

Fig. 2 Process flow diagram for developing and validating the CT-based ML model
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The radiologist assessed the agreement between themselves
and that of the model and then made a final decision regarding
the related renal masses.

Statistical analysis

Statistical analysis for the performance of the CT-based model
was conducted in Python (version 3.6.5, www.python.org),
and Sklearn was adopted for index analysis [26]. The
evaluation indicators included the true positive rate (TPR),
specificity (SPC), positive predictive value (PPV), negative
predictive value (NPV), accuracy (ACC), and area under the
receiver operating characteristic (ROC) curve (AUC). The
mean age was compared between the patients with RCCs
and the patientswith benign renal tumors using Student’s t test.
Chi-square tests were used to compare the male to female ratio
between the patients with RCCs and the patients with benign
renal tumors. A p value of less than 0.05 was considered
statistically significant.

Results

Demographics

Of all 805 renal lesions included in this study, 680 (84.4%)
were RCCs, and 125 (15.5%) were benign renal tumors. The
median age of patients with RCCs was higher than that of
patients with benign renal tumors. The gender structure dif-
ference was not statistically significant. Baseline characteris-
tics for each of the groups are presented in Table 1.

Three-phase vs. single-phase image models

As demonstrated in Table 2, the machine learning classifier
based on all-phase images achieved a higher AUC than the
classifiers constructed from each set of single-phase images.
In addition, the ML model based on 3D images was slightly
superior to that based on 2D images.

In the model development based on 3D images, 107 fea-
tures were extracted from PCP, CMP, and NP CT images, and
321 features were extracted from all-phase CT images.

However, 30, 29, 37, and 96 features, respectively, were ex-
cluded due to low ICC values (< 0.75). Finally, 77, 78, 70, and
225 features from PCP, CMP, NP, and all-phase CT images,
respectively, were selected for ML model development. The
top 20 ranking features and the ROC curve of the best model
are shown in Figs. 3 and 4.

All renal tumors vs. renal tumors < 3 cm

The machine learning model was externally validated, and the
classifier performed better when assessing all tumors than
when assessing only tumors measuring < 3 cm; however,
acceptable performance was achieved in the latter case (3D
image–based model: AUC 0.81 vs. 0.79, ACC 0.86 vs. 0.77;
2D image–based model: AUC 0.75 vs. 0.76, ACC 0.86 vs.
0.75). The performance of the ML model in differentiating
renal tumors < 3 cm is shown in Table 3.

Contour vs. noncontour focus

To explore the influence of the segmentation margin, the per-
formances of the ML models based on contour focus, expan-
sions of 1 mm and 3 mm, and shrinkages of 1 mm and 3 mm
were compared (Table 4). The performance of the model was
not significantly different when the tumor margin was shrunk/
expanded by 1 mm or 3 mm than when the margin was unal-
tered, achieving AUCs of 0.79 (tumor margin shrunk by 1
mm), 0.77 (tumor margin expanded by 1 mm), 0.77 (tumor
margin shrunk by 3 mm), and 0.74 (tumor margin expanded
by 3 mm).

Radiological interpretation with and without the
machine learning algorithm

As shown in Table 5, the radiologists had relatively poor per-
formance compared with theML classifier, especially in terms
of the NPV. Notably, all three radiologists achieved better
performance when referring to the machine learning classi-
fier’s decision, especially in terms of the NPV. The AUC of
the three readers with and without ML model assistance are
shown in Fig. 5.

Table 1 Baseline characteristics of patients

Patient characteristic External cohort Internal cohort

Benign tumor (n = 47) RCC (n = 262) p Benign tumor (n = 78) RCC (n = 418) p

Age 53.88 ± 12.24 56.35 ± 12.66 0.006 50.68 ± 13.30 55.58 ± 12.15 < 0.001

Gender (male:female) 98:393 62:245 0.935 26:97 134:541 0.743
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Discussion

Our study indicates that machine learning could be a reliable
and reproducible method for helping distinguish RCCs from
benign renal masses. Compared to previous studies, we con-
sidered several potential factors, including the tumor size and
delineation of the tumor margins, and investigated the influ-
ence of these factors on the performance of the ML classifier.
Moreover, the ML model may be an optimal complementary
assistant for radiologists in differentiating common RCCs
from benign renal tumors and may be especially helpful in
the detection of benign renal tumors.

In previous studies, Kunapuli et al [27] and Erdim et al [7]
compared different ML algorithms in building a prediction
model for renal mass differentiation. Sun et al [12] compared

the performance of radiomic-radiologic ML models and
expert-level radiologists in classifying solid renal masses and
found that their optimal model achieved anAUC ranging from
0.83 to 0.92. Xi et al [28] investigated the diagnostic value of a
deep learning (DL) model based on MRI data, and this model
achieved higher performance values than four expert radiolo-
gists. All these studies indicate that radiomics could be a
promising method for differentiating common RCCs from
benign renal tumors, which is consistent with the results of
our study, but the performance of these ML or DL approaches
is questionable given the loss of information from entire vol-
umetric lesion images or the lack of consideration for certain
pieces of radiologic identification such as size and shape mar-
gin. Therefore, in our study, we trained our ML model using
features derived from both 2D and 3D images. We also

Table 2 Performance of the ML classifier in differentiating benign renal tumors from malignant tumors

2D 3D

Phase TPR SPC PPV NPV ACC AUC TPR SPC PPV NPV ACC AUC

NP 0.58 0.9 0.4 0.94 0.86 0.75 0.38 0.91 0.58 0.82 0.78 0.78

PCP 0.44 0.9 0.46 0.89 0.82 0.73 0.37 0.9 0.5 0.83 0.78 0.74

CMP 0.51 0.88 0.31 0.93 0.83 0.69 0.41 0.89 0.43 0.88 0.81 0.75

ALL 0.76 0.87 0.2 0.99 0.87 0.74 0.57 0.91 0.51 0.92 0.86 0.81

Fig. 3 The top 20 ranking feature scores in the differentiation of RCCs from benign renal tumors (a three-phase; b PCP; c CMP; d NP)
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assessed the changes in the ML model performance during
clinical application with regard to tumor size and segmenta-
tion strategy.

Comparing the performance of the model based on features
from different CT phase images, we found that the model
based on whole-tumor features derived from the three-phase
CT images had better performance in renal lesion classifica-
tion. This may be because the all-phase images and the whole
tumor pattern provided more information about the lesion to
the model.

Regarding the lesion volume, Tanaka et al [29] investigated
the performance of a CNN-based deep learning model in clas-
sifying small renal tumors (less than 4 cm), and they found
that the deep learning model based on CMP CT images per-
formed better, achieving an ACC of 0.88. In our study, the
size of renal tumors varied, and tumors less than 3 cm were
selected from the external database to test the ML model. The
limited information provided by tumors measuring less than
3 cm reduced the renal mass differentiation accuracy of the
model, especially for the single-CMP-image model. As

Fig. 4 ROC curves of the best
machine learning classifier based
on various phase images

Table 3 The performance of the ML model in differentiating renal tumors < 3 cm

2D 3D

Phase TPR SPC PPV NPV ACC AUC TPR SPC PPV NPV ACC AUC

NP 0.59 0.84 0.65 0.79 0.75 0.76 0.45 0.91 0.85 0.54 0.63 0.76

PCP 0.55 0.83 0.66 0.74 0.71 0.71 0.48 0.85 0.75 0.63 0.67 0.72

CMP 0.51 0.77 0.46 0.77 0.68 0.6 0.43 0.81 0.69 0.57 0.61 0.64

ALL 0.77 0.78 0.39 0.95 0.78 0.74 0.61 0.9 0.8 0.77 0.77 0.79
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expected, fewer characteristic features can be extracted from
smaller lesions, making differentiation more difficult.
However, we found that the ML model performance was still
acceptable. In routine image interpretation, making an accu-
rate diagnosis for incidental renal tumors measuring less than
3 cm is more important and more difficult than it is for larger
renal tumors. Our study showed that the ML model is a prac-
tical technique for aiding radiologists in clinical practice, es-
pecially for identifying smaller renal tumors.

In addition, the segmentation margin remains a challenge
in ML model development. Although manual delineation was
considered the standard reference, the tumor contour might be
ill-defined in some cases and lead to inaccurate delineations.
Few studies have discussed the influence of the segmentation
margin on model performance. In our study, the performance

of the model was not influenced substantially by shrinking/
expanding the margin of the tumor by 1 mm or 3 mm. We
assumed that the features subsequently lost or added by the
slight changes in the tumor margin comprised a small propor-
tion of all features extracted from the whole tumor; in other
words, the features that we actually acquired were sufficient
for estimating the homogeneity or heterogeneity of the tumor.
Thus, in similar studies, we may not have to focus excessively
on the subtle variance in ROI delineation.

In our study, the accuracy of the machine learning clas-
sifier was slightly higher than that of the three radiologists,
while after considering the decision of the machine learning
model, the three radiologists had a higher accuracy than the
model, which shows the usefulness of the model in the
identification of renal masses. In addition, the NPV (0.82–
0.99) of the ML model complemented the PPV (0.91–0.95)
of the radiologists, potentially leading to perfect comple-
mentary assistance.

One limitation of our study that should be noted is the
imbalanced nature of the dataset (RCCs:benign renal tu-
mors = 680:125). To address the adverse impact of the
imbalanced dataset on the performance of the classifiers, a
synthetic minority oversampling technique (SMOTE) was
adopted for the sample generation of the minority group
from the joint weighting of the optimal features. As a result,
the representation of the minority benign renal tumor group
(AMLwvf and oncocytoma) increased, and the balance of
the dataset improved, followed by improvement of the per-
formance indicators (with an AUC of 0.97, an ACC of

Table 4 The performance of the ML model based on various segmentation strategies

Groups Phase 2D 3D

TPR SPC PPV NPV ACC AUC TPR SPC PPV NPV ACC AUC

Shrink 1 mm NP 0.59 0.89 0.39 0.93 0.85 0.75 0.46 0.9 0.5 0.88 0.82 0.79

PCP 0.54 0.89 0.39 0.92 0.84 0.74 0.51 0.89 0.4 0.92 0.84 0.73

CMP 0.57 0.86 0.16 0.96 0.84 0.66 0.38 0.89 0.42 0.85 0.79 0.76

ALL 0.75 0.87 0.23 0.98 0.87 0.75 0.62 0.89 0.34 0.96 0.86 0.79

Shrink 3 mm NP 0.56 0.89 0.39 0.94 0.85 0.77 0.48 0.9 0.46 0.9 0.83 0.77

PCP 0.51 0.89 0.41 0.92 0.84 0.73 0.49 0.89 0.37 0.92 0.84 0.73

CMP 0.62 0.86 0.17 0.97 0.85 0.73 0.56 0.88 0.29 0.95 0.85 0.73

ALL 0.69 0.88 0.28 0.98 0.87 0.75 0.68 0.88 0.29 0.96 0.86 0.77

Expand 1 mm NP 0.4 0.9 0.47 0.87 0.81 0.72 0.34 0.91 0.6 0.78 0.75 0.76

PCP 0.41 0.89 0.44 0.87 0.81 0.71 0.36 0.89 0.45 0.85 0.79 0.72

CMP 0.44 0.88 0.3 0.93 0.83 0.7 0.48 0.88 0.34 0.92 0.83 0.74

ALL 0.6 0.87 0.24 0.97 0.86 0.75 0.53 0.89 0.37 0.93 0.84 0.77

Expand 3 mm NP 0.39 0.9 0.45 0.87 0.8 0.72 0.32 0.93 0.62 0.68 0.67 0.69

PCP 0.36 0.88 0.37 0.88 0.8 0.7 0.41 0.88 0.35 0.9 0.82 0.73

CMP 0.43 0.88 0.33 0.89 0.81 0.67 0.37 0.89 0.46 0.83 0.77 0.7

ALL 0.62 0.87 0.24 0.97 0.86 0.74 0.49 0.89 0.36 0.93 0.84 0.74

Table 5 Performance of the three radiologists and their performance
with the ML classifier as a reference in differentiating benign renal
tumors from malignant tumors

Reader TPR SPC PPV NPV ACC AUC

Radiologist A 0.85 0.63 0.93 0.44 0.82 0.74

Radiologist B 0.87 0.55 0.91 0.44 0.82 0.71

Radiologist C 0.75 0.8 0.95 0.36 0.76 0.78

Radiologist A + radiomics 0.91 0.68 0.94 0.58 0.87 0.79

Radiologist B + radiomics 0.91 0.70 0.94 0.58 0.88 0.80

Radiologist C + radiomics 0.87 0.70 0.94 0.49 0.87 0.78
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0.93). However, the statistics generated by SMOTE were
less authentic due to the inevitable overfitting of these al-
gorithms. To some extent, the imbalanced data reflect the
real incidence of malignant and benign renal tumors. In
addition, only one algorithm was used for the establishment
of ML in our study, which is also a potential weakness.
Thus, a large-scale, multicenter and multialgorithm study
is necessary to further validate our study.

Conclusion

Our study shows that a machine learning classifier based on
texture features derived from whole-tumor three-phase CT
images can be a useful and promising technique for differen-
tiating RCCs from benign renal tumors, which also contrib-
utes to the identification of small renal tumors. Furthermore,
the MLmodel perfectly complemented the radiologists’ inter-
pretations and could be useful in improving performance, es-
pecially in the precise diagnosis of benign renal tumors.
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