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Abstract
Objectives To evaluate AI biases and errors in estimating bone age (BA) by comparing AI and radiologists’ clinical determina-
tions of BA.
Methods We established three deep learning models from a Chinese private dataset (CHNm), an American public dataset
(USAm), and a joint dataset combining the above two datasets (JOIm). The test data CHNt (n = 1246) were labeled by ten
senior pediatric radiologists. The effects of data site differences, interpretation bias, and interobserver variability on BA assess-
ment were evaluated. The differences between the AI models’ and radiologists’ clinical determinations of BA (normal, advanced,
and delayed BA groups by using the Brush data) were evaluated by the chi-square test and Kappa values. The heatmaps of
CHNm-CHNt were generated by using Grad-CAM.
Results We obtained an MAD value of 0.42 years on CHNm-CHNt; this result indicated an appropriate accuracy for the whole
group but did not indicate an accurate estimation of individual BA because with a kappa value of 0.714, the agreement between
AI and human clinical determinations of BA was significantly different. The features of the heatmaps were not fully consistent
with the human vision on the X-ray films. Variable performance in BA estimation by different AI models and the disagreement
between AI and radiologists’ clinical determinations of BA may be caused by data biases, including patients’ sex and age,
institutions, and radiologists.
Conclusions The deep learning models outperform external validation in predicting BA on both internal and joint datasets.
However, the biases and errors in the models’ clinical determinations of child development should be carefully considered.
Key Points
•With a kappa value of 0.714, clinical determinations of bone age by using AI did not accord well with clinical determinations by
radiologists.

• Several biases, including patients’ sex and age, institutions, and radiologists, may cause variable performance by AI bone age
models and disagreement between AI and radiologists’ clinical determinations of bone age.

• AI heatmaps of bone age were not fully consistent with human vision on X-ray films.
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Abbreviations
AD Absolute difference of bone age values

between AI and radiologists
BA Bone age
BN Batch normalization
Brush data The variability of skeletal age in the

Brush Foundation Study of Human
Growth and Development, led by
Professor T. Wingate Todd

CA Chronological age
CHNm Bone age model from a Chinese

private dataset (11226 images from
our hospital in 2018)

CHNt Chinese test dataset (1246 images from
our hospital in 2018)

JOIm Joint model with combined data
from the CHN model and the USA model

JOIt Joint test dataset from China and
America data

LOA Limits of agreement
MAD Mean absolute difference of bone

age values between AI and radiologists
MAE Loss Mean absolute error loss function
MSE Loss Mean square error loss function
PACS Picture Archiving and Communication System
RELU Rectified linear unit
RMSE Root mean square error
SD Standard deviation
USAm Bone age model from an American

public dataset (9607 images from the
2017 RSNA Pediatric Bone Age
Machine Learning Challenge)

USAt American test dataset (1060 images from
the 2017 RSNA Pediatric Bone Age
Machine Learning Challenge)

Introduction

Bone age (BA) assessment is an interpretation of skeletal ma-
turity from the X-ray of the left hand. The BA value estimated
is a doctor’s reference in children’s health care or other cir-
cumstances, e.g., forensic analysis and sports medicine [1].
Radiologists usually make a BA report based on the
Greulich-Pyle (G&P) atlas; this method is one of the popular
methods for BA assessment [2]. In clinical practice, BA as-
sessment includes the BA value and clinical determination of
BA. The patient’s BA value is assigned by best matching his
left hand and wrist radiograph with a reference standard image
from the G&P atlas. The clinical determinations based on BA
value include advanced, normal, and delayed skeletal devel-
opment. The Brush data are used to define the skeletal devel-
opment condition. Some studies have suggested that AI has a

potential advantage over humans in BA assessment because
BA is a quantitative value and therefore is an ideal target for
automated image evaluation [3, 4].

Deep learning, known as a subtype of machine learning, has
shown high accuracy in performing different tasks for medical
image analysis [5]. In recent years, many novel approaches
based on deep learning have been utilized for BA assessment
[6]. The Radiological Society of North America (RSNA)
Pediatric Bone Age Machine Learning Challenge [7] was
launched at the 2017 RSNA Annual Meeting, and with a low
mean absolute difference (MAD) ranging from 4.265 to 4.907
months for the 10 best teams, the result of the challenge dem-
onstrated the success ofmachine learning in BA assessment [8].

Generally, BA assessment is affected by ethics, region,
economic status, and nutrition. Deep learning model training
using image data from various settings or patient populations
may be able to mitigate the generalization problem [9]. The
problem of generalization is that a model trained in some
situations cannot make the same accurate prediction in new
ones. However, at this point, few papers have addressed the
generalization of BA models by comparing single and joint
data sources (institutions). Few studies have evaluated the
factors, including patients, radiologists, and clinical determi-
nation, on the effect of AI models. Few papers on using deep
learning for BA assessment have addressed the Brush data.
These papers evaluate the performance of BAmodels in terms
of MAD values but rarely evaluate the differences between
human and machine clinical determinations of BA by using
Brush data.

In this study, we established three AI models: (1) the USA
model (USAm) from the publicly available RSNA dataset, (2)
the CHN model (CHNm) from the dataset of the National
Children’s Medical Centre in China, and (3) the JOI model
(JOIm) from the mixed dataset from the above two models.
This study aimed to evaluate AI performance in assessing BA
and the effects of patient sex and age, data site differences,
interpretation bias, and interobserver variability on AI perfor-
mance. We further assessed the agreement between AI and
radiologists’ clinical determinations of BA. Because AI esti-
mations of BA are a black box [10], we used the heatmaps to
observe the AI vision on the X-ray films compared with the
human behaviors in medical procedures.

Methods

The workflow chart in this study is shown in Fig. 1. The steps
included model design, statistics, and heatmap generation.

Data acquisition

Our ethics committee approved this retrospective study and
waived the requirement for informed consent. After excluding
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abnormal images and reports, 12,472 radiographs of the left
hand and wrist were originally retrieved from our children’s
hospital between July and September 2018 and used for our
deep-learning model (CHNm) and test data (CHNt). All
DICOM left hand and wrist radiographs, radiology reports,
radiologists’ names, and the sex and chronological age (CA)
of patients were exported from the Picture Archiving and
Communication System. Images were labeled by BA value;
BA values were extracted from the radiology reports. All ra-
diology reports were provided by pediatric radiologists with
more than 10 years of experience with reference to the paper-
based Greulich-Pyle atlas (second edition) [2]. Ten senior pe-
diatric radiologists took part in evaluations using CHNt (n =
1246). Their years of working experience in interpreting and
reporting radiographs were 37 years (for D1, who reviewed
524 images), 33 years (for D2, who reviewed 127 images), 20
years (for D3, who reviewed 2 images), 18 years (for D4 and
D5, who reviewed 109 and 69 images, respectively), 16 years
(for D6 and D7, who reviewed 60 and 214 images, respective-
ly), 15 years (for D8, who reviewed 82 images), 11 years (for
D9, who reviewed 23 images), and 10 years (for D10, who
reviewed 36 images). To evaluate the effect of interobserver
variability on CHNm-CHNt performance, disputed cases out-
side the 95% limits of agreement (LOAs) of the difference
between the AI and radiology BA reports were rerated by
another radiologist with 10 years of experience, and then we
took the average of the reports and rerated the BA of disputed
cases as a new manual BA.

A total of 10,667 images from the RSNA dataset [7] were
used as the USA model (USAm) and USA test data (USAt)
after excluding some images with additional artifacts and
missing parts of hands. We further mixed data from CNHm
and USAm together to implement the third AI model (JOIm).
Image numbers and demographic data for all datasets are
shown in Table 1.

Data preprocessing

The first task of the preprocessing pipeline was to extract the
hand bone region in the X-ray radiographs. To automatically
generate the hand mask, the U-Net [11] network architecture
originally suggested for image segmentation was employed.
We manually annotated 200 hand bone masks by using an
online annotation service as the training dataset. In the training
phase, we used the optimized Dice loss function as the target
of optimizing the segmentation network.

Second, we aligned the important region of the hands into a
common coordinate space. Therefore, we detected the coordi-
nates of several specific key points of a hand for this purpose.
ResNet [12] network was used as the feature extraction back-
bone network for extracting location information. The output
was 6 coordinates corresponding to three sets of key points:
tip of the distal phalanx of the third finger, tip of the distal
phalanx of the thumb, and center of the capitate (Fig. 2). We
used the mean square error loss function to train our landmark
detection model.

Fig. 1 Theworkflow chart in this study. There were three steps, including
deep learning model design, statistical evaluation of the performance of
AI models, and heatmap generation and explanation. Three AI models
were generated by using data from China (CHNm), America (USAm),
and both China and America (JOIm). Two test datasets were from China
(CHNt) or America (CHNt). The performance of AI models (CHNm,
USAm, and JOIm) was evaluated with some parameters, including the

mean absolute difference (MAD) and Bland–Altman plots. Based on the
clinical determination of BA with the Brush data rule, the sensitivity and
specificity of three models detecting abnormalities (advanced and delayed
development) were calculated. The effects of sex, chronological age
(CA), radiologists, and population were analyzed. The heatmaps were
shown to help clarify AI decisions
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Bone age AI model

We randomly divided the preprocessed data into a training set,
validation set, and test set at a ratio of 8:1:1. The attention

module CBAM was integrated into the inception V3 network
to improve the network’s feature extraction capability (Fig. 3).
Then, we concatenated the feature with the patient’s sex,
which was encoded and mapped to [0, 1] before inputting

Table 1 Summary information
for three BA models with data
from China (CHNm), America
(USAm) and joint (JOIm), and
two test datasets from China
(CHNt) and America (USAt)

Variable No. of images in
males/total (%)

Report bone age, year,
median [IQR]

Chronological age, year,
median [IQR]

Training dataset

China 3570/9980 (35.77) 10.0 [8.0–11.5] 9.0 [8.0–11.0]

America 4599/8547 (53.81) 11.0 [8.0–13.0] /

Joint 8169/18,527 (44.09) 10.0 [8.0–12.5] /

Valid dataset

China 434/1246 (34.83) 10.0 [8.0–11.0] 9.0 [8.0–11.0]

America 558/1060 (52.64) 11.5 [9.0–13.5] /

Joint 992/2306 (43.02) 10.0 [8.0–12.0] /

Test dataset

China 435/1246 (34.91) 10.0 [8.5–11.5] 9.0 [8.0–11.0]

America 576/1060 (54.34) 11.0 [8.0–13.0]

IQR interquartile range

Fig. 2 Key points detection model. The U-Net network architecture was
employed for image segmentation. The optimized Dice loss function is
the target of optimizing the segmentation network. ResNet was used as
the feature extraction backbone network. Three regions of the hand were

aligned into a common coordinate space. The output was 6 coordinates,
including the tip of the distal phalanx of the third finger, tip of the distal
phalanx of the thumb, and center of the capitate
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the network, where 0 means male and 1 means female.
Finally, we used two fully connected layers to further regress
out the BA. After each convolution, batch normalization (BN)
[13] and a rectified linear unit (RELU) [14] were applied.
Dropout was used in the fully connected layer at a rate of 0.5.

In the training process, we employed the mean absolute
error loss function as an optimization goal to train the BA
regression model. Adam [15] updated the weight with a learn-
ing rate of 0.01 in the initialization phase and gradually
decayed the learning rate as the epoch increased to obtain a
better convergence effect.

Regional heatmap activation

We utilized the Grad-CAM [16] method to generate heatmaps
to determine which part of an image was locally significant for
fine-grained classification, as we rarely learned from existing
clinical programs (e.g., G&P [2] and TW3 [17]). To utilize
Grad-CAM, we extracted the feature from the last convolution
layer of the network.

BA clinical determination

BA values from radiology reports and AI models tested on
CHNt were analyzed by using Brush data to classify BA di-
agnoses [2]. The Brush data were used to classify a BA as
normal (if the BA was limited to the range of ± 2 SD of the
CA), delayed (if the BA was lower than −2 SD of the CA), or
advanced (if the BAwas higher than + 2 SD of the CA). Brush
data reflect the variability of BA and are widely accepted as
clinical determinations of BA. We classified BA diagnoses
into three groups and performed a statistical analysis compar-
ing human and AI estimations of BA in terms of Kappa
values.

Statistical analysis

Bland–Altman plots and 95% LOA (mean ± 1.96 SD) were
created to illustrate the BA difference between AI estimations
of BA and reported BAs. Pearson correlation analysis was
used to assess the correlation of AI-determined BAs and

Fig. 3 Bone age assessment
model. The attention module
CBAM and inception V3 network
were integrated into the model.
The patient’s sex was encoded
and mapped to [0, 1]. Then, two
fully connected layers were used
to regress out the BA. After each
convolution, batch normalization
(BN) and the rectified linear unit
(RELU) were applied. Dropout
was used in the fully connected
layer at a rate of 0.5
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reported BAs. The performances of all AI models were eval-
uated in terms of mean values, the standard deviation (SD),
the MAD, and the root mean square error (RMSE) of differ-
ences between the AI determinations of BA and reported BAs.
The accuracies of all AI models were assessed using percent-
ages of cases with the values of the absolute difference be-
tween AI and reported BAs within 0.5 years, 1 year, and 2
years.

When data were not distributed normally, nonparametric
alternatives were used for comparing two or multiple groups
(different sexes, CAs, radiologists, and clinical determina-
tions), i.e., the Mann–Whitney U test or Kruskal–Wallis test,
respectively. The classifications of BA diagnoses were ana-
lyzed by the chi-square test. The agreement of human and AI
estimations was calculated by kappa values.

The statistical analyses were performed using SPSS 17.0
(SPSS Inc.). Differences were considered significant at
p < .05. The figures were drawn using SPSS and GraphPad
Prism v 5.0 software (GraphPad Software Inc.).

Results

Performance of deep learning models

The differences between BA estimations by three AI models
tested on CHNt and USAt and radiologists’ reports of BA
values are shown in the Bland–Altman plot (Fig. 4a, b, c, d,
e and f) with mean bias and 95% LOA. The percentages of
scattered dots outside the 95% LOA were lowest on CHNm-
USAt with 4.0% (42/1060) in Fig. 4 d but highest on USAm-
USAt with 6.1% (65/1060) in Fig. 4e. The limits from the
upper to the lower line of the 95% LOA were narrowest on
CHNm-CHNt in Fig. 4a (−1.129 to 1.058 years) but broadest
on CHNm-USAt in Fig. 4d (−2.285 to 1.664 years).

BAs determined by AI on CHNm-CHNt, USAm-USAt,
JOIm-CHNt, and JOIm-USAt (all r = 0.98) showed a stronger
correlation (linear) with reported BAs than BAs determined by
AI on USAm-CHNt (r = 0.96) and CHNm-USAt (r = 0.95).

The results of the internal validation (CHNm-CHNt,
USAm-USAt, JOIm-CHNt, JOIm-USAt) and the external
validation (CHNm-USAt, USAm-CHNt) were analyzed to
evaluate AI performance. The internal validation is that the
training and test datasets are from the same institution. The
external validation is that the training and test datasets are
from the two separate institutions. Table 2 shows the summary
statistics of the accuracy of CHNm, USAm, and JOIm tested
on CHNt and USAt. In terms of the MAD, RMSE, and accu-
racy (with percentage) of the difference between AI and re-
ported BAs within 0.5 years, 1 year, and 2 years, CHNm-
CHNt outperformed USAm-CHNt, whereas USAm-USAt
outperformed CHNm-USAt. Fortunately, better performances
of JOIm validated on the two test datasets were obtained, and

they were similar to internal validations separately. This bias
may come from some factors, as we show in the following.

The distribution of the absolute differences (ADs) between
reported BAs and BAs determined by three AI models tested
on CHNt with patients’ sex and CA, radiologists, and clinical
classifications of BA diagnoses are shown by box plots (Fig. 5
a, b, c and d). All AD values were calculated as medians be-
cause of the non-normal distribution. In Fig. 5a and Table 2
(rows 3–5), the medians of AD values among females were
lower than those among males on CHNm-USAt (0.66/0.83
years, p < .001) and USAm-CHNt (0.50/0.75 years,
p < .001), higher than those among males on JOIm-USAt
(0.45/0.31 years), but similar to those among males in other
models (p >.05). This result indicated that sex has a varied
effect on the accuracy of BA estimation. Figure 5b shows that
the values were larger for USAm than for CHNm and JOIm for
extremely small CAs (2–5 years), small for middle CAs (6–14
years), and large for extremely large CAs (15–17 years) in all
three models. The image numbers were very small (< 40 cases)
for the small and large CA groups but relatively large for the
middle CA group. In Fig. 5c, USAm had a larger BA differ-
ence regarding all radiologists (p = .023) than CHNm and
JOIm (both p > .05). The medians of AD values of AI and
reported BAs for all radiologists ranged from 0.25 to 0.42
years on CHNm, 0.42 to 0.96 years on USAm, and 0.25 to
0.79 years on JOIm. In Fig. 5d, the normal group presented a
smaller BA difference than the advanced and delayed groups.
The highest performance was observed for CHNm-CHNt in
the normal group (0.39 years), and the lowest performance was
observed for USAm-CHNt in the delayed group (1.02 years).

The effect of interobserver variability of disputed cases on
CHNm performance was analyzed.

Sixty-nine disputed cases were outside the 95% LOA
(> 1.022 years, < −1.166 years) of the difference between
AI-determined BA on CHNm-CHNt and reported BA in
Fig. 4a and were rerated. The SD of the difference between
the rerated BA and reported BA was 0.88 years. The average
rerated BA and reported BA as a new manual BA was 10.73
years, which was closer to the mean AI-determined BA (10.70
years) than the reported BA (10.59 years). The proportion of
disputed cases where the new manual BA agreed better with
the CHNm-CHNt AI-determined BA was 65.2% (45/69).
This finding is interesting and lead us to consider whether
AI would outperform individual doctors in estimating BA.

Regional heatmap

The values of hot spots in the heatmaps of every radiograph
can be transformed into the range of 0–1. We intentionally
separated the values into groups according to patients’ sex
and age in accordance with the GP atlas, and in every group,
we obtained the average value to better show each group char-
acteristic. In Fig. 6, the first row shows a typical X-ray film.
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The second row shows the heatmap pictures, the third shows
the SD values, and the fourth shows the variation values.

These heatmaps showed the AI vision, which may explain
the black box of AI. For younger children, such as the 5-year-
old male group (column 1 in Fig. 6), the heatmap focused
more on the phalanxes and less on the carpals, but radiologists
focused more on the carpals according to the GP atlas. For
older children, such as the 14-year-old male group (column 3

in Fig. 6), the heatmap focused moderately more on the car-
pals, but radiologists focused more on the metacarpals and the
radius. For the hands of 18-year-old boys, most AI hot spots
were shown on the carpal area. For children in the middle-age
group, for example, for 8-year-old boys, AI focused more on
the phalanxes and moderately more on the carpals, but radiol-
ogists focused more on the phalanxes, metacarpals, and car-
pals. This result indicated that AI and humans might focus on

Fig. 4 Bland–Altman plot showing the difference between AI and
reported BAs. a CHNm-CHNt. b USAm-CHNt. c JOIm-CHNt. d
CHNm-USAt. e USAm-USAt. f JOIm-USAt. The solid line represents
the mean difference, and the dotted lines represent the 95% LoA. The
percentages of scattered dots outside the 95% LOA were lowest on

CHNm-USAt with 4.0% (42/1060) in d but highest on USAm-USAt with
6.1% (65/1060) in e. The limits from the upper to the lower line of the
95% LOA were narrowest on CHNm-CHNt in a (−1.129 to 1.058 years)
but broadest on CHNm-USAt in d (−2.285 to 1.664 years)
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different regions on the hand bone whenmaking a decision on
BA estimation.

BA clinical determination

The distributions of BA diagnosis of 1246 test images from
CHNt are shown in Table 3. As indicated by the p values,

compared with the radiology report, the clinical classifications
of CHNm and JOIm (both p > .05) showed no difference;
however, those of USAm (p < .001) showed a difference.
The results of CHNm and JOIm in evaluating BAwould seem
to be perfect. We further individually matched the 1246 sub-
jects and showed that the Kappa values were 0.714 on CHNm,
0.716 on JOIm, and 0.53 on USAm (p < .001), as shown in

Fig. 5 Box plot showing the median and quartiles of BA absolute
difference (AD) distribution of three AI models tested on CHNt and
reported between (a) different sexes, (b) CAs, (c) radiologists, and
(d) BA diagnoses. p values are shown when the differences in BA AD
values between AI and reports between different groups on each model

were significant. The difference between sexes was analyzed using the
Mann–Whitney U test. The differences among different CA groups,
different radiologists, and different BA diagnoses were analyzed using
the Kruskal–Wallis test. The numbers of images for each factor are shown
in brackets
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Table 4. Our results indicated that there was no high agree-
ment between these models and radiologists.

Discussion

In this study, we evaluated the performance of bone age deep
learning models established by using our hospital clinical data
and RSNA data. In our study, the best MAD value was 0.42
years on CHNm-CHNt. This finding was as accurate and pre-
cise as those of previous studies, in which the MADs ranged
from 0.38 to 0.64 [18–24]. However, the performance of BA
models was worse with external validation (CHNm-USAt and
USAm-CHNt) than with internal validation (CHNm-CHNt
and USAm-USAt). The results were consistent with the stud-
ies of Larson [19] and Koita [23].

An interesting finding of this study is the heatmaps of
hands. We found that AI heatmaps were not fully consistent
with human focusing areas based on the GP atlas. This finding
indicated on what areas and how AI focuses to some extent;
this focus has not been described in previous studies. We are
not the first to report heatmaps on the AI BA model [21].
However, we showed a different heatmap from previous find-
ings, with a heatmap generated by the whole hand, not by
several partial hand regions, as shown in the previous study.

Regarding the clinical determination of BA in the normal,
advanced, and delayed groups, our study and Larson [19] both
found that the chi-square test showed no difference between AI
and human clinical determinations of BA. However, further
analysis of kappa values indicated no high agreement (kappa
0.714) between AI and humans. This result questions the per-
formance of AI in BA diagnosis. Moreover, USAm tested on
external data showed the worst agreement between AI and
humans, with the broadest limit on the Bland–Altman figure
and lowest kappa values (0.53). This result further reflects the
generalization problem when AI faces external and new data.

The effects of patients, institutions, and radiologists on AI
performance were also assessed. We observed several biases
between AI and radiologists; these biases include children’s
sex and age, institutions, and radiologists. Apparently, the data
biases mentioned above may cause variable AI performance
by the three BA models and disagreement in BA diagnosis
between AI and radiologists.

As the GP atlas shows, males and females of the same age
have different BA atlases. Children of the same age have differ-
ent characteristics of the BA atlas, and the same characteristics
may belong to different ages. Lee et al found that a higher level
of MAD errors is seen for the female cohort in a sex-aware
model; this finding may suggest that a relatively higher growth
rate of the female cohort causes greater deviation from the nom-
inal growth trajectory for individual subjects [25]. Compared to

Table 2 Summary statistics of the difference between AI and reported BAs

Variable CHNm USAm JOIm

CHNt USAt CHNt USAt CHNt USAt

Mean (SD), year −0.04 (0.56) −0.31 (1.01) 0.24 (0.85) 0.06 (0.67) −0.05 (0.58) −0.01 (0.68)
MAD, y 0.42 0.85 0.70 0.52 0.44 0.52

Male, mean/median 0.46/0.33 0.93/0.83 0.86/0.75 0.51/0.39 0.48/0.33 0.50/0.31

Female, mean/median 0.40/0.33 0.76/0.66 0.62/0.50 0.52/0.42 0.43/0.33 0.55/0.45

p values 0.363 < .001* < .001* 0.262 0.375 0.018*

RMSE, year 0.56 1.05 0.88 0.67 0.58 0.68

Male 0.64 1.13 1.05 0.67 0.64 0.67

Female 0.51 0.95 0.78 0.67 0.55 0.70
#Accuracy within 0.5 years,% 71.19 34.15 46.63 59.47 69.58 57.64

Male 57.80 29.34 33.26 60.7 59.17 60.07

Female 72.82 39.88 50.80 58.68 69.74 54.75
#Accuracy within 1 year, % 94.06 65.09 76.16 85.75 92.30 85.94

Male 88.30 60.07 61.01 85.76 86.47 86.98

Female 95.69 71.07 82.29 85.74 94.10 84.71
#Accuracy within 2 years, % 99.52 95.47 97.59 99.53 99.92 99.43

Male 98.62 94.10 94.50 99.48 99.08 99.48

Female 99.63 97.11 97.79 99.59 99.63 99.28

*It means significant difference of MAD values in male and female with Mann–Whitney U test
# Accuracy: percentage of difference between AI BA and report BA

SD standard deviation, MAD mean absolute difference
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Lee’s finding, our results are varied. We observed a significant
difference in MAD values between males and females for the
three test datasets (CHNm-USAt, USAm-CHNt, and JOIm-

USAt). These results are shown in Table 2 in the results section
(“*” means p < .05). A lower MAD indicates higher AI perfor-
mance on the females of CHNm-USAt, the females of USAm-

Fig. 6 Samples of hand radiograph (row 1), heatmap (row 2), standard
deviation (SD) value (row 3), and variation value map (row 4) of 5 years,
8 years, 14 years, and 18 years in males. These attention heatmaps show
the AI vision. For younger children, such as the 5-year-old male group,

the heatmap focusedmore on phalanxes, but radiologists focusedmore on
carpals according to the GP atlas. For older children, such as the 14-year-
old male group, the heatmap focused more on carpals, but radiologists
focused more on the metacarpal and radius

Table 3 The clinical
classifications of bone age
diagnosis by using CHNt (test
dataset from China, N=1246) for
three models and radiology
reports

Classifications Radiology report CHNm-
CHNt

USAm-
CHNt

JOIm-
CHNt

Advanced 149 117 144 118

Normal 919 955 986 954

Delayed 178 174 116 174

p values# / .10 < .001 .12

# The difference of the clinical classifications between each AI model and report with X2 test
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CHNt, and the males of JOIm-USAt. A higher MAD indicates
lower performance on the males of CHNm-USAt, the males of
USAm-CHNt, and the females of JOIm-USAt. The capability of
AI performance is not consistent with the sex classification.

Theworse performance of BAmodels with external validation
implies that the AI model is not fitted across different sites [9].
This institutional bias is due mainly to the different physical char-
acteristics of the population from different institutions. For exam-
ple, some studies demonstrated the application of the GP atlas to
assess bone age in children of diverse ethnicities [26] and indicat-
ed cross-racial growth differences between Asian andWhite chil-
dren [27]. Our results indicated better validation in internal
datasets but poor validation across “institutions,”mainly because
of the different populations. Our JOIm implemented with com-
bined data from China and America showed better performance.
Mutusa et al joined private and public data and built a BA model
[24] and an increasing number of datasets from different institu-
tions to solve the generalization problem across institutions.

Our results also showed larger differences between AI and
radiology reports in the abnormal BA group than in the normal
BA group possibly because skeletal maturation inconsis-
tencies in carpals and tubular bones in disease conditions
make interpreting BA with reference to the GP atlas, which
was based on a typical child’s bone structure, more difficult.
These conditions include growth hormone deficiency [28],
obesity [29], and chronic renal insufficiency [30].

Our study has three limitations. First, the population distribu-
tion in this study is a limitation and challenge. The distribution of
males and females was not even, nor was the age distribution.
For example, the chronological ages of the CHN training dataset
showed an approximate Gaussian distribution. The 10-year-old
population accounted for 18.5% andwas the peak. However, the
numbers of younger and older children in this dataset were

lower. This age distribution would affect the accuracy of the
model. Second, the “labeling rule” is another limitation of our
study. The test data CHNt (n = 1246) were labeled by ten senior
pediatric radiologists. The interobserver variability would be a
limitation. This variation could be decreased by averaging two or
more reads. In our study, 69 disputed data were rerated, and the
average was closer to AI than to either of the reads. This finding
indicates that rerating the BA of radiographs may help improve
the AI determination of BAs. The result is supported by Van
Rijn [3] and Mutasa [24]. Third, we think the clinical determi-
nation of bone age may be a limitation and value in this study.
The human–machine comparative performance aspect of this
study was presented in terms of not only the MAD value but
also the classification of child development. The clinical deter-
mination of bone age is based only on the BA value from the
wrist and hand radiographs, chronological age, and SD value
from Brush data. More clinical information from pediatricians
is needed to evaluate pediatric growth conditions.

In the future, our study will focus on assessing pediatric
growth conditions, not just bone age assessments. Because pe-
diatric growth conditions are not assessed just by bone age,
some clinical history and lab data are very useful.
Classification of BA diagnosis was made only by Brush data
and radiology reports, which may not be accurate for assessing
child development without clinical data and other physical ex-
aminations. The data science Venn diagram by Drew Conway
[31] indicated that there was a danger zone when big data were
mined by using domain knowledge and hacking skills. Our
future study will focus on the collection of clinical data of BA
diagnosis and visual saliency maps to provide “explicability”
for AI to improve the accuracy of BA prediction.

The deep learningmodels outperformed external validation
in predicting BA on both internal and joint datasets. However,

Table 4 The kappa values of
clinical classifications of bone age
diagnosis of CHNt (test dataset
from China, N = 1246) for three
models and radiology reports

Deep learning BA models Radiology report BA Kappa value (95% CI) p value

Advanced Normal Delayed

CHNm-CHNt 0.714 (0.671–0.757) < .001
Advanced, no. (%) 99 (7.95) 18 (1.44) 0

Normal, no. (%) 50 (4.01) 865 (69.42) 40 (3.21)

Delayed, no. (%) 0 36 (2.89) 138 (11.08)

USAm-CHNt 0.530 (0.477–0.583) < .001
Advanced, no. (%) 96 (7.78) 48 (3.85) 0

Normal, no. (%) 52 (4.17) 839 (67.34) 95 (7.62)

Delayed, no. (%) 1 (0.08) 32 (2.57) 83 (6.66)

JOIm-CHNt 0.716 (0.673–0.759) < .001

Advanced, no. (%) 99 (7.95) 19 (1.52) 0

Normal, no. (%) 50 (4.01) 865 (69.42) 39 (3.13)

Delayed, no. (%) 0 35 (2.81) 139 (11.16)

CI confidence interval
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the AI models’ clinical determinations of bone age were not in
high agreement with the clinical determinations by radiolo-
gists. Several factors, including patients’ sex and age, institu-
tions, and radiologists, contributed to the bias of AI perfor-
mance. The heatmaps of bone age were useful in clarifying
how AI made decisions.
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