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Abstract
Objectives To establish and validate a radiomics model based on multiparametric magnetic resonance imaging (MRI), and to
predict microsatellite instability (MSI) status in rectal cancer patients.
Methods A total of 199 patients with pathologically confirmed rectal cancer were included. The MSI status was confirmed by
immunohistochemistry (IHC) staining. Clinical factors and laboratory data associated with MSI status were analyzed. The
imaging data of 100 patients from one of the hospitals were used as the training set. The remaining 99 patients from the other
two hospitals were used as the external validation set. The regions of interest (ROIs) were delineated from T1-weighted imaging
(T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and contrast-enhanced T1WI (CE-T1WI) sequence
to extract the radiomics features. The Tree-based approach was used for feature selection. The models were constructed based on
the four single sequences and a combination of the four sequences using the random forest (RF) algorithm. The external
validation set was used to verify the generalization ability of each model. The receiver operating characteristic (ROC) curves
and the area under the curve (AUC) were plotted to evaluate and compare the predictive performance of each model.
Results In the four single-series models, the CE-T1WI model performed the best. The AUCs of the T1WI, T2WI, DWI, and CE-
T1WI prediction models in the training set were 0.74, 0.71, 0.71, and 0.78, respectively, while in the external validation set, the
corresponding AUCs were 0.67, 0.66, 0.70, and 0.77. The prediction and generalization performance of the combined model of
multi-sequences was comparable to that of the CE-T1WI model and it was better than that of the remaining three single-series
models, with AUC values of 0.78 and 0.78 in the training and validation sets, respectively.
Conclusion The established radiomics models based on CE-T1WI or multiparametric MRI have similar predictive performance.
They have the potential to predict MSI status in rectal cancer patients.
Key Points
• A radiomics model for the prediction of MSI status in patients with rectal cancer was established and validated using external
validation.

• The models based on CE-T1WI or multiparametric MRI have better predictive performance than those based on single
unenhanced sequence images.
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• The radiomics model has the potential to suggest MSI status in rectal cancer patients; however, it is not yet a substitute for
histological confirmation.
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Abbreviations
AUC Area under the curve
CA199 Carbohydrate antigen-199
CEA Carcinoembryonic antigen
CE-T1WI Contrast-enhanced T1WI
CRC Colorectal cancer
DWI Diffusion-weighted imaging
IHC Immunohistochemistry
MRI Magnetic resonance imaging
MSI Microsatellite instability
MSI-H MSI high
MS-L/S MS-low/stable
NCCN National Comprehensive Cancer Network
RF Random forest
ROC Receiver operating characteristic
ROI Regions of interest
T1WI T1-weighted imaging
T2WI T2-weighted imaging

Introduction

According to 2021 statistics, colorectal cancer (CRC) is the
third most common cancer and is the third leading cause of
death among all types of cancer, accounting for about 9% of
total cancer mortality in men and 8% in women [1].
Microsatellite instability (MSI) status offers a predictive value
in response to adjuvant chemotherapy and overall prognosis in
CRC cancer [2, 3]. MSI high (MSI-H) colorectal cancer has a
better prognosis, in part because it is more likely to benefit
from immunotherapy. The National Comprehensive Cancer
Network (NCCN) guidelines recommend MSI testing in all
CRC patients [4].

MSI status is usually determined by pathological examina-
tion of tumor samples. However, the heterogeneity of MSI
status within the tumor tissue or between different sites of the
tumor, as well as the heterogeneity during different stages of
the tumor treatment process, leads to limitations in histological
examination methods. Furthermore, histological evaluation of
MSI status is rather complex and may not be achieved in some
centers without delay, including the transfer of samples to a
specialized center. Around 2% of rectal tumors are MSI-H [5].
It might be helpful to develop a relatively non-invasive and
convenient surrogate biomarker to predict MSI status.

Radiomics studies in rectal cancer, using magnetic reso-
nance imaging (MRI) mainly reported about the prediction
of treatment efficacy [6, 7], tumor stage [8], tumor metastasis

[9, 10], and patient survival [11]. There are few MRI-based
radiomics reports predicting MSI status in rectal cancer [12,
13]. These studies were conducted in single centers and lacked
external validation. The superiority of the multi-sequence
MRI in the prediction of MSI status in CRC patients remains
to be confirmed. Therefore, the aim of our study was to de-
velop models based on a single sequence and multiple MRI
sequences and to evaluate the generalizability using external
validation.

Materials and methods

Patients

From May 2017 to May 2020, a total of 100 rectal cancer
patients from hospital I were enrolled as the training dataset
and 99 patients from hospital II and hospital III enrolled as the
external verification dataset in our study. The inclusion criteria
were as follows: (1) histopathological diagnosis of rectal ade-
nocarcinoma; (2) absence of any type of anti-cancer treat-
ments before MRI examination; (3) time interval of less than
one week between MRI examination and surgery; (4) com-
plete MRI examination sequences, including T1WI, T2WI,
DWI, and CE-T1WI, in particular, DWI sequences with same
or similar b values; (5) available MSI status as confirmed by
IHC staining. The exclusion criteria were as follows: (1) in-
complete clinical data; (2) insufficient MRI image quality or
incomplete sequences; (3) lesions whose identification was
difficult on MRI images.

Clinical data, including age, gender, location of the tumor
(upper, middle, and low), carcinoembryonic antigen (CEA)
(normal or abnormal), and carbohydrate antigen-199
(CA199) status (normal or abnormal), were recorded.

MSI status assessment

TheMSI status was confirmed by the expression levels of four
MMR proteins, namely MLH1, MSH2, MSH6, and PMS2,
which were identified by IHC staining. Specimens were fixed
by formaldehyde, and they were paraffin-embedded and rou-
tinely stained with hematoxylin-eosin (HE). The normal intes-
tinal mucosa and inflammatory cells present in each section
were used as internal controls to interpret the IHC staining
results. The results were read and confirmed by two experi-
enced pathologists specializing in CRC diagnosis for 10 years.
Based on the expression of MMR proteins, the patients were
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divided into the following two groups: the MS-low/stable
(MS-L/S) group (positive staining of four MMR proteins)
and the MSI-H group (any one of the MMR proteins was
negative).

MRI protocol, preprocessing, and segmentation

MRI protocol

All MRI examinations on the enrolled patients were perform-
ed using a 1.5-T scanner (Optima or Signa, GE Medical
Systems). The imaging sequences included fast spin echo
T1-weighted sequence, T2-weighted sequence, DWI, and
contrast enhancement. Imaging acquisitions of the sequences
used in the research are described in Appendix E1.

Tumor segmentation

The Dr. Wise Multimodal Research Platform (https://keyan.
deepwise.com,V1.6.2) (Beijing Deepwise & League of PHD
Technology Co., Ltd.) was used for radiomics analysis, which
included image annotation, feature extraction and selection,
and model construction. Among them, the feature extraction
module was implemented with the open-source PyRadiomics
library.

(https://github.com/Radiomics/pyradiomics). The
workflow of the radiomics model construction and
validation is shown in Fig. 1.

All images were processed in the original DICOM format
and transferred to a post-processing workstation, where two
experienced abdominal radiologists manually annotated the
lesion in the original image to obtain a 3D volumetric map
of the ROI for feature extraction and quantification. Tumors
were delineated along the border of the lesion in the images of
each sequence (Fig. 2), covering the surrounding burrs while
excluding the bowel contents and adjacent mesenteric fat tis-
sue, as well as the non-invaded rectal wall. Both radiologists
were blinded to the MSI status. A discrepancy was then re-
solved by discussion and consensus. Additionally, a total of
30 patients were randomly selected to evaluate the intra-reader
and inter-reader agreement. Reader 1 performed the segmen-
tation of the 30 tumors twice with a 1-month interval. Reader
2 performed the segmentation of the 30 tumor features once.
Features with an inter-class correlation coefficient > 0.75 and
an intra-reader correlation coefficient > 0.75 were considered
to be satisfactory agreement and then were selected for further
analysis.

Feature extraction

For images with different resolutions, resampling was per-
formed for image pre-processing using B-spline interpolation
and all images were resampled to the same resolution [1]. The

image gray-scale values were normalized. The normalization
procedure was based on the following mathematical formula:

f xð Þ ¼ s x−μ xð Þ½ �
σ xð Þ ;

where f(x) is the normalized image density, x is the original
image density, μ(x) is the mean image density value, σ(x) is
the SD of image density, and s is the scaling factor, which was
100 in this study. The absolute gray-level discretization with
fixed bin size (FBS) was set to 5 as previous studies suggested
[14].

To emphasize the imaging characteristics, image filters
such as log (Laplacian of Gaussian), gradient, and lbp-2d/3d,
and four common point-level transforms were applied prior to
feature extraction. In addition, wavelet decomposition was
applied at each channel for images to obtain all possible com-
binations in high-pass or low-pass filters (LLH, LHL, LHH,
HLL, HLH, HHL, HHH, LLL). The radiomics features of
each sequence image were extracted, and they included the
following features: first-order features based on the pixel
values of the images, shape features describing the morphol-
ogy of the tumor, and a set of features describing the internal
and surface textures of the lesion, Gray Level Co-occurrence
Matrix (GLCM), Gray Level Run Length Matrix (GLRLM),
Gray Level Zone Size Matrix (GLSZM), and Gray Level
Dependence Matrix (GLDM). A total of 6420 radiomics fea-
tures were extracted for each region of interest (ROI) in all the
sequences and the z-score was normalized. The clinical vari-
ables (age, gender, tumor location, CEA status, and CA19-9
status) were subjected to statistical tests.

Dimensionality reduction and establishment of the
model

Feature reduction, model construction, and external validation
of the model were conducted based on a single sequence,
including T1WI, T2WI, DWI, and CE-T1WI, and combined
multiple sequences. Feature correlation analysis was first per-
formed based on Pearson correlation analysis with a feature
correlation threshold of 0.9. When the linear correlation coef-
ficient between any two independent variables in the training
set was greater than this threshold, one of the features was
removed to alleviate redundancy between features. Priority
was given to retaining the features with a higher linear corre-
lation coefficient with the dependent variable. The tree-based
approach was used for feature selection, where a tree model
was built on the training data and impurity-based feature im-
portance was used to select the important features and obtain
the optimal feature subset. A random forest (RF) classifier was
used to build the model. The internal validation of the model
was completed using a 10-fold cross-validation method,
which was a stronger method ofmodel validation as the model

1837European Radiology (2023) 33:1835–1843

https://keyan.deepwise.com
https://keyan.deepwise.com
https://github.com/Radiomics/pyradiomics


was trained on 100% of the data. The generalization ability of
the model was evaluated using an external validation set
consisting of two hospitals. The ROC curves were used to
assess model performance. The ROC curve is an indicator of
the rate of false positives and true positives for continuous
variables. The evaluation indicators mainly included AUC,
sensitivity, specificity, and accuracy. The AUC was the main
evaluation indicator of model performance.

Statistical analysis

SPSS (version 16.0) software was used for the statistical analysis
of clinical parameters. For quantitative variables, the independent-

samples t-test was used to detect differences between groups. For
categorical variables, the X2 test was used to detect differences
between groups. The Scikit learning package (version 0.20.3)
was used to build the classification models. The ROC curves
were plotted using Matplotlib (version 3.1.0).

Results

Clinical and laboratory characteristics

Based on the inclusion and exclusion criteria, 199 patients
from three institutions were included in the study. There were

Fig. 1 Schematic shows the
workflow for this study
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100 patients from hospital I who were used as the training set,
including 36 MSI-H and 64 MS-L/S CRC patients.
Furthermore, 99 patients from hospital II and hospital III were
used as the validation set, including 32MSI-H and 67MS-L/S
CRC patients. A total of 113 males and 86 females were in-
cluded (average age: 57 years; range: 25–90 years).

The clinical and histopathological characteristics of
rectal cancer patients included in our research are provid-
ed in Table 1. In both the training and external validation
datasets, patient age, tumor location, gender, CA199, and
CEA status were comparable between groups (p > 0.05).
The clinical characteristics and laboratory features did not

differ significantly between the training dataset and the
validation dataset (p > 0.05).

Predictive performance and external validation of the
radiomics signature

After feature dimensionality reduction, the 20most significant
features were selected to construct the combined model based
on multiple sequences of images. These included 6 features in
DWI, 4 features in T2WI, 5 features in T1WI, and 5 features in
CE-T1WI (Fig. 3).

Table 1 Characteristics of rectal
cancer patients in the MS-L/S
group and MSI-H group

Characteristics Training set p Validation set p

MSI-H
(n = 36)

MS-L/S
(n = 64)

MSI-H
(n = 32)

MS-L/S
(n = 67)

p*

Age (years, range) 29–82 26–92 0.125 27–79 32–89 0.326 0.426

Gender 1.000 0.574 0.727

Male 20 36 15 37

Female 16 28 17 30

Tumor location 0.738 0.295 0.280

Upper 14 30 13 24

Middle 12 19 11 16

Low 10 15 8 27

CA19-9 0.373 0.595 1.000

Normal 28 43 21 49

Abnormal 8 21 11 18

CEA 1.000 0.493 1.000

Normal 25 44 20 48

Abnormal 11 20 12 19

p* Statistic difference between the training dataset and the validation dataset

a b c d

e f g h

Fig. 2 Axial T1WI, T2WI, DWI, and CE-T1WI MR images of rectal cancer with MS-L/S type (a–d) and MSI-H type (e–h) and the corresponding
manually region of interest (ROI)
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In total, we obtained four models based on four independent
sequences and a combined model based on multiple sequences
images. The accuracy, sensitivity, specificity, and AUC value of
the training setwere listed in Tables 2 and 3. TheCE-T1WImodel
had a comparable AUC value of 0.78 to the multi-sequence mod-
el, whose AUC value was higher than that of the remaining single

sequence models (Table 3). After external validation, the AUC
values of the T1WImodel andT2WImodel decreased significant-
ly, from 0.74 to 0.67 and from 0.71 to 0.66, respectively, while the
AUC values of the remaining models did not show a significant
decline (Table 3). The ROC curves of the radiomics signature are
shown in Fig. 4.

Table 2 Performance of the radiomics model in the training set and external validation set

Metrics T1WI T2WI DWI CE-T1WI Multi-
sequences

Training set accuracy 0.75 0.73 0.68 0.73 0.72

sensitivity 0.53 0.42 0.47 0.53 0.44

specificity 0.88 0.91 0.80 0.84 0.88

External validation set accuracy 0.68 0.70 0.62 0.80 0.75

sensitivity 0.34 0.28 0.47 0.56 0.41

specificity 0.84 0.90 0.87 0.91 0.91

Table 3 The AUCs of the models
in the training set and validation
set

Sequences AUC

Training set Validation set

T1WI 0.74 (95% CI, 0.6419–0.8473) 0.67 (95% CI, 0.565–0.7801)

T2WI 0.71 (95% CI, 0.6023–0.8270) 0.66 (95% CI, 0.5427–0.7763)

DWI 0.71 (95% CI, 0.6019–0.8187) 0.70 (95% CI, 0.582–0.813)

CE-T1WI 0.78 (95% CI, 0.6852–0.8691) 0.77 (95% CI, 0.6673–0.8747)

Multi-sequences 0.78 (95% CI, 0.6801–0.8716) 0.78 (95% CI, 0.6798–0.8738)

Fig. 3 Plot of feature importance F1: shape_Maximum2DDiameterSlice-
CE-T1WI, F2: shape_MinorAxisLength-DWI, F3: shape_
MinorAxisLength- CE-T1WI, F4: glrlm_GrayLevelNonUniformity-
T2WI, F5: shape_Elongation-DWI, F6: gldm_DependenceEntropy-
T1WI, F7: glcm_Idmn-T1WI, F8:original_glcm_Imc2-DWI, F9: glrlm_
G r a y L e v e l N o n U n i f o r m i t y - T 1 W I , F 1 0 : g l d m _
LargeDependenceHighGrayLevelEmphasis-T2WI, F11: gldm_
SmallDependenceLowGrayLevelEmphasis-DWI, F12: shape_

M a x i m u m 2 D D i a m e t e r S l i c e - D W I , F 1 3 : s h a p e _
Maximum2DDiameterColumn-DWI, F14: shape_SurfaceVolumeRatio-
T1WI, F15:original_shape_Elongation- CE-T1WI, F16: gldm_
SmallDependenceLowGrayLevelEmphasis-T2WI, F17: shape_
M a x im um2DD i am e t e r R ow - CE - T 1W I , F 1 8 : s h a p e _
SurfaceVolumeRatio-T2WI, F19: glcm_ClusterShade- CE-T1WI, F20:
glcm_ClusterProminence-T1WI
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Discussion

In this study, the clinical and laboratory characteristics were
not included for model construction, as they were not statisti-
cally significant. Five radiomics models were established
based on T1WI, T2WI, DWI, CE-T1WI, and multiple se-
quences (Fig. 4). The prediction models based on CE-T1WI
and multiple sequences performed the best, with the highest
AUC values and no significant decrease in the external vali-
dation set, suggesting that the developed predictive models
were reliable and reproducible. They may be able to provide
complementary information to determine MSI status in pa-
tients with rectal cancer to guide targeted therapy.

In clinical practice, MSI testing has the following important
implications for CRC tumors: (1) MSI testing is used as a
screening method for Lynch syndrome [15]; (2) MSI is a
prognostic factor for stage II CRC [16]; (3) MSI is a predictor
of the efficacy of adjuvant chemotherapy for stage II CRC
[17]; (4) For the treatment of patients with stage IV CRC,
MSI status helps to screen the population for whom the im-
mune checkpoint inhibitor therapy is indicated. But it is im-
portant to note that there is a difference in MSI status between
the colon and the rectum.

The frequency of MSI-H in a statistically linear fashion
from the rectum to the ascending colon [18]. Given the low
incidence of MSI rectal cancers, it is a challenge to study the
effect of MSI on rectal cancer. Studies with a limited sample
size predominate the literature. In Hasan et al’s study, only 8%
of rectal cancers had their MSI status determined which may
result in the selection bias issue, perhaps testing was reserved
for cases that did not respond well to conventional chemother-
apy, or perhaps it was only routinely being conducted at aca-
demic centers [3]. MSI has been consistently associated with
both improved survival in colon cancer and decreased survival
in rectal cancer [19, 20]. Locally advanced MSI rectal cancer
was significantly associated with lower rates of pCR in re-
sponse to neoadjuvant chemoradiotherapy [3]. Previous stud-
ies have shown the value of a CT image–based model for
identifying the MSI status of CRC [21, 22]. It is well-known

that MRI has a higher soft tissue resolution compared to CT,
and it is the preferred imaging modality for rectal cancer [23].
It already has a key role in triaging patients for pre-operative
chemoradiotherapy [24, 25]. it may be used as an imaging
biomarker of MSI status.

As each sequence has a different role, it is difficult to fully
characterize a tumor by relying on a single sequence alone.
T1WI and T2WI provide basic morphological features of the
tumor, while the inhomogeneity of DWI images reflects tumor
heterogeneity [23, 26, 27]. Previous studies were based on
only one or two non-enhanced sequences of MRI, whereas
our research included all sequences of rectal MRI in the study.
Compared to non-enhanced sequences, the model based on
CE-T1WI was able to obtain an optimal predictive value com-
pared to that of the model based on multiparametric images,
with better generalization performance. This may be related to
the histopathological characteristics of MSI-H tumors. MSI-H
tumors are usually larger in size; tend to have mixed morpho-
logical features of glandular, mucinous, and solid compo-
nents; and have a higher microvascular density [28, 29]. The
enhancement sequence reflects not only the differences in tu-
mor perfusion but also the differences in pixels in the mucin-
ous and tumor cell-rich areas of the tumor.

The model developed by Zhang et al based on T2WI im-
ages accurately predicted the MSI status of rectal cancer with
an AUC of 0.895 [12]. Li et al combined T2WI and ADC
images to build the model, which had an AUC of 0.908
[30]. Although we expanded the sample size, the AUC values
in the training set were still lower than those in their study. In
our study, the AUC values of the model constructed based on
T1WI and T2WI sequence images showed a significant de-
crease in the external validation set, demonstrating poor repro-
ducibility of the model. Therefore, models derived from T1WI
and T2WI sequences that have not been validated for repeat-
ability may not be reliable. This is the problem of single-center
research. It is difficult to compare and reproduce these results
in studies at different institutions due to large differences in
scan equipment and parameter settings, image pre-processing,
the method of ROI segmentation, and the process of feature

Fig. 4 The ROC curves of the radiomics signature in the training set and the external validation set
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extraction [31]. The application of multi-center external vali-
dation provides a diverse range of imaging information to
better assess the reproducibility of the model.

However, it should be emphasized that the model in this
study has moderate predictive efficacy for the prediction of
MSI status, and it may complement, but not replace histolog-
ical MSI detection.

There are some limitations to our study. First, manual seg-
mentation of the ROI used in this study is highly subjective
and time-consuming, and further applications of semi-
automatic or automatic segmentation are needed. Second,
there were difficulties in outlining the lesions on T1WI, we
referred to the enhanced images to determine the extent of
lesions on T1WI. This may have implications for modelling,
but the T1WI sequence was still included in this study tomake
it more comprehensive. Third, in order to retain as much im-
age information as possible, all sequences were resampled to
1, 1, 1 mm isotropic voxels which may result in heavy inter-
polation. Fourth, although patients in our research were from
three institutions, the number of patients with MSI-H rectal
cancer was small; thus, the sample size of this study was
relatively small. Further investigation with a larger sample
size is still required.

In summary, the prediction and generalization abilities of
the models based on CE-T1WI and multiparametric images
are better than those of the model based on single unenhanced
sequence images, which were moderately associated with the
MSI mutation status of rectal cancer. However, this requires
further validation with more samples before it can be used in
clinical applications.
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