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Abstract
Objective To develop and validate a deep learning (DL) signature for predicting lymph node (LN) metastasis in patients with
lung adenocarcinoma.
Methods A total of 612 patients with pathologically-confirmed lung adenocarcinoma were retrospectively enrolled and were
randomly divided into training cohort (n = 489) and internal validation cohort (n = 123). Besides, 108 patients were enrolled and
constituted an independent test cohort (n = 108). Patients’ clinical characteristics and CT semantic features were collected. The
radiomics features were derived from contrast-enhanced CT images. The clinical-semantic model and radiomics signature were
built to predict LN metastasis. Furthermore, Swin Transformer was adopted to develop a DL signature predictive of LN
metastasis. Model performance was evaluated by area under the receiver operating characteristic curve (AUC), sensitivity,
specificity, calibration curve, and decision curve analysis. The comparisons of AUC were conducted by the DeLong test.
Results The proposed DL signature yielded an AUC of 0.948–0.961 across all three cohorts, significantly superior to both
clinical-semantic model and radiomics signature (all p < 0.05). The calibration curves show that DL signature predicted prob-
abilities fit well the actual observed probabilities of LN metastasis. DL signature gained a higher net benefit than both clinical-
semantic model and radiomics signature. The incorporation of radiomics signature or clinical-semantic risk predictors failed to
reveal an incremental value over the DL signature.
Conclusions The proposed DL signature based on Swin Transformer achieved a promising performance in predicting LN
metastasis and could confer important information in noninvasive mediastinal LN staging and individualized therapeutic options.
Key Points
• Accurate prediction for lymph node metastasis is crucial to formulate individualized therapeutic options for patients with lung
adenocarcinoma.

• The deep learning signature yielded an AUC of 0.948–0.961 across all three cohorts in predicting lymph node metastasis,
superior to both radiomics signature and clinical-semantic model.

• The incorporation of radiomics signature or clinical-semantic risk predictors into deep learning signature failed to reveal an
incremental value over deep learning signature.
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NSCLC Non-small cell lung cancer
OR Odds ratio
ROC Receiver operating characteristic curve

Introduction

Lung cancer remains the leading cause of cancer-related death
globally and imposes a huge burden on human health and eco-
nomics [1]. Anatomic lobectomy and systematic lymph node
(LN) dissection are the standard surgical procedure for resectable
non-small cell lung cancer (NSCLC). Sublobectomy could pre-
serve more lung tissue, reduce operation trauma, and improve
postoperative living quality. Multiple studies demonstrated that
sublobectomy could provide the therapeutic effect equivalent to
lobectomy for early-stage NSCLC patients [2–4]. Accurate pre-
surgical prediction of LN status is beneficial to choose segment-
ectomy or wedge resection for node-negative, early-stage pa-
tients. Especially, LN status assessment was impracticable dur-
ing wedge resection, so no LN metastasis should be confirmed
prior to operation [5, 6]. Additionally, for patients sched-
uled for radiotherapy, accurate mediastinal staging could
assist oncologists in designating irradiation fields, reducing
the risk of treatment failure due to occult LN metastasis.
Thus, accurate prediction of LN metastasis is crucial in infor-
ming therapeutic decision-making for NSCLC patients.

The endobronchial ultrasound-guided transbronchial nee-
dle aspiration or mediastinoscopy are generally used to path-
ologically confirm LN metastasis. However, these invasive
methods could not be routinely applied across the whole pop-
ulation due to complications such as airway bleeding, pneu-
mothorax, or nerve injury [7]. Pretreatment LN staging is non-
invasively evaluated through imaging modalities including
CT and PET/CT, but CT interpretation of LN short-axis di-
ameter has been proved to be implausible in diagnosing LN
metastasis [8]; For PET/CT, LN false positives caused by
inflammation and granuloma, as well as expensive fees, were
obstacles to a wide clinical application of this modality [9, 10].
Recently, several scholars developed CT-based radiomics pre-
dictors for LNmetastasis [11–14]. But the radiomics approach
needs handcraft segmentation of tumors, which is labor-
intensive and time-consuming. Furthermore, radiomics
features are highly susceptible to the heterogeneity of in-
terobserver segmentation due to subjective judgement and
professional skill [15].

Encouragingly, the emerging deep learning (DL) has
achieved inspiring marks in differentiating histological sub-
types [16, 17], evaluating therapeutic response [18–20], and
predicting outcomes for lung cancer [21, 22]. DL approach
could automatically extract representative information with-
out manual segmentation. A few scholars previously applied
the DL approach to predict LN metastasis for NSCLC.
However, their studies had relatively small sample sizes and

some important clinical variables such as smoking history and
carcinoembryonic antigen (CEA) status were not involved.
Besides, their constructed DLmodels did not perform remark-
ably well and still need to be improved [23–25]. Lung adeno-
carcinoma is the most common histological subtype of lung
cancer, accounting for nearly 60% of NSCLC [26]. This study
adopted a novel DL architecture named Swin Transformer to
develop and validate a DL signature predictive of mediastinal
LN invasion in patients with lung adenocarcinoma. We also
compared the predictive performance of DL with traditional
radiomics signature and clinical-semantic (CS) model based
on clinical characteristics and CT semantic features in risk
estimation of LN metastasis.

Methods and materials

Patients

This retrospective study was approved by the institutional
ethics committee and the requirement for informed consent
was waived. The patients undergoing radical surgical excision
and systematic lymphadenectomy from May 2014 to
September 2019 were retrospectively reviewed. We included
patients with (1) pathologically-confirmed primary lung ade-
nocarcinoma; (2) no presurgical radiotherapy or chemothera-
py; (3) the interval time from presurgical CT examination to
operation within 2 weeks. The exclusion criteria were as fol-
lows: (a) adenocarcinoma in situ, minimally invasive adeno-
carcinoma, and rare histological variants of lung adenocarci-
noma; (b) synchronous or metachronous tumors; (c) no thin-
section CT image or unsatisfactory CT image quality; (d) in-
complete clinicopathologic data; (e) histories of other cancers.
Finally, 612 patients were enrolled and then randomly divided
into training cohort (n = 489) and internal validation cohort
(n = 123) at a ratio of 4:1. Following the same eligibility
criteria, 108 eligible patients receiving surgical excision in
our institution from October 2019 to January 2021 were col-
lected to constitute an independent test cohort (n = 108). The
patient recruitment was shown in Fig. 1.

The clinicopathological characteristics including age, gender,
smoking history, pack-year and serum CEA status, histological
subtypes, Ki-67 labeling index (LI), and LN statuswere acquired
from electrical medical records. Histological grade is determined
by the prognostic classification of the predominant histological
subtype of lung adenocarcinoma [27, 28].

CT acquisition and semantic features interpretation

The patients underwent contrast-enhanced CT examination
using two multi-slice spiral CT scanners (GE Discovery CT
750 HD, TOSHIBA Aquilion One TSX-301A). The CT ac-
quisition parameters were revealed in Supplementary data.
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Blinded to clinicopathologic information, two radiologists
with experience of 8 years and 3 years independently assessed
CT semantic features in fixed lung window (width, 1600 HU;
level, −600 HU) and mediastinal window (width, 400 HU;
level, 40 HU). CT semantic features included location, affili-
ated lobe, tumor total diameter, tumor consolidation diameter,
consolidation-to-tumor ratio (CTR), spiculation, lobulation,
air bronchogram, plural attachment, and CT-reported LN
status. CTR was calculated with the following formula:
CTR (%) = tumor consolidation diameter /tumor total diame-
ter × 100 [5]. The definitions of CT semantic features were
detailed in Supplementary data. Cohen’s Kappa coefficient
and intraclass correlation coefficient (ICC) were used to eval-
uate the interobserver agreement for categorical variables and
continuous variables, respectively. Generally, the Kappa co-
efficient/ICC of 0–0.20 indicates a poor agreement;
0.21–0.40 fair agreement; 0.41–0.60 moderate agreement;
0.61–0.80 good agreement, > 0.80 excellent agreement. The
average for the continuous variable was calculated as the final
value. For categorical variables, the consensus was reached
through discussion if a disagreement occurred.

Radiomics signature development

Image segmentation was performed by two trained radiolo-
gists using open-source software of ITK-SNAP (version
3.8.0) as detailed in Supplementary data. Radiomics features
were extracted from delineated three-dimensional volume-of-
interest of tumors using PyRadiomics software (https://
pyradiomics.readthedocs.io/en/latest/index.html). Feature
selection and radiomics signature development were detailed
in Supplementary data.

DL signature development

We proposed a DL architecture called Swin Transformer to
develop a DL signature predictive of LN metastasis. The archi-
tecture of the Swin Transformer was depicted as detailed in
Fig. 2 and Supplementary data. In data preprocessing, we
placed a cubic bounding box on the largest slice of the tumor,
ensuring the entire tumor was completely involved within the
bounding box. The bounding boxes of images containing the
tumors on each CT slice were resampled to 224 × 224 pixels
by bilinear interpolation. The bounding boxes of images on
three adjacent CT slices were combined into a three-channel
image as the input of the DL model to generate the risk prob-
ability of LN metastasis. Specifically, to achieve a robust pre-
diction, all three-channel images of each tumor were fed into
the DL model, and the average risk probability of LN metas-
tasis was obtained as a DL signature. Transfer learning was
used to efficiently develop a Swin Transformermodel [29]: the
pretraining was performed in 1.28 million natural images from
the ImageNet dataset; Afterwards, the developed network was
finetuned in 17610 CT images of lung adenocarcinoma in the
training cohort. The original code of Swin Transformer is
available at https://github.com/microsoft/Swin-Transformer.
We implemented the neural network using PyTorch 1.4.1
library in Python 3.7.0 (https://pytorch.org).

Clinical-semantic model and combined model
construction

In the training cohort, the significant CS variables in univari-
ate analysis were selected. To avoid multicollinearity, the var-
iables with Spearman correlation coefficients greater than 0.7
were excluded. The remaining CS variables were incorporated

Fig. 1 The workflow diagram of
patient recruitment

1951European Radiology (2023) 33:1949–1962

https://pyradiomics.readthedocs.io/en/latest/index.html
https://pyradiomics.readthedocs.io/en/latest/index.html
https://github.com/microsoft/Swin-Transformer
https://pytorch.org


in multivariable logistic regression with forward stepwise se-
lection to determine the independent risk predictors and con-
struct the CS model. Noted that the pathological metrics were
recorded but removed from regression analysis due to the
inherent study design of preoperative prediction for LN status.
To explore the optimum prediction model, we construct three
combined models by integrating radiomics signature, DL sig-
nature, and both of themwith CSmodel, whichwere indicated
as CS-radiomics model, CS-DLmodel, and CS-radiomics-DL
model.

Statistical analysis

Statistical analysis was conducted using software of
MATLAB (MathWorks Inc.) and SPSS (IBM, ver. 26.0).
The continuous variables were tested for normality and homo-
geneity of variance using the Shapiro-Wilk test and Levene
test, respectively. The continuous variables were compared
using the Student’s t-test and ANOVA test, or Mann-
Whitney U test and Kruskal-Wallis test, as appropriate. The
categorical variables were compared using the chi-square test
or Fisher exact test, as appropriate. The correlation between
variables was assessed using the Spearman correlation
coefficient.

The receiver operating characteristic curve (ROC) was
depicted and the area under the curve (AUC) along with sen-
sitivity and specificity were calculated to quantify model per-
formance. The comparisons of AUC were conducted by the
DeLong test. The calibration curve and Hosmer-Lemeshow
test were used to evaluate the agreement of predicted

probabilities with actual observations. The decision curve ana-
lysis was depicted to exhibit clinical utility. Two-tailed p value
< 0.05 indicated a significant difference.

Results

The clinicopathological characteristics and semantic features
among the training cohort (n = 489), internal validation cohort
(n = 124), and independent test cohort (n = 108) were similarly
distributed as revealed in Table 1. Among the total of 720
patients, 359 (49.9%) were male (median age (interquartile):
60.0 (53, 65)) and 361 (50.1%) were female (median age
(interquartile): 59.0 (52.0, 65.0)). Totally, pathologically-
confirmed LN metastasis occurred in 199 (27.6%) out of
720 patients. Of them, there were 49 (24.6%), 143 (71.9%),
and 7 (3.5%) patients diagnosed with N1, N2, and N3 disease,
respectively. The negative LNs were pathologically con-
firmed to be inflammatory proliferation, tuberculous granulo-
ma, sarcoidosis, or normal nodal pathological structure.

Interobserver agreement assessment of semantic
features

The ICCs for tumor total diameter, tumor consolidation diam-
eter and CTR were 0.985 (95% confidence interval [CI]:
0.975, 0.990), 0.989 (95% CI: 0.979, 0.993), and 0.990
(95% CI: 0.988, 0.991), respectively, which were indicative
of excellent agreement. The disagreement numbers and per-
centages between two radiologists occurring for categorial

Fig. 2 The detailed architecture
of Swin Transformer for
prediction of lymph node (LN)
metastasis in
lung adenocarcinoma

1952 European Radiology (2023) 33:1949–1962



Table 1 The distribution of clinicopathological characteristics and semantic features across the training cohort, internal validation cohort, and
independent test cohort

Variable Training cohort Internal validation cohort Independent test cohort p value
(n = 489) (n = 123) (n = 108)

A. Clinical characteristics

Age* (year) 60.0 (52.5, 64.0) 59.0 (53.0, 66.0) 58.5 (51.3, 66.0) 0.712

Gender 0.277

Female 248 (50.7%) 66 (53.7%) 47 (43.5%)

Male 241 (49.3%) 57 (46.3%) 61 (56.5%)

Smoking history 0.541

Nonsmoker 308 (63.0%) 79 (64.2%) 64 (59.3%)

Former smoker 65 (13.3%) 21 (17.1%) 19 (17.6%)

Current smoker 116 (23.7%) 23 (18.7%) 25 (23.1%)

Pack-year 0.947

≤ 3 321 (65.7%) 80 (65.0%) 67 (62.0%)

4–40 119 (24.3%) 32 (26.0%) 29 (26.9%)

> 40 49 (10.0%) 11 (9.0%) 12 (11.1%)

CEA (ug/L) 0.416

≤ 5 370 (75.7%) 87 (70.7%) 84 (77.8%)

> 5 119 (24.3%) 36 (29.3%) 24 (22.2%)

B. Pathological characteristics

Histological grade 0.102

Low (LPA) 87 (17.8%) 19 (15.5%) 22 (20.4%)

Intermediate (APA + PPA) 339 (69.3%) 80 (65.0%) 78 (72.2%)

High (SPA + MPA) 63 (12.9%) 24 (19.5%) 8 (7.4%)

Ki-67 LI* (%) 10.0 (5.0, 30.0) 18.3 (10.0, 30.0) 10.0 (5.8, 20.0) 0.461

Ki-67 LI 0.101

< 10% 161 (32.9%) 30 (24.4%) 28 (25.9%)

≥ 10% 328 (67.1%) 93 (75.6%) 80 (74.1%)

Pathologically-confirmed LN status 0.761

Negative 356 (72.8%) 90 (73.2%) 75 (69.4%)

Positive 133 (27.2%) 33 (26.8%) 33 (30.6%)

C. Semantic features

Location 0.062

Central 102 (20.9%) 15 (12.2%) 17 (15.7%)

Peripheral 387 (79.1%) 108 (87.8%) 91 (84.3%)

Affiliated lobe 0.128

Upper lobe 292 (59.7%) 71 (57.7%) 53 (49.1%)

Middle/lower lobe 197 (40.3%) 52 (42.3%) 55 (50.9%)

Tumor total diameter* (mm) 24.0 (20.0, 31.0) 25.0 (19.0, 33.0) 25.0 (18.0, 32.0) 0.850

Tumor consolidation diameter* (mm) 22.0 (14.0, 29.0) 21.0 (14.0, 31.0) 23.0 (14.0, 29.8) 0.970

CTR* (%) 100.0 (68.2, 100.0) 100.0 (66.7, 100.0) 100.0 (73.5, 100.0) 0.891

CTR 0.964

0 18 (3.7%) 5 (4.1%) 4 (3.7%)

1–50% 39 (8.0%) 13 (10.6%) 8 (7.4%)

51–99% 145 (29.6%) 32 (26.0%) 32 (29.6%)

100% 287 (58.7%) 73 (59.3%) 64 (59.3%)

Presence of spiculation 366 (74.8%) 94 (76.4%) 82 (75.9%) 0.923

Presence of lobulation 472 (96.5%) 119 (96.7%) 104 (96.3%) 0.983

Presence of air bronchogram 228 (46.6%) 61 (49.6%) 48 (44.4%) 0.729

Presence of pleural attachment 153 (31.3%) 37 (30.1%) 27 (25.0%) 0.436
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variables were shown in Table 2. Cohen’s Kappa coefficients
for categorical variables also showed good agreement as de-
tailed in Table 2.

The development of radiomics signature and DL
signature

Totally, 1210 radiomics features were extracted and selected
as detailed in Supplementary data. Finally, an eighteen-feature
radiomics signature was generated by a linear combination of
the selected features weighted by their respective regression
coefficients as detailed in Supplementary data. The DL output
of the last layer of the Swin Transformer was obtained as the
DL signature.

Clinical-semantic model and combined model
construction

In Table 3, patients with CEA > 5 ug/L were prone to suffer
from LN metastasis (p < 0.001), but no association of age,

gender, smoking history, and pack-year with LN metastasis
was observed. LN metastasis was more common in patients
with intermediate- and high-grade lung adenocarcinoma
(p < 0.001); The Ki-67 LI in patients with LN metastasis
was higher than that in patients without LN metastasis
(p < 0.001). LN metastasis was more frequently found in
tumors with a larger total diameter and consolidation diame-
ter, higher CTR, spiculation, pleural attachment, and CT-
reported LN metastasis, and less common in tumors with air
bronchogram (all p < 0.001).

CEA, tumor total diameter, tumor consolidation diameter,
CTR, spiculation, air bronchogram, pleural attachment, and
CT-reported LN metastasis were the candidates to construct
the CS model. Tumor consolidation diameter was excluded
owing to a strong correlation with tumor total diameter as
revealed in Fig. 3 (r = 0.81, p < 0.001). Finally, CEA
> 5 ug/L (odds ratio [OR]: 2.758; 95% CI: 1.670, 4.555; p
< 0.001), CTR (OR: 1.062; 95% CI: 1.038, 1.086;
p < 0.001), air bronchogram (OR: 0.582; 95% CI: 0.355,
0.951; p = 0.031), pleural attachment (OR: 1.748; 95% CI:

Table 1 (continued)

Variable Training cohort Internal validation cohort Independent test cohort p value
(n = 489) (n = 123) (n = 108)

LN short-axis diameter* (mm) 8 (7, 9) 8 (7, 9) 8 (6, 9) 0.438

CT-reported LN status 0.441

Negative 408 (83.4%) 97 (78.9%) 91 (84.3%)

Positive 81 (16.6%) 26 (21.1%) 17 (15.7%)

Unless otherwise stated, data were presented as numbers (percentages) and compared using the Chi-square test or Fisher’s exact test
* Data were presented as medians (inter-quartiles) and compared using the Kolmogorov-Smirnov test.

CEA carcinoembryonic antigen, CTR consolidation-to-tumor ratio, LPA lepidic predominant adenocarcinoma, APA acinar predominant adenocarcino-
ma, PPA papillary predominant adenocarcinoma, SPA solid predominant adenocarcinoma, MPA micropapillary predominant adenocarcinoma, LI
labeling index, LN lymph node

Table 2 The interobserver
agreement of CT semantic
features for lung adenocarcinoma

CT semantic feature Disagreement Kappa value/ICC 95% CI

Location‡ 31 (4.3%) 0.857 0.808, 0.906

Affiliated lobe‡ 4 (0.6%) 0.989 0.977, 1.000

Tumor total diameter§ NA 0.985 0.975, 0.990

Tumor consolidation diameter§ NA 0.989 0.979, 0.993

CTR§ NA 0.990 0.988, 0.991

Spiculation‡ 41 (5.7%) 0.847 0.802, 0.892

Lobulation‡ 10 (1.4%) 0.826 0.720, 0.932

Air bronchogram‡ 49 (6.8%) 0.863 0.826, 0.900

Pleural attachment‡ 16 (2.2%) 0.947 0.922, 0.972

CT-reported LN metastasis‡ 13 (1.8%) 0.938 0.901, 0.975

§ ICC was calculated for the continuous variables
‡Cohen’s kappa coefficient was calculated for the categorical variables

Disagreement was presented as numbers (percentages)

ICC intraclass correlation coefficient,CTR consolidation-to-tumor ratio,CI interval confidence,NA not applicable
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Table 3 Univariate analysis of clinicopathological characteristics, semantic features, radiomics signature, and deep learning signature in training cohort

Variable LN metastasis No LN metastasis p value
(n = 133) (n = 356)

A. Clinical characteristics

Age* (year) 60.0 (53.0, 64.0) 59.0 (52.0, 65.0) 0.531

Gender 0.618

Female 65 (48.9%) 183 (51.4%)

Male 68 (51.1%) 173 (48.6%)

Smoking history 0.418

Nonsmoker 80 (60.2%) 228 (64.0%)

Former smoker 16 (12.0%) 49 (13.8%)

Current smoker 37 (27.8%) 79 (22.2%)

Pack-year 0.885

≤ 3 85 (63.9%) 236 (66.3%)

4–40 34 (25.6%) 85 (23.9%)

> 40 14 (10.5%) 35(9.8%)

CEA (ug/L) < 0.001

≤ 5 75 (56.4%) 295 (82.9%)

> 5 58 (43.6%) 61 (17.1%)

B. Pathological characteristics

Histological grade < 0.001

Low 3 (2.3%) 84 (23.6%)

Intermediate 106 (79.7%) 233 (65.4%)

High 24 (18.0%) 39 (11.0%)

Ki-67 LI* (%) 20.0 (10.0, 30.0) 10.0 (5.0, 20.0) < 0.001

Ki-67 LI < 0.001

< 10% 12 (9.0%) 149 (41.9%)

≥ 10% 121 (91.0%) 207 (58.1%)

C. Semantic features

Location 0.069

Central 35 (26.3%) 67 (18.8%)

Peripheral 98 (73.7%) 289 (81.2%)

Affiliated lobe 0.458

Upper lobe 83 (62.4%) 209 (58.7%)

Middle/lower lobe 50 (37.6%) 147 (41.3%)

Tumor total diameter* (mm) 28.0 (22.0, 33.0) 23.0 (19.0, 30.0) < 0.001

Tumor consolidation diameter* (mm) 27.0 (21.5, 32.0) 19.0 (12.0, 26.0) < 0.001

CTR* (%) 100.0 (100.0, 100.0) 87.2 (57.2, 100.0) < 0.001

CTR < 0.001

0 0 18 (5.0%)

1–50% 0 39 (11.0%)

51–99% 15 (11.3%) 130 (36.5%)

100% 118 (88.7%) 169 (47.5%)

Presence of spiculation 117 (88.0%) 249 (69.9%) < 0.001

Presence of lobulation 129 (97.0%) 343 (96.3%) 0.729

Presence of air bronchogram 42 (31.6%) 186 (52.2%) < 0.001

Presence of pleural attachment 60 (45.1%) 93 (26.1%) < 0.001

LN short-axis diameter* (mm) 9 (8, 13.5) 8 (7, 9) < 0.001

CT-reported LN status < 0.001

Negative 88 (66.2%) 320 (89.9%)

Positive 45 (33.8%) 36 (10.1%)
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1.074, 2.844; p = 0.025), and CT-reported LN status (OR:
4.511; 95% CI: 2.495, 8.155; p < 0.001) as the independent risk
predictors were incorporated to construct CSmodel. Accordingly,
the combined CS-Radiomics model, CS-DL model, and CS-
radiomics-DL model were constructed as revealed in Table 4.

Model performance evaluation

There were 68 patients occurring the LN metastasis out of all
124 patients with CT-reported LN metastasis. The other pa-
tients without LNmetastasis were pathologically diagnosed to
be inflammatory proliferative diseases, tuberculous granulo-
ma, sarcoidosis, or normal pathological structure. In Table 5,
CT-reported LN status alone performed far inferior to CS model
in all three cohorts (AUC: 0.619 vs. 0.823 for training cohort,

p < 0.001; 0.604 vs. 0.781 for internal validation cohort,
p = 0.026; 0.627 vs. 0.853 for independent test cohort,
p< 0.001). The sensitivity of CT-reported LN status ranged from
0.303 to 0.394, while the specificity ranged from 0.844 to 0.907
in diagnosing LN metastasis across three cohorts.

TheAUC for CSmodel was 0.823 (95%CI: 0.785, 0.861) in
training cohort, 0.781 (95% CI: 0.693, 0.869) in internal vali-
dation cohort, and 0.853 (95%CI: 0.780, 0.926) in independent
test cohort. The AUC for radiomics signature was 0.884 (95%
CI: 0.853, 0.915) in training cohort, 0.863 (95% CI: 0.787,
0.939) in internal validation cohort, and 0.886 (95% CI:
0.826, 0.946) in independent test cohort.

Encouragingly, DL signature achieved significantly higher
AUC than CS model and radiomics signature in training co-
hort (0.961 vs. 0.823, p < 0.001; 0.961 vs. 0.884, p < 0.001),

Table 3 (continued)

Variable LN metastasis No LN metastasis p value
(n = 133) (n = 356)

Radiomic signature 1.430 (0.421, 2.856) −1.486 (−2.670, −0.287) < 0.001

Deep learning signature 0.602 (0.544, 0.677) 0.280 (0.216, 0.356) < 0.001

Unless otherwise stated, data were presented as numbers (percentages) and compared using the chi-square test or Fisher’s exact test
* Data were presented as medians (inter-quartiles) and compared using the Mann-Whitney U test

CEA carcinoembryonic antigen, LI labeling index, CTR consolidation-to-tumor ratio, LN lymph node

Fig. 3 The pairwise correlation
evaluation of clinical-semantic
(CS) candidate variables,
radiomics signature and deep
learning (DL) signature using
Spearman correlation coefficient
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internal validation cohort (0.948 vs. 0.781, p < 0.001; 0.948
vs. 0.863, p = 0.019), and independent test cohort (0.960 vs.
0.853, p = 0.002; 0.960 vs. 0.886, p = 0.029), respectively
(Fig. 4A–C). The sensitivity and specificity of DL signature
in predicting LN metastasis ranged from 0.758 to 0.910 and
0.907 to 0.987 across all three cohorts, respectively.

The Hosmer-Lemeshow tests (p = 0.267 for the training
cohort, p = 0.790 for the internal validation cohort, and
p = 0.754 for the independent test cohort) and the calibration
curves revealed DL signature predicted probabilities had a
good agreement with the actual observed probabilities in all
three cohorts (Fig. 4E–G). From decision curve analyses, the

Table 4 Multivariable logistic regression analyses of the CS model and combined models for predicting lymph node metastasis

Variable CS model CS-radiomics model CS-DL model CS-radiomics-DL model

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

CEA > 5 ug/L 2.758 (1.670, 4.555) < 0.001 3.876 (2.121, 7.081) < 0.001 2.690 (1.225, 5.911) 0.014 3.275 (1.402, 7.653) 0.006

CTR 1.062 (1.038, 1.086) < 0.001 1.036 (1.009, 1.063) 0.007 NA 0.195 NA 0.578

Air bronchogram 0.582 (0.355, 0.951) 0.031 NA 0.054 NA 0.211 NA 0.180

Pleural attachment 1.748 (1.074, 2.844) 0.025 NA 0.563 NA 0.361 NA 0.961

CT-reported LN
metastasis

4.511 (2.495, 8.155) < 0.001 4.153 (2.096, 8.226) < 0.001 4.202 (1.575, 11.213) 0.004 3.304 (1.166, 9.363) 0.025

Radiomics signature NA NA 2.176 (1.809, 2.616) < 0.001 NA NA 1.607 (1.280, 2.018) < 0.001

DL signature × 10 NA NA NA NA 6.436 (4.499, 9.207) < 0.001 5.208 (3.588, 7.558) < 0.001

Noted that the results were based on the training cohort. CEA carcinoembryonic antigen, CTR consolidation-to-tumor ratio, DL deep learning, CS
clinical-semantic, OR odds ratio, CI confidence interval, NA not applicable

Table 5 The model performances
in the training cohort, internal
validation cohort and independent
test cohort

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Training cohort

CT-reported LN status 0.619 (0.559, 0.678) 0.338 (0.263, 0.422) 0.899 (0.863, 0.926)

CS model 0.823 (0.785, 0.861) 0.910 (0.848, 0.953) 0.573 (0.520, 0.625)

Radiomics signature 0.884 (0.853, 0.915) 0.880 (0.812, 0.930) 0.758 (0.711, 0.802)

DL signature 0.961 (0.942, 0.979) 0.910 (0.848, 0.953) 0.907 (0.872, 0.935)

CS-radiomics model 0.914 (0.888, 0.939) 0.910 (0.848, 0.953) 0.801 (0.755, 0.841)

CS-DL model 0.965 (0.948, 0.983) 0.865 (0.795, 0.918) 0.961 (0.935, 0.978)

CS-radiomics-DL model 0.974 (0.959, 0.988) 0.910 (0.848, 0.953) 0.938 (0.908, 0.961)

Internal validation cohort

CT-reported LN status 0.604 (0.486, 0.722) 0.394 (0.222, 0.534) 0.844 (0.756, 0.905)

CS model 0.781 (0.693, 0.869) 0.697 (0.513, 0.844) 0.767 (0.666, 0.849)

Radiomics signature 0.863 (0.787, 0.939) 0.818 (0.645, 0.930) 0.833 (0.740, 0.904)

DL signature 0.948 (0.910, 0.987) 0.758 (0.577, 0.889) 0.967 (0.906, 0.993)

CS-radiomics model 0.882 (0.811, 0.954) 0.848 (0.681, 0.949) 0.844 (0.753, 0.912)

CS-DL model 0.958 (0.921, 0.995) 0.848 (0.681, 0.949) 0.978 (0.922, 0.997)

CS-radiomics-DL model 0.958 (0.920, 0.996) 0.848 (0.681, 0.949) 0.989 (0.940, 1.000)

Independent test cohort

CT-reported LN status 0.627 (0.505, 0.748) 0.303 (0.197, 0.504) 0.907 (0.836, 0.963)

CS model 0.853 (0.780, 0.926) 0.697 (0.513, 0.844) 0.827 (0.722, 0.904)

Radiomics signature 0.886 (0.826, 0.946) 0.970 (0.842, 0.999) 0.693 (0.576, 0.795)

DL signature 0.960 (0.922, 0.997) 0.818 (0.645, 0.930) 0.987 (0.928, 1.000)

CS-radiomics model 0.936 (0.893, 0.979) 0.879 (0.718, 0.966) 0.853 (0.753, 0.924)

CS-DL model 0.958 (0.918, 0.997) 0.848 (0.681, 0.949) 0.973 (0.907, 0.997)

CS-radiomics-DL model 0.969 (0.938, 1.000) 0.879 (0.718, 0.966) 0.947 (0.869, 0.985)

CS clinical-semantic,DL deep learning, AUC area under the receiver operating characteristic curve,CI confidence
interval
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DL signature could confer a higher net benefit in predicting
LN metastasis than the CS model and radiomics signature
across the threshold probability range of 0.2–1.0 (Fig. 5).

In the training cohort, the combined CS-radiomics model,
CS-DL model, and CS-radiomics-DL model achieved an
AUC of 0.914, 0.965, and 0.974, respectively. In the internal
validation cohort, the combined CS-radiomics model, CS-DL
model, and CS-radiomics-DL model achieved an AUC of
0.882, 0.958, and 0.958, respectively. In the independent test
cohort, the AUCs for the aforementioned models were 0.936,
0.958, and 0.969, respectively. Reasonably, the inclusion of
radiomics signature, DL signature, or both of them showed an
incremental value with respect to the CS model in all three
cohorts (all p < 0.05). In training cohort, CS-Radiomics-DL
model performed slightly superior to DL signature (0.974 vs.
0.961, p = 0.005), but AUCs for CS-DL model and DL sig-
nature were comparable (0.965 vs. 0.961, p = 0.107).
Furthermore, in internal validation cohort and independent
test cohort, no significant difference was observed between
the DL signature and three combined models (all p > 0.05);
in other words, the incorporation of CS risk predictors and

radiomics signature did not reveal a substantial improvement
in discriminative performance over DL signature.

Discussion

This study developed a DL signature predictive of invasive
mediastinal metastasis based on a novel Swin-Transformer
architecture, yielding an AUC of 0.961 (95% CI: 0.942,
0.979), 0.948 (95% CI: 0.910, 0.987), and 0.960 (95% CI:
0.922, 0.997) in the training cohort, internal validation cohort,
and independent test cohort, respectively. The proposed DL
signature exhibited superior predictive efficacy to the tradi-
tional CS model and radiomics signature. Furthermore, the
DL signature acquired a higher net benefit than both the CS
model and radiomics signature.

Currently, there is limited literature on adopting the DL
technique in presurgical prediction for LN staging in lung
cancer. Ran et al used VGG-6 to generate a DL signature
predictive of LN metastasis, which yielded an AUC of 0.812
in the external validation set [24]; Zhao et al presented a DL

Fig. 4 The performance evaluation of DL signature in predicting LN
metastasis. (A–C) The receiver operating characteristic curves of CS
model, radiomics signature and DL signature in training cohort (A),
internal validation cohort (B), and independent test cohort (C). Number
in parenthesis is the area under receiver operating characteristic curve.

(D–F) The calibration curves depicted the agreements between DL
signature predicted probabilities and actual observed probabilities of LN
metastasis in training cohort (D), internal validation cohort (E), and
independent test cohort (F)
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framework named DenseNet algorithm for risk estimation of
occult LN metastasis, resulting in an AUC of 0.880 [23]. Our
developed DL signature achieved anAUC ranging from 0.948
to 0.961 across all cohorts, far exceeding the previous DL
results. This remarkable capability may attribute to the state-
of-the-art Swin Transformer architecture serving as the back-
bone of our DL model, which was exploited by Liu and col-
leagues from Microsoft Research Asia in 2021 [30]. Swin
Transformer has two key strengths: hierarchical feature repre-
sentation and multi-head self-attention based on shifted

windows. This hierarchical architecture limits self-attention
computation to non-overlapping shifted windows and allows
cross-window connections, which can be flexibly applied in
modeling at various scales. The Swin Transformer has been
proved highly efficient in image classification, dense detec-
tion, and semantic segmentation [30].

For comparison with the DL signature, a radiomics signa-
ture was generated by a linear polynomial of eighteen selected
features. The AUC for radiomics signature ranged from 0.863
to 0.886 in this study, far inferior to that for DL signature in
the corresponding cohort. Radiomics technique relies strongly
on delicate delineation generally performed by trained radiol-
ogists, which overburdens clinical workload. Radiomics pro-
cessing involves several sequential steps including tumor seg-
mentation, feature extraction, feature selection, and model es-
tablishment, and the overall modeling performance depends
on the processing quality of each step. These qualities conse-
quently contribute to a disadvantage of confined generaliza-
tion capability and limited ability to leverage high-throughput
features in radiomics. DL is an end-to-end architecture, where
models are adjusted and finally converged by reversely trans-
mitting the errors between predicted results and real observa-
tions in each layer. Aside from that, the DL technique is char-
acterized by automatic representative data acquisition, free
from clinical index collection, semantic feature interpretation,
and manual annotation, and therefore is readily accepted in
clinical workflow [31–33].

To construct a CS model predictive of LN metastasis, we
modestly considered the potential clinical variables and CT
semantic features. As a cell adhesion-associated glycoprotein,
CEA is widely considered an indicator of tumor invasiveness
and plays an important role in prognosis evaluation and treat-
ment monitoring for lung cancer [34, 35]. Multivariable logis-
tic regression analyses revealed that elevated serum CEA (> 5
ug/L) was independently associated with LN metastasis in
both the CS model and combined models. Consistent with
our findings, Wang et al [12] and Gu et al [36] also demon-
strated that CEA was the independent risk predictor for LN
metastasis when incorporating CS features and radiomics sig-
nature. CTR is a quantitative manifestation of consolidation
proportion within tumors [37]. Prior studies confirmed that
CTR was of great value in predicting LN metastasis for lung
adenocarcinoma [6, 38]. In the CS model, CTR was an inde-
pendent risk predictor for LN metastasis, with a 1.82-fold
increased risk of LN metastasis for every 10% increase in
CTR. However, CTR became insignificant when integrating
DL signature with the CS model. The strong correlation be-
tween DL signature and CTR (r = 0.611, p < 0.001) might
account for this. Beyond that, air bronchogram and pleural
attachment were closely associated with LNmetastasis, which
were previously reported to be radiological markers reflecting
tumor aggressiveness [39, 40]. CT-reported LN status is a
conventional assessment metric for clinical mediastinal

Fig. 5 Decision curve analyses of CSmodel, radiomics signature and DL
signature in training cohort (A), internal validation cohort (B), and
independent test cohort (C). DL signature conferred a higher net benefit
in predicting LN metastasis than CS model and radiomics signature
across threshold probability range of 0.2–1.0
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staging, depending on macroscopic measurement for LN
short-axis diameter [41]. Expectedly, CT-reported LN status
was weighted heavily in logistic regression equations, but this
subjective method revealed poor sensitivity and unsatisfactory
AUC in this study. A previous study demonstrated more than
20% of lymph nodes with a short-axis diameter < 1 cm were
proved to be tumor involved [42]. CT alone for mediastinal
staging is insufficient to meet the requirements of clinical
application [12, 43]. Furthermore, the AUCs for the CS model
were 0.781–0.853, much poorer than those for the DL signa-
ture. Aokage et al constructed a prediction model including
tumor diameter, CTR, and solid component density, and cre-
ated a formula for calculating the probability of LNmetastasis
in lung adenocarcinoma [6]; He et al found that CEA, lung
adenocarcinoma, absence of vascular convergence and pleural
attachment were independently predictive of LN metastasis in
NSCLC. But these models relied on subjective evaluation by
experienced radiologists and achieved the AUCs (0.796–
0797) far inferior to our DL signature.

We attempted to exploit the optimum prediction model by a
combination of CS risk predictors and radiomics signature with
DL signature. It was originally assumed that the inclusion of
CT-reported LN status might partially compensate for the defi-
ciency of DL signature in obtaining representative information
solely from the tumor region and thus yield a performance
improvement over DL signature alone. Nevertheless, the results
demonstrated that neither CT-reported LN status nor other CS
risk predictors nor radiomics signature conferred an incremental
value with regards to DL signature. This finding further lent
support to the predominant potency of our proposed DL signa-
ture in the prediction of LNmetastasis in lung adenocarcinoma.

There were several limitations to this study. First, an im-
portant weakness of DL was that small perturbations from
data quality and provenance might result in output mistakes.
DL signature might be affected by acquisition parameters
across multi-vender and multi-institution CT scanners. The
present study data were merely from a single center, and larger
sample-size, multi-institution datasets should be warranted to
affirm the reproducibility and generalization of the developed
DL and radiomics signatures. Second, this study only included
patients with lung adenocarcinoma. The value of DL signature
in predicting other pathological subtypes of lung cancer
should be further elucidated. Besides, only a few of our retro-
spectively enrolled cases received PET-CT scanning, and we
temporarily failed to compare the performance of DL signa-
ture with PET-CT due to the excessive missing records in
PET-CT. However, the discussion on the predictive perfor-
mance of PET-CT, as well as the incremental predictive value
of DL signature with respect to PET-CT should be supple-
mented in future research. Last, the lack of interpretation of
DL results is a major obstacle to the practical application of

DL models in clinical practice. The potential biological mech-
anism underlying the black box of DL signature requires fur-
ther in-depth investigation. The common method to improve
the explanation about DL prediction is to generate a visual
feature heatmap using Grad-CAM and explore the clinical
diagnosis and decision-making significance of the attention
regions. Besides, uncovering some potential biological impli-
cations such as relating DL signature with expression of spe-
cific genes or proteins predictive of clinical endpoints could
further provide the biological interpretability of DL.

In conclusion, we proposed a novel Swin Transformer to
develop a DL signature for the prediction of LN metastasis in
lung adenocarcinoma, and the predictive efficiency of the DL
signature surpassed that of the traditional CS model and
radiomics signature. DL signature might serve as an effective
tool for non-invasive mediastinal LN staging and in facilitat-
ing the formulation of individualized therapeutic strategy.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-09153-z.

Funding This study has received funding from the National Natural
Science Foundation of China (NO.81873889).

Declarations

Guarantor The scientific guarantor of this publication is Liming Xia.

Conflict of interest The authors of this manuscript declare no relation-
ships with any companies whose products or services may be related to
the subject matter of the article.

Statistics and biometry No complex statistical methods were necessary
for this paper.

Informed consent Written informed consent was waived by the
Institutional Review Board.

Ethical approval Institutional Review Board approval was obtained.

Study subjects or cohorts overlap Some study subjects or cohorts have
been previously reported in a prior study, where 182 patients with early-
stage lung adenocarcinoma were previously reported on the relationship
between CT morphological features and Ki-67 (PMID: 34164176). The
present study has a much larger sample size and focuses on predicting
lymph node metastasis in lung adenocarcinoma.

Methodology
• retrospective
• diagnostic study
• performed at one institution

1960 European Radiology (2023) 33:1949–1962

https://doi.org/10.1007/s00330-022-09153-z


References

1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA
Cancer J Clin 70(1):7–30

2. Chiang XH, Hsu HH, Hsieh MS et al (2020) Propensity-matched
analysis comparing survival after sublobar resection and lobectomy
for cT1N0 lung adenocarcinoma. Ann Surg Oncol 27(3):703–715

3. Altorki NK, Wang X, Wigle D et al (2018) Perioperative mortality
and morbidity after sublobar versus lobar resection for early-stage
non-small-cell lung cancer: post-hoc analysis of an international,
randomised, phase 3 trial (CALGB/Alliance 140503). Lancet
Respir Med 6(12):915–924

4. Zhang B, Liu R, Ren D et al (2021) Comparison of lobectomy and
sublobar resection for stage IA elderly NSCLC patients (≥70
Years): a population-based propensity score matching’s study.
Front Oncol 11:610638

5. Suzuki K, Koike T, Asakawa T et al (2011) A prospective radiolog-
ical study of thin-section computed tomography to predict patholog-
ical noninvasiveness in peripheral clinical IA lung cancer (Japan
Clinical Oncology Group 0201). J Thorac Oncol 6(4):751–756

6. Aokage K, Suzuki K, Wakabayashi M et al (2021) Predicting path-
ological lymph node status in clinical stage IA peripheral lung ad-
enocarcinoma. Eur J Cardiothorac Surg 60(1):64–71

7. Choi H, Kim H, Park CM, Kim YT, Goo JM (2021) Central tumor
location at chest CT is an adverse prognostic factor for disease-free
survival of node-negative early-stage lung adenocarcinomas.
Radiology 299(2):438–447

8. Prabhakar B, Shende P, Augustine S (2018) Current trends and
emerging diagnostic techniques for lung cancer. Biomed
Pharmacother 106:1586–1599

9. Kandathil A, Kay FU, Butt YM,Wachsmann JW, SubramaniamRM
(2018) Role of FDG PET/CT in the eighth edition of TNM staging of
non-small cell lung cancer. Radiographics 38(7):2134–2149

10. Pak K, Park S, Cheon GJ et al (2015) Update on nodal staging in
non-small cell lung cancer with integrated positron emission
tomography/computed tomography: a meta-analysis. Ann Nucl
Med 29(5):409–419

11. Liu Y, Kim J, Balagurunathan Y et al (2018) Prediction of patho-
logical nodal involvement by CT-based Radiomic features of the
primary tumor in patients with clinically node-negative peripheral
lung adenocarcinomas. Med Phys 45(6):2518–2526

12. Wang X, Zhao X, Li Q et al (2019) Can peritumoral radiomics
increase the efficiency of the prediction for lymph node metastasis
in clinical stage T1 lung adenocarcinoma on CT? Eur Radiol
29(11):6049–6058

13. CongM, Feng H, Ren J-L et al (2020) Development of a predictive
radiomics model for lymph node metastases in pre-surgical CT-
based stage IA non-small cell lung cancer. Lung Cancer 139:73–79

14. He L, Huang Y, Yan L et al (2019) Radiomics-based predictive risk
score: a scoring system for preoperatively predicting risk of lymph
node metastasis in patients with resectable non-small cell lung can-
cer. Chin J Cancer Res 31(4):641–652

15. Peng X, Yang S, Zhou L et al (2021) Repeatability and reproduc-
ibility of computed tomography radiomics for pulmonary nodules:
a multicenter phantom study. Invest Radiol 57(4):242–253

16. Han Y, Ma Y, Wu Z et al (2021) Histologic subtype classification
of non-small cell lung cancer using PET/CT images. Eur J Nucl
Med Mol Imaging 48(2):350–360

17. Chaunzwa TL, Hosny A, Xu Y et al (2021) Deep learning classifica-
tion of lung cancer histology using CT images. Sci Rep 11(1):5471

18. Avanzo M, Gagliardi V, Stancanello J et al (2021) Combining com-
puted tomography and biologically effective dose in radiomics and
deep learning improves prediction of tumor response to robotic lung
stereotactic body radiation therapy. Med Phys 48(10):6257–6269

19. Tian P, He B, Mu W et al (2021) Assessing PD-L1 expression in
non-small cell lung cancer and predicting responses to immune
checkpoint inhibitors using deep learning on computed tomography
images. Theranostics 11(5):2098–2107

20. Hou R, Li X, Xiong J et al (2021) Predicting tyrosine kinase inhib-
itor treatment response in stage IV lung adenocarcinoma patients
with EGFR mutation using model-based deep transfer learning.
Front Oncol 11:679764

21. Zhong Y, She Y, Deng J et al (2022) Deep learning for prediction of
N2 Metastasis and survival for clinical stage I non-small cell lung
cancer. Radiology 302(1):200–211

22. Kim H, Goo JM, Lee KH, Kim YT, Park CM (2020) Preoperative
CT-based deep learning model for predicting disease-free survival
in patients with lung adenocarcinomas. Radiology 296(1):216–224

23. Zhao X, Wang X, Xia W et al (2020) A cross-modal 3D deep
learning for accurate lymph node metastasis prediction in clinical
stage T1 lung adenocarcinoma. Lung Cancer 145:10–17

24. Ran J, Cao R, Cai J et al (2021) Development and validation of a
nomogram for preoperative prediction of lymph node metastasis in
lung adenocarcinoma based on radiomics signature and deep learn-
ing signature. Front Oncol 11:585942

25. Wang Y-W, Chen C-J, Huang H-C et al (2021) Dual energy CT
image prediction on primary tumor of lung cancer for nodal metas-
tasis using deep learning. Comput Med Imaging Graph 91:101935

26. Yan R, Fan X, Xiao Z et al (2022) Inhibition of DCLK1 sensitizes
resistant lung adenocarcinomas to EGFR-TKI through suppression
of Wnt/β-Catenin activity and cancer stemness. Cancer Lett 531:
83–97

27. Yasukawa M, Ohbayashi C, Kawaguchi T et al (2019) Analysis of
histological grade in resected lung-invasive adenocarcinoma.
Anticancer Res 39(3):1491–1500

28. Yoshizawa A, Sumiyoshi S, Sonobe M et al (2013) Validation of
the IASLC/ATS/ERS lung adenocarcinoma classification for prog-
nosis and association with EGFR and KRAS gene mutations: ana-
lysis of 440 Japanese patients. J Thorac Oncol 8(1):52–61

29. Agarwal D, Marques G, de la Torre-Díez I et al (2021) Transfer
learning for alzheimer’s disease through neuroimaging biomarkers:
a systematic review. Sensors (Basel) 21(21):7259

30. LIU Z, LIN Y, CAO Y, et al (2021) Swin transformer: hierarchical
vision transformer using shifted windows. arXiv Prepr. 2021,
arXiv:2103.14030.

31. Le Berre A, Kamagata K, Otsuka Y et al (2019) Convolutional
neural network-based segmentation can help in assessing the
substantia nigra in neuromelanin MRI. Neuroradiology 61(12):
1387–1395

32. Hagiwara A, Fujita S, Ohno Y, Aoki S (2020) Variability and
standardization of quantitative imaging: monoparametric to
multiparametric quantification, radiomics, and artificial intelli-
gence. Invest Radiol 55(9):601–616

33. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H (2018)
Artificial intelligence in radiology. Nat Rev Cancer 18(8):500–510

34. Dal BelloMG, Filiberti RA, Alama A et al (2019) The role of CEA,
CYFRA21-1 and NSE in monitoring tumor response to Nivolumab
in advanced non-small cell lung cancer (NSCLC) patients. J Transl
Med 17(1):74

35. Jiao Z, Cao S, Li J et al (2021) Clinical associations of preoperative
and postoperative serum CEA and lung cancer outcome. Front Mol
Biosci 8:686313

36. GuY, She Y, Xie D et al (2018) A texture analysis-based prediction
model for lymph node metastasis in stage IA lung adenocarcinoma.
Ann Thorac Surg 106(1):214–220

37. KimH, Goo JM, KimYT, Park CM (2019) Consolidation-to-tumor
ratio and tumor disappearance ratio are not independent prognostic
factors for the patients with resected lung adenocarcinomas. Lung
Cancer 137:123–128

1961European Radiology (2023) 33:1949–1962



38. Chen Y-C, Lin Y-H, Chien H-C et al (2021) Preoperative
consolidation-to-tumor ratio is effective in the prediction of lymph
node metastasis in patients with pulmonary ground-glass compo-
nent nodules. Thoracic Cancer 12(8):1203–1209

39. Zhang Y, Zhao F, Wu M et al (2021) Association of postoperative
recurrence with radiological and clinicopathological features in pa-
tients with stage IA-IIA lung adenocarcinoma. Eur J Radiol 141:
109802

40. Kim HJ, Cho JY, Lee YJ et al (2019) Clinical significance of pleu-
ral attachment and indentation of subsolid nodule lung cancer.
Cancer Res Treat 51(4):1540–1548

41. Silvestri GA, Gonzalez AV, Jantz MA et al (2013) Methods for
staging non-small cell lung cancer: diagnosis and management of
lung cancer, 3rd ed: American College of Chest Physicians
evidence-based clinical practice guidelines. Chest 143(5 Suppl):
e211S–e250S

42. Leiro-Fernández V, Fernández-Villar A (2021) Mediastinal staging
for non-small cell lung cancer. Transl Lung Cancer Res 10(1):496–
505

43. Walker CM, Chung JH, Abbott GF et al (2012) Mediastinal lymph
node staging: from noninvasive to surgical. AJR Am J Roentgenol
199(1):W54–W64

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author
self-archiving of the accepted manuscript version of this article is solely
governed by the terms of such publishing agreement and applicable law.

1962 European Radiology (2023) 33:1949–1962


	Development...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methods and materials
	Patients
	CT acquisition and semantic features interpretation
	Radiomics signature development
	DL signature development
	Clinical-semantic model and combined model construction
	Statistical analysis

	Results
	Interobserver agreement assessment of semantic features
	The development of radiomics signature and DL signature
	Clinical-semantic model and combined model construction
	Model performance evaluation

	Discussion
	References


