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Abstract
Objectives Radiomics of soft tissue sarcomas (STS) is assumed to correlate with histologic and molecular tumor features, but
radiogenomics analyses are lacking. Our aim was to identify if distinct patterns of natural evolution of STS obtained from
consecutive pre-treatment MRIs are associated with differential gene expression (DGE) profiling in a pathway analysis.
Methods All patients with newly diagnosed STS treated in a curative intent in our sarcoma reference center between 2008 and
2019 and with two available pre-treatment contrast-enhancedMRIs were included in this retrospective study. Radiomics features
(RFs) were extracted from fat-sat contrast-enhanced T1-weighted imaging. Log ratio and relative change in RFs were calculated
and used to determine grouping of samples based on a consensus hierarchical clustering. DGE and oncogenesis pathway analysis
were performed in the delta-radiomics groups identified in order to detect associations between delta-radiomics patterns and
transcriptomics features of STS. Secondarily, the prognostic value of the delta-radiomics groups was investigated.
Results Sixty-three patients were included (median age: 63 years, interquartile range: 52.5–70). The consensus clustering
identified 3 reliable delta-radiomics patient groups (A, B, and C). On imaging, group B patients were characterized by increase
in tumor heterogeneity, necrotic signal, infiltrative margins, peritumoral edema, and peritumoral enhancement before the treat-
ment start (p value range: 0.0019–0.0244), and, molecularly, by downregulation of natural killer cell–mediated cytotoxicity
genes and upregulation of Hedgehog and Hippo signaling pathways. Group A patients were characterized by morphological
stability of pre-treatment MRI traits and no local relapse (log-rank p = 0.0277).
Conclusions This study highlights radiomics and transcriptomics convergence in STS. Proliferation and immune response
inhibition were hyper-activated in the STS that were the most evolving on consecutive imaging.
Key Points
• Three consensual and stable delta-radiomics clusters were identified and captured the natural patterns of morphological
evolution of STS on pre-treatment MRIs.

• These 3 patterns were explainable and correlated with different well-known semantic radiological features with an ascending
gradient of pejorative characteristics from the A group to C group to B group.

•Gene expression profiling stressed distinct patterns of up/downregulated oncogenetic pathways in STS from B group in keeping
with its most aggressive radiological evolution.
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Abbreviations
AC Absolute change
CE Contrast-enhanced
CI Confidence interval
DGE Differential gene expression
FNCLCC French “Fédération Nationale des Centres

de Lutte Contre le Cancer”
FS Fat sat
HR Hazard ratio
IQR Interquartile range
IRB Institutional Review Board
LD Longest diameter
LFS Local relapse-free survival
LR Log ratio
MFS Metastatic relapse-free survival
MRI Magnetic resonance imaging
NK Natural killer
OS Overall survival
RF Radiomics feature
RNA Ribonucleic acids
SAM Significance analysis of microarrays
SI Signal intensity
STS Soft tissue sarcoma
TSE Turbo spin echo
TWAC Time-weighted absolute change
TWRC Time-weighted relative change
WI Weighted imaging

Introduction

Soft tissue sarcomas (STS) are rare malignant mesenchymal
tumors characterized by their clinical, radiological, and mo-
lecular heterogeneity, which can lead to diagnostic uncer-
tainties [1]. Consequently, the time elapsed from initial symp-
toms to final histological diagnosis can reach months during
which the tumor can evolve naturally and grow without con-
straints [2].

MRI is the imaging of reference for the local staging of
STS, treatment response assessment, and local relapse detec-
tion [3]. MRI enables to evaluate classical prognostic features
such as size and depth, which are included in nomograms, as
well as the surgical operability that guides the therapeutic
strategy [3–5]. Moreover, baseline MRI features (i.e.,
peritumoral enhancement, necrotic signal, or intra-tumoral
heterogeneity on conventional sequences) have been correlat-
ed with histologic grade and survivals [6, 7]. However, these
“semantic” features are subjective [8] and do not account for
the natural changes (i.e., in the absence of any medical

intervention) observed when multiple MRIs are performed
during the diagnostic interval.

Yet, significant improvements in the quantification of the
tumor radiological phenotype (or “radiophenotype”) have
been achieved through radiomics [9, 10]. Basically, radiomics
correspond to the extensive quantification of the
radiophenotype thanks to mathematical operators applied on
any imaging modality. A key hypothesis is that the heteroge-
neity captured by radiomics radiophenotyping reflects the tu-
mor histologic and molecular characteristics. The resulting
radiomics features (RFs) are incorporated in supervised ma-
chine learning pipelines to predict the patients’ outcomes or to
identify associations with relevant histologic and molecular
status, and unsupervised algorithms (i.e., algorithms that ana-
lyze and cluster unlabeled dataset according to the similarity
of their RFs) in order to identify hidden patterns and sub-
groups of similar observations when there is no a priori hy-
pothesis [9].

So far, radiomics approaches have been successfully ap-
plied to STS to predict the histologic grade [11–14], metastatic
relapse and cancer-related death [12, 15–17], and treatment
response [18–20]. Moreover, the interest of evaluating the
changes in the STS radiophenotype during treatments through
“delta-radiomics” approaches (i.e., quantitative variation in
RFs between two evaluations) has been demonstrated during
neoadjuvant chemotherapy and radiotherapy [18, 19].

However, as opposed to other neoplasms (such as glioma,
urothelial carcinoma, lung adenocarcinoma, clear cell carcino-
ma, or ovarian cancer), correlations between radiomics, delta-
radiomics, and transcriptomics features (i.e., corresponding to
the expression levels and profiles of multiple ribonucleic acids
[RNA] transcripts) in sarcoma are missing.

Considering the rapid evolution and diagnostic delays
seen in STS patients, multidisciplinary boards in sarcoma
reference centers sometimes require to update the imaging
in order to refine the local staging. Comparing these pre-
treatment MRIs acquired before any medical intervention
highlights distinct patterns of “natural” evolution of STS,
from global morphological stability to appearance of
strong intra-tumoral heterogeneity and infiltrative margins,
which suggests different biological pathways involved in
tumorigenesis. Our group has recently investigated the
clinical interest of assessing natural radiological and
radiomics changes in STS before starting initial treatments
[21]. Surprisingly, the natural changes in RFs were not
associated with histological type or simple histologic
markers of proliferation like Ki-67 or mitotic count, which
prompted us to hypothesize that delta-radiomics would
rather reflect other oncogenetic pathways and could com-
plement standard radiological and histologic analyses.
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Consequently, our aim was to establish a reliable classifi-
cation of the radiophenotype of STS based on the natural
changes in RFs before treatment and using unsupervised al-
gorithms, and to investigate whether those delta-radiomics
radiophenotypes could be biologically explained through
gene expression profiling.

Materials and methods

Study design

This single-center retrospective study was IRB-approved.
Patients were retrieved from our institutional database be-
tween 2008 and 2019. The inclusion criteria were age ≥ 16
years, newly diagnosed histopathologically proven STS of
extremities, with two available contrast-enhanced (CE)
MRIs before the treatment beginning (named MRI0 and
MRI1), and treated in a curative intent including a surgical
resection in our sarcoma reference center. The exclusion
criteria were lack of fat-sat (FS) turbo spin echo (TSE) CE-
T1-weighted imaging (WI) in at least one of the two pre-
treatment MRIs, non-diagnostic image quality due to MRI
artifacts, delay between pre-treatment MRIs below 3 weeks,
and atypical lipomatous tumors. Figure 1 shows the study
flowchart. Sixty out of the 63 finally included patients were
previously analyzed in another preliminary study [21], which
focused on the morphological changes using standard radio-
logical analyses, depiction of delta-radiomics calculation, and
associations with basic histologic features.

The data collection consisted of age at diagnosis, sex,
World Health Organization Performance Status (WHO-PS),
tumor location and depth, pre-treatment histological type, and
grade (according to the “Fédération Nationale des Centres
de Lutte Contre le Cancer” [FNCLCC] grading system) [22].
The initial management was also recorded as follows: surgical
margins (R0 versus R1-R2), radiotherapy, and chemotherapy.

Radiomics pipeline

All MRI examinations were acquired on 1.5-T magnets from
9 radiological centers (with most MRI1 in our sarcoma refer-
ence center) and included T1-WI, T2-WI, and TSE FS-CE-
T1-WI. The MR systems were Optima Jem MR450W,
Discovery MR450, and SIGNA Explorer (General Electric
Healthcare); Achieva and Ingenia (Philips Healthcare); and
Magnetom Aera and Amira (Siemens Healthineers).

The radiomics analysis was only achieved on the FS-CE-
T1-WI, as this sequence had the most homogeneous acquisi-
tion scheme at the two time points over the entire cohort, and
was the most informative regarding the tumor radiological
architecture. The ranges of acquisition parameters were
echo/repetition times: 8–20/350 – 1000 ms for the T1-WI
and CE-T1-WI, and 40–120/2000 – 9000 ms for the T2-WI,
respectively; in plane resolution: 0.75 × 0.75 − 1.4 × 1.4 mm,
and thickness: 1–7 mm. Contrast agents were gadoterate
meglumine (Dotarem®, Guerbet), gadobutrol (Gadovist®,
Bayer), and gadobenate dimeglunine (Multihance®, Bracco).

Since FS-CE-T1-WI were obtained on different MRI sys-
tems and given the lack of standardized units for conventional
MRI, a post-processing pipeline was achieved to homogenize
the MRI dataset by using the ITK library and, then, to extract
108 3D RFs from the 3D volume of each STS on MRI0 and
MRI1 by using the Olea Sphere software (v3.0-SP16, Olea
Medical) [23–25]. The full radiomics pipeline and quality
control, and RF definitions are detailed in Supplementary
Data S1 and S2.

Conventional radiological analysis

The morphological changes occurring between MRI0 and
MRI1 were also evaluated using a standard radiological ap-
proach. Three radiologists (2 seniors and 1 fellow) reviewed in
consensus the tumor longest diameter (LD) and the 6 follow-
ing items characterizing the tumor changes in signal, compart-
ments, and surrounding tissues: change in intra-tumoral het-
erogeneity on FS-CE-T1-WI (categorized as homogeneous or
similar heterogeneity versus increase); change in necrotic sig-
nal (defined as high, fluid-like signal on T2-WI and no en-
hancement on FS-CE-T1-WI, and categorized as no necrosis
or similar amount versus increase); change in hemorrhagic
signal (defined as high signal on T1-WI and no enhancement
on FS-CE-T1-WI, and categorized as no hemorrhage or sim-
ilar amount versus increase); change inMRI growth pattern on
FS-CE-T1-WI (categorized as perfectly well-delineated tumor
versus < 50% of tumor circumference with ill-defined margins
versus ≥ 50% of tumor circumference with ill-defined mar-
gins) [26]; change in peritumoral edema on T2-WI (catego-
rized as absent or similar versus increase) [6, 7]; and change in
peritumoral enhancement on FS-CE-T1-WI (categorized as

Fig. 1 Study flowchart. Abbreviation: MRI, magnetic resonance
imaging; STS, soft tissue sarcoma
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absent or similar versus increase) [6, 7]. Visual examples are
shown in Supplementary Data S3.

RNA sequencing

All patients with frozen material before treatment and contem-
porary to MRI1 were included in this analysis. After whole-
RNA sequencing (Integragen), the produced RNA sequences
were quality controlled and aligned to the transcriptome. Gene
expression was then estimated by the counts of high-quality
sequences aligned per gene. Finally gene expression counts
were normalized using the Voom method (Supplementary
Data S4) [27].

Statistical analysis

Statistical analyses were performed with R (v4.1.0). All tests
were two-tailed. A p value < 0.05 was deemed significant.

Methods to calculate delta-radiomics Five mathematical
methods have been proposed to calculate the change in RFs
during the MRI0-MRI1 interval and were applied to the cohort,
namely absolute change (AC), time-weighted absolute change
(TWAC), relative change (RT), time-weighted relative change
(TWRC), and log ratio (LR) (Supplementary Data S5) [21].
We then assessed how the delta-radiomics distributions could
be affected by the scale and shape bias potentially associated to
each method in order to filter the delta RFs on which the unsu-
pervised algorithms would correctly be applied. Briefly, AC
was excluded because it could scale-bias the selection of sig-
nificant delta RFs by promoting high-scale features and penal-
izing low-scale ones. Regarding TWAC and TWRC, a bias
could result from time delay variability across patients and
from how time could potentially non-linearly affect each RF
(i.e., plateau effect, cycle effect). RC gives equal odds to both
small- and large-scale features and it respects the symmetric
and Gaussian nature of the delta-radiomics distribution.
Similarly, LR is not affected by scale bias and confers a bell-
like shape to the distribution. Consequently, RC and LR delta
RFs were used in the subsequent analysis while AC, TWAC,
and TWRC delta-RFs were removed.

Consensus clusteringWe performed two consensus clustering
independently, one with RF delta-radiomics calculated with
LR and one with RC. Each clustering was resampled 10,000
times by leave-one-out of 40% of the samples [28]. Both clus-
tering provided 3 groups. To find a final agreement between
the two grouping schemes, we created the confusion matrix
between the labeling of each sample generated by the LR and
RC clustering analyses. We defined the agreement groups as
those that maximized the counts of samples placed in the
diagonal of the matrix (Supplementary Data S6).

Explaining the delta-radiomics groups with the radiological
featuresAssociations between the delta-radiomics groups and
the radiological features, LD on MRI0, the relative change in
LD, and the delays between the two pre-treatment MRIs were
assessed using the Kruskal-Wallis test. Associations with the
main histological types were assessed with the chi-2 test.
Linear trends in the proportion of the radiological features
across the delta-radiomics groups were investigated by using
the chi-square test for trend in proportion.

Associations with the transcriptomics features Differential
gene expression (DGE) and geneset enrichment analyses
between the final delta-radiomics groups are detailed in
Supplementary Data S7. Exploratory DGE was perform-
ed by t-test calculation per gene. To discriminate signif-
icant up/downregulated genes, the fold change was set
to 1.5. The p value cut-off of 0.05 was not adjusted as
this study was exploratory on a small cohort of hetero-
geneous histotypes. However, to confirm that the results
were anyway statistically significant, we applied an al-
ternative method named significance analysis of micro-
arrays (SAM), which has been designed to investigate
significance in the setting of small size cohorts for -
omics data. The principles and application are detailed
in Supplementary Data S8 [29].

We then assessed geneset enrichment in biological path-
ways based on Broad Institute’s Molecular Signature database
and the CIBERSORT LM22 immuno-genesets [30, 31].

Survival analysis Metastatic and local relapse-free sur-
vivals (MFS and LFS, respectively) were defined as
the time elapsed between surgical resection and histolo-
gically proven metastatic and local relapses, respective-
ly, or death or last patient contact. Overall survival (OS)
was defined as the time elapsed from surgery to death
due to disease or last patient contact. The Kaplan-Meier
curves for MFS, LFS, and OS depending on the delta-
radiomics clusters were drawn and the differences in
survivals were tested with the log-rank test. Univariate
Cox regressions were performed to estimate the hazard
ratio (HR) with 95% confidence interval (CI) of the
delta-radiomics groups.

The overall study workflow is presented on Fig. 2.

Results

Study population

The study population finally included 63 patients with com-
plete delta-radiomics data (median age: 63 years, range: 21–
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95, interquartile range [IQR]: 52.5–70, 24/63 [38.1%] wom-
en) (Table 1 and Fig. 1). The most frequent histological type
was undifferentiated pleomorphic sarcoma (UPS, 29/63
[46%]).

The median delay between the two pre-treatment MRIs
was 74 days (range: 24–939, IQR: 55–105). The median
LDs were 98 mm (range: 12–199, IQR: 67–121) on MRI0
and 120 mm (range: 22–270, IQR: 89–153.5) in MRI1, which
corresponded to a median increase of 21.8% (range: 0–158.3,
IQR: 9.3–44) over the inter-MRIs delay.

Defining and explaining the delta-radiomics groups

We independently performed iterative unsupervised hierarchi-
cal clustering on both relative change and on log ratio delta-
radiomics as these two methods were theoretically the less
prone to distribution and scaling bias (Fig. 3a). To check the
consensus given by the two clusterings (Fig. 3b), an agree-
ment table was created, which finally defined 3 consensus
groups called A, B, and C (n = 16, 15, and 21, respectively),
for a total of 52 patients (Fig. 3c). The 11 patients who did not

Fig. 2 Study workflow. Abbreviation: MRI, magnetic resonance imaging; RF, radiomics feature. MRI0 andMRI1 were performed during the diagnostic
interval before the beginning of therapeutic management
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Table 1 Characteristics of the
study population Characteristics Patients No. of NAs

Age at diagnosis (years)

Mean (sd) 60.6 (15.5) 0

Median (range) [IQR] 63 (21–95) [52.5–70]

Sex

Men 39/63 (61.9%) 0

Women 24/63 (38.1%)

Histological type

Undifferentiated pleomorphic sarcoma 29/63 (46%) 0

Myxofibrosarcoma 6/63 (9.5%)

Dedifferentiated LPS 3/63 (4.8%)

Myxoid/round cells LPS 9/63 (14.3%)

Pleomorphic LPS 2/63 (3.2%)

Synovial sarcoma 5/63 (7.9%)

Leiomyosarcoma 4/63 (6.3%)

Rhabdomyosarcoma 2/63 (3.2%)

Other undifferentiated sarcomas 2/63 (3.2%)

Malignant peripheral nerve sheath tumor 1/63 (1.6%)

Tumor depth

Superficial 0/63 (0%) 0

Deep and superficial 11/63 (17.5%)

Deep 52/63 (82.5%)

Tumor location

Shoulder girdle 4/63 (6.3%) 0

Upper limb 9/63 (14.3%)

Trunk 5/63 (7.9%)

Pelvic girdle 1/63 (1.6%)

Lower limb 44/63 (69.8%)

Histological grade§

Surgical grade 1 3/58 (5.2%) 5

Surgical grade 2 4/58 (6.9%)

Surgical grade 3 5/58 (8.6%)

Biopsy grade 1 5/58 (8.6%)

Biopsy grade 2 25/58 (43.1%)

Biopsy grade 3 16/58 (27.6%)

Delay between MRI0 and MRI1 (days)

Mean (sd) 110.8 (136.5) 0

Median (range) [IQR] 74 (24–939) [55.5–105]

Longest diameter on MRI0 (mm)

Mean (sd) 98.4 (43.2) 0

Median (range) [IQR] 98 (12–199) [67–121.5]

Longest diameter on MRI1 (mm)

Mean (sd) 123.3 (49.4) 0

Median (range) [IQR] 120 (22–270) [89–153.5]

Relative change in LD between MRIs (%)

Mean (sd) 32.4 (34.5) 0

Median (range) [IQR] 21.8 (0–158.3) [9.4–43]

Chemotherapy

No 21/63 (33.3%) 0

Neoadjuvant 37/63 (58.7%)
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achieve consensus were excluded. We did not find associa-
tions between the delta-radiomics groups and LD on MRI0,
the relative change in LD, and the MRI0-MRI1 delay (p =
0.5912, 0.4503, 0.4256, and 0.4114, respectively), as well as
associations with the main histological types (as categorized
as UPS, myxoid/round cells liposarcomas, and others, p =
0.3594) and the histologic grade assessed on whole surgical
specimen (categorized as grade I-II versus grade III, p =
0.2273).

Confronting the delta-radiomics groups and the conven-
tional radiological analysis stressed the largest proportion of
morphological changes in the B group, namely increases in
tumor heterogeneity (10/15, 66.7%), necrotic signal (14/15,
93.3%), hemorrhagic signal (10/15, 66.7%), infiltrative mar-
gins (9/15, 60%), peritumoral edema (8/15, 53.3%), and
pe r i tumora l enhancemen t (9 /15 , 60%) (F ig . 4 ,
Supplementary Data S9). Significant ascending linear trends
were found from A group, to C group, to B group for the
following proportions: increase in tumor heterogeneity (p =
0.0199), necrotic signal (p = 0.0244), infiltrative margins (p =
0.0032), peritumoral edema (p = 0.0019), and peritumoral
enhancement (p = 0.0166).

Correlating delta-radiomics and gene expression

Twenty-one patients had available tumor tissue for RNA se-
quencing of patients of group A (5/21 [23.8%]), group B (8/21
[38.1%]), and group C (8/21 [38.1%]). To identify the tran-
scriptomics features associated to tumors with aggressive out-
come against the others, we performed a supervised analysis
by comparing the gene expression patterns of the tumors from
group B versus the pool of tumors of group A plus C. This
revealed 566 differentially expressed genes and 105 enriched
pathways (Fig. 5a, Supplementary Data S10). The alternative

statistical method, SAM, allowed us to confirm that those
genes (except for one, MAGEA3) were statistically signifi-
cant, with a q value ≤ 2.16% (Supplementary Data S11).
Table 2 shows the most significantly enriched genesets.
Overall, B group tumors were characterized by a downregu-
lation of natural killer (NK) cell–mediated cytotoxicity genes
and an upregulation of genes involved in the glycoproteins,
sphingolipids, and peptide hormone biosynthesis, the
Hedgehog pathway (cell differentiation during embryogene-
sis), the Hippo signaling pathway (regulation of cell prolifer-
ation and apoptosis), the FAS pathway (regulation of cell
death), Ephrin B reverse signaling (cell adhesion and migra-
tion) pathway, and the extracellular matrix organization
pathway.

To verify whether the trends identified in the overall set of
samples were conserved in the most frequent histotype, we
reproduced the analysis in the UPS subgroup, which revealed
1466 differentially expressed genes. The enrichment analysis
confirmed the trends found in the entire cohort with 162
enriched pathways (Fig. 5c, d, Supplementary Data S12-
S13). In summary, typical oncogenesis functions like regula-
tion of cell proliferation and apoptosis, and inhibition of the
immune response were upregulated in the patients from the
more aggressive B group versus the A+C pool.

Survival analysis

The median follow-up was 82.1 months. There were 24 me-
tastatic relapses, 10 local relapses, and 16 deaths related to
disease (Supplementary Data S14). No correlations were
found between the delay from MRI0 and MRI1 and MFS,
LFS, and OS in univariate Cox regression (p = 0.7680,
0.8230, and 0.3680, respectively). No significant differences
were found between the MFS, LFS, and OS depending on the

Table 1 (continued)
Characteristics Patients No. of NAs

Adjuvant 3/63 (4.8%)

Neoadjuvant and adjuvant 2/63 (3.2%)

Surgical margins

R0 34/61 (55.7%) 2

R1-R2 27/61 (44.3%)

Radiotherapy

No 5/63 (7.9%) 0

Neoadjuvant 13/63 (20.6%)

Adjuvant 45/63 (71.4%)

Note — Data are number of patients with percentage in parentheses, except for size, times, and age.
Abbreviations: IQR, interquartile range; LD, longest diameter; LPS, liposarcoma; NA, non-available; sd, standard
deviation
§ Surgical grade was obtained on whole surgical specimen in patients treated with curative surgery first. Biopsy
grade was obtained on the initial tumor sample in patients treated with neoadjuvant treatments but are at risk of
underestimation due to sampling bias.
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three radiomics groups (p = 0.6731, 0.0622, and 0.8970, re-
spectively) (Table 3). However, none of the patients from the
A group demonstrated local relapse while the local relapse
rates from groups B and C were similar at 2 years (73.3%,
95%CI: 54–99.5, and 78.5%, 95%CI: 61.8–99.7). Thus, sig-
nificant higher LFS were observed in the group A versus the
B-C groups (p = 0.0277) (Fig. 6).

Discussion

Medical imaging enables longitudinal and non-invasive moni-
toring of the changes occurring in tumor and their surrounding

tissues. Since STS are prone to long diagnostic intervals, which
require updating the local staging, we proposed an original
delta-radiomics-based methodology to quantify the “natural”
shape and textural changes arising before any therapeutic inter-
vention. We found three consistent patterns of natural evolu-
tion, which were radiologically and biologically explainable,
and demonstrated distinct oncogenetic pathway activations.

We transposed bioinformatics tools to the radiomics field
to obtain three reliable groups, according to resampling-based
consensus hierarchical clustering performed on normally dis-
tributed delta RFs from two RF calculation methods. We be-
lieve this design counterbalanced the noise due to our small
population. These three groups were comparable regarding

Fig. 3 Definition of the radiomics groups. a Assessment of the
distribution of the delta-radiomics features (RF) computed according of
the five proposed methods. b Hierarchical clustering based on relative
change and log ratio delta RFs identified 3 groups with good

reproducibility via 10,000 times cross-validation repeated on the patient
samples. Relative change groups: A, B, and C. Log ratio groups: A′, B′, C′.
c Agreement table between the relative change and log ratio clustering
schemes
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the main histological types, MRI0-MRI1 delays, initial size,
and change in LD from MRI0 to MRI1.

A frequent reproach to radiomics is the lack of
explicability with human vocabulary. Thus, to further val-
idate the delta-radiomics groups, we investigated whether
they could be explainable by radiologists. Indeed, radio-
logically, a gradient of morphological evolution was no-
ticed from the radiomics group A to the radiomics group
B in terms of changes in the intra-tumoral aspect (increase
in visual heterogeneity, complexity, and necrosis) and in
the tumor periphery (increase in peritumoral edema,
peritumoral enhancement, and more infiltrative margins).
At baseline, these radiological features have been linked
to higher grade and poorer survivals [6, 7, 25, 32].

Moreover, we observed that the delta-radiomics groups
(evaluating the intra-tumoral texture and not the surround-
ing tissues) were associated with the changes in radiolog-
ical features evaluating the peritumoral tissues, highlight-
ing the collinearity of intra- and peritumoral evolutions.

Logically, if these features appear or amplify before begin-
ning the treatment, this could have a negative impact on the
patients’ outcome. Indeed, we found that no local relapse oc-
curred in the A group compared with the two others, whereas
the lowest LFS was seen in the B group. The lack of modifi-
cation of the peritumoral tissue and tumor margins on theMRI
of A group patients is in agreement with this better local con-
trol. Indeed, abnormal peritumoral MRI findings have been
associated with satellite tumor cells spreading [33, 34].

Fig. 4 Associations between the radiomics three groups and the changes
in the radiological features of interest during the diagnostic interval. (a)
Color-coded matrix indicating the proportion of patients in each
radiomics groups (column) with the radiological features of interest
(row). §: The p value indicated in the last column corresponds to the test
assessing significant trend from group A to group B to group C. *: p <
0.05; **: p < 0.005. Abbreviations: n.s., not significant; CE-T1-WI,

contrast-enhanced T1-weighted imaging. Prototypal changes observed
on contrast-enhanced MRI of soft tissue sarcomas from group A (b),
global stability of the tumor and its surrounding tissues), group C (c),
increase in necrotic signal and heterogeneity with a global stability of the
surrounding tissues), and group B (d), increase in necrotic signal, tumor
heterogeneity, peritumoral enhancement, and worse definition of the tu-
mor margin, i.e., increase in infiltrative growth pattern)
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Although a fundamental assumption behind radiomics is
the relationship between gene expression and radiophenotype,
no studies had directly investigated this link in STS. Since our
delta-radiomics groups reflected the natural evolutive patterns
before any intervention, we hypothesized that they would also
reflect the unconstrained expression of the tumor genotype.
Indeed, we identified differentially expressed genes from
main oncogenetic pathways associated to the delta-radiomics
groups. The B group, with the most aggressive aspect and the
worst local outcome, was characterized by an overexpression

of genes involved in the Hedgehog pathway and by a lower
expression of genes belonging to the NK cell genesets. Our
results are in agreement with previous studies, which demon-
strated the important role of developmental pathways includ-
ing Hedgehog and NK cells in the tumorigenesis and immune
surveillance of sarcomas [35, 36].

Our findings could have practical applications. Regarding
the poorer LFS in the B group, these patients could benefit
frommore aggressive locoregional treatments including larger
surgical margins, higher dose of peri-operative radiotherapy,
and closer local follow-up. Regarding systemic treatments,
some of the identified differentially expressed genes and path-
ways may represent targetable therapeutic vulnerabilities. For
instance, anti-angiogenic treatments or Bcl-2 inhibitors may
be more effective in the B group. In the future, medical imag-
ing may help to tailor the therapeutic strategy in STS patients,
and to perform a “virtual” biopsy inferred from the tumor
radiophenotype.

Our study has limitations. First, this was a retrospective
single-center study, which implies heterogeneous MRI

�Fig. 5 Transcriptomics analysis. Volcano plots for oncogenetic pathways
in the 21 sarcomas and (a) and 8 undifferentiated pleomorphic sarcomas
(UPS, b). Main differentially expressed pathways of oncogenesis in UPS
from the radiomics group B versus groups A and C (c). Synthesis of the
activated oncogenetic pathways from the radiomics groups A and C and
from the radiomics group B (d). Abbreviations: CE-T1-WI, contrast-
enhanced T1-weighted imaging; MRI0 and MRI1, magnetic resonance
imaging performed during the diagnostic interval and before the begin-
ning of treatment. Dashed gray lines correspond to significance (p value <
0.05)

Table 2 Transcriptomics analysis in the 21 patients with frozen tissue
sample contemporary of MRI1. Only significantly enriched pathways
with ratio between the numbers of over-expressed genes in the pathway

and the numbers of DGE genes in the pathway ≤ 0.25 (green) and ≥ 0.75
(red) are shown (§)

Gene list Geneset P-
value

Significant 
DGE in 
geneset

Significant 
DGE not 

in geneset

Not 
significant 

DGE in 
geneset

Not 
significant 
DGE not 

in geneset

OR (95%CI -
significant DGE vs 

not significant 
DGE)

Ratio§

GSEA_go_cc INTERMEDIATE_FILAMENT 0.0001 6 560 18 17817 10.61 (3.43 - 28.02) 0.83
GSEA_go_cc INTERMEDIATE_FILAMENT_CYTOSKELETON 0.0001 6 560 18 17817 10.61 (3.43 - 28.02) 0.83
GSEA_go_mf STRUCTURAL_CONSTITUENT_OF_CYTOSKELETON 0.0016 7 559 49 17786 4.55 (1.73 - 10.14) 0.86
GSEA_go_bp SYSTEM_DEVELOPMENT 0.0052 40 526 791 17044 1.64 (1.15 - 2.28) 0.75
GSEA_canonical REACTOME_GLYCOPROTEIN_HORMONES 0.0052 3 563 9 17826 10.55 (1.83 - 42.46) 1

GSEA_go_bp NEGATIVE_REGULATION_OF_CYTOKINE_BIOSYNTHETIC_PRO
CESS 0.0052 3 563 9 17826 10.55 (1.83 - 42.46) 1

GSEA_go_mf NEUTRAL_AMINO_ACID_TRANSMEMBRANE_TRANSPORTER_
ACTIVITY 0.0052 3 563 9 17826 10.55 (1.83 - 42.46) 1

GSEA_reactome REACTOME_GLYCOPROTEIN_HORMONES 0.0052 3 563 9 17826 10.55 (1.83 - 42.46) 1
GSEA_canonical REACTOME_PEPTIDE_HORMONE_BIOSYNTHESIS 0.0082 3 563 11 17824 8.63 (1.54 - 32.78) 1
GSEA_reactome REACTOME_PEPTIDE_HORMONE_BIOSYNTHESIS 0.0082 3 563 11 17824 8.63 (1.54 - 32.78) 1

GSEA_go_bp GENERATION_OF_A_SIGNAL_INVOLVED_IN_CELL_CELL_SIGN
ALING 0.0114 4 562 25 17810 5.07 (1.28 - 14.75) 0.75

GSEA_go_bp SKELETAL_DEVELOPMENT 0.0127 8 558 93 17742 2.74 (1.14 - 5.65) 0.75
GSEA_canonical PID_EPHRINB_REV_PATHWAY 0.0129 4 562 26 17809 4.88 (1.23 - 14.11) 0.75
GSEA_go_bp ANATOMICAL_STRUCTURE_MORPHOGENESIS 0.0132 20 546 346 17489 1.85 (1.11 - 2.93) 0.75
GSEA_go_bp HORMONE_SECRETION 0.0143 3 563 14 17821 6.78 (1.25 - 24.39) 1
GSEA_go_bp SYNAPTOGENESIS 0.0167 3 563 15 17820 6.33 (1.17 - 22.46) 1
GSEA_go_cc CELL_PROJECTION 0.0174 8 558 99 17736 2.57 (1.07 - 5.3) 0.75
GSEA_canonical REACTOME_SIGNALING_BY_HIPPO 0.0224 3 563 17 17818 5.58 (1.05 - 19.38) 1
GSEA_reactome REACTOME_SIGNALING_BY_HIPPO 0.0224 3 563 17 17818 5.58 (1.05 - 19.38) 1
GSEA_hallmark HALLMARK_HEDGEHOG_SIGNALING 0.024 4 562 32 17803 3.96 (1.01 - 11.22) 0.75
LM22_immuno NK_cells_activated 0.0285 5 561 51 17784 3.11 (0.96 - 7.78) 0
GSEA_canonical KEGG_SPHINGOLIPID_METABOLISM 0.0286 4 562 34 17801 3.73 (0.96 - 10.5) 0.75
GSEA_canonical PID_FAS_PATHWAY 0.0286 4 562 34 17801 3.73 (0.96 - 10.5) 0.75
GSEA_go_bp REGULATION_OF_CYTOKINE_BIOSYNTHETIC_PROCESS 0.0286 4 562 34 17801 3.73 (0.96 - 10.5) 0.75
GSEA_canonical NABA_CORE_MATRISOME 0.0312 15 551 258 17577 1.85 (1.02 - 3.14) 0.8
GSEA_go_bp NEGATIVE_REGULATION_OF_TRANSLATION 0.0325 3 563 20 17815 4.75 (0.9 - 16.07) 1
GSEA_go_bp SYNAPSE_ORGANIZATION_AND_BIOGENESIS 0.0325 3 563 20 17815 4.75 (0.9 - 16.07) 1
GSEA_go_bp ORGAN_DEVELOPMENT 0.0346 26 540 535 17300 1.56 (1 - 2.33) 0.77

GSEA_canonical REACTOME_GAMMA_CARBOXYLATION_TRANSPORT_AND_A
MINO_TERMINAL_CLEAVAGE_OF_PROTEINS 0.0361 2 564 8 17827 7.9 (0.82 - 39.71) 0

GSEA_reactome REACTOME_GAMMA_CARBOXYLATION_TRANSPORT_AND_A
MINO_TERMINAL_CLEAVAGE_OF_PROTEINS 0.0361 2 564 8 17827 7.9 (0.82 - 39.71) 0

GSEA_go_mf ANTIPORTER_ACTIVITY 0.0361 2 564 8 17827 7.9 (0.82 - 39.71) 1
GSEA_go_bp CYTOKINE_BIOSYNTHETIC_PROCESS 0.0366 4 562 37 17798 3.42 (0.88 - 9.58) 0.75
GSEA_go_bp CYTOKINE_METABOLIC_PROCESS 0.0395 4 562 38 17797 3.33 (0.86 - 9.3) 0.75
GSEA_go_bp ACUTE_INFLAMMATORY_RESPONSE 0.0432 2 564 9 17826 7.02 (0.74 - 34.06) 1
GSEA_go_mf SECRETIN_LIKE_RECEPTOR_ACTIVITY 0.0432 2 564 9 17826 7.02 (0.74 - 34.06) 1
GSEA_canonical REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 0.0469 6 560 79 17756 2.41 (0.85 - 5.51) 1
GSEA_reactome REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 0.0469 6 560 79 17756 2.41 (0.85 - 5.51) 1

GSEA_go_bp NEGATIVE_REGULATION_OF_CELLULAR_PROTEIN_METABOLI
C_PROCESS 0.0489 4 562 41 17794 3.09 (0.8 - 8.57) 1

GSEA_go_mf SECONDARY_ACTIVE_TRANSMEMBRANE_TRANSPORTER_AC
TIVITY 0.0489 4 562 41 17794 3.09 (0.8 - 8.57) 1

GSEA_go_mf SULFOTRANSFERASE_ACTIVITY 0.049 3 563 24 17811 3.95 (0.76 - 13.08) 1
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protocols and lack of frozen specimens for RNA-sequencing
in a third of patients. Hence, our delta-radiomics analysis was
achieved on FS-CE-T1-WI only. Second, dynamic contrast
enhancement, spectroscopy and diffusion imaging, and posi-
tron emission tomography could have improved the assess-
ment of tumor angiogenesis, cellularity, and metabolism [35,

37] but they are never performed outside reference centers.
Third, the small population led to a lack of statistical power
for transcriptomics analyses, which prompted us not to adjust
the p values with standard method in order to detect biologi-
cally meaningful trends; however, our results were confirmed
using an alternative method named SAM which is dedicated

Table 3 Correlations between patients’ outcomes and radiomics groups

Outcome Radiomics groups No. at risk No. of events 2-year survival
probability (95%CI)

log-rank p value HR (95%CI) p value

MFS A 16 6 75 (56.5–99.5) 0.6731 Reference Reference

B 15 7 73.3 (54–99.5) 1.29 (0.43–3.85) 0.650

C 20 11 68.1 (49.8–93) 1.56 (0.58–4.23) 0.379

LFS A 16 0 1 (1–1) 0.0622 Reference Reference

B 15 5 73.3 (54–99.5) +∞ (. - .) .

C 20 5 78.5 (61.8–99.7) +∞ (. - .) .

A 16 0 1 (1–1) 0.0277* Reference Reference

B + C 35 10 76.5 (63.5–92.2) +∞ (. - .) .

A + C 36 5 87.5 (76.8–99.8) 0.0923 Reference Reference

B 15 5 73.3 (54–99.5) 2.79 (0.80–9.68) 0.107

A + B 31 5 86.9 (75.6–99.8) 0.5543 Reference Reference

C 20 5 78.5 (61.8–99.7) 1.45 (0.42–5.02) 0.557

OS A 16 5 80.2 (62.4–1) 0.897 Reference Reference

B 15 5 93.3 (81.5–1) 1.24 (0.35–4.33) 0.739

C 20 6 94.7 (85.2–1) 0.94 (0.29–3.10) 0.922

Note — Abbreviations: CI, confidence interval; HR, hazard ratio; LFS, local relapse-free survival;MFS, metastatic relapse-free survival; No., number;
OS, overall survival

One patient out of the 52 patients was removed from the survival analysis because of insufficient follow-up

*p < 0.05. Significant results are highlighted in bold

Fig. 6 Kaplan-Meier curves for (a) metastatic relapse-free survival (MFS), (b) local relapse-free survival (LFS), and (c) overall survival (OS) depending
on the three radiomics groups, A, B, and C
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to very imbalanced datasets in terms of number of variables
and number of samples [29]. Fourth, there were important
variations in the delay between the two pre-treatment MRIs
that could have influenced our findings though no association
was found between this delay and patients’ outcome. Fifth, in
order to limit the exclusion of several RFs before the calcula-
tion and selection step of delta RFs, we choose to apply a long
post-processing pipeline in order to obtain comparable images
between patients and between two evaluations per patient and,
then, to make the VOIs adjusted and validated by the most
experienced radiologists from our sarcoma reference center,
this instead of filtering RFs at a single time point depending on
their reproducibility over various voxel sizes, numbers of gray
levels, or experience of the segmenting radiologist. Sixth, al-
though the final agreement table between the consensus clus-
terings on LR and RC features was an additional security to
avoid tumor misclassification, it led to the additional exclu-
sion of 11 patients (17%) without agreement.

In conclusion, this exploratory study provides new research
leads regarding the radiogenomics of STS.We have highlight-
ed original correlations between meaningful delta-radiomics-
based clusters quantifying the natural tumor changes before
any treatment, and important oncogenetic pathways and local
control of the disease after curative treatment, bridging the gap
between quantitative imaging and cancer biology.
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