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Abstract
Objective The stratification of microsatellite instability (MSI) status assists clinicians in making treatment decisions
for colorectal cancer (CRC) patients. This study aimed to establish a CT-based radiomics signature to predict MSI
status in patients with CRC.
Methods A total of 837 CRC patients who underwent preoperative enhanced CT and had available MSI status data were
recruited from two hospitals. Radiomics features were extracted from segmented tumours, and a series of data balancing
and feature selection strategies were used to select MSI-related features. Finally, an MSI-related radiomics signature was
constructed using a genetic algorithm–enhanced artificial neural network model. Combined and clinical models were
constructed using multivariate logistic regression analyses by integrating the clinical factors with or without the signa-
ture. A Kaplan–Meier survival analysis was conducted to explore the prognostic information of the signature in patients
with CRC.
Results Ten features were selected to construct a signature which showed robust performance in both the internal and
external validation cohorts, with areas under the curves (AUC) of 0.788 and 0.775, respectively. The performance of
the signature was comparable to that of the combined model (AUCs of 0.777 and 0.767, respectively) and it
outperformed the clinical model constituting age and tumour location (AUCs of 0.768 and 0.623, respectively).
Survival analysis demonstrated that the signature could stratify patients with stage II CRC according to prognosis
(HR: 0.402, p = 0.029).
Conclusions This study built a robust radiomics signature for identifying the MSI status of CRC patients, which may assist
individualised treatment decisions.
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Key Points
• Our well-designed modelling strategies helped overcome the problem of data imbalance caused by the low incidence of MSI.
•Genetic algorithm–enhanced artificial neural network–based CT radiomics signature can effectively distinguish the MSI status
of CRC patients.

• Kaplan–Meier survival analysis demonstrated that our signature could significantly stratify stage II CRC patients into high-
and low-risk groups.
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Abbreviations
ANN Artificial neural network
CEA Carcinoembryonic antigen
CRC Colorectal cancer
GANN Genetic algorithm–enhanced artificial neural

network
IHC Immunohistochemistry
MMR Mismatch repair
MSI Microsatellite instability
MSI-H High MSI
MSI-L Low MSI
MSS Microsatellite stability
PCA Principal component analysis
PCR Polymerase chain reaction
RFE Recursive feature elimination
SVM Support vector machine
VOI Volume of interest

Introduction

Colorectal cancer (CRC) is driven by numerous genetic and
epigenetic events, and it has the third-highest mortality rate
worldwide [1]. Microsatellite instability (MSI) is a major onco-
genic factor that is defined as the generalised instability of short
tandem repeat DNA sequences (microsatellites), which occurs
in approximately 15% of CRC cases. Many studies have con-
firmed that MSI is a promising biomarker for the diagnosis of
Lynch syndrome diagnosis [2], for predicting the treatment
response [3] and prognosis of CRC patients [4, 5].

The National Comprehensive Cancer Network guidelines
recommend MSI testing for patients [6]. MSI can be detected
using polymerase chain reaction (PCR) or immunohistochem-
istry (IHC) for mismatch repair (MMR) protein expression.
However, an invasive biopsy may cause a potential risk of
complications such as bleeding and bowel perfusion. More
importantly, the degree of MMR protein expression detected
at different biopsy locations may be underestimated or
overestimated owing to tumour heterogeneity [7]. Therefore,
it is necessary to seek a non-invasive method to provide addi-
tional diagnostic information pertaining to MSI status prior to
the initiation of procedures and treatments [8].

Computed tomography (CT) is a common imaging method
that plays an important role in CRC staging; however, it is
considerably challenging for radiologists to assess MSI status
based on macroscopic CT images. Radiomics, a method of
extracting high-throughput qualitative features from routine
medical radiologic images, has the potential to characterise tu-
mour phenotypes and improve cancer diagnosis, prognosis, and
response to therapy [9, 10]. Several studies have suggested that
it is feasible to predict the MSI status of CRC using radiomics
methods [11–18]. However, most previous studies had modest
datasets (less than 200) and lacked independent external vali-
dation cohorts [14–18]. Additionally, data imbalance caused by
the low incidence ofMSI hinders accurate predictive analysis in
real-world applications [19]. Although a 1:1 or 2:1 random
matching method has been performed in several previous stud-
ies [13, 15–18], a possible selection bias might limit real-world
applications [20]. Moreover, all previous studies focused only
on assessing the value of radiomics for MSI status prediction
and failed to provide further prognostic information.

In this study, we aimed to explore the potential diagnostic
value of MSI status and prognostic stratification using a CT-
based radiomics approach based on real-world data in CRC
patients.

Materials and methods

Patients and data collection

This retrospective study was approved by the Institutional
Review Board of Guangdong Provincial People’s Hospital
and the First Affiliated Hospital of Chongqing Medical
University. The requirement for informed consent forms was
waived due to the retrospective nature of the study.
Consecutive patients pathologically diagnosed with CRC
were recruited from two participating hospitals between
May 2005 and July 2019.

The inclusion and exclusion processes are illustrated in Fig.
1. Patients with CRC enrolled in hospital I were randomly
stratified into two independent cohorts (70% of patients were
enrolled in the training cohort and 30% in the internal valida-
tion cohort) according toMSI status, and patients in hospital II
were included in the external validation cohort. Overall
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survival analysis was performed on hospital I data, consider-
ing sufficient follow-up.

The patients’ clinical data, including age, gender, tumour lo-
cation, TNM stage, carcinoembryonic antigen (CEA), and Ki-
67, were retrospectively reviewed and recorded from themedical
record archives. Overall survival (OS) was defined as the time
from surgery to death from any cause. Those who were alive at
the time of the last follow-up were considered censored data.

Identification of MSI status

MSI status was assessed using IHC staining to detect the expres-
sion levels of MMR gene proteins (MLH1, MSH2, MSH6, and
PMS2). The results were reviewed and confirmed by two pathol-
ogists with more than 10 years of experience in the diagnosis of
abdominal disease. Patients were divided into MSI-L/microsat-
ellite stability (MSS) andMSI-H groups: the former was positive
for all fourMMR proteins, while the latter included patients who
were negative for any one of the MMR proteins.

CT image acquisition

CT images were obtained using six CT scanners from two
institutions. All patients underwent enhanced abdominal CT
scans. For hospital I, patients were examined using 8-slice
(Lightspeed Ultra 8, GE Healthcare), 64-slice (LightSpeed
VCT, GE Healthcare), or 256-slice (Brilliance iCT, Philips
Healthcare) multidetector CT scanners. For hospital II, 64-

slice (Somatom Sensation, Siemens Healthcare or
LightSpeed VCT, GE Healthcare) or 128-slice (Discovery
CT750, GE Healthcare) CT scanners were used to perform
abdominal CT scans. The acquisition parameters of the two
institutions were as follows: tube voltage, 120 keV; tube cur-
rent, 130–250 mAs, collimation, 0.625–2.5 mm, slice thick-
ness, 1–5 mm, reconstruction interval, 0.625–1.25 mm. The
contrast agents were injected at a speed of 2.5–3.5 mL/s with a
high-pressure pump syringe. Portal phase CT scans were per-
formed 55–75 s after the injection of the contrast agents.

Image pre-processing and tumour segmentation

To minimise the centre effect of CT images from different scan-
ners and hospitals [21], all original CT imageswere appropriately
pre-processed. First, the imageswere resampled to 1 × 1 × 1mm3

(x, y, z) using a linear interpolation algorithm to standardise the
voxel spacing [22]. Then, a 25HU bin width was set to discretise
the voxel intensity and reduce the noise [23].

Tumours were segmented manually on the axial images at
the portal venous phase by one radiologist with 10 years of
experience with CRC diagnosis using ITK-SNAP software
(version 2.2.0, www.itksnap.org), and mesentery air and
pericolonic fat were excluded from the volume of interest
(VOI) data. Another radiologist with 15 years of experience
in abdominal disease evaluation revised and confirmed the
segmentation results. Tumour VOIs were saved for subse-
quent quantitative feature extraction.

Fig. 1 Flowchart of inclusion and exclusion criteria for eligible patients in the study. CRC, colorectal cancer; MSI, microsatellite instability
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Radiomics feature extraction and standardisation

CT radiomics features of tumour VOI were automatically ex-
tracted using the PyRadiomics software package (version
3.0.1, https://pyradiomics.readthedocs.io/en/ latest/changes.
html), which included shape, first-order, texture, wavelet,
exponential, and square transform features [24].

ComBaTool and z-scores were then used to normalise the
features. ComBaTool, a free online application (https://
forlhac.shinyapps.io/Shiny_ComBat/) [25], was used to pool
features and minimise inter-scanner variability [26]. Principal
component analysis (PCA) was utilised to visualise the effects
of Combat on feature uniformisation. Finally, all radiomics
features were standardised using z-scores. The radiomics ana-
lysis process is shown in Fig. 2.

Radiomics feature selection

As illustrated in Fig. 3, a series of coarse-to-fine data balancing
and feature selection strategies were performed to deal with the
imbalanced dataset and dimensionality reduction (Fig. 3A–D).
Initially, an independent-sample t-test or Mann-Whitney U test

was performed to coarsely choose features with the statistical
differences between the MSI-H and MSI-L/MSS groups. Then,
the random under-sampling method generated K-balanced sub-
setswith an equal number ofMSI-H andMSI-L/MSS patients. A
recursive feature elimination support vector machine (RFE-
SVM) method was designed to recursively train these samples
using a SVM model with the linear kernel function. Features
with minimum weight were eliminated, and the top-ranking fea-
ture subset was retained. High-frequency features were then se-
lected by counting the occurrences in the K features’ subsets.
Subsequently, upsamplingwas performed to alleviatemodel bias
to majority class, followed by backward stepwise logistic regres-
sion to further reduced the features. Finally, a post hoc correlation
analysis was used to inspect the redundancy of the final selected
features.

Construction of the MSI-related radiomics signature

Artificial neural network (ANN) models are widely popular ow-
ing to their strong ability to describe complex and non-linear
problems. Genetic algorithm–enhanced ANN (GANN) (Fig.
3E) has the potential to accelerate the updating of network

Fig. 2 Workflow for radiomics analysis in this study. (I) Tumour seg-
mentation on CT images. (II) Radiomics features extraction from CT
images. (III) For data pre-processing, the ComBat harmonisation method
was used for feature standardisation. (IV) A series of coarse-to-fine fea-
ture selection strategies were carried out for feature selection. (V) The
microsatellite instability (MSI)–related radiomics signature was

constructed with an enhanced neural network model. (VI) Building and
performance of model: receiver operating characteristics (ROC) curves
were implemented to assess the models’ performance. Fitness curves and
Sankey diagrams were plotted to visualise the network results. (VII)
Prognostic analysis was performed based on the MSI-related radiomics
signature
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parameters, avoid local optimisation, and improve prediction ac-
curacy [27, 28].

The GANN model consisted of an input layer (radiomics
features), a hidden layer, and an output layer (MSI status).
Sigmoid and tangent activation functions were employed in the
hidden and output layers, respectively. To prevent overfitting, the
fitness function of the GA was described as min{AUCtrain,
AUCinter − validation}, and the best parameter result was decoded
after repetitive generations of population selection, crossover,
and mutation operators. The output of the optimal GANNmodel
was converted into a radiomics signature.

Development and validation of the predictive models

Univariate andmultivariate logistic regression analyses were per-
formed to construct the predictive models. The candidate clinical
factors were gender (male versus female), age (continuous), pri-
mary tumour location [left (splenic flexure to sigmoid) versus
right (caecum to transverse colon) or rectum], CEA (continuous),
and Ki-67 (continuous). Then, a combined model was built in-
corporating all significant predictive factors, and a clinical model
was constructed using only significant clinical factors.

Statistical analysis

Chi-square, Fisher's exact, or Mann-Whitney U tests were per-
formed on the clinical factors in the training, internal and external
validation cohorts, and between the MSI-H and MSI-L/MSS
groups. Receiver operator characteristic (ROC) curve and area

under the curve (AUC) values were used to evaluate the perfor-
mance of the radiomics signature and prediction models. The
DeLong test was used to compare AUC differences.

To evaluate the prognostic stratification value of the radiomics
signature, patients were classified into predicted MSI-H and
MSI-L/MSS groups by maximising their Youden index values.
Survival curves were plotted using the Kaplan–Meier method
and compared using the log-rank test. The GANN was operated
in the MATLAB 2018b toolbox (MathWorks). Statistical
analyses were performed using R (version 4.1.1) and Python
(version 3.7.3). p values < 0.05 were considered statistically
significant.

Results

Patient characteristics

A total of 837 CRC patients with a MSI-H prevalence of
10.6% (42/396) in hospital I and 12.6% (56/441) in hospital
II were included in the study. Table 1 shows the patients’
clinical information and a comparison between patients with
MSI-H andMSI-L/MSS. No statistical differences were found
among all factors expect tumour location (p < 0.001). No
variable was significantly different between the training and
internal validation cohorts (p = 0.122~1.000). Moreover,
99.2% (393/396) of patients were followed up for OS, and
the median [Q25, Q75] OS was 65.5 [50.3, 76.2] months for
hospital I.

Fig. 3 Flowchart of feature selection and modelling strategies for
imbalanced data handing. (A–C) High-frequency feature selection
through a combination of random downsampling and recursive feature
elimination support vector machine (RFE-SVM) ranking strategies. D
Feature selection through upsampling and stepwise logistic regression.
E The structure of the genetic algorithm–enhanced artificial neural

network. The upper left is the basic structure of the artificial neural net-
work, with radiomics features as inputs andMSI statuses as outputs. Two
activation functions are marked at the bottom. The genetic algorithm was
responsible for decoding the network parameters and optimising them via
the “natural selection” method. The output of the optimal model was
regarded as the radiomics signature
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Radiomics feature extraction, standardisation, and
selection

A total of 1037 radiomics features were extracted (14 shape-
based features, 18 first-order statistical features, 75 texture fea-
tures, and 744 wavelet decomposition features, 93 exponentials,

93 square transform features) from the tumour VOIs. Figure 4a
shows that the data distributions of the two centres were relative-
ly scattered before eliminating the centre effects, whereas these
were pooled together following normalisation using ComBat.

For feature selection, 590 features were coarsely selected
by an independent-samples t-test or Mann-Whitney U test.

Fig. 4 Radiomics feature
selection. a Principal component
analysis (PCA) scatter plot. The
first two principal components of
the significant radiomics features
were visualised in a two-
dimensional scatter plot before
and after using ComBat. The X
and Y axes present the two
principal component dimensions.
Red and blue colours represent
the two hospitals. b Frequency
distribution heatmap and
histogram. One hundred feature
subsets were generated by
recursive feature elimination
support vector machine (RFE-
SVM) and drawn as a grid
heatmap after frequency ranking.
High-frequency features are
marked on the right, and the
corresponding frequency
histogram is shown on the left. c
Forest plot. Selected features and
their p values are described in the
table, and the odds ratios are
plotted as line segments with red
diamonds. d Correlation
heatmaps. The blue circle
represents a positive correlation,
and the red indicates a negative
correlation. The larger the circle
and the darker the colour, the
higher the correlations
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Subsequently, 47 high-frequency features that appeared more
than 15 times in 100 feature subsets were selected using ran-
dom downsampling and RFE-SVM methods (Fig. 4b).
Finally, 10 predictive features were determined using a back-
ward stepwise logistic regression analysis (Fig. 4c). The cor-
relation results between the features are shown in Fig. 4d.

Development and performance of the MSI-related
radiomics signature

Ten radiomics features were employed as network input
neurones, MSI statuses were employed as network output
neurones, and the number of hidden neurones was set in a
range of 1 to 9. Before training, MSI statuses were pre-
processed by times two and minus one to fit the tangent acti-
vation function. The GANN model was built with the follow-
ing parameters: maximum epochs, 500; generations, 300; and
population size, 100. Initial population individuals were ran-
domly generated. The other parameters were set as the default
values.

The AUCs with different hidden neurones in the three co-
horts are shown as three broken line graphs (Fig. 5a). After
considering the overall performance of the different cohorts,
the optimal structure was determined to be the GANN with
five hidden neurones and AUCs of 0.792 (95% confidence
interval [CI]: 0.706–0.873), 0.788 (95% CI: 0.671–0.888),
and 0.780 (95% CI: 0.722–0.831), respectively. The detailed
optimisation process is shown in Fig. 5b, and the distribution
of the network weights and the proportions of radiomics fea-
tures weights are visualised as a Sankey diagram (Fig. 5c).

Development and performance of the prediction
models

Univariate and multivariate logistic analyses identified age,
tumour location, and radiomics signature as independent

predictors of MSI status, as detailed in Table 2. The combined
model was constructed by combining all the above factors,
while the clinical model was constructed with only age and
tumour location.

The AUC, accuracy, sensitivity, and specificity of each
model are presented in Table 3. The performance of the
MSI-related radiomics signature (AUCs of 0.792, 0.788, and
0.775 in the training, internal, and external validation cohorts)
was comparable to that of the combined model (AUCs of
0.806, 0.777, and 0.767; DeLong’s test, p = 0.746–0.920); it
also outperformed the clinical model (AUCs of 0.747, 0.768,
and 0.623, p < 0.001).

Prognostic analysis of the signature

Patients were divided into predicted MSI-L/MSS (signature <
−0.01) or MSI-H (signature > −0.01) groups based on the
signature cutoff value by maximising their Youden index
values. Kaplan–Meier survival analyses (Fig. 6) showed that
the signature could successfully stratify stage II CRC patients
(HR: 0.402, 95% CI: 0.172–0.937; log-rank, p = 0.029) and
predicted that patients with MSI-H had a significant prognos-
tic advantage compared to MSI-L/MSS patients, while no
statistical differences were found for stage I (p = 0.940) and
III (p = 0.950) CRC patients.

Discussion

In this study, we applied a genetic algorithm–enhanced artifi-
cial neural network to establish an MSI-related radiomics sig-
nature based on 277 venous phase–enhanced CT images to
predict the MSI statuses of CRC patients. Its performance was
successfully verified in internal (119 patients) and external
validation cohorts (441 patients). Meanwhile, we found that
patients with stage II CRC with predicted MSI-H had better

Table 2 Results of univariate and
multivariate logistic regression
analysis

Clinical factors Univariate analysis Multivariate analysis

OR (95%CI) p value OR (95%CI) p value

Age 0.972 (0.958~0.985) < 0.001 0.980 (0.964~0.996) 0.013

Gender (reference: female)

Male 1.005 (0.702~1.439) 0.977 - -

Location (reference: left colon)

Right colon 1.821 (0.135~0.357) 0.008 1.442 (0.884~2.353) 0.142

Rectum 0.221 (0.135~0.357) < 0.001 0.417 (0.242~0.715) 0.002

CEA 0.998 (0.996~1.000) 0.137 - -

Ki-67 1.256 (0.520~3.040) 0.612 - -

Radiomics signature 2.996 (2.454~3.682) < 0.001 2.405 (1.935~3.003) < 0.001

Note. OR odds ratio, CI confidence interval, CEA carcinoma embryonic antigen
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prognoses than those with MSI-L/MSS. The results indicate
that the radiomics method is a feasible tool for assessing MSI
status.

Although judged by AUC values, the performance of our
radiomics signature was moderate compared to previous
models [11–18] (AUCs of 0.775–0.792 versus 0.688–0.918,

Fig. 5 Model performance analysis. a The area under the curve (AUC)
broken line graphs of the training, internal, and external validation co-
horts, respectively. The bold lines indicate the AUC values, and two thin
lines indicate the 95% confidence intervals of the AUCs. b Genetic algo-
rithm fitness curve. As generation numbers increased, the individual op-
timal fitness was continuously improved. The optimal network weight
combination was obtained at 227 generations. c Sankey diagrams. Left,

each feature’s importance is calculated by the ratio of their respective
weight to the total network weight. Right, the relationships among the
absolute value of the feature weight, five hidden neurons, andMSI status.
d Receiver operating characteristic (ROC) curves. The AUC and 95%
confidence intervals of the training, internal, and external validation co-
horts for the different models are shown in the bottom right

19European Radiology (2023) 33:11–22



respectively); our model had a more robust performance when
applied to the real-world data cohorts in our study. This might
have resulted from the elimination of potential centre effects
with the ComBat method and well-designed feature selection
and modelling strategies applied to account for imbalanced
data.

Unbalanced data distribution owing to the low incidence of
MSI is a challenge for MSI status classification in real-world
applications. Some previous studies used the synthetic minor-
ity oversampling technique (SMOTE) [16, 18] to create sim-
ulated MSI samples; however, this strategy made the model
more likely to become overfitted. Another study proposed an
initial bias adjustment method [12] for weightedMSI samples,
but it was difficult to guarantee the generalisation ability.
Bootstrapping is a recommended method for handling imbal-
anced medical image data [20]. In our study, a combination of
bootstrapping and the RFE-SVM method was proposed to
select high-frequency features, and an upsampling modelling
strategy was adopted to alleviate model bias toward the ma-
jority class [29]. Moreover, a genetic algorithm was utilised to
further improve the generalisation ability of the signature.
This may be attributed to the fact that genetic algorithm is
good at global searching, and the weight adjustment is also
exquisite [30].

Our results demonstrate the feasibility of using CT
radiomics features to predict CRC genetic information.
Although the underlying mechanisms by which radiomics
predicts MSI status remain unclear, we assumed that
radiomics features could characterise tumour size and hetero-
geneity. Most studies have reported that MSI-H CRC showed
a larger tumour size and more intra-tumoural heterogeneity
than MSI-L/MSS tumours [31, 32]. Based on the feature
weights in the signature, LeastAxisLength, Variance, and
InverseVariance were ranked as the top three radiomics fea-
tures. LeastAxisLength measures the length of the VOI-
enclosing ellipsoid and represents the tumour size. Variance
and InverseVariance are the measurements of image spatial
heterogeneity, and larger values of variance and smaller
values of InverseVariance reflect greater heterogeneity.
According to the radiomics signature equation, tumours with
larger sizes and more heterogeneity tended to be MSI-H,
which is partly in agreement with the findings of Chaddad
et al [33]. In contrast, MSI status is a prognostic biomarker,
and patients with stage II MSI-H CRC have a lower risk of
death [5]. Interestingly, we found that patients with stage II
predicted MSI-H CRC (HR: 0.402, 95% CI: 0.172–0.937; p =
0.029) showed better outcomes than those with predicted
MSI-L/MSS.

Table 3 Performance of
prediction models for MSI status
prediction

Cohort Model AUC (95% CI) Accuracy Sensitivity Specificity

Training Clinical model 0.747 (0.644–0.838) 0.773 0.655 0.786

Radiomics signature 0.792 (0.703–0.872) 0.747 0.828 0.738

Combined model 0.806 (0.696–0.890) 0.744 0.828 0.734

Internal validation Clinical model 0.768 (0.591–0.896) 0.756 0.615 0.774

Radiomics signature 0.788 (0.678–0.899) 0.697 0.769 0.689

Combined model 0.777 (0.605–0.924) 0.706 0.769 0.698

External validation Clinical model 0.623 (0.535–0.714) 0.728 0.446 0.769

Radiomics signature 0.775 (0.720–0.826) 0.726 0.732 0.725

Combined model 0.767 (0.701–0.828) 0.721 0.714 0.722

Fig. 6 Kaplan–Meier curves according to signature predicted MSI status for colorectal cancer (CRC) patients with stage I (a), II (b), and III (c) tumours
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Moreover, clinical factors are associated with genetic alter-
ations in tumours. Consistent with previous studies [34], our
study identified that MSI-H CRC occurs predominantly in the
younger population and on the right side. This may be explained
by the fact that the proximal and distal colon have different
embryonic origins, leading to distinct biological properties [35].
However, the addition of clinical factors to radiomics features did
not significantly enhance our model’s prediction performance,
which is in line with previous studies [36, 37]. This finding
may be attributed to the fact that radiomics methods can capture
heterogeneity differences among tumour locations and different
genetic and epigenetic information, a function that overlaps with
but is ultimately superior to clinical effects after employing pow-
erful machine learning algorithms [38].

This study had some limitations. First, this was a retrospective
study, which may have inevitably led to some information selec-
tion bias. Second, we focused only on the most commonly used
CT images of the portal venous phase to develop the radiomics
signature. Further work is needed to explore whether non-
contrast and arterial phase images can provide more information
for MSI status estimation. Third, CRC tumours were manually
segmented, which is time-consuming and inevitably causes inter-
observer variations. In future studies, an automated colorectal
tumour segmentationmethod should be developed to resolve this
issue. Finally, different scanners and acquisition parameters were
used in our study, which may have influenced the radiomics
features. However, significant efforts have been made to mini-
mise the effects using ComBaTool and the z-scores method.

In conclusion, we constructed and validated a non-invasive
radiomics signature based on routine clinical CT images to
identify patients’MSI statuses, and the signature could stratify
patients with stage II CRC. These findings could potentially
aid in clinical decision-making regarding personalised treat-
ment for patients with CRC.
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